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APPLICATION OF KATMAN FILTERING TO ERROR CORRECTION

OF INERTIAL NAVIGATORS
By Heinz Erzberger

Ames Research Center

SUMMARY

The design and performance characteristics of an optimum error damping
system for an inertial navigator are investigated. The chief component of
this system is a Kalman-Bucy filter which gives best estimates of the inertial
navigator's errors from noise-contaminated auxiliary velocity or position
measurements. The errors estimated by this system include random and constant
gyro drift, azimuth, leveling, accelerometer, as well as velocity and position
errors. The system also estimates time-correlated errors in the auxiliary
navigation measurements which are used to correct the inertial system.

The estimates of error obtained after each measurement from the Kalman-
Bucy filter are treated, for the purpose of error reduction of the inertial
system, as if they represented exact error values. This procedure of using
the estimates as if they represented perfect error measurements is also
optimal.

By means of digital computer simulation, the performance of the optimum
error damping system was compared, whenever possible, with that of conven-
tional methods. Thus, when an auxiliary velocity is used (e.g., doppler
radar), the optimum estimator reduces the inertial position and azimuth error
more than 50 percent below the values obtained with the best conventional
methods, such as velocity damping or gyrocompassing. The comparative gains
made by use of the optimum system depend strongly on the accuracy of both the
auxiliary measurement and the initial alinement of the inertial system. But
it was generally found that the lower the accuracy of either auxiliary mea-
surement or initial navigator alinement, the better is the performance of the
optimum system in comparison to conventional methods.

The performance of an inertial system, optimally updated with auxiliary
position measurements, was also studied. The use of auxiliary position mea-
surements, such as LORAN or TACAN, has not previously been exploited in a
systematic manner; thus, no performance comparison with conventional methods
was possible. It was found that because of the high position accuracy obtain-
able with these navigation aids, all errors in the inertial system, including
azimuth, were strongly reduced. In view of the relatively low cost and gen-
eral availability of these aids, this result is felt to be especially signifi-
cant for the projected use of inexpensive inertial systems in commercial jet
aircraft.



INTRODUCTION

It is well known that an inertial navigator without periodic updating
will eventually make unacceptably large errors. Gyro drift, mechanization,
and platform torquing errors invariably degrade the accuracy of the system
until, after a period of time, it ceases to be a useful navigation aid. Only
at great cost - by careful construction of critical components such as gyros
and accelerometers - can its period of usefulness be extended to more than a

few hours.

The high cost of accuracy in inertial navigators has led to the use of
auxiliary navigation data for controlling the rate of error propagation.
Such a system, although no longer purely inertial, often is more economical
to construct because of reduced sensitivity to critical components. In addi-
tion, it is more versatile than a purely inertial system since it permits at
least partial alinement of the navigator in flight.

The most common error-damping scheme in operational aircraft inertial
systems is the velocity damped mode, which uses an independent velocity mea-
surement, such as provided by a doppler radar. Other schemes also dependent
upon some form of velocity measurement are the gyrocompassing and automatic
leveling modes. The analysis of such damped inertial systems is treated
elegantly by means of classical feedback control theory in reference 1.

Although the classical theory explains the operation and aids in the
design of the system, it is seriously deficient in some aspects. For
instance, it does not guarantee that all auxiliary navigation measurements
are optimally processed for error damping purposes, nor does it possess an
efficient facility for handling measurements contaminated by noise. These
and other difficulties with the classical method suggest taking a fresh look
at the error damping problem in the context of modern estimation and control

theory .

Here the recent work of Bona and Smay on the optimum reset of ship's
inertial navigation systems should be mentioned (ref. 2). The present paper
differs from theirs in scope and content in that it is slanted more toward
aircraft inertial systems.

Essentially, the modern approach separates the error damping problem
into two distinct operations of which the first consists of optimally esti-
mating the errors in the inertial system from imperfect measurements, and the
second of using the estimated errors to correct the inertial system.

This approach has advantages both in theory and in practice. For
instance, random processes in the error model of the inertial system, such as
random gyro drift, for example, are handled with ease, as are noise-
contaminated navigation measurements. Then, too, there is no limit to the
number of sources of auxiliary noisy navigation measurements that can profit-
ably be used for error reduction. Furthermore, the theory provides a simple
algorithm for computing the best estimates of all the error states included
in the error model. For instance, the algorithm gives a best estimate of
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gyro drift rates from position measurements, such as LORAN or TACAN, even
though this information may be available only at intermittent time instants.
Finally, all sources of auxiliary navigation measurements are processed opti-
mally, in the sense that the mean-square errors in estimating the inertial
system errors are minimized.

This paper serves a twofold purpose. First, the design of the optimum
estimator and controller is described for a typical inertial system. Then
the performance of optimum and classical error damping is compared by means of
digital computer simulation. Since the two methods are compared for low and
high accuracy inertial systems as well as for different initial alinement con-
ditions, a rather complete picture of the characteristics of the optimum
system is obtained.

SYMBOLS

Note: Underlined quantities represent vectors.

