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VARIATIONS I N  GAGE CONSTANT AS A FUNCTION 

OF EMISSION CURRENT I N  AN UNSHIELDED OPEN-END GRID 

BAYARD-AIPERT IONIZATION GAGE^ 
By Leonard T. M e l f i ,  Jr., and Frederick A. Kern 

Langley Research Center 

SUMMARY 

A de ta i led  laboