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FLUTTER ANALYSIS OF FLAT RECTANGULAR PANELS
BASED ON THREE-DIMENSIONAL SUPERSONIC
UNSTEADY POTENTIAL FLOW

By Herbert J. Cunningham
Langley Research Center

SUMMARY

A systematic analytical procedure has been developed for computing flutter char-
acteristics of rectangular panels with stream-alined side edges, based on air forces
from three-dimensional linearized supersonic unsteady potential flow. The procedure
has particular usefulness in the low supersonic speed range where static and quasi-
static aerodynamic approximations are considered to be least valid and can provide
bases of comparison for some of the simpler types of analysis. The panel is considered
to be finely divided into many boxes, and the aerodynamic influence coefficients between
all pairs of boxes are obtained by numerical integration. The flutter analysis is a modal
type, which readily coordinates with the aerodynamic box method, and can be used for
calculating the flutter stability of any flat or nearly flat panel, whether of isotropic or
anisotropic stiffness, and of buckled panels for which the flutter is a small-amplitude,
simple harmonic, superimposed motion to which linear theory is applicable. A number
of results are presented for flat unstressed, isotropic panels with simply supported edges
and with clamped edges. For clamped-edge aluminum panels with a length-width ratio of
2 at sea level, the panel flutter parameters are tabulated for eight Mach numbers ranging
from 1.02 to 2.0. For Mach 1.3, flutter boundaries are plotted for length-width ratios
from 0 to 10 for simply supported edges and from 0 to 4 for clamped edges so that
design values can be read for a wide range of panel materials and air densities. Appen-
dix A delineates the way in which the natural mode characteristics were developed for
calculating the presented flutter results without the need for double-precision arithmetic.
Appendix B provides formulas for conversion among a number of types of flutter solution
parameters in current use. Appendix C describes a way to economize computer time
for the large matrix multiplications required.

INTRODUCTION

A description of an analysis of the flutter of flat rectangular unyawed panels on the
basis of unsteady potential flow and some results from that analysis were presented in



reference 1. Since its publication, considerably more information and results have been
obtained. The purpose of this report is to present the overall results. The description
of the analysis is sufficiently complete to enable the analyst to understand it without
referring to reference 1.

In the lower supersonic Mach number range, below a Mach number of about \lﬁ,
simple approximations for the aerodynamic forces, such as Ackeret theory or piston
theory, do not give satisfactory results, at least for panel length-width ratios less than
about 1.0. For length-width ratios greater than 1.0, there is now some evidence that
Ackeret and piston theory can give good estimates of the panel thickness required to pre-
vent flutter, and this evidence is discussed in the present report.

The central feature of this analysis is the way in which the aerodynamic forces are
determined. In what has come to be known in the literature as a "box method,' the
required double surface integration is carried out by considering the panel to be finely
divided into a large number of equal-size rectangular elements or ""boxes."" The aerody-
namic influence coefficient relating the velocity potential of each box to the motion of
each other box is calculated by numerical integration and used in a modal-type flutter
stability solution. Mode-shape properties from either calculation or experimental meas-
urement can be applied in the flutter solution.

A variety of flutter results are presented and discussed for flat unstressed panels
with isotropic stiffness. Calculated mode shapes and frequencies were used. Although
the results presented are limited to simple panels, this type of modal analysis with a box
method is broadly applicable to flat or nearly flat panels, whether unstressed or stressed
(as by thermal expansion), and whether of isotropic or anisotropic stiffness. It would
also seem to be applicable to buckled panels for which the flutter is a small-amplitude,
simple harmonic, superimposed motion to which linear theory would apply.

A brief discussion is given of recently published findings that the stiffness coupling
effects between assumed beam natural modes, when they are applied to the flutter analysis
of clamped-edge plates, are not uniformly negligible and can become significantly large
as length-width ratio increases.

Appendix A presents the expressions for the panel vibration mode shapes and fre-
quencies used in the flutter analysis in such forms that only single-precision arithmetic
is necessary for all modes used. Appendix B gives the relations among some panel
flutter parameters that are used in the literature. Appendix C describes a way to econ-
omize computer time for the large matrix multiplication in computing the velocity

potentials.
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SYMBOLS
speed of sound

aerodynamic influence coefficient giving the velocity potential at a box induced
due to unit downwash on another box (egs. (13) and (18))

number of boxes in stream and cross-stream directions, respectively
flexural stiffness of an isotropic panel
Young's modulus of elasticity

coefficients of mechanical hysteretic structural damping

amplitude of natural mode-shape deflection for modes i and j

distribution of time-varying panel deflection for mode j (eq. (2)), positive
downward

Ig1Iga:Igs integralsin A, (egs. (19) to (21))

ke

k;

Kp,Kq

*
Kp,q

ma

reduced frequency with reference length ¢, %
reduced frequency with reference length 1, wvl

roots of characteristic equations (egs. (A3), (A7), and (A13))

nondimensional eigenvalue quantity for natural vibration modes (eqs. (A4),
(A12), (A17), and (A18))"

length of panel in stream direction

mass of panel per unit of surface area



A

M Mach number, as
M; generalized mass for mode i
M;
Mi* = Twmp (applicable for uniform panel only)
p,a number of half-waves in panel vibration mode in stream and cross-stream
directions, respectively
Ap perturbation lifting pressure, positive downward
Apj perturbation pressure due to mode j (eqs. (5) and (7)), positive sense same
as that for Hj
] L . pV2
q free-stream dynamic pressure, “5—

q;(7),q;(7)

uy,U9,Vy5Vg

time-varying generalized coordinate of motion for modes i and j,
respectively

complex amplitude of c'1].(1') (eq. (2)); also the eigenvector for mode j from
a flutter solution

generalized aerodynamic force from pressure due to mode j and modal
deflection of mode i (egs. (8) to (10))

nondimensional computational quantity contained in Qij (eq. (28))
panel area
thickness of panel

transformed panel coordinates and variables of integration in x~ and
y-directions, respectively, based on €/2 as a reference length, (eq. (15))

lower and upper limits of integration with respectto u andto v
(eq. (16) and table I)

speed of undisturbed airstream



w width of panel in cross-stream direction

Wj downwash velocity at panel surface for mode j, positive downward

X,y panel coordinates in stream and cross-stream directions, respectively
(see fig. 1)

XerYe panel coordinates based on ¢ as a reference length, x¢ = }E—‘, Ye =§-

Xm>¥n values of x. and y, atcenter of box m,n (see fig. 1)

X,y panel coordinates based on reference lengths I and w, respectively

X, Y5 x- and y-variation, respectively, of Hj (eq. (Al))

z panel deflection, positive downward, Z(x,y)ein

l w \2

=p =—{—
sz<Bxs)
w 2
a*=TBsBxs

o %%,y eigenvalue quantities for x- and y-variations, respectively, of assumed beam
modes (egs. (A5) and (A10))

g=\M2-1
€ width of box, ——
Bxs
€pi€q small difference quantities (see eqs. (A8) and (A14))
] dummy variable of integration for y,
2q2 8
Py dynamic pressure parameter, —%D-—
. . . ma
u ratio of panel mass density to air mass density, o
¢ dummy variable of integration for x,
p density of undisturbed airstream



BXS

o length-width ratio of box, ——
wBg

T time

qo]. velocity potential at center of box m,n for mode j, go]. (m,n)

qo]-*(m,n) nondimensional part of qp]-(m,n) (eqs. (26) and (27))

7 velocity potential at center of box m,n due to unit downwash over box u,v
w frequency of flutter motion
wj@B natural frequencies of panel mode j and of a chosen base or reference
mode, respectively
(J)B 2
Q= <_<I?') (1+ig) flutter eigenvalue parameter
— M2k,
Q= 5
B
| ,[L{} row, rectangular, and column matrices, respectively

Subscripts and index numbers:

B base or reference value

i,j mode numbers

m,n streamwise and cross-stream numbered location of a receiving box

p,a number of half-waves in stream and cross-stream directions, for a panel

vibration mode

r,s relative numbered locations of sending and receiving boxes, (eq. (12))
te value at trailing edge of panel

X,y x- and y-directions or variations

W,V streamwise and cross-stream numbered location of a sending box



ANALYSIS

Stategnent of Problem

The panel to be analyzed and the coordinate system used are shown in figure 1.
The panel is a single rectangular panel of length 7, width w, and the side edges are
alined with the remote wind direction. It is a flexible part of an otherwise inflexible sur-
face that extends at least far enough to the sides to prevent the upper and lower surfaces
of the panel inducing any aerodynamic effects upon each other. Supersonic flow over the
upper surface only is considered. The analysis is made on the basis of linear relations
between small deflections and applied loads.

Since the primary contribution of the present report is the procedure for obtaining
the generalized aerodynamic forces for use in a flutter analysis, the governing differen-
tial equation of motion is written, for simplicity of presentation, for a uniform isotropic
plate with no in-plane loading

4 4 4 2
D 8Z+2 32Z2+BZ +mAa_z"Ap(x’Y7T)=0 (1)
ox ax2ay2 oy 72

where z is the deflection (positive downward) of the panel, D is the panel flexural
stiffness, m, 1is the mass per unit area of the panel, and Ap is the net perturbation
pressure (positive downward) arising from the deflection and motion of the panel. Equa-
tion (1) does not have an explicit term for damping in the structure but any damping con-
sistent with a linear treatment

M
can be introduced. 1 }

For the type of panel deflec-

tions and aerodynamic forces con- — e - f .0
sidered, it has not been found ]
feasible to make a direct solution

to the equation of motion. There-

fore, the often-used procedure is

xm-E=B(yn-n)} rd

followed, of considering the panel
deflection to be sufficiently well N L fx -€--py, -n
approximated by a finite series, L

SN

that is, a linear combination of X Y

prechosen deflection modes. For W
simple harmonic motion

Z(X’Y, T) = Z(X,Y)ele, where w X, €

is the circular frequency of Figure 1.- Plan view of panel divided into boxes with coordinate system,
dimensions, and a forward facing Mach cone with apex at box center
Xm. Yp-



vibration and where Z(X,y) can be a complex function to account for phase differences of

motion over the panel.

This procedure leads to

Z(X,y, T) = Z Hj(x’Y: T)
j (2)
Hj(X,y,T) = El](T)h](x’Y) = qjeinhj(x’Y)

and qj is the complex amplitude of the generalized coordinate of motion. If the deflec-
tion mode shapes hj are known that satisfy exactly both the geometric boundary condi-
tions and the differential equation that corresponds to equation (1) without the aerody-
namic term, then (the time variation el®7 being set aside

4 4 4 2( )
9 h. 9*h, 97h. 94(H. /a. .

D 4] +2— ]2 + 4] = -mp ]/ U g-iwT - mAw-zh- (3)
X 9x“° oy dy

where on the right-hand side w takes on its eigenvalue wj, the normal mode frequency
associated with hj. The consequences of using shapes h]- that fail to satisfy exactly
the differential equations are examined and discussed later for clamped-edge panels.
Substitution of equation (2) into equation (1) and application of equation (3) produce the

result

= 1. 2 o he 2 =
Z qjh]mij - Z q].h]mAw - Ap(x,y,7) =0 (4)
] J
in which the frequency w and the combination of (-lj are unknown, and the perturbation
pressure Ap still has to be determined.