A specific force wvector

C measurement matrix

F system matrix

Bm force per unit mass due to gravity

Xy Kalman gain matrix

k torquer scale factor error (ky, Ky, k,)

Py covariance of error states at time 1 + 1 given the measurement at
time i

Pi covariance of error states at time 1 given the measurement at time

i; also, covariance of estimation error

Qs covariance of noise for a discrete system

Q covariance of white gaussian system noise

Qe variance of u(t)

R radius vector from center of the earth to location of navigator
Ry covariance of measurement noise at time i

u system noise vector

ue(t) gaussian noise generating random drift rate
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true velocity vector

difference between inertial and reference velocities
reference velocity vector

random velocity reference error (vy, Vy, Vz)

error state vector

optimum error estimate at time 1 given the measurement at
time i

measurement vector

inverse of correlation time of accelerometer bias error
inverse of correlation time constant of gyro

gain constants occurring in classical velocity damped schemes
total accelerometer error (Vx’ Vy> vz)

accelerometer bilas error

inertial navigator velocity error

inertial navigator position error

constant velocity reference error

total reference velocity error

vector angle relating computer set of axes to true set
effective gyro drift rate vector (ey, €y €z)

gyro drift rate vector (ex, ey, el)

effective constant drift rate vector (including gyro torgue
errors)

constant drift rate of a gyro

polar component of drift rate vector

effective random drift rate vector (including gyro torgue errors)
random drift rate of a gyro

latitude



]

fo] angular rotation rate of true set of axes with respect to an earth-
fixed set

& steady-state variance of drift rate

9 vector angle relating platform set of axes to true set

o(t,T) transition matrix for error dynamics

¥ vector angle relating platform set of axes to computer set

Q angular rotation rate of earth with respect to inertial space

w angular rotation rate of true set of axes with respect to inertial
space

Wa angular rotation rate of computer coordinates with respect to
inertial space

Qp angular rotation rate of platform with respect to inertial space

Wg Schuler angular frequency

() expected value of quantity in parentheses

STATISTICAL MODELS FOR GYRO DRIFT RATE AND ACCELEROMETER ERROR

The error propagation in inertial navigation systems has been studied
and documented by many authors (refs. 1 and 3). Several different versions
of the error equation exist, but for the purposes of this note the particular
form obtained by J. C. Pinson in reference 1 is most suitable. The notation
adopted here also conforms as much as possible with that found in reference 1.
A brief account of this theory and the notation can be found in appendix A.
Although the error equations developed in appendix A suffice when gyro drift
rates and accelerometer errors are deterministic time functions, they need to
be augmented with additional equations of the error processes when this is
not true.

Consider first gyro drift rate €', which is one of the most difficult
error sources to control in inertial systems. In the relatively low acceler-
ation environment assumed here the drift rate is generally composed of a con-
stant or bias component and a slowly changing random component. To minimize
navigation errors, it is usually necessary, prior to entering the normal
navigation mode, to adjust the compensating torques to the gyros so that the
total drift rates, constant plus random, are as close to zero as possible.
Nonetheless, even with careful adjustment, drift rates of both types will
remain. Experience indicates that random drift usually predominates and has
the most damaging effect on the navigator accuracy. The random nature of gyro
drift has long been recognized, but exhaustive studies of the statistical
properties of random gyro drift are difficult to find. However, among the



studies available, the consensus seems to be that random drift rate of a
single degree of freedom gyro is exponentially time-correlated (ref. 4). In
that case its autocorrelation function has the form

G(r) = cf,e_lTiB (1)

The correlation time constant l/B lies in the neighborhood of 3 to 10 hours
for most gyros. This is the basic statistical model for random gyro drift
assumed here. Furthermore, if the distribution of the drift rate at any
fixed time instant is gaussian, then the Kalman-Bucy theory applies rigorously
(ref. 5). A recent statistical analysis of drift data from 50 gyros would
tend to support such an assumption (ref. 6). The gaussian assumption is quite
convenient, for then it is a simple matter to synthesize a linear dynamical
system excited by white gaussian noise so that its output has the desired
statistical properties (ref. 5). For the random process considered here the
proper choice of system is

de}

EE = -Bel + u(t) (@)

where e% denotes random drift rate. The variance, ci, of the steady-state

drift rate can be shown to be related to the variance, q., of the white
gaussian noise uc(t) by the equation

q¢ = 2Bo% (3)

Since there are three gyros on the stabilized platform, similar dynamical
systems are assumed to generate the random drifts for each of the three

channels.

The constant drift rate, also known to be present, has not yet been
discussed. Although it is not a random process, its value is nevertheless
unknown a priori and, therefore, can only be described probabilistically. The
distribution of the random variable will again be assumed gaussian with
variance o=. The dynamic system generating this constant random variable is

simply
!
-0 (&)

The drift rate model for one gyro is represented in sketch (a).

leé
'
€, .
Ue €

(B )
N\

Sketch (a) Dynamic model for gyro drift (one single-axis gyro).




Depending on the characteristics of a particular inertial system, it may be
desirable to simplify the proposed drift model. This can easily be done by
setting either ey or €, to zero.

Finally, it is necessary to consider the contribution of torquer scale
factor error (ky, ky, kz) to the total drift. As shown in equation (A3), the
scale factor error is proportional to the torquing rate w. This error is
apparently more difficult to handle than the drift rate €' since w is a
time-varying quantity for a moving navigator. Nevertheless, in real time
error estimation no difficulty is encountered. One constructs a statistical
and dynamic model for each k, just as for the pure drift rate €' and malti-
plies k Dby its respective component of w, which is available in the iner-
tial system's computer. Usually, a simple dynamic model, such as for constant
gyro drift, should be sufficient. If w is not time varying, as in the simu-
lation discussed later, the two sources of drift need not be considered as
separate entities, and thus can be represented by a single model, such as
shown in figure 1. Henceforth, gyro drift shall mean the total effective gyro
drift €, appropriately modified to include the scale factor error.

The above discussion on the statistical representation of total gyro
drift ¢ applies also to total accelerometer error v. This error is com-
posed of an offset error and a scale factor error, the latter being propor-
tional to the specific force vector A as shown in equation (AlO). Generally
speaking, accelerometer error is a less serious problem than gyro drift
(ref. 1). For example, taken by itself it contributes only a bounded position
and velocity error; furthermore, it generally changes less with time than gyro
drift. Thus a simple statistical model shown in sketch (b) and similar to the

Uy
(White noise) i

()
Sketch (b) Dynamic model for error of one accelerometer .

one for random gyro drift is also chosen to represent the total accelerometer
error Y. The correlation time l/a depends, of course, on the particular
accelerometer, but should lie somewhere between 1 and 20 hours. Strictly
speaking, this model generates only the offset error ¥' and not the total
error v (see eq. (AlO)), except when the specific force vector A is O.
However, under cruise conditions and a two axes locally level platform mech-
anization, the average value of A along the accelerometer sensitive axes
will be small so one is justified in neglecting the scale factor error.

One of the advantages of the Kalman filter over conventional error damp-
ing schemes is its ability to account properly for measurement noise. In fact,
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if the measurement noise is time correlated, then one can construct a
dynamical model of the noise just as was done for gyro drift and estimate the
time-correlated part of the noise along with the inertial system errors. A
case in point occurs when doppler velocity is used for inertial system error
damping. Doppler noise at a fixed reference velocity is composed of a ran-
domly varying component, v, with correlation time constants in the order of
seconds and a constant bias component 8V,. Since both noise components are
time correlated, both could be estimated. However, if the sampling interval
of the Kalman-Bucy filter is much longer than the correlation time of the
noise, it is more efficient to prefilter the doppler signal with conventional
smoothing filters. For sampling intervals of a minute or longer, it will
still be approximately true that the random noise component of a smoothed
doppler signal is uncorrelated. The bias component is easily included in the
filter design if the inertial system error model is augmerited with the simple
dynamic model, developed earlier for a constant random variable, to yield the
three equations,

dVrx _ BVry _ ABVyy,

=0
dt ? at ? at (5)

where B8V = column (8Vpy, 8Vpy, ®V,,) is related to reference velocity V.
and true velocity V as follows:
Vp =V +8Vr +v (6)

In effect, the Kalman-Bucy filter will now estimate the constant reference
velocity error along with the inertial system errors.

The next step 1s to write the entire set of error equations composed of
equations (2), (&), (5), (85), and (A9) as one first-order vector differential

equation:

X o u (7)
dt - =

The ordering of the error variables into a state vector x 1is, of course,
arbitrary but a logical choice consists of the following arrangement:

x = colum [epy, €rys €rzs» €cxs €cys €czs Vxr Vys Vg

Vs OVpay] (8)

&V ry?

y: rx?

Vs Yy Ny, AVy, SRy, SR
Equation (8) implies the definition AV, = 6RX, Ny = aﬁy and the assumption
that the vertical channel is not mechanized, that is, OR; = 0. The matrix F
is, therefore, of dimension 18Xx18, and its entries are easily determined from
the various error equations. Finally, the noise vector u has the form

u = column [uex, Uey, Yez, 0,0,0,0,0,0, uyx, Ugys 0,0,0,0,0,0,0] (9)
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MEASUREMENT EQUATIONS

The purpose of this section is to develop the relationships between the
measured error and the error state variables. Such relationships are essen-
tial components of the Kalman-Bucy filter theory.

Consider first an external velocity source, such as doppler radar, used
as a reference. The doppler radar gives the components of the aircraft veloc-
ity vector with respect to the earth in a coordinate frame fixed in the air-
craft. The components of this velocity vector are transformed to platform
coordinates with the help of the platform resolvers which specify the relative
orientation of the two coordinate systems. Since platform and computer frames
are nominally identical, inertial and doppler velocity can now be compared.

In general, the resulting difference velocity contains elements of
inertial as well as doppler velocity error. The expression for the error of
inertial system velocity with respect to an earth-fixed frame can be obtained
directly from the equation for V derived in reference 1:

=L ] + X R
Y [dt R c S (30)

where [ is the rotation rate of any given set of axes with respect to an
earth-fixXed set, and the time derivative of R 1is also taken with respect to
the given axes. The error in V, denoted by AV', is then obtained from
equation (10) by substituting R + ®R in place of R and identifying terms:

V+AV'=[i6RJ +p xaR+[iR] +po XR
= at —J = " lat = B 7=

AV + p X8R +R + p XR (11)

1l

The right side of equation (11), resolved along some known set of axes,
usually the computer set, generates the actual velocity available in the com-
puter. This inertial velocity is to be compared with the reference velocity
Vy =V - 8V. where BV] = 8V, +V denotes the total error in the reference
velocity. But the existence of an error angle VY between computer and plat-
form axes means that the computer will actually utilize

~ - T
V-8V -y x (V+BVL) mY - BV - g XY
in the velocity comparison. Therefore, the difference V4 between inertial

and reference velocities is

\')

Vg =&V + p XBR + ¥ XV + 8V (12)

In the preceding section the reference velocity error was separated into bias
and white noise components and the bias component was included in the inertial

9



system error model. If this is also done in equation (12), one obtains the
final form of the measurement equation

Vg =& +p XBR + ¥ XV +38V, +¥ (13)

where v denotes the time-uncorrelated (white noise) component of reference
velocity error.! Since equation (13) expresses the measured quantity Vg as
a sum of uncorrelated noise and a linear combination of the error state vari-
ables, it can be put in the form required for the Kalman-Bucy theory (ref. k);
that is to say, a 3X18 matrix C can be found which allows equation (13) to
be written as

z=Cx+y (14)
Here X represents the error state vector and z the measured quantity, in
this case ya.