Consistent with the use of a series representation of the panel deflection, the pres-
sure distribution Ap is also used as a series, one term being associated with each
deflection mode,

ap =) apy=) & B, (5)
i i
where Apj is separated into the time containing Elj and the time invariant A_pj.
The Galerkin method is chosen to form the flutter stability equations. Briefly
described, the terms of equation (4) are multiplied by a mode shape h;(x,y) and the

products are integrated over the surface area of the panel. When the modal index num-
ber i is made successively 1, 2, 3, . . . for all the modes hj employed, the result is

8



a system of equations that requires an equilibrium of work or energy for a condition of
minimum total (kinetic plus elastic potential) energy of the panel. For modes hj that
satisfy equation (3) and are orthogonal, each of the equations is of the relatively simple

Z ( ”ymA“hd"dY z ﬁ jJpi dx dy =0 (6)

J

and the last term (’13. ‘YS‘ A_pjhi dx dy = Qij is the generalized aerodynamic force term.
S

In order to obtain the pressures Ap, = q. Ap., the choice is made to work with the
velocity potential @ and make use of the relation (compare eq. (3) of ref. 2, for
example)

dp; By ®
= - _1__ SN =RV 1), wl
Apy =-p 2 p( RANEE ) 7 (E)x 1y "’1) (1)

where p and V are the mass density and velocity of the undisturbed airstream. Each
of the generalized aerodynamic force terms Qij needed in the dynamic equilibrium
flutter equations is the integral over the panel surface of work that would be done on
modal displacement i with unit amplitude due to a deflection in mode j with ampli-
tude dj; that is,

1] = &ZV- 5 ( +1i 7 qJ])d(lx)d(WY) (8)
S

where here and in the following development the subscript index for mode i is not to be
confused with the unit of imaginaries i= V-_f The coordinate y ranges from 0 at the
left edge to 1.0 at the right edge. If the term hj (Btpj /8}-(> is integrated by parts, the
result is

1 1 Bh,
Vv
=5 o, E’i(xte’y)‘f’i(xte’y) '§i=0 9”3(?,—} -1 h1>d(lxﬂd(wy) )

For elastically supported or free trailing edges, the trailing-edge deflection _hi(xte,y)
could be significant, but for the usual condition of a restrained trailing edge, it is zero,
and Qij is determined from the second term only as

Q=2 S§ 9”]'(3; 4 7 JdER)dwy) (10)

Note that the quantity within the parenthesesis the complex conjugate of the downwash
ratio.



In most of the foregoing equations, the harmonic time variation @7 g
retained, but except at points where the time derivative 8/987 is indicated, the quantities

?; and Qij can be considered alternatively as their complex amplitudes only.

In the rest of this section the procedures for computing (1) the aerodynamic influ-
ence coefficients relating downwash and velocity potential, (2) the velocity potentials, and
(3) the generalized aerodynamic forces are described. The procedure used for obtaining
solutions to the system of flutter equilibrium equations is also described.

Aerodynamic Influence Coefficient

The panel is considered as divided into a gridwork of equal-size rectangular
"poxes.! The number of boxes in the stream and cross-stream directions are Bg and
Bxg, respectively. For reference in the computation procedure, the boxes are numbered
in sequence beginning at the box nearest the origin of coordinates; in the stream direc-
tion the index m=0, 1, 2,. . . Bg - 1, and in the cross-stream direction

n=0,1,2,...Bxg - 1. A second set of box index numbers is needed, and these num-
bers, designated by p and v, takeonvalues p=0,1,2,...Bg-1 and
v=0,1,2,...Bgg - 1. Thus, reference can be made to the aerodynamic influence

upon any receiving box m,n due to any sending box u,v.

The gridwork of boxes is assumed to be sufficiently fine so that the downwash over
any sending box can be taken as uniformly distributed at any instant, and that the resulting
pressure perturbation at the center of each receiving box is a sufficiently accurate aver-
age of the pressure distribution over that box.

For convenience in the computational procedure, a reference length has been

chosen as € = Bl’ the width of a box. The velocity potential at the center of a
XS

receiving box m,n due to a uniformly distributed but otherwise unspecified downwash
w(u,v) over the sending box pu,v can be expressed for a simple harmonic time varia-
tion (compare eq. (34) of ref. 2) as

@(m,n) = ew(u,v) Ayl(r,s) (11)
where the relative locations fore and aft, and sidewise, respectively, of the two boxes are
indicated by

r=m- ul

s=n-v )

(12)

10



and from equation (34) of reference 2

o-18xm-8) o {% [osm - 2 - B2y -] 1/2}

me B 5)2 - Bz(Yn - 77)2] 1/2

in which the area of integration S v is any part of the sending box pu,v that lies for-
ward of the forward-facing Mach cone with apex at xp,,y . (See fig. 1.) Note that the
integrand is singular along the Mach cone because of the denominator. All boxes and
parts of boxes lying aft of that Mach cone have a zero contribution to A¢(r, s). For

box m,n the coordinates x, and Vi and their respective dummy variables of inte-

Aplr,s) =1 S‘y d dn (13)
Su,v

gration £ and 7 are based on the reference length ¢; that is, xm =§ and Yy = %
The frequency Mach number parameter € is
2
— M
Q= —-—ZkE (14)
B
where the reduced frequency k. = % contains the chosen reference length e.
As in reference 2, a transformation of variables is made as follows:
Xm - &= %u_
v (15)
Yp-"n= )
With transformation equations (15), equation (13) becomes
1/2
Q (2 - v2) }
u L, == Ve COS [ u< - v
Ay(r,s) = LS" 2 e'l(BQ/Z)uduf 2 2M L gy (16)
27 Jy 1/2
1 V1 (u2 - v2)

where the upper and lower limits of the surface integrals, indicated by Vi Vg, Uy,
and ug, are established for any given box by its edges except where the forward Mach
cone with apex at x,,,y, passes through the box.

The integral of equation (16) is to be evaluated numerically. The integrand con-
tains a singularity of order -1/2, at u = zv, that is, along the Mach lines from Xp,,¥p-
In order to minimize the potential inaccuracies in integrating by numerical quadrature
in the vicinity of that singularity, the numerator of the integrand is replaced by the
identity

1



cosELﬁ(uz - v2)1/2j| = cos[;%(uz - Vz)l/ﬂ- 1 +1 (17)

Substituting equation (17) into equation (16) and carrying out formally part of the v inte-
gration gives

g7 )
Agp(r,s) = 21_5‘“2 -1(89/2)11( 0571 L oos71 2 +§V2 COS[ZM(u ) av ldu
Py - T v 'u— CuUuD ‘u— uv juu

uq \ \4 (u2 - V2)1/2 /

where the integrand of the remaining v integral is zero at u = +tv and numerical inte-
gration with good accuracy is possible. All possible forms of the limits uy, ug, vy,
and vy lead to only three forms of equation (18) that are explained with the aid of

table I. The first form is for the condition v9 = -v; =u that can occur only for

v=n (thatis, s =0), and then only for any portion of a sending box u,v cut by both
sides of the Mach cone. For this condition

_1(Y2 _i(g0/2)u, (82
Ig1=3 o e i(BY/ uJ0<f§ﬁu>du (19)

where Jg is the Bessel function of the first kind of order zero. The second form of

equation (18) occurs for portions of a box cut by one side of the Ma‘c’h cone (s # 0), so
that the limit vo =u and vy = 2s -1z21. Since vg=u, cos-1 Tz =0 and

-y 2} _
. 1 uy —1(BQ/Z)u Vl S_u cos[ v) 1

dv|du (20)
G2 ™ 2r Jy, )1/

The third form, which occurs for boxes that are completely ahead of the Mach cone and
also for portions of boxes ahead of the point where the Mach cone passes out through the

cos[—( 2. vz)l/z] -1
,2)1/2

side of the box, is

dvjdu (21)

U2 _i(ge/2 171 -1V2 v2
IG3__S. i / )u = - X

The complete Aqo(r,s) for any one box pu,v consists entirely of Iy, Igg, Or Igng, OT
a combination of I~q and lgg or of Iso and Igs-

12



Table I.- Types of integrals and limits of integration for computing A q,(r ,8) for all
possible relative locations of box p,v and the Mach cone from box m,n.

—2 153

—Ic1

?\\ -

Iga

N
L
G2
~ T IG3
é\ Igs
N
s>0 <«
N N Igs
— Ig2
<
— g3
gy
—

V1

2s

2s

2s
2s

2s
2s

2s

-1
-1

-1
-1

Limits of integration

V2 u

1 (@r - 1) o/8

1 1
----- 0

1 1
----- (2r - 1) o/B
----- er - 1) o/B
----- ()}

u (2r - 1) o/

u 2s -1
25 + 1 2s + 1

u 23 -1
2s+1 28+ 1

u @r - 1)o/B
25+ 1 @r - 1) o/B

A¢(r,s) =0

Y

(2r + 1) o/B

(2r + 1) o/B
1

@r + 1)/
1

(2r + 1) o/B

@r + 1)o/8

@r + 1)o/B

@r + 1)o/8

@r +1)o/B
25 + 1

(2r + 1) o/B
2s +1

@r +1)a/B



Table I covers all possible relative locations of a sending box and the Mach cone
from a receiving box. The applicable integral, IGl’ IG2’ or IG3’ for a box or box
segment and the limits of integration vy, Vg, Uy, and u, are listed. The limits
tabulated are consistent with the reference length chosen for equation (11) and with

€
the traneformation of equation (15) The double guantity 9T~o annears in table T where
the transiormarlio 1 equallor ). 1he double quaniity zlgg appears intable 1l where

XS
wWhbg

is the length-

advantage was taken of symmetry about vy = 0. The quantity o=
width ratio of a box.

influence coefficients have right-left symmetry about s = 0; that is,

Aq,(r,s) = Aq,(r,-s) (22)

Thus, all values of A qD(r, s) that are needed for any box are obtained by considering
either one of the rear corner boxes as the receiving box. Both the u and v integrals
are carried out in the computing program according to Gaussian numerical quadrature
(described in numerous texts, for example, ref. 3) by an available subroutine. For
sending boxes near the Mach cone from x.),y,, a five-point integrating rule was found
to be accurate. For sending boxes remote from the Mach cone, a three-point rule was
found to be accurate and provided a consequent economy of machine time.

Velocity Potentials

Once all possible values of Aq,(r,s) are computed, the total ¢.(m,n) at the cen-
ter of any box m,n for any downwash mode j is a weighted sum of the ‘@(m,n) of
equation (11) particularized to mode j; that is,

@j(m,n) = Ve ZZ L‘L;’l}) Ay(r,s) (23)
[T7
or, in matrix form
o;(m,m) = Vet”j(% @q,(r,s} (24)
wi(u,v)

The downwash ratios are the total time derivatives of H]-

v

ViopdEy My 1 Oy PN erp 25)
oX vl

= — + =
V Vdr 98@x) V or
Of course, a complete array of cpj(m,n) is required to cover all m,n. With a dimen-
sional constant separated, the complete array is

14



{oj(m,nﬁ = Ve %{pf(m,n& (26)

. e 2. . " . *
where the nondimensional elements ¢ "(m,n) are

%] *(m,n) n} l;a% %Z- h£| {Aqo(r,s& (2m)

in which by is hj(xu,y,,).
The practicality of this box method is largely dependent on the machine time con-

sumed in the matrix multiplication of equation (27) for multiple modes j. An economical
way to obtain the matrix of go]-* is described in appendix C.

Generalized Aerodynamic Forces

Equation (10) represents a generalized aerodynamic force term as a surface inte-
gral. With use of the box method, the terms are evaluated by a matrix multiplication.
With a dimensional constant separated

2

Q
BgByg2 Dt

i (28)

the nondimensional part is

oh.
* i . wl *
.= |—==1=2h; .
Qj l_ai 'Y 4 {"’J} (29)
To conserve machine core storage, the real and imaginary part of the downwash from
equation (27) can be used in its complex conjugate in equation (29).

The complete matrix of elements Ql] is obtained by use of successive rows of the
downwash conjugate with one row for each mode i and successive columns of (p] with
one column for each mode j.