Another important reference source consists of auxiliary position infor-
mation such as might be obtained from LORAN, TACAN, or even from visual obser-
vation of known landmarks. In the past these measurements, although readily
available in many aircraft, have not been fully utilized for error damping of
inertial navigators. Yet accurate position information can help considerably
in decreasing heading error, as the computer study to be discussed later
demonstrates.

The measurement equation for position reference is simply

Rg = 8R + v (15)

P

The vector v, represents the reference position error assumed to be white
gaussian noise. Obviously, equation (15) can also be written in the form of
equation (14).

DESIGN OF THE FILTER

Once the linear dynamic system and the matrix equation relating the state
variables of the system with the measured quantities have been determined, the
Kalman-Bucy filter can be constructed, provided, of course, that certain sta-
tistics, such as the covariances of the system noise and measurement noise and
the initial covariance of the state variables, are also known. However,
before the filter equations can actually be written, two questions must still
be resolved. The first is how the existing filter theory can be made appli-
cable to continuous systems sampled at discrete time instants; and the second
is how to use the estimated error states to the best advantage in reducing the
inertial system errors.

YThe components of v may be correlated with each other, depending on
the particular hardware utilized.
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The significance of the first question above is best understood by
envisioning the sequence of events as they would occur in the system. Suppose
a comparison has just been made between inertial velocity and an auxiliary
navigation measurement, say doppler velocity. The difference velocity, at
whatever time instant it was measured, must be accepted by the filter which
must operate upon it and yield a best estimate of the error state. Setting
aside for the moment the question what to do with the computed estimate, con-
sider what may happen next at the filter input. Perhaps the aircraft is over
water and the doppler signal begins to fade, or in case of position measure-
ment by LORAN, it has just passed outside the range of LORAN stations. In
other words, neither the arrival time nor the type of the next measurement is
known beforehand. Even if auxiliary navigation measurements were available
continuously without interruption, the filter still could accept signals at
discrete time instants only, because of the limited computing speed of the
digital device which mechanizes the filter equations. The solution to all
these difficulties lies, of course, in changing the time-continuous error
equations to a discrete system, at least for the purpose of filter design,
while at the same time taking care to modify the statistics correctly.

The time discrete system 1s obtained by expressing the solution of equa-
tion (7) in terms of the fundamental matrix ®(t;,,,ti) of the system (ref. T)

Tina
2(t140) = (t54q,85)2(%5) +ﬁ. (t14q,7)u(T)dr (16)
1

This equation is written in abbreviated form as follows:

Xy = P4Xq + U4 (17)

To complete the transition from the continuous to the discrete system, it is
necessary to calculate the covariance of the random vector u; in terms of
the known system parameters and the covariance of u(T). The covariance Q4
of uj is calculated as follows:

tivg ptiv -
el =L/; \/; o(ty o >T)u(m)u (£1) oF (44, ,t")aT dt? (18)
But u(t) is a white gaussian random process; hence, its autocorrelation

matrix Q(T,t') has the form

u(m)ul(t") = Q(t,t') = (T,6")8(T - t*) (19)

where &(T - t') is the delta function (ref. 7). Then using equation (19) and
a property of the delta function simplifies equation (18) to

ti4d - .

Q =_/; O(t3415T)Q(T,T) 0 (145 ,7)AT (20)
i

which gives the desired relation.




With these modifications it is clear that the Kalman-Bucy filter theory
for discrete systems is directly applicable here. Since the construction of
the filter and the form of the recursion relations for computing the filter
parameters are readily available (e.g., refs. 8 and 9), only the final results
are included here. Let X;|; denote the optimum estimate of x; given the
measurement zj. The next estimate ii+1|i+1 is computed from the previous

estimate %i ;i Dby means of the following relation:
gi+1|i+1 = Qigi|i +Ki490254 - Ci+1®igi|i] (21)
Here C;,, 1is the measurement matrix, which is interpreted in equation (21)

as the value C assumes at the (i + 1)st time instant. The matrix Kiss
is called the gain matrix of the filter and is computed recursively as follows:

= T
P; = ;PO +Q; (22)
' —_—
Pipn © (1 - Ki+1Ci+1]Pi (23)
N T T -1
Kin = P1C3 4, (C51nP3Ch4y + Ri41) (2h)
where
P = (x; - iili)(xi I )T (covariance of the estimation

error at time i)

Riyp = ¥Yi41Yi+1 (covariance of zero mean
measurement noise at time i + 1)
and P; 1is defined by the right side of equation (22). To start the itera-
tion process at i = O, one must have available the a priori statistics Pé
and Xg|o°

Now consider the answer to the second question posed at the beginning of
this section, namely, how to use the error estimates to the best advantage in
reducing the inertial system errors. Since the optimum estimates represent,
in a certain sense, the best information available on the error states up to
that time, one might argue that the optimum decision after an estimate has
been computed consists of resetting every inertial system variable by the
amount of the error estimate. Specifically, this procedure would entail sub-
tracting SRX from the inertial x coordinate of position immediately after
6RX has been computed and treating the other variables in a similar manner.
That this is indeed the optimum strategy to pursue follows directly from
published results on the combined estimation and control problem (ref. 9).