Solution of the Flutter Determinant

For the numerical solutions presented herein, it has been assumed that the individ-
ual modes used in the analysis are orthogonal (that is, with no inertial coupling) and also
have no significant stiffness coupling between modes. Recent findings, that for clamped-
edge panels stiffness coupling can be significant, are discussed in the section "Results
and Discussion." Further, structural hysteretic damping that is characterized by a coef-
ficient for each vibration mode is assumed. With these assumptions, the system of

15



equations that express the dynamic equilibrium of motion based on equation (6) are
w2 - w2(1 +ig )|\ Mjd; + > Q.. =0 (=12 ) (30)
- 1( gI) 1q1+ ij" 1=1,4,...
i

where w; 1is the natural frequency of mode i and M; is the generalized mass of

mode i

1,1
My = 2w (g o) Byt % 0 @)

and where m, represents the distributed panel mass per unit area. In equation (30)
the quantity gI(<<1) is intended to be interpreted as the modal damping coefficient for
structural hysteretic damping and is made up of two parts

g1~=8; +8

where g; can be the assigned or measured values for each mode i of the structure
and g is a modal-independent mathematical convenience to aid in determining eigen-
solutions. Let use be made of the asymptotic expression that is applicable for g <<1
and g; << 1 and exact for either g = 0 or g=0

1+ igi +ig ~ (1 + igi)(l + ig) (32)

(wB /wiw)z

Mi(l + igi)’

If equation (30) is multiplied by a form convenient for eigensolution results

“Yg 2 1 wp 2
= o - %
o (W) T+ igg| 4" (“’—1> (1 + igg)k; My JZ %4950 (=1,2... (33

where wp is any chosen base or reference frequency,
2
w
=|_B ;
Q= ( 5 > (1 +ig)

- 1/ w\2
a_pBS(Bxs)

and kZ = %é is the reduced frequency based on the reference length 1.

In the set of equations indicated by equation (33), the analyst can readily apply
values of g; that are not necessarily the same for the various modes i. Of course,
for the situation where the g; for all modes are equal, g = go for illustration, flutter

16



characteristics that are identical in every respect are computed by either of two pro-
cesses: (1) Assign 8; = &g for all modes and determine the crossing point g = 0; or
(2) Assign g; = 0 for all modes and determine the crossing point g = go-:

For panels with a uniform mass distribution m A2 the quantity a/Mi in equa-
tion (33) can be replaced as follows:

o _ o*
M=o % (34)
M;j u M;j
where
o*=—W 5
lBgBxs
M= (7 ny2a 05 (35)
i = i y
Jo Jo M
1_opl
I mp

the ratio of air mass to panel mass being 1/p.

As is commonly the case with the unsteady air forces, the flutter boundary cannot
be computed directly, and an indirect method of computing and cross-plotting is neces-
sary. In advance of a flutter solution for any given panel and Mach number, choices are

made for Bg,Byg and for the number of modes in the analysis. The downwash quantities
hy /Bi and h; at the center of each box and the modal frequencies wj are computed

or obtained from experiment for each mode i and arranged systematically for use in

the matrix multiplications. Values of g; are assigned and the quantities M; and «
(or M;* 1/p, and o* for panels with uniform m A) are computed, except that pro-

vision for varying the air density in « (or 1/u) is retained.

After a choice of the reduced frequency kl based on experience is made, the
matrix of values A(p(r,s), the <p]-(m,n) at each box center for each mode, and the gen-
eralized aerodynamic forces QI*J are computed and employed in the flutter determinant,
that is, the determinant of the matrix of the coefficients of Elj from equation (33). For
each of a number of values of the air density, the set of complex eigenvalues €, the
eigenfrequencies w, the values of g, and the associated stiffness parameters
wll wl @1 : .
~ =55 are computed. There is a value of each quantity for each chosen panel
mode. The normalized eigenvectors for each eigenfrequency can also be obtained, and
can be used to determine the proper plotting of curves through the computed results for
a range of kl or of a*. By plotting curves of g against 1/u for a sufficient range
of air densities, the existence or nonexistence of an eigenvalue with g =0 for some air
density is established for each mode. An associated curve of the stiffness parameter
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wql/V or w4l /ag is plotted against mass ratio — one curve for each eigenvalue.
(The use of the speed of sound ag rather than V permits direct comparison of flut-

ter boundaries for various Mach numbers.)

On a cross plot of 1/u against stiffness parameter, points can now be placed to
represent g =0. Each point is on a separate stability boundary.

By successive choices of kZ based on the results of previous choices, a series of
points can be placed on the plot of 1/, against stiffness parameter, and stability bound-
aries can be drawn through the points. Four different types of stability boundaries have
been found and three types are illustrated in figure 2. For each type, a boundary for
g; =0 and one for g; =0.01 (as illustrative of some small value) are shown, and the
arrows point in the direction of increasing reduced frequency k;. The boundary of fig-
ure 2(a) predicts that if g; Wwere zero, a fixed panel thickness would be needed as the
air density tends toward zero, but if g; were not zero, panel thickness would go toward
zero as air density does.

For the boundary of figure 2(b), the unstable
region shrinks with increasing g, and vanishes for
some value that may be extremely small or as large
as g; = 0.05 or possibly larger, depending upon the
panel and flow parameters. The crossing point of _
the boundaries for g; =0 in both figures 2(a) and
2(b) through 1. 0 occurs at a value of k; for
which the imaginary part of the Qii(kl) passes
through zero and the panel motion has a pure single Stable — g0
degree of freedom. For the boundary of figure 2(c),
the flutter motion is strongly coupled. Small NI e\
increases of g; have little or no effect, and this (b) \
small effect can be either stabilizing or destabil-
izing, depending on the particular panel and flow %
parameters. An important point regarding the Unstable
boundary of figure 2(c), as well as the dashed bound-
ary of figure 2(a), concerns their resemblance to a i Stable
parabola. For any boundary or portion of a bound- o=
ary which can be represented by a parabola ©

Unstable Stable

=~

T
A\
\
\
/

=l
\

described by 1_ (el times a constant, the air “’_1l ”_1l
e aS v or as
density and the panel thickness ratio t/! to pre-
Figure 2.- Three general types of stability

vent flutter are related by the formula boundaries for g = 0 and for g; = 0.0L.
t i L. . Arrows indicate direction of increasing
= Constant. Such a relationship is contained reduced frequency k;.

(o) 1/2
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in the panel flutter parameter (Ep/q) 1/ 3(t/ 1), which has been evolved and used by sev-
eral investigators. The fourth possible type of boundary found from a flutter determinant
is one that falls entirely in the negative 1/u region, the positive 1/u region being
stable with respect to it.

For any given panel and flow parameters, a set of stability boundaries is computed
according to the number of modes used in the analysis. The flutter boundary separates
the region that is stable with respect to all stability boundaries from the region that is
unstable with respect to at least one stability boundary. Care should be taken to estab-
lish that the flutter boundary is converged; that is, enough modes have been used in the
analysis so that additional modes do not alter the flutter boundary in any important
respect. By the Galerkin method alone, it is not usually possible to establish substantial
convergence with mathematical rigor. When the incremental effect of additional m
is not only small relative to the magnitude of the calculated quantities, but is also
decreasing at a substantial rate as modes are added, near convergence is commonly
assumed.

.\e.-.

RESULTS AND DISCUSSION

Results that have been calculated by means of the present analysis are presented in
a number of figures to scales large enough to permit the reading of values from the flut-
ter boundaries for design purposes. From past work it was established, at least for
wide panels (I/w less than about 1.0), that for the low supersonic speed range (M less
than about ﬁ), approximate aerodynamic forces, such as those of piston theory and static
strip theory (the latter is also known as the Ackeret value), do not give valid analytical
results. Nevertheless, because of their ease of applications, and because of their applica-
tion to the higher supersonic speed range, interest in the use of approximate aerodynamic
forces has continued. This continuing interest has led to the as-yet-limited finding that
for panels that are not wide (I/w greater than about 1.0), approximate aerodynamic
forces result in flutter boundaries that agree at least fairly well with the boundaries from
the present analysis even in the low supersonic speed range. (See fig. 2 of ref. 4.) On
the figures that apply to % z 1.0, therefore, the flutter boundary as obtained from the
roots of the closed-form expressions of reference 5 for simply supported panels and of
reference 6 for clamped-edge panels (with minor changes for the latter as explained sub-
sequently) is also shown. Reference 5 demonstrates that with static strip-theory aero-
dynamics on the simply supported panel, the critical flutter mode from the closed-form
solution involves a single half-sine wave as its cross-stream variation. The closed-form
expressions of reference 6 for the clamped-edge panel were developed on the basis of an
assumed single half-wave in the cross-stream direction. Since the natural frequencies
for multiple half-wave modes are always higher than those for the single half-wave modes,
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and since the aerodynamic cross coupling between single and multiple half-wave modes
has been observed to be at least fairly small in comparison with the direct coupling
terms, all the results presented in this report are for single half-wave cross-stream

modes.

Figures 3 and 5 present the flutter boundaries in plots of the mass ratio 1/u as
the vertical coordinate and the stiffness parameter wll/ V as the horizontal coordinate.
Flutter boundaries are presented for M = 1.3 for simply supported panels with length-
width ratios of 0, 1/4, 1/2, 1, 2, 4, and 10, and for clamped-edge panels with the same
length-width ratios except 10. All the results were obtained or spot-checked with

Quantity|  Point A Pint B | Point ¢
1/u 0.0240 0.0314 0.0141
g 0 0.010 0.010
k 0.607 0.50 0.40
wyl/v 0.616 0.5093 0.4035
wjw) 0.985 0.983 0.991
Q 10 1.0 10
g |-0.15+ 0.0131) x 1071 [(-0.27 + 0.017i) x 1071 {(-0.19 + 0.008i) x 1071
G <0.001 0.37 - 0.200) x 1073 (0.20 - 0.08i) x 1073
au <0.001 (-0.64 + 0.048i) x 1073 |(-0.45 + 0.022i) x 103
a5 <0.0001 {0.24 -~ 0.15) x 1074 |(0.13 - 0.058i) x 1074
9 <0.0001 (-0.80 + 0.062i) x 1074|(-0.57 + 0.028i) x 1074

[E— C =
onstant values of i\v for

aluminum panels at four altitudes

1 1T T T 1 17 1L L I AR T R A M M (N B shem m
9i=0 gj=0.01 Boundary: |
ALl Lt g Flutter _
Unstable __ _ __ Noncritical _|
stability
/ ]
/
/ Stable
/
y |
~oB 1 ”ll :
— T . u T/—Altitude, ft_
s — __[A T —_ _0.0151 Sea level -
L — T Ol ]
—_— T ob mA———
—_— 00743 25000
—_— -00267 50 000
| I T I D | ) S U I N T N AN T O O o |
5 .6 g .8 .9 1.0
”_11
v

@) Pinned edges; lW = 0 {two-dimensional case).

Figure 3.- Flutter boundaries and other noncritical stability boundaries for plane, unyawed, unstressed, isotropic,
rectangular panels with M = L3.
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=40 and Bxg = 10, except that Bxg=1 for = 0. Values of the structural

damping coefficient gi are equal for all modes.

L
w

downwash ratio fo

Lz
(0]
)

ch box center and the modal frequencies were computed.