In other words, when formulating the error control of an inertial system as a
stochastic control problem with the cost function quadratic in the error
states, one finds that the solution consists of an independently designed
Kalman-Bucy filter for estimating the error states and a controller that oper-
ates upon the estimates as if they represented perfect measurements.

12
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Resetting the inertial system variables closes the loop around the
Kalman-Bucy filter, all the estimated error states being reduced to zero when-
ever data are processed by the computer. This procedure simplifies the filter
structure because at each step the first and last terms in equation (21) are
zZero:

Zivi)i+ = Ki+rZin (25)
Equation (25) holds even if the resetting does not take place instantaneously,

so0 long as it is completed before the next measurement is accepted by the
filter.

There is, however, one complication associated with the proposed reset
procedure that should be mentioned. It will be remembered that random gyro
drift rate e, and accelerometer bias error v were modeled by dynamic sys-
tems of the type shown in sketches (a) and (b). These systems do not actually
exist as physical entities; and therefore, it is not possible to reset them
physically (i.e., by the conventional method of applying an appropriate con-
trol signal at the input of the integrator). The resetting can nonetheless be
carried out indirectly by adding a signal to the output variable, which does
have physical existence in the inertial navigator. The necessary reset signal
is a slowly time-varying quantity dependent upon the dynamical properties of
the system. Moreover, it is easy to see that the required signal is generated
by a system identical to the one to be reset. For the system shown in
sketch (b), for example, the signal which must be added to v is e U 4p
an observer at the output is to measure the same response as at the output of
a system whose state had been increased instantaneously by an amount ¢ at
time t = O. This concept is illustrated in sketch (c) below. Obviously the
same considerations apply also to the gyro drift model.

A -Qt
Ve

oS
Sketch (c¢) Accelerometer error model and reset mechanism.

The design of the filter and its relationship with peripheral systems is
depicted in figures 1 and 2. Figure 1 shows diagrammatically the sequential
computation of the optimum estimate, while figure 2 shows the complete closed
loop system, including the simplified calculation of the estimate resulting
from the procedure of setting the estimated error state to zero after each
estimation. Not shown in the figures are the several logical operations
necessary to integrate the filter into the inertial system as a whole. These

13



operations consist of sensing the type of measurement that has occurred,
whether LORAN, TACAN, doppler velocity, or other, programming the computer to
calculate the correct gain matrix K;, and storing the measurement until the
gain matrix has been calculated.

Not only are the parameters of equation (17) and of the measurement
matrix C time varying, but the latter may even change dimension randomly at
the measurement time. The calculation of the gain matrix Kj must, there-
fore, be done in real time. For the particular kind of problems considered
here, it was found that the basic iteration interval should be chosen in the
order of a few minutes or less so that the fundamental matrix ¢&§ can be

approximated by a first degree Taylor series expansion of eF(ti+i_ti). Also,
over such short time intervals it is sufficient to take F constant and
update it only at each iteration.

EXPERIMENTAL RESULTS

In this section inertial system error estimation by means of a Kalman-
Bucy filter is compared with conventional error damping methods by means of
machine computations. The results should help a designer in judging how
greatly performence is improved with a Kalman-Bucy filter over conventional
methods. Particular care was taken to compare the modern and classical
methods under the same conditions so as to assure a fair comparison of the
performance characteristics. The machine computations, summarized here in the
form of graphs, are essentially time histories of inertial system rms error
states calculated for a variety of operating conditions. A conventional
locally level, latitude-longitude mechanization was chosen as the model for
the inertial system.

Two types of reference sources were considered, doppler velocity and
position information. With doppler velocity as a reference, the error state
rms values, given by the square root of the diagonal elements of Pi, were
calculated for the Kalman-Bucy filter configuration, for velocity damping,
automatic leveling and gyro compassing taken together, and for velocity damp-
ing alone. Since there are no conventional error damping methods dependent
upon position information except for elementary position reset, only the opti-
mum estimator performance was calculated when position information was used.
An iteration interval (ti+i - ti) = 2.5 minutes was used for all computations.
Also, it was assumed in this study that the vertical channel is not mechanized,
so that the position error equation (A9) resolved along the computer set of

axes reduces to two scalar equations:
S

oBy + [(wx + Og)py + w5 + |8%] - [W®|IoRy - 20,3Ry

+ [0, + (0, + Q) ]8Ry = YAy — Yy, + vy $ (26)
dRy + [(wy + Ay)oy + W8 + |83] - |W®| 18R, + 2u,8Ry

+ [0y + (wy + Qx)pylﬁRx = Yyhy — Vghx + vy‘J
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For doppler velocity reference, equation (13) resolved along the computer set
of axes yields three scalar equations:
N
Vax = &Vg - pZZSRy + waZ - Wzvy + OVpx + Vg

Il

Vay = &Vy + p,8Ry + V,Vy = WV, + 8Vpy + vy (27)

]

Vaz pXESRy - pySRx + vay - wax + 8V, + v,
P

Equations (A5) and (26) together with the dynamic models for gyro drift,
accelerometer bias, and constant reference velocity error constitute the sys-
tem equation (7), whereas equation (27) determines the measurement equa-—
tion (14). Recursion relations (22)-(24) along with the system and
measurenment equations were employed in calculating the time histories of the
rms estimation errors for the optimum estimator. It should be observed that
the reset signals do not modify the covariance of the estimation error since
they are deterministic (no error in the reset implementation) and, therefore,
do not contribute to uncertainties within the system.