Panels With Simply Supported Edges
Figures 3(a) to 3(g) present the results for the simply supported panels. Fig-

£ 4l €1 Hhannd A ~Ff th itinal atahilit ~d
ure o\a) contains por tions of the flutter oounGary ana o1 unree noncrivcai Sl.au‘uil.:y' oounG -~

aries for the two-dimensional panel % = O). The boundaries shown are parts of more
complete curves of the type shown in figure 3 of reference 7. The solid curves are the
boundaries for g = 0, and the short-dashed curves are for g, =0.01. The unstable side
of each boundary is to the left. Consequently, the boundary farthest to the right forms
the critical or flutter boundary, and is indicated by tick marks on the solid and short-

dashed curves. The predominant natural-mode components for the four stability

Quantity [ Point A [ PintB [  PontC |
1/p 0.0301 0.0376 0.0107
gi 0 0.010 0.010
kg 0.485 0.405 0.25
a)ll/V 0.4974 0.4158 0.2530
wjwy 0.9751 0.974 0.988
ai 1.0 1.0 . 1.0 .
6, (-0.31 + 0.022i) % 10-1]¢-0.54 + 0.0320) x 107H(-0.41 + 0.0131) x 107!
g3 |(0.45-0.280) x 10°3 [(0.12 - 0.040i) x 1072 [(0.70 - 0.14i) x 1073
aQ (-0.72 + 0.059i) x 1073 |1-0.13 + 0.0090) x 10-2|(-0.99 + 0.035i) x 1073
0% {0.26 - 0,210 X 1074 0.70 - 0.29)) x 104 (0.41 - 0.100) x 1074
9 {-0.93 + 0.096i) * 1074 |(-0.16 + 0.0151) x 1074|(-0.13 + 0.006i) % 1073
0.08 T T T T T T T T T T T T T T T 1 1 T T T T T T T T T 1 T
- N e 1\/4t
- ! i | 1 [Constant values of <ﬁ)<7) forl
= ' ' ~
061 I \43 ,' aluminum panels at four altitudes |
ot | l, NG ,’ 9 =0 ;=001 Boundary: -
L lg / J it 4L L1 Flutter 4
1 i ' { \,’\\ _ _ ______ Noncritical
= L / stabili _
u 0 I Il K J \// oL ty ]
1 i
- NS O~ —_— = L Attitude,
| / // 754 — OU ;/O S .
L / / ~ —— — ea level
.02_ \\\’/\ ,J/ /:\—6\,/ e \\\TIZ
L - P‘{-\ — 00788 88 25000
| — 00282 50000
0 1 .2 3 4 . N .8 9 1.0
“@
v
: i1
(b) Pinned edges; w3

Figure 3.~ Continued.
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boundaries are given by the numerals 1 to 4. The mode-1 boundary is the critical one for
this panel. For the three points labeled by the letters A, B, and C, additional information
is given in the table of the figure, including the parameters 1/, g; k;, wll/ v,

w/ Wy, and the six eigenvector components of the flutter mode. The eigenvectors with
their small imaginary parts show that the flutter motion is nearly a standing wave with
the shape of the first vacuum mode; that'is, the flutter motion is nearly the single degree
of freedom described by the first mode.

On figure 3(a) for two-dimensional panels, in addition to the flutter and noncritical
stability boundaries, there are four hyperbolas (long-dashed lines) obtained from the U.S.
Standard Atmosphere (ref. 8) that apply to aluminum panels at four altitudes, namely, sea
level, 10 000, 25 000, and 50 000 feet. The hyperbolas for other altitudes and other panel
materials can be determined as desired. The intersection of the appropriate hyperbola
with the flutter boundary determines the thickness ratio t/lI required to prevent flutter
for a given panel material and altitude. For simply supported aluminum panels at sea

Quantity Point A Point B Point C Point D
1/u 0.0400 0.0476 0.0150 0.058
9i 0 0.010 0.010 0
k 1.349 1.16 0.90 0.30
a)ll/V 0.4069 0.3521 0.2677 0.283
wfw] 3.31 3.30 3.36 1.06
qp  |-0.65+0.30) x 1071 |-0.116 + 0.041i (-0.67 + 0.17i) x 107! L0
a2 1.0 1.0 1.0 -0.26 + 0.025i
a3 (-0.39 + 0.0780) % 10" L[-0.60 + 0.08L) x 1071{(-0.31 + 0.0211) x 107! |0.23 - 0.05i) x 107!
4 {0.97 + 0.151) x 1072 _[{0.24 - 0.17i) x 102 |(0.90 - 0.039i) x 103 <0.01
05 {-0.16 + 0.038i) x 1072|{-0.25 + 0.044i) x 1072/{-0.13 +0,011i) x 10 <0.01
A {0.10 - 0.16i) X 10°3  |(0.25- 0.19i) x 1073 [{0.10 - 0.044i) x 10-3 <0.001
0.08 T T T T T T T T T T T r T T T T T T T T 7T T T T T T 1T T T 1 1T 11
- L, 1\/%¢ 1
L +2 _— Constant values of (ﬁ><7> for |
L aluminum panels at four altitudes j
06 g=0 g;=0.01 Boundary: |
I ] + 11 Flutter i
- Stable . __ Noncritical
B >~ stability
L -Ut S~ Lo ]
0 _ ~_ \\ —_— o v Altitude, ft
= —_— _i —_— M‘)& Jevel
o2 — ——0% 1500
—_— -00930 25 000
| ——— .00334 50 000
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\
(©) Pinned edges; - - <
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Figure 3.- Continued.
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level, the boundary for g; =0 specifies a minimum thickness ratio of -§—=-0.0181,
whereas the g; = 0.01 boundary specifies %—: 0.0146. For aluminum panels at

50 000 feet on the gj = 0.01 boundary, %: 0.0087.
1

Figure 3(b) gives the results for simply supported panels with L _1 The flutter
boundary is predominantly mode 1, that is, nearly a standing wave (see table on fig. 3(b)
for points A, B, and C), and the noncritical stability boundaries included are predom-
inantly modes 2, 3, and 4. For aluminum panels at sea level with g = o, §—= 0.0138;
this value is a 24-percent reduction from the corresponding value for the two-

dimensional panel.

E|~

Figure 3(c) gives the results for panels with = -%- For the 1/u range of the
figure, the mode-2 boundary is now the flutter boundary for gi =0 and also for

Buantity Point A Point B Point C Point D
/u 0.0700 0.0548 0.0191 0.0933
9i 0 0.010 0.010 0
ki 2.0184 1.8 1.5 0.445
wil/V 0.4194 0.3715 0.3035 0.325
w/w] 4.80 4.85 4.94 1.37
q 0.12- 0.160 x 1071 | (0.16 - 0.12} x 1071 | (0.76 - 0.32i) x 1072 L0
6, -0.11 + 0.062i -0.12 + 0.057i {-0.71 + 0.251) x 1071 | -0.67 + 0.051i
% 1.0 1.0 1.0 0.15 - 0.023i
aa (-0.86 + 0.230) % 1071 (-0.85 + 0.17i) x 1071 | (-0.44 + 0.052i) x 107! |-0.32 + 0.051i) x 1071
a5 {0.37 - 0.54) % 102 |(0.44 - 0.40i) % 10°2 [(0.16 - 0.10i) X 102 _ |(0.10 - 0.018i) x 10-1
A {-0.46 + 0.15i) % 10°2|(-0.47 + 0.11i} x 102 | (-0.25 + 0.031i) X 1072 |(-0.39 + 0.061i} % 1072

T [ Tr v v t 1 Tt r 1 1 1 t &1 1. 1.1 1T T 1T°7°%
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8; = 0.01 except in the very lowest range of 1/u. For aluminum panels with g = 0 at
sea level, %— = 0.0095 and is virtually a constant value for all higher altitudes. With

g; = 0.01, however, -§—= 0.0082 at sea level and decreases to l_ = 0.0059 at 50 000 feet.
The three points labeled A, B, and C correlate with the quantities given in the table of
figure 3(c), and the tabulated values show that the flutter motion is nearly a single-
degree-of-freedom standing wave in the second natural mode. Point B corresponding to
the higher air density contains the larger components of modes 1 and 3, and these com-

ar amnlitnda
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nantga
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nn a
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than the forward half of the panel. The mode-1 stability boundary, labeled with the
numeral 1, is no longer the critical boundary unless g; should become as large as about
0.03. In figure 3(c) the character of the mode-1 boundary for g; = 0 (the boundary for
g = 0.01 is virtually coincident) is entirely different from those of figures 3(a) and 3(b).

re sop vhased that the aft pnrflgn of the ponnl hag a slichtly lar

Quantity Point A Point B Point C ' Pomt Y
Vu 0.1269 0.12 oo | ooz0 |
gi 0 0 0.010 0.010
kg 0.68 3.337 3.0 2.8
A 0.5926 0.603 0.5324 0.3521
wfw) 1.147 5.53 5.63 7.95
q 1.0 (0.63 - 0.791) x 102 [(0.48 - 0.440) x 1072 {{-0.23 + 0.004i) X 102
47 -0.93 +0.16i  [(-0.26 + 0.13) x 1071 |(-0.20 + 0.069i) x 1071{(0.23 - 0.082i) x 1072
0 0.34 - 0.10i 034~ 0330 x 10°1 |(0.26- 0.161) x 10" {(-0.93 + 0.25i) x 1072
0 (-0.91 + 0.281) x 10°1|  -0.20 + 0.11i -0.16 + 0.078i (0.70 + 0.24i) x 1072
a5 {0.31 - 0.097i) X 1071 1.0 1.0 (-0.91 + 0.200) x 107!
a5 (-0.13 + 00360 x10°Y  -0.17 + 0.057i -0.13 + 0.034i 1.0
a (0.14 - 0.17) x 107! |0.94 - 0.88i) x 1072 | (-0.66 + 0.074i) x 107!
a8 (-0.13 + 0.052) % 1074(-0.98 + 0.271) x 1072 |{0.31 - 0.150) x 102
a9 0.24 - 0.30) X 10°2_[(0.16 - 0.160) X 1072 |(-0.51 + 0.053i) X 1072
a0 (-0.30 + 0.13i) x 10°2}-0.23 + 0.68i) % 1072 |(0.60 - 0.29i) x 1073
aq1 (0.72 - 0.931) x 1073 _|(0.51 - 0.481) x 10°3_ {(-0.13 + 0.014i) x 1072
92 (-0.10 + 0.0461) x 1072(-0.82 + 0.24i) x 1073 {(0.19 - 0.092i) x 1073
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Instead of intersecting the horizontal éxis, it departs from the origin in the manner of a
near parabola.

Figure 3(d) gives the results for panels with % = 1. The mode-3 boundary now
forms the flutter boundary for g = 0 and g = 0.01, and the flutter mode is predomi-
nantly the third natural mode (see points A, B, and C and the table), small proportions of
modes 2 and 4 being present. If the structural damping coefficient could somehow be as
large as about 0.03, the mode-1 boundary would become the flutter boundary since it is of
the type that is only slightly affected by an increase of g; to 0.03. The flutter motion
for the mode-1 boundary is characterized by having the natural mode 1 predominate,
having a large proportion of mode 2 present, and having the proportions of the higher
modes decrease. Refer to point D on figure 3(d) and its column in the table. The motion
is nearly a standing wave, as evidenced by the small imaginary parts of the generalized
coordinates, and the aft part of the panel has a substantially larger amplitude than the
forward part. For aluminum panels at sea level with g = 0, 7= 0.0060, and for
g; = 0.01, -§-= 0.0056. The parabolic boundary obtained from equation (9) of reference 5
is included as a matter of interest and it is observed to fall close to the flutter boundary
of the present analysis for g = 0.03.

Eje~

Figure 3(e) gives the results for panels with = 2. With g; = 0 the mode-5
boundary is critical for most of the range of 1/u (less than about 0.13), and the mode-1
boundary is critical for higher values of 1/u. With g = 0.01, the numbers labeling the
segments of short-dashed curves show that the mode-1 boundary is critical for the high
and low ranges of 1/u. In the intermediate range of 1/u, the flutter boundary is
formed partly by the mode-6 boundary and partly by the mode-5 boundary. The asso-
ciated tabulated values show that at point A on the mode-1 boundary, the flutter motion
is strongly coupled; natural modes 1 and 2 are present in nearly equal parts, natural
mode 3 is present in a significant amount, and the other modes are present in small
amounts. The mode-1 boundary of figure 3(e) has this characteristic throughout the
range of 1/u of the figure. At points B and C on the mode-5 boundary and point D on
the mode-6 boundary, the motion is dominated by the respective natural mode, moderate
to small amounts of other modes being present. For aluminum panels at sea level with
g =0, %— = 0.0035 (mode-5 boundary) and with g; = 0.01, %— = 0.0034 (mode-1 bound-
ary). The parabolic boundary from equation (9) of reference 5 is so closely coincident to
the mode-1 boundary that it is not drawn.