The situation is somewhat different for conventional error damping
schemes in that both the system equation (7) and the recursion relations (22)-
(24) must be appropriately modified. Thus, in the velocity damped mechaniza-
tion 7,Vq 1is added to the left side of the pure inertial mechanization
equation (A6), where the gain constant 7, is selected to give the desired
damping of the transient response (ref. l}. This, in turn, modifies the
position error equation (A9) by adding 7.Yqg to its left side. In the auto-
matic leveling mechanization the gyros are precessed at rates wy - (72/R)de,
wy + (72/R)Vaxs wy, where again y, determines the transient response
(ref. 1). 1In this case (—72/R)de and (7_,/R)Vax must be added to the right
side of the first and second of equations (A5), respectively. Finally the
earth-rate gyrocompass mode is obtained by precessing the 2z gyro at the rate
Wy + (7Z/R)de and the x and y gyros as in the automatic leveling mode.

The resulting modification to the V¥ egquation (A5) is obvious. To compute
the covariance of the inertial system error of these configurations, it is
only necessary to set the measurement matrix C equal to zero and then use
equations (22)-(24) as before.

Two calculated quantities that occur in the figures are platform azimuth
error ¢, and polar component of drift rate €p. Both are linearly related
to the chosen error state variables,

SRy
(‘Pz = llfz +-—R-— tan 0O

i

€

D €y cos 6 + €z sin 6 @ = latitude of navigator

The polar component of drift is important because it produces unbounded ¥
components (ref. 1).
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In order to check the effect of truncation errors on the calculated
values of the KX and P' matrices, two FORTRAN programs were written, one in
single precision, the other in double precision. Comparison of the matrices
calculated by the two programs showed differences at most in the third signifi-
cant figure after 120 iterations. Single precision should, therefore, suffice
to mechanize the iteration equations. .

The results of the simulation now to be described are given for three
cases: The first corresponds to a poorly alined inertial system equipped with
high quality gyros, the second to a well-alined system of the same configura-
tion as used in case 1, and the third case corresponds to a well-alined iner-
tial system equipped with relatively high drift rate gyros. The performance
of each case was calculated when operated with competing error damping schemes;
namely, optimum filtering and classical velocity damping and gyro compassing.
The complete list of parameters specifying each case can be found in tables I-
ITI.

The performance of case 1 is shown in figures 3 and 4 in the form of time
histories of rms latitude and azimuth error propagation. Longitude error is
not shown, but for this configuration did not differ significantly from lati-
tude error. As is evident from these figures, the performance of the system
equipped with an optimum filter surpasses that of the conventionally damped
system in both the transient and steady-state phases of the response but the
improvement is particularly evident in the transient phase. The strong exci-
tation of the Schuler loop occurring under poor alinement conditions is
responsible for the large peaked transients in both figures in the gyrocompass
mode (ref. 1). Although this transient in the gyrocompass mode can be reduced
by proper choice of the feedback gains 7¥., 75, 7z, 1t can only be reduced at
the detriment of steady-state error in the presence of measurement noise. As
the figures demonstrate, this basic shoricoming of the gyrocompass mode is
completely overcome with the optimum estimator. Also shown in these figures
are the responses of the optimally damped system when updated with position
measurements at every iteration step (i.e., at 2.5 min intervals). Azimuth
alinement accuracy of this configuration shows the characteristic lag that
occurs whenever the estimated quantity is computed from derivatives of
measured quantities.

The performance of case 2, the same inertial system as case 1 except that
it was assumed more accurately alined initially, is shown in figures 5 and 6.
Clearly, the gyrocompass mode was misused in this case, because as seen in
figure 6, the azimuth alinement accuracy of the pure inertial system was
apparently superior to the steady-state gyrocompass accuracy. While the
inflight usefulness of the gyrocompass mode is thus restricted, the optimum
estimator does not exhibit this disadvantage since the relative accuracy of
the inertial system and the measured data is automatically reflected in the
weighting matrix Kj. It is also evident from the figures that the perfor-
mance improvement gained with an optimum estimator over the velocity damped
mode when the inertial system is accurately alined initially is not nearly so
striking as in the poorly alined case. Thus, the greatest performance gains
can be expected whenever the initial uncertainties of the error states of the
inertial system are large. This finding confirms one's belief that statisti-
cal analysis increases in value as the disorder in the system increases.
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Figures T-9 show the performance of case 3 which corresponds to an
inertial system moving south from north latitude 37.20 with a constant speed of
1700 knots. The rather high gyro-drift rates of this system, given in
table II1, were chosen in order to evaluate the performance of the estimator
when operated with a low-accuracy system. Again, the performance of the
estimator surpasses the steady state and transient performance of the conven-
tional velocity damped system by 50 percent or more. Of particular interest
is the behavior of the position updated inertial system such as would be pro-
vided by LORAN or the proposed navigation satellites. It is interesting to
note the high azimuth accuracy attainable with a low accuracy inertial system
vwhen high quality position information is available. In comparison to doppler
radar, LORAN is a relatively cheap navigation aid, is available over many
important air routes and, when used to update the inertial system, can trans-
form an inexpensive, low accuracy inertial system into one of good accuracy.