Figure 3(f) displays the results for panels with % =4, With g = 0, the flutter

boundary is formed, beginning at the lowest value of 1/, by segments of the mode-8, the
mode-9, and the mode-2 boundaries. With g = 0.01, the flutter boundary is made up of
segments of the mode-2, the mode-12, the mode-11, the mode-10, and the mode-2 bound-
aries. On the mode-2 boundary, as indicated by the tabulated values for point A, the
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flutter motion contains large components of several of the natural modes, the mode-2
component being the largest. The imaginary parts of the components indicate that the
flutter motion is not (even approﬁ:imately) a standing wave. On the other boundary seg-
ments labeled 8, 9, 10, 11, and 12, those respective natural modes are predominant in the
flutter motion with moderate to small proportions of other modes being present for
points B, C, D, and E as indicated in the table of figure.3(f). For aluminum panels at sea
level, §—= 0.0020 for both g; =0 and g; = 0.01, since the mode-2 boundary is not sig-
nificantly affected by structural damping. In figure 3(f) the parabolic boundary from
equation (9) of reference 5 falls near the mode-2 boundary and on the conservative side
and calls for a greater thickness to prevent flutter

= 10. The flutter boundary is

f 1/p shown. For aluminum

to t _ 0.00097 for g; =0 andto

laval the fluttar hound
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§—= 0.00096 for gj =0.01. The mode-9 boundary (natural modes 3 to 14 used in the anal-

unstable region very close to the flutter boundary. Stability boundaries associated with
modes 2, 4, and 6 (not shown) also lie within the unstable region, the mode-2 boundary
being the farthest from the flutter boundary. For the three points A, B, and C on the flut-
ter boundary, parameters and generalized coordinates are given in the table of figure 3(g).
The value of dy9 is markedly larger than that for any other boundary in figure 3 (except,
of course, the mode-12 and mode-11 boundaries of figure 3(f). This large value of qqg
leads naturally to the question of whether 12 modes are sufficient in this particular modal
solution to provide a substantially converged result. Therefore, spot checks were made
with 18 modes. Since more than 12 modes could be used only outside the main program
and the required intermediate work was extensive, spot checks were made for only two
values of reduced frequency. With 18 modes the flutter boundary moved inward to the

left by an amount that would reduce the thickness required to prevent flutter by about

8 percent. The mode-7 boundary still formed the flutter boundary, and other stability
boundaries also moved and maintained their relative locations. At the two widely sepa-
rated points obtained on the mode-7 flutter boundary (see the last 2 columns in table of
fig. 3(g)), the generalized coordinates decreased monotonically for the modes above qy.
For the 18th mode, |q18| =~ 0.02, whereas for mode 12, [qlzl =~ 0.14. The result is, there-
fore, thought to be substantially converged, although rigorous proof is lacking. The
parabdla of long dashes from equation (9) of reference 5 corresponding to a value of

A =51 390 is close to the flutter boundary of the present analysis. The associated flut-
ter frequency ratio wil = 1,18 and falls just above the fourth natural mode w&l ~ 1,15,

Additional information for this panel is given by figure 4 that presents the flutter
mode shapes as obtained from the present analysis and from an automated solution of
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Point A

0.218
0
1.26
1.163
1.083
-0.74 - 0.20i
1.0
-0.71 + 0.16i
0.35 - 0.12i
-0.16 + 0.055i
{0.73 - 0.251) x 1071
(-0.36 + 0.12) % 1071
(0.19 - 0.61i) x 101
(-0.11 + 0.034i) x 1071
{0.64 - 0.191) x 10-2
{-0.40 + 0.12i) x 10-2
{-0.27 - 0.079i) x 10-2

Point B

0.133
0
6.15
1.114
5.51

{0.40 - 0.56i) x 1072
{~0.98 + 0.66i) X 107
(0.92 + 1.20i) x 10°2

~nN

(-0.26 + 0.19i) x 1071

(0.32 - 0.38i) x 1071
-0,21 +0,14i
L0
-0.20 + 0.088i
{0.17 - 0.27i) x 1071
(0.34 - 0.58i) x 1072
(-0.50 + 0.28i) x 10-2

Point D

Point C Point E
0.0710 0.0580 0.0440
0.010 0.010 0.010
6.2 1.0 7.0
0.9231 0.8792 0.7491
6.72 1.97 9.35

(-0.33 + 1.0i) x 1072
{0.27 - 0.220) x 1072
(-0.69 + 0.281) x 1072
{0.60 - 0.39i) x 1072
(-0.18 + 0,087i) X 107
{0.21 - 0.089i) x 101

-0.16 + 0.075i

1.0

-0.14 + 0.044i

{0.097 - 0.100) x 1071

1

{-0.13 + 0.042i) x 1071

{0.21 - 0.24i) x 102

(0.93 - 0.87i) x 1073
{-0.26 + 0.093i) x 1072
{0.20 - 0.15) % 1072
{-0.53 + 0.22i) x 1072
{0.44 - 0.26i) x 1072
(-0.13 + 0.068i) X 1071
{0.15 - 0.052i) x 1071

-0.12 + 0.065i

1.0

-0.10 + 0.036i
{0.61 - 0.73i) x 10-2
{-0.99 + 0.33)) x 1072

{-0.24 + 0.071i) x 1072
{0.18 - 0.081i) x 1072
(-0.46 + 0.18i) x 102
{0.38 - 0.12) x 1072
(-0.12 + 0.062i) x 10-1
(0.84 + 0.011i) X 10-2

-0.11 + 0.037i

1.0

-0.096 + 0.023i
(0.55 - 0.441) % 10-2
{-0.89 + 0.20i) x 1072
(0.13 - 0.11)) X 1072

) Pinned edges; % -4,

Figure 3.- Continued.
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Quantity|  Point A Point B Point C S -
1/u 0.464 0.302 0.174 0.662 0.057
9j 0 0 0 0 0
i 45 38 30 45 L5
wll/V 3.415 2.825 2.20 3.52 1.13
w/w] 1.3177 1.344 1.37 1.28 L33
q 0.052 - 0.00015i | 0.047 - 0.00088i | 0.043 - 0.00079i | 0.10 + 0.015i 0.073 + 0.0020i
q2 -0.111 - 0.0022i | -0.099 + 0.00026i | -0.092 + 0.00078i [ -0.21 - 0.033i {-0.16 - 0.0046i
G 0.19 + 0.0078i 0.17 + 0.0022i 0.16 + 0.00066i | 0.33 + 0.057i 0.26 + 0.0088i
a4 -0.30 - 0.027i -0.28 - 0.014i -0.26 - 0.0078i -0.48 - 0.089i {-0.40 - 0.016i
a5 0.48 + 0.062i 0.45 + 0.038i 0.42 + 0.024i 0.67 + 0.12i 0.60 + 0.026i
a6 -0.74 - 0.11i -0.73 - 0.080i -0.71 + 0.057i -0.87 - 0.12i -0.85 - 0.029i
Q L0 1.0 10 1.0 1.0
ag -0.81 + 0.23i -0.83 + 0.19i -0.85 + 0.15i -0.88 + 0.17i -0.85 + 0.041i
g 0.44 - 0.21i 0.45 - 0.17i 0.47 - 0.13i 0.60 - 0.21i 0.55 - 0.043i
a0 -0.25 + 0.13i -0.26 + 0.10i -0.26 + 0.076i -0.38 + 0.16i -0.33 + 0.028i
a1 0.15 - 0.074i 0.14 - 0.057i 0.15 - 0.041i 0.24 - 0.11i 0.20 - 0.017i
a2 -0.11 + 0.058i -0.11 + 0.043i -0.11 + 0.031i -0,15 + 0.070i  |-0.13 + 0.010i
a3 0.10- 0.0451 | 0.083 - 0.0063i
414 -0.071 + 0.031i {-0.057 + 0.0043i
q15 0.050 - 0.021i | 0.040 - 0.0025
a16 -0.037 + 0.015i [-0.029 + 0.0037i
a7 0.027 - 0.010i | 0.021 + 0.00036i
a1 -0.022 + 0.0087i |-0.017 - 0.00026”
*Discussed in text only. N n - 7 -
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Figure 4.- Flutter mode shapes from present analysis with 12 and with 18 modes, M = 1.3, and
k; = 4.5, and from equation (9) of reference 5 for a simply supported rectangular panel with
/w =10, gj= 0.

equation (9) of reference 5. The latter result is real only and is associated with the point
at a length-width ratio of 10 on the solid curve of figure 2 of reference 4. From the pres-
ent analysis, both the real (inphase) and imaginary (quadrature) parts as obtained from
using 12 modes and also from using 18 modes are shown. The two results are for

k; = 4.5, The 12-mode result corresponds to point A in figure 3(g) and the first column
of the table. The 18-mode result corresponds to the tabulated column second from the
right, An examination of those two columns and the corresponding pairs of curves of
figure 4 reveals their moderate differences. The closed-form solution based on refer-
ence 5 is like the solutions from the present analysis in that the point of maximum deflec-
tion is at about 93 percent of the panel length, and very little motion occurs over the for-
ward half of the panel; the solution differs in that the signs forward of the maximum
deflection point do not alternate. A Fourier analysis, with 101 points and 0 =n 2 50, of
the closed-form deflection curve has given the results of table II. The largest proportion
present is for p =3 half-waves, a gradual and monotonic decrease of proportions for p
increasing above 3; and there is an unfailing alternation of sign for even and odd p. The
proportions of sine waves in table II can be compared with the generalized coordinates

in the columns of the table in figure 3(g).

Panels With Clamped Edges

Figures 5(a) to 5(f) present the results for clamped-edge panels. In each of the six
figures the solid curve with tick marks attached is the flutter boundary for g; = 0, and
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TABLE II.- PROPORTIONS OF SINE WAVES WITH n HALF-WAVES PRESENT IN
THE DEFLECTION SHAPE LABELED "REF. 5" IN FIGURE 4

Number of rlllalf-waves, Proportions present
0 0
1 .544
2 -.901
3 1.000
4 -.905
5 .122
6 -.536
7 .382
8 -.267
9 .186
10 -.130
11 .0923
12 -.0660
13 .0478
14 -.0351
15 .0261
16 -.0196
17 .0149
18 -.0115
19 .00895
49 .0000580
50 -.0000507

the curve of short dashes with tick marks is the flutter boundary for g = 0.01. The flut-
ter region is to the left of the flutter boundary in all the figures. In addition to the flutter
boundary, some of the noncritical stability boundaries that also result from the eigensolu-
tion are shown without tick marks so that the progressive alteration of the flutter boundary
with increasing values of 7/w can be more readily appreciated. Also given in each fig-
ure are the hyperbolas that apply to aluminum panels at sea level and at 10 000, 25 000,
and 50 000 feet in a standard atmosphere (ref. 8). In figures 5(d) to 5(f) with % z 1.0, the

closed-form solutions based on the Ackeret value of static aerodynamic forces are also
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presented as the labeled parabolas. The solutions were obtained essentially as described
in reference 6 except for the minor differences that (1) the cross-stream variation of
mode shape was assumed to be the natural vibration mode of a uniform clamped-end
beam with a single half-wave instead of a 1.0-minus-cosine type of half-wave (see

eq. (8.37) of ref. 6), and (2) the dynamic pressure parameter A was defined as in ref-
3 .
erence 5as A= -2—%%)— and is consistent with the assumed aerodynamic forces.

L_o (the two-dimensional case) and the solid lines shown

Figure 5(a) applies to =
are essentially identical to portions of those from figure 3 of reference 7. The predom-
inant modes are indicated by the number for each boundary. For the three points labeled
by the letters A, B, and C on the flutter boundaries, information is given in the table.
Clearly, the flutter mode is virtually a standing wave with a small amount of the second
natural mode present along with the predominant first natural mode.

panels at sea level, the thickness ratio for g; =0 is §—= 0.0098, and for g; = 0.01,

For aluminum

Point B

Quantity Point A Point C
1/u 0.0441 0.0527 0.01087
9i 0 0.010 0.010
kg 0.745 0.66 0.40
Wl NV 0.7583 0.6690 0.4007
wjwy 0.982 0.987 0.998
a0 1.0 1.0 1.0
a0 -0.050 + 0.0046i -0.077 + 0.0058i -0.042 + 0.0012i
63 |(0.13-0.0931) x 102 1(0.28 - 0.11i) X 1072 _|(0.89 - 0.17i) X 1073
9 |(-0.12+ 0.024i) x 1072[(-0.18 + 0.030i) x 1072|(-0.10 + 0.005i) x 10-2
a5 {0.90 - 0.91i) x 10-4 {(0.18 - 0.11i) x 103 |(0.61 - 0.15) x 10-2
g |(-0.13 + 0.0370) x 1073|(-0.21 + 0.045i) x 1073|(-0.11 + 0.006i} x 103

|y
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(a) Clamped edges; lW= 0 (two-dimensional case).

Figure 5.- Flutter boundaries and other noncritical stability boundaries for plane, unyawed, unstressed, isotropic,
rectangular panels with M = 1.3.
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= 0.0086. For aluminum panels at 50 000 feet on the g; = 0.01 flutter boundary,
= 0.0058.

N+ o] e+

Figure 5(b) applies to %: % When compared with figure 5(a), the unstable region
has shrunk, the mode-1 boundary having moved to the left considerably more than the
mode-2 boundary has. The result is that in the lower range of 1/, the mode-2 bound-
ary forms the flutter boundary for both g = 0 and g; = 0.01. As indicated in the table
of figure 5(b), points A and B are predominantly mode 1, some mode 2 being present; and
point C is predominantly mode 2, small amounts of modes 1 and 3 being present. For

%: 0.0081 for g =0, and %= 0.0070 for gj = 0.01.

Figure 5(c) applies to = % For g = 0 the mode-2 boundary forms the flutter
boundary throughout the 1/u range shown. For g; = 0.01, the mode-2 boundary is
critical for about 0.01 < 1/u <0.10. The parameters listed for points A, B, C, and D
show that the flutter mode is predominantly natural mode 2 and has small to moderate

aluminum panels at sea level,

g~

amounts of modes 1 and 3. The amounts of modes 1 and 3 that are present increase with
increasing values of 1/u. The mode-1 boundary has changed its character from that for

Quantity Point A Point B Point C
1/u 0.0566 0.06173 0.0192
gi 0 0.010 0.010
kg 0.635 0.575 1.2
WV 0.6475 0.5790 0.4447
wjwy 0.981 0.993 2.70
0 1.0 1.0 -0.063 + 0.018i
a0 -0.091 + 0.0070i -0.12 + 0.0086i 1.0
gz |(0.37-0.160) x 102 _ 1(0.64 - 0.20i) X 1072 -0.036 + 0.0021i
Q| (-0.22 + 0.0400) x 1072 [(-0.31 + 0.050) % 1072 [(0.12 - 0.0581) x 1072
g5 (0.23 - 0.14i) x 10-3 _|(0.41 - 0.18)) x 1073 _|(-0.15 + 0.023i) x 10-2
G |(-0.24+ 0.0611) x 1073](-0.35 + 0.0731) x 1073)(0.15 - 0.087i) x 1073
0.08 LI S | T T T T T T LI | T L. T T T T T T T / T 1] T T T T T T T T T T T
L 1) (ull) AN y 1 Stable
F—. Constant values of v for \ )
06 - aluminum panels at four altitudes ]
. // 1 ull ]
[ 9i=0 gj=0.01 Boundary: /1 = — Altitude, ft |
[ L1111 1111 Flutter \ \t/\ T~ v 1
1 — —__ Nonritical A TT084 5eq jevel ]
= .04 - s \ \
T stability ~ —_— —
- L0267
v 20010000 |
\ ////2 T s n
I - 0172 25000
- —— |
o Tt ]
i oS —_—
== _— 00615 50000 A
0 :i_L 1 1 .ZI 1 1 i .I3 1 1 1 -41 - 1 .é (] 1 .6 1 I 1 .I7 ) . 1 .8 '9 1'0
E
v

32

.1
(b) Clamped panel; W

Figure 5.-  Continued,



=1

é— and 0; in figure 5(c) it is approximately a parabola with its apex at the origin.
Furthermore, the flutter mode is a coupled one, mainly of modes 1 and 2, formed by a
near coalescence of those two flow-affected frequencies. If g should be greater than
0.03, the mode-1 boundary is the flutter boundary for the range of 1/u of the figure.

For aluminum panels at sea level, 0.0068 for gj =0, and §—= 0.0059 for gj = 0.01.

l
Figure 5(d) applies to ‘—i; =1. For g; =0 the mode-3 boundary forms the flutter

boundary in the 1/p range shown. For gj = 0.01, the flutter boundary is formed by the
mode-1, -3, and -4 stability boundaries. For g; greater than about 0.03, the mode-1
boundairy is the flutter boundary. For the five points labeled A to E on the flutter bound-

aries, the proportions of the first six natural modes are given in the table of figure 5(d).

Quantity Point A Point B Poini c Point D Point E
1/ 0.0725 0.0775 0.0370 0.0120 0.0828
g; 0 0.010 0.010 0.010 0
K 1.46 1.25 1.2 0.8 0.5
wll/ v 0.5833 0.5022 0.471 0.3101 0.4651
wjw) 2.50 2.48 2.55 2.58 1.075
q -0.14 + 0.050i -0.22 + 0.059i -0.12 + 0.034i -0,094 + 0.016i 1.0
a2 1.0 1.0 1.0 1.0 -0.30 + 0.018i
a3 -0.089 + 0.015i -0.12 + 0.014i -0.069 + 0.0073i -0.049 + 0.0017i 0.034 - 0.0060i
a (0.49 - 0.44i) x 102 _{(0.95 - 0.47i) x 10°2 | (0.35 - 0.20i) x 10-2 | (0.19 - 0.042i) X 10"2_[(-0.90 + 0.15i) x 10~2
05 (-0.36 + 0.14) x 1072 |(-0.55 + 0.14) x 1072 | (-0.30 + 0.62i) x 10-2 | (-0.21 + 0.014i) X 1072 (0.21 - 0.0581) x 1072
g5 (0.47 - 0.581) % 10"3 | (0.96 - 0.64) x 1073 |(0.38 - 0.28i) x 103 [ (0.21 - 0.058i) x 1073 [(-0.10 + 0.023i) x 1072
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Figure 5.- Continued.
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The mode-1 boundary is characterized by a strongly coupled motion. (See point A.)
The other boundaries each have a predominant mode, moderate to small proportions of
adjacent modes being present. For aluminum panels at sea level, % = 0.0048 for

gi = 0, and §—= 0.0043 for gj =0.01. The parabolic boundary from the closed-form
solution is included and falls on the unconvervative side of the mode-1 boundary.

Figure 5(e) applies to %= 2. For g; = 0, the flutter boundary is formed by the

mode-1 and the mode-5 boundaries, the mode-6 and mode-7 boundaries being near the

Quantity Point A Point B Point C Point D Point E
1/u 0.0966 0.1104 0.0940 0.0436 0.0163
G 0 0.010 0.010 0.010 0.010
ki 2.12 0.628 2.96 1.8 2.1
wll/ v 0.6050 0.5188 0.5249 0.502 0.3606
w/wy 3.50 121 5.63 3.59 5.82
qQ 0.032 - 0.018i 1.0 -0.013 + 0.0025i 0.019 - 0.0063i (-0.34 - 0.0731) x 1072
aQ -0.19 + 0.082i -0.64 + 0.068i 0.029 - 0.016i -0.13 + 0.049i {0.73 + 0.36i) % 102
@ 1.0 0.16 - 0.034i -0.15 + 0.087i 1.0 -0.068 + 0.016i
a4 -0.14 + 0.032i -0.032 + 0.0090i 1.0 -0.091 + 0.024i 1.0
s 0.011 - 0.011i 2 (0.99 - 0.32i) x 10-2 ) -0.13 + 0.035i |(0.58 - 0.42i) x 10‘22 -0.044 + 0.0026i )
-0.74 + 0.32i) % 107¢((-0.34 + 0.12i) X 107¢] 0.0010 - 0.012i |(-0.50 + 0.13i) x 107¢{(0.21 - 0.071i) X 10~
s (-0.74 + 0.32i) x 107¢|(-0.34 + 0.12i) 7 i 0 ,_I)A ( 0.071i) X 10
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mode-5 boundary. For g = 0.01, the flutter boundary is formed by portions of the

mode-1, -6, -7, and -8 stability boundaries.

(The mode-7 and -8 boundaries are virtually

coincident over part of the range.) For g; as large as about 0.03, the mode-_l boundary
is the flutter boundary. The parameters listed included the eigenvectors for point A
(coupled motion) and also for points B, C, D, and E where one mode is predominant for
each, For aluminum panels at sea level, t. 0.0031 for both g = 0 and 0.01. The
parabolic boundary from the closed-form solution falls close to the mode-1 boundary.

Figure 5(f) applies to
tions of the mode-2, the mode-10, and the mode-9 stability boundaries.

l

w

4. For g = 0, the flutter boundary is formed by por-

The mode-11 and

mode-12 boundaries (and other higher mode boundaries not shown) lie to the left of the