Figure 9 demonstrates the ability of the estimator to estimate constant
gyro drift rate along the polar axis from position or velocity measurements
while in flight. The effective constant polar axis drift rate with position
updating is reduced by as much as 25 percent from the value of the unaided
system. A proportionally larger reduction in drift rate would be obtained
with larger initial drift rates. Random drift rate (not shown) is also
reduced by about the same percentage. In the past, gyro drift could be mea-
sured during flight only with the aid of star trackers.

CONCLUDING REMARKS

The accuracy and versatility of an inertial system can be greatly
improved if inertial system errors are optimally estimated with auxiliary
noisy navigation measurements. While it is true that the estimator increases
the complexity of the inertial system's computer, it is believed that the cost
of greater computer complexity can be more than offset because cheaper iner-
tial system components can be used for a specified navigator accuracy. Since
an inertial system equipped with an optimum filter estimates all time-
correlated errors included in the model, even gyro drift rates and accelerom-
eter bias, from auxiliary navigation measurements, the alinement of the iner-
tial system takes place automatically, on the ground or in the air. The
optimally damped system is also far superior to the conventional velocity
damped and automatic alinement modes, especially so when the measurements are
inaccurate and the initial alinement of the inertial system is poor.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 29, 1966
125-17-03-02-21
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APPENDIX A

INERTIAL SYSTEM ERROR MODEL

This appendix provides a brief review of the inertial system error
equations and the notation as used in this paper. A complete derivation can
be found in reference 1.

Consider a typical inertial system consisting of a gyro-stabilized plat-
form, three mutually perpendicular accelerometers mounted on the platform, and
a computer to solve the mechanization equations of the system. Three coordi-
nate systems enter into the error analysis.

ixp’lyp:lzp unit vectors along the sensitive axes of the accelerometers;
also referred to as the platform coordinates
ix,ly,lz unit vectors representing ideal alinement of the inertial sys-

tem, the true coordinates at the navigator's location

g slycslze computer coordinates

In addition, the following quantities are defined:

w angular rotation rate of true set of axes with respect to inertial space

Wa angular rotation rate of computer coordinates with respect to inertial
space

9p angular rotation rate of platform with respect to inertial space

Jo) angular rotation rate of the true set of axes with respect to an earth
fixed set

88 vector angle relating computer set of axes to true set

@ vector angle relating platform set of axes to true set

v vector angle relating platform set of axes to computer set

Clearly the last three quantities are related by the equation

P=y + 26 (A1)

The use of the term vector angle implies that only small angles are of inter-
est; hence, the theory of infinitesimal rotation applies. As is shown in
detail in reference 1, the error equations logically fall into two groups,
namely, the V¥ equations and the position error equations. The V equation
is known to have the following elementary form:
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a
—— =€ A2
dt E] I = (a2)
where the subscript I indicates that the time derivative of ¥ dis to be
taken with respect to an inertial coordinate system. The effective drift rate
of the gyros, €, is defined as the sum of the actual drift rate, €', and the
drift rates contributed by gyro torquer scale factor errors, kg, ky, ky:

€= €'+ ixkxwx + iykywy + izkzwz (a3)

Here wy, Wyy Wy represent the components of w din the true coordinate sys-
tem. The value of w, which is approximated in “the computer by w., depends
upon the particular mechanization as well as the speed and location of the
navigator. An especially useful form of equation (A2) is obtained by taking
the derivative in a coordinate system rotating with rate w with respect to
inertial space, -

%—]t +OXy=c¢ (Ak)
and then resolving this equation along the true coordinate axes:
11}X +owylg - szy = €x
Wy gty - Wl = &y (45)
li’z *ouygly - Wyly = €
This is the form of the ¥ equation as used here.
The derivation of the position error equations starts first with the
writing of the mechanization equation for the particular inertial system that

is being studied. This equation is simply Newton's second law written for a
rotating coordinate system, and it has the following form (ref. 1):

a a )
[dtz“:l +22cxl:a'3]cJ{E’EE‘JCXB“‘%X(%XB) -9 X (@xXR)=A+g

(A6)
where
R radius vector from the center of the earth to the location of the

navigator
Q angular rotation rate of the earth with respect to inertial space
A specific force vector measurable with the accelerometers
g &n-9X(Q XR), and gy is the force per unit mass due to gravity
19



A sufficiently accurate approximation of g for the purpose of this paper is
given by

g = - T§T R g = acceleration of gravity
- (AT)
= - R
S —
where
g
[N =
> JIR|

is the familiar Schuler angular frequency. Errors are introduced in mechaniz-
ing equation (A6) first because of the error vy in the accelerometer outputs,
and second because the accelerometers measure acceleration along the platform
axes, whereas the computer treats the outputs as though they were measured
along the computer axes. The combination of these two effects results in an
actual computer input of

A-yXA+y (48)

instead of the exact value A. If equations (A7) and (A8) are substituted
into equation (A6) along with R + ®R in place of R, one obtains the posi-
tion error equation by 1dent1fy1ng terms:

|<l

BR + 20 X 8 + p X 2R + [(@ + @) - 8Rlp + (u2 + [2]" - |uf") XA+
(49)

Equation (A9) holds for an observer not rotating with respect to the true
coordinate system; for any other rotating coordinate system it is only neces-
sary to replace w with the angular rotation rate, with respect to inertial
space, of the new coordinate system.