Quantity Point A Point B Point C Point D Point E
u 0.1398 0.0753 0.0400 0.0280 0.0274
' 0 0 0.010 0.010 0.010
ki 1.12 3.4 3.6 48 3.6
a)ll/ v 1.063 0.9829 0.768 0.624 0.590
wjwy 1.053 3.46 4.69 7.69 6.10
0 1.0 (0.38 - 0.33i) X 10°2 |(-0.17 - 0.046i) X 102|(-0.43 - 0.130) x 1073 |(0.45 - 0.42i) x 1073
1 -0.88 + 0.24i -0.015 + 0.0036i (0,30 - 0.131) X 10-2 |(0.53- 0.250) x 1073 |(-2.1- 0.151) x 1073
a3 0.29 - 0.15i 0.027 - 0.014i (-1.0 + 0.20i) X 1072 |(-1.9 + 0.10i) x 10°3 (3.2- 0.38i) x 10-3
au -0.063 + 0.040i -0.16+ 0.08Li |(1.5+ 0.054i) X 102 |(2.3 - 0.0591) x 103 |(-0.91 + 0.37i) X 1072
a5 0.019 - 0.013i 1.0 -0.12 + 0.044i {-0.65 + 0.22) X 1072 |(0.71 +0.41i) x 10-2
4 {-0.62 + 0.49i) X 1072 -0.13 + 0.042i 1.0 (0.74 + 0.46i) x 1072 -0.11 + 0.022i
a7 (0.91 - 1.2i) x 1072 -0.091 + 0.019i -0.082 + 0.024i 1.0
ag (-0.94 + 0.391) x 10-2((0.54 - 0.471) x 1072 1.0 -0.080 + 0.0098i
Qg (0.15 - 0.23) X 1072 |(-0.69 + 0.17i) X 10°2| -0.063 + 0.0095i {0.48 - 0.26i) % 1072
a0 (-0.21 + 0.10i) * 1072 (1.0 - 0.99i) x 103 (0.33- 0.231) % 1072 _|(-0.65 + 0.96i) X 10-2
an 0.43 - 0.741) X 10°3 |(-1.7 + 0.48i) x 1073 |(-0.52 + 0.086i) X 10°2[(0.97 - 0.57i) x 103
2 (-0.68 + 0.41i) % 1073{(0.35 - 0.34i) X 1073 [(0.76 - 0.51i) X 1073 |{-1.7 + 0.29i) x 10-3
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Figure 5.- Continued.
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Quantity Point A Point B Point C Point D Point E
l/u 0.240 0.1610 0.0861 0.0605 0.0319
g 0 0 0.010 0.010 0
kg 2.33 7.0 8.0 8.0 1.0
wll/ ' 2.295 2.020 1.691 1.472 0.9881
w/w] 1.015 3.46 412 5.43 1.012
0 -0.67 - 0.41i -0.89 - 0.23
qz 1.0 1.0
a3 -0.61 + 0.32i -0.48 + 0.085i
a4 0.20 - 0.21i 0.15 - 0.0035i
as -0.061 + 0.082i -0.012 + 0.0063i |(-0.29 + 0.78) x 10°2[(0.11 - 0.048/) x 1072 -0.047 + 0.011i
4 0.020 - 0.032i 0.015 - 0.012i (0.31- 0.17i) x 10°2_|(-0.24 + 0.58i) x 1072 0.015 - 0.0038i
a7 (-0.63 + 1.31) x 1072 -0.035 + 0.022i {-0.66 + 0.28i) X 1072|(0.24 - 0.076i) x 1072 | (-0.59 + 0.14i) % 10°2
ag {0.18 - 0.59i) % 10-2 0.053 - 0.045i {0.81 - 0.351) X 10°2 |(-0.52 + 0.2Li) X 1072 | {0.21 + 0.066i) x 10~2
Gg (0.29 + 2.7y x 1073 -0.28 + 0.16i -0.019 + 0.0098i |(0.55 - 0.12i) X 1072 | (-0.85 + 0.30i) x 1073
a0 (0.20 - 1.5i) x 1073 1.0 0.024 - 0.009i -0.015 + 0.0085i {0.27 - 0.17i) % 1073
a1 {0.30 + 0.81i) x 1073 -0.25 + 0.10i -0.17 + 0.090i 0.013 + 0.0017i (-0.12 - 0.093i) x 1073
a2 (-0.30 - 0.53i) x 1073 0.031 - 0.041i 1.0 -0.15 + 0.052i (0.17 - 0.65)) x 1074
013 -0.023 + 0.015i -0.16 + 0.057i 1.0
414 (0,61 - 0.98i) x 10°2 0.013 - 0.016i -0.10 + 0.034i
as (-0.64 + 0.481) x 1072|  -0.014 + 0.0064i_ {(0.9 - 0.851) X 1072
16 {0.22 - 0.38i) x 102 (0.30 - 0.39i) X 1072 |[(-1.1 +0.38i) x 10
e m e . P R
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mode-10 boundary. For g = 0.01, the flutter boundary is formed by portions of the
mode-2, mode-12, and mode-13 stability boundaries. For g; greater than about 0.02,
the mode-2 boundary is the flutter boundary in the range of 1/u shown. For points A
and E on the highly coupled boundary, the proportion of natural mode 2 is the largest
present as indicated in the table of figure 5(f). An examination of the generalized coor-
dinates (the eigenvectors) indicates that the region of the panel undergoing the greatest
amplitude is located well back in the rear half. For each of the points B, C, and D, one
mode is predominant in the motion. When these three points were computed, modes 5 to
16 were used in the analysis. The smallness of the coordinates qg and 446 are con-
sidered as an indication that a substantially converged result has been reached. For
aluminum panels at sea level, the flutter boundary prescribes L9 0.00180 for g; = 0
and §—= 0.00178 for gj = 0.01. The parabolic boundary from the closed-form solu-
tion falls near the mode-2 boundary and on the conservative side of it.

It should be pointed out that in the section "Results and Discussion' of reference 1,
a certain statement lacked a needed qualification. The statement applied to aluminum
panels at sea level and was "For all the length-width ratios at least up through 4 on
Fig, 3 E)f ref. ﬂ, the flutter frequency was near and usually slightly above the first-
natural-mode frequency." The statement should have been qualified that for certain
of the I/w values, the damping of the panel must be equivalent to a value of gj of
about 0.03 or greater for this generality to be true.

In the section ""Analysis' it was stated that the results presented were obtained on
the basis of assumed beam modes for both the stream and cross-stream directions. For
the panel with all edges clamped, the effects of stiffness cross-coupling between modes
are neglected. This cross-coupling occurs because for clamped edges, the integral over
the4pane1 of the product of h; times the second term on the left-hand side of equation (3),

o hj

szayz
i plus the corresponding p for mode j is an even number, and the number of half-

, is nonzero, where the number of half-waves p in the stream direction for mode

waves q in the cross-stream direction for mode i plus the corresponding q for
mode j is also an even number (in modes i and j, q=1 for the present results).
(For sine-wave mode shapes of simply supported panels, the stiffness cross-coupling
integral is zero; only the direct term is nonzero where p for mode j equals p for
mode 1i.)

A recent report (ref. 9) gives some quantitative results obtained by including the
stiffness coupling terms in a Galerkin modal analysis and using aerodynamic forces from
static strip theory. The dynamic-pressure parameter X increased by 29 percent for
v_lv' =4, and by 12 percent for % = 2; these increases corresponded to decreases in required
panel thickness of about 9 and 4 percent, respectively. Unpublished results obtained at
the Langley Research Center agree with the results cited from reference 9, and also show
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that with enough modes, the Galerkin solution converges closely to the closed-form result
from the Kantorovich method of solving the partial differential equation essentially as in
section 8 C of reference 6, except for the minor difference of using the clamped-end-beam
fundamental mode for the cross-stream variation instead of the 1.0-minus-cosine varia-

tion indicated in equation (8.37) of reference 6.

Thus, for sufficiently high values of 1/w, the effects of stiffness cross-coupling
become significant and should be taken into account where the more precise results are

needed.

Effect of Mach Number

Flutter boundaries have been computed for an aluminum panel at sea level with
{f’- =2, g = 0, all edges clamped, and for several Mach numbers in the range from 1.02

to 2.0. The results are given in table INl in terms of t/1, (BE/q) 1/3 t/1, and
ME/) 3t/

The thickness ratio t/l required to prevent flutter is virtually constant for Mach
1.2 to 1.5, is 5 percent higher at Mach 2.0, 6 percent lower at Mach 1.1, and 16 percent
lower at Mach 1.02. This trend for v_v = 2 .in the low supersonic Mach number range is
in sharp contrast to the result for two-dimensional panels (L = 0) for which a great
increase in thickness ratio is predicted for Mach numbers less than about \/_ The ratios
of flutter frequency to first natural frequency fell between 1.0 and 1.1 for these solutions
for values of g; near zero. Realizable amounts of structural damping have very little

effect on solution values in these cases.

The parameter (BE/q) 1/ 3t/ 1 is tabulated as a matter of interest because it is in
rather widespread use, having arisen on the basis of the static aerodynamic approximation.

TABLE III.- CLAMPED-EDGE ALUMINUM PANELS WITH
%: 2 AND g =0 AT SEA LEVEL

M t/1 BE/Y 3/ ME/q)Y 3/
1.02 0.00259 0.150 0.258
1.05 .00259 .166 .246
1.1 .00292 212 .284
1.2 .00311 .241 .294
1.3 .00312 .251 .291
1.4 00311 .248 .280
1.5 .00311 .247 272
2.0 .00327 .248 .260
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For this panel the parameter is nearly constant for M = 1.2 to 2.0, but drops toward
zero in the manner of Bl/ 3 as M approaches 1.0. The parameter (ME/q)l/ 3t/Z is
also tabulated as a matter of interest since some investigators have applied piston-theory
aerodynamics to the analysis of panel flutter. It has the feature of remaining finite as

M approaches 1.0 for this panel. The values of the two parameters, one with g8 and
the other with M, approach each other as M increases.

CONCLUDING REMARKS

A panel flutter analysis procedure has been developed for which the generalized
aerodynamic forces are computed by considering the panel to be finely divided into a
large number of boxes and computing the matrix of aerodynamic influence coefficients
relating all pairs of boxes. This relatively laborious technique can be resorted to when
the aerodynamic forces from simpler expressions are either not obtainable or are of
questionable validity. The technique has particular usefulness in applications to finite
panels at low supersonic Mach numbers. Flutter solutions are obtained from a modal
type of analysis, and all the modal quantities are input information. Either experimental
or analytical mode shapes, frequencies, and mass data can be used. Thus, this type of
analysis can be applied to any essentially flat panel, whether unstressed or stressed (as
by thermal expansion) or whether of isotropic or anisotropic stiffness, and to a small-
amplitude flutter superimposed on a buckled deflection.

Results are presented only for flat unstressed isotropic rectangular panels with
side edges alined to the airstream direction and with no pressure difference that would
tend to bulge the panel. Design-type plots of flutter boundaries are presented for Mach
1.3 for length-width ratios ranging from 0 to 10 for simply supported edges and from 0
to 4 for clamped edges. Additional information is tabulated for a number of points on the
flutter boundary of each figure, frequency and flutter-mode-shape information being given
to aid in a fuller understanding of the results. For length-width ratios of 1.0 and greater,
flutter boundaries obtained from closed-form (nonmodal) solutions based on static strip-
theory aerodynamics are included for comparison. A comparison of the dynamic-
pressure parameter and of thickness required to prevent flutter shows surprisingly good
agreement with the results of the present method for certain ranges of length-width ratio
and ratio of air mass to panel mass. These ranges include aluminum panels at sea level,
having length-width ratios of 2, 4, and 10 with simply supported edges, and length-width
ratios of 2 and 4 with clamped edges.

The effect of Mach number variation for a clamped-edge aluminum panel with a
length-width ratio of 2 at sea level was studied. Three different panel flutter parameters
are given for Mach numbers in the range from 1.02 to 2.0. With increasing Mach number
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over this range, the thickness required to prevent flutter increases somewhat irregularly
by about 20 percent.

For clamped-edge panels, the stifiness coupling effects from the assumed beam
modes were neglected. A recently published reference reports that inclusion of these
coupling effects increased the dynamic-pressure parameter by 12 and 29 percent for
length-width ratios of 2 and 4, respectively, as determined on the basis of static strip-
theory aerodynamics in a Galerkin analysis using up to 20 beam modes. These and other
supporting results indicate that for sufficiently high length-width ratios, the stiffness
coupling between beam modes should be taken into account for flutter analysis of clamped-
edge panels.

Appendix A gives the form of the expressions used for calculating the mode-shape
information used in obtaining the presented flutter boundaries. The form given was
adopted because it provides full single-precision accuracy of the mode-shape quantities
without the need for multiprecision arithmetic for the higher modes. Appendix B pro-
vides conversion formulas for a number of flutter solution parameters in current use.
Appendix C describes a way to reduce computing machine time for the large matrix
multiplications required to obtain the velocity potentials.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 19, 1966,
126-14-02-01-23.
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APPENDIX A
NATURAL MODE CHARACTERISTICS OF RECTANGULAR PANELS

The panel flutter computing program described in the text is designed to accept
input information for the downwash, that is, the streamwise slopes and modal deflections
obtained from either experiment or analysis. All the panel flutter boundaries given in
the present report were obtained with analytically determined downwash input. A
description of the derivation of the natural mode shapes employed is given.

For the panel natural vibration modes, it is assumed that separation of the time
variable and the two space variables is valid; that is,

Hj(x,y,7) = 3j(7) hj(x,y) = q;¢'7 Xj(p,%) Yj(a,5) (A1)

where the generalized coordinate qj can be complex to account for leading or lagging
phase relationships in the general flutter motion, and where Xj(p,i) and Yj(q,)'i) con-
tain the x- and y-variations, respectively, and p and g are the numbers of half-waves
of deflection in the x- and y-directions, respectively.

The governing differential equation for small-deflection purely flexural vibrations

of a uniform thin isotropic panel with no in-plane loading and unaffected by any sur-
rounding air is

4
. 2 O0*H; 4 97 H; .
D J+2(_Z-) J +(L) em %t _J=o0 (A2)

As done by several previous investigators (see, for example, refs. 10 and 11), the mode
shapes X]- and Y]- of the plate are approximated by the mode shapes for a uniform
beam vibrating in flexure. In succeeding sections, certain combinations of edge support
are considered. These combinations are (1) all edges simply supported; (2) all edges
clamped; (3) leading edge clamped, trailing edge simply supported, and side edges either
clamped or simply supported.

Panels Simply Supported at All Edges
The mode shape functions can be given in a form that satisfies both the boundary
conditions and the differential equation (A2) and these functions are
X]-(p,x) = sin pr

=123, ... (A3a)
Kp = pr
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APPENDD( A
Y](q’§) = sin in’

Kq = ar

The natural resonant frequency of mode j as derived by application of Rayleigh's
principle of equal maximum kinetic energy and elastic potential energy is

2 D * 4
W.9 = e—_—

] m 4( P;Q)
AZ

551+ o) 8

where the combination of indexes p and ¢ is appropriate to mode j.

(@=1,2,3, ...y (A3b)

(A4)

Panels Clamped on All Edges

For uniform panels the mode shape functions are approximated by uniform-beam
mode shapes in both x- and y-directions. More than one form for X and Yj is pos-
sible. The following form was adopted because single-precision (nominally, eight-
significant-figure) arithmetic operations are sufficient for computing single-precision
results for the high modes as well as for the low modes:

-

-. A X -K, X ) - -
Xj(p,x) = _2_x (1 - ap,x)er + (1 + ap,x)e L 20, x Sin KpX - 2 cos KpX|  (A5a)

-, _A ¥ Ko - ]
Yi09) = {1 - cgp)e @ + (14 ogy)e ™+ 2agy sinKof - 2 cos Kgi (Ad

where the amplitude factors Ax and Ay are chosen as unity so that

1
S X%z = A% = 1
0
(A6)

2

1 5
S‘o Y%y = Ay = 1

The characteristic values Kp and Kg are the roots of the characteristic equations
cos Kp cosh Kp = 1 (A7a)

cos Kq cosh Kq = 1 (A7Db)
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from which it is found that

Kp = (p + %)’n - €p ([epl << 1.0) (A8a)
Kq = (q +-;—>7r - €q ([eql << 1.0) (A8Db)

The small quantities €p and eq rapidly become even smaller as p and ¢ increése,
and the labor of determining them is eased by using their asymptotic values for the
higher values of p and q:

N\
ep ~2(-1)Pe (p+ 2)” (A92)

2

-la+35)7

eq ~2(-1% ( 2 (A9D)
The quantities oy and o , are

cosh Kp - cos Kp
*,%x = Sinh Ky - sin Kp

(A10a)

cosh K, - cos Ky
%Y ~ Sinh Ky - sin Kg (A10D)

For the evaluation of Xj and Yj from equations (A5a) and (A5b), the values of
1- o x and 1 - o4,y to single-precision accuracy are required; for this evaluation
their asymptotic values for high p and g are helpful

1- U x ~ ~€p (Alla)
1 - Olq’y ""Eq (Al]‘b)

Values of Kp, Kg» 1- Oy %o and 1 - o,y for values of p and q ranging from 1
to 18 and for opposite-edge pairs clamped are given in the following table:
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1.0 - o x
p or q K, or or
P Kq 1.0 -raq’y

1 4.7300407 0.17497779 x 10™1

2 7.8532045 -.T7722999 x 1073

3 10.995608 .33551562 x 10”4
4 14.137165 -.14498945 x 10”2

5 17.278760 .62655621 X 10~

6 20.420352 -.27075949 x 10~8

7 23.561945 .11700579 x 10~

8 26.703538 -.50562789 x 10”11

9 29.845130 .21850161 x 10~ 12
10 32.986723 -.94423106 x 1014
11 36.128316 .40803924 x 10715
12 39.269908 -.17632974 x 10”16
13 42.411501 76198991 x 10~ 18
14 45.553093 -.32928570 x 10”19
15 48.694686 .14229725 x 10~20
16 51.836279 -.61492218 x 10~ 22
17 54.977871 .26573197 x 10723
18 58.119464 -.11483320 x 10~24

For an isotropic material, application of the Rayleigh principle leads to the expres-
sion for the natural frequency of mode j of a plate

2__D ( * )4
w.é = —
i i

i ot = 5% () + 2(E) a0 - Koo )P yKal? - Kot

where the stiffness coupling effects are neglected. The combination of p and q is
that appropriate to mode j.

(A12)

As was pointed out at the beginning of this section, equations (A5a) and (A5b) give
approximations for the plate mode shape. The boundary conditions are satisfied but the
differential equation (A2) is satisfied only approximately. The differential equation for a
plate could be satisfied with greater accuracy by using a series of terms of the beam-
mode type. What is done here, as has been done by many investigators, is to use only
the one predominant term in a series for each mode j and to neglect the other terms on
the grounds that their effect is minor, not of the first order. Recently published findings
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of reference 9 regarding the effects on some flutter solutions of including the stiffness
coupling terms are described for clamped-edge panels in the section '""Results and
Discussion.,"

Panels Clamped at Leading Edge and Simply Supported at Trailing Edge

For a panel clamped at its leading edge and simply supported at its trailing edge,
the function Xj is again approximated by that for a beam with the same boundary con-
ditions. Thus, Xj has the same form as in equation (A5a) but the characteristic values
of Kp are obtained from the characteristic equation

tan K = tanh Kp (A13)
the roots of which are
1
Kp=(p+4—)’ﬂ— Ep (’Gpl << 1) (A14)
and for the higher values of p the asymptotes are
-2(p+l>n (A15)
Ep ~ e 4
1- o x ~-2€ep (A16)

The quantities Kp and 1 - ap x are given in the following table for leading edge
clamped, trailing edge simply supported, and for values of p from 1 to 6:

p Kp 1.0 - % x

1 3.9266023 ~0.77731188 x 10”3
2 7.0685827 -.14498977 x 10~
3 10.210176 -.27075950 x 1078
4 13.351769 -.50562785 x 10”11
5 16.493361 -.94423105 x 10”14
8 19.634954 -.17632974 x 10~ 16

If the amplitude factor Ay is chosen as unity,
1
S‘ X;2dz = A2 = 1
0

The natural frequency of the panels depends on the type of support at the side edges.
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Simply supported side edges.- For simply supported side edges Yj and Kq are
given by equation (A3b). There is no stiffness coupling and the natural frequencies are

given by

2_ D * \4
U, (<5,q)
(A17)

(5,0)" = o (3] Ka® + 2) e (1 - Koo ) (%)

Clamped side edges.- For clamped side edges Y; is given by equation (A5b); Kqs
by equation (A7b); and «, _, by equation (A10b). (The latter two quantities are obtained
4
from the table following equation (A11),) When stiffness coupling is neglected, the natural

frequencies are given by

2_ D * \4
@; ERL (Kp,q)

(A18)

(Kp’f,q)4 =Xt (%)4Kq4 * 2(%)2%,pr(1 - Kp"‘p,x)‘J‘q,qu(2 - Ky, y)

Panels With Various Edge Supports, Orthotropicity, and In-Plane Loadings

A recent significant contribution to the analysis of vibration of rectangular panels
is made by reference 12 which treats a variety of edge restraints including simply sup-
ported, clamped, and elastic restraint against rotation. Account is taken of in-plane com-
préssive and tensile loads in both directions and of orthotropic stiffness of the panel.
Analysis is made by the method of Kantorovich, which involves an assumption of the
modal deflection shape in one direction, a consequent reduction of the partial differential
equation in two independent space variables to an ordinary differential equation in a single
independent space variable, and its eigensolution. Solutions that satisfy the plate differ~
ential equation exactly are obtained if the assumed deflection mode in one direction is
between simply supported edges. Extensive tables are provided in reference 12 for the
use of the analyst.
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RELATIONS AMONG SOME PANEL FLUTTER PARAMETERS
IN THE LITERATURE

The flutter boundaries of the present report are presented in terms of a mass
ratio 1/u plotted against a stiffness parameter wll/ V. Their relation to some other
parameters in the panel flutter literature is explained briefly here, specifically for
isotropic panels only.

A parameter having rather wide use (in refs. 4 and 5, for example) in a variety of
forms is a panel flutter dynamic-pressure parameter defined by

L oovi® 2?21 - ) Ly’

D ~ BD BE \t (B1)

where q is stream dynamic pressure, and E is Young's modulus of elasticity. The
relationship of A to the parameters of the present report is

_w* 41 1/ m
* (Kl’l) B(wll/V)z (52

and (KI’ 1)4 is given in appendix A for several edge-support conditions. (Assign

p,q = 1,1.) The dynamic-pressure parameter is seen in a variety of forms; some of
these replace 8 by M, drop § entirely, drop the factor 24, drop the quantity (1 - vz),
introduce the factor 114, and so forth. Other variations are the cube root and the inverse
cube root Al 3. The inverse cube root has the merit that the thickness to prevent flut-
ter, and thus the weight penalty, are contained linearly. The relationships among such
variations of A are readily apparent.

In reference 13 the flutter boundaries are on plots for which the relation of the
coordinates to A and to the present parameters may not be as clear. The vertical

E 1/3 1/3
coordinate is T|: 2} which is equal to (——-—) . The horizontal coordi-

pcoozl—v

- 2

c 1- ,2)l/2 wqz\ ! (K]

nate is = F)S( )J which equals <—1 1 ( 1, 11 . The symbols from ref-
o | E nv MVI2

erence 13, 7, c_, and pg are t/t, ag, and mA/-r, respectively, in the present
report.
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MATRIX OPERATIONS FOR COMPUTING THE VELOCITY
POTENTIAL MATRIX OF EQUATION (27)

The practicality of this box method is largely dependent upon the cost of the com-
puting machine time required. This time is significantly influenced by equation (27).
Not only should the multiplication be carried out completely within the machine core, but
also the matrices should occupy as small a portion of the core as possible, consistent
with the desirably low machine time for the overall program. Thus, any repetition of
the storage of a given number should be avoided.

If the {Aqo(r, s)} were indeed a single-column matrix, the rectangular matrix of
complex downwash ratios would have B¢ B,s rows and nearly 2BgByg columns,
nearly half of the elements would be zero, and all the nonzero elements would be repeated
from at least Byg to as much as BgByg times. But by an arrangement of the sub-
matrices that can be described as "folded,' repetition of the submatrices of the downwash

is avoided.
As an illustration, for the simple case of Bg =5 and Bgg = 3, let the elements of
8x \4

elements be indicated by a blank. Then that "folded" matrix is as follows:

dh; '
the downwash matrix dii wi hﬂ be represented by their indexes u,v, and let zero

42 32 2,2 1,2 0,214,1 3,1 21 1,1 0,114,0 3,0 2,0 1,0 0,0
| |
32 22 1,2 0,2 3,1 21 1,1 0,1 ;3,0 2,0 1,0 0,0
2,2 1,2 0,2 12,1 1,1 0,1 12,0 1,0 0,0 (c1)
1,2 0,2 :1,1 0,1 :1,0 0,0
0,2 . 10,1 10,0 ]

If the elements of the matrix Aq)(r,s) are represented by their indexes r,s that
matrix is, in effect
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00 0,1 0,2
1,0 1,1 1,2
2,0 2,1 22
30 3,1 3.2

2,1 20 21 (C2)

The resulting folded [(p]- *(m,n)| matrix of equation (27), represented by its indexes
m,n is then

4,2 4,1 4,0
3,2 3,1 3,0
2,2 2,1 20 (C3)
1,2 1,1 1,0
0,2 0,1 0,0 ]

In practice an actual arrangement of the Aq)(r,s) matrix elements as shown in

matrix (C2) with repetition of elements (due to right-left symmetry) would be prohibi-
tively wasteful of memory-storage space. It is a simple matter to arrange the elements
in a single one-dimensional column array and select appropriate subcolumns as needed.
With a little more ingenuity the necessary subcolumns can be used without any storage
duplication of elements such as that shown in the middle column of the Aq,(r, s)

ohs
matrix (C2). For the same reason, for the [—a-}_{—] +1i %Z- h;J matrix (C1) the storage space

need be no larger than the top row (BS times Byxg complex numbers). Successive rows
can be formed in the same space by shifting elements and inserting zeros. Thus, the
[‘qoj*(m,n)] matrix (C3) is obtainable in a systematic and economic manner for each mode.

For subsequent use in equation (29) the {qoj *(m,n)} matrix must be ""unfolded" into
a single column, the subcolumns of which are the columns of the folded matrix (C3).
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