In a manner similar to gyro drift, one separates the accelerometer error
into two components, an offset error, v', resulting from incomplete nulling
under zero acceleration, and a component resulting from accelerometer scale

] ] T
factor errors kg, ky, k; .

v = v+ Lgkghy + Ipkohy + 1okgA, (A10)

Equations (A4) and (A9) specify the dynamics of error propagation in an
inertial system, and they have the advantage over other formulations in that
the angle and position error equations are uncoupled. A possibly important
error source, which has nct been included, is the uncertainty in the calcu-
lated Schuler angular frequency wg. This error, introduced mainly by alti-
tude error, is the origin of the vertical channel instability (ref. 1).
However, here it is assumed that the vertical channel is not mechanized and
that altitude is measured with negligible error by auxiliary equipment.
Another point to be mentioned is that the analysis presented here gives rise

20



to the linear error equations whereas a more detailed treatment would show the
existence of second degree terms in the error state variables. However, for
the relatively small errors and short time intervals of interest here the
second degree terms do not contribute significantly to the error propagation.
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TABLE I.- ERROR SCHEDULE AND SYSTEM PARAMETERS CORRESPONDING TO CASE 1

Navigator location:

37.2° north latitude; gyro drift rate time constant

l/B = 5 hours; accelerometer bias time constant l/a = 20 hours; observation

time interval = 2.5 minutes for optimum estimators and continuous for conven-
tional modes; navigator stationary or moving slowly.

The covariance matrix of the error states P' at t = 0 was assumed to

be diagonal and its

rms_ diagonal elements are listed below; covariance

matrix of system noise Q 1is diagonal and its nonzero elements_are computed
from the steady-state drift rates and accelerometer bias as 2038 and 20%@,

respectively.
Error state and units Element of P'|Initial rms

x gyro random drift rate exp, min of arc/hr P'(1,1) 1.55
v gyro random drift rate eyp, min of arc/hr P'(2,2) 1.55
z gyro random drift rate e€gzy, min of_arc/hr P'(3,3) 1.55
X gyro constant drift rate exe, min of arc/hr Pr(L,u) 1.55
y gyro constant drift rate eyc, min of arc/hr P'(5,5) 1.55
z gyro constant drift rate e€ge, min of arc/hr P'(6,6) 1.55
Vs min of arc P (7,7) 30
¥y, min of arec P'(8,8) 30
Vy» min of arc P'(9,9) 60

x accelerometer random bias vy, knots/hr P'(10,10) 20

y accelerometer random bias vy, knots/hr P*(11,11) 20

x velocity (latitude) error AVy, knots P'(12,12) 1

y velocity (longitude) error AVy, knots P'(13,13) 1

x position (longitude) error ORx, nautical milesg P'(14,14) 1

y position (latitude) error B8Ry, nautical miles | P'(15,15) 1
constant x reference velocity error, knots P'(16,16 2
constant y reference velocity error, knots P'(17,17) 2
constant 2z reference velocity error, knots P'(18,18) 2

Velocity measurement noise covariance matrix

0.25 0 0
Ri = | O 0.25 O knots®
0 0 0.25

Position measurement noise covariance matrix

[0.25 0
Ri =
0 0.25

Steady state random gyro drift rate (each channel):
Steady state random accelerometer bias (each channel):

J 3 nautical miles2

oq = 2 min/hr

0p = 20 knots/hr
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TABLE II.- ERROR SCHEDULE AND SYSTEM PARAMETERS CORRESPONDING TO CASE 2

Only changes from table I are listed.

Error state €xp

0.707 |

€zr I €xc l €yc J €zc l
Initial rms |

0107 | 0707 | 0707 | 0707 | 0707

x
0.5

TABLE III.- ERROR SCHEDULE AND SYSTEM PARAMETERS CORRESPONDING TO CASE 3

Navigator moves southward from 37.2° north latitude at 1700 knots. Only
changes from table I are listed.
Error state Exr Eyr €gp €xc l €ye €0 l Yy [ Yy I Vg,
Initial rms | & 'u_T_h' 1y ]_1{'[ 4'1 0.5 1”05‘1 1:.'01
| - . - - .
Error state JA\'N {7ANy 3Ry , OR ‘I OVrx ] 6Vry ‘ SszJ
Initial rms 0.5 l 0.5 0.5 I 0.5 J 6.8 ’ 6.8 l 6.8]

Velocity measurement noise covariance matrix

26 0 0
Ry = 26 0|, knots®
0 0 26
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Figure 1l.- Schematic representation of the Kalman-Bucy filter.
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Figure 2.~ Block diagram of optimum system.
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Figure 3.- Propagation of rms latitude (Y axis) error in & poorly alined
inertial navigator (case 1).
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Figure L.- Propagation of rms azimuth error in a poorly alined inertial
navigator (case 1).
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Figure 5.- Propagation of rms longitude error in a well alined inertial
navigator (case 2).
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Figure 6.~ Propagation of rms azimuth error in a well alined inertial

navigator (case 2).
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Figure T7.- Propagation of rms latitude error in a fast moving inertial
navigator (case 3).
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Figure 9.- Constant drift rate about rms polar axis in a fast moving
inertial navigator (case 3).
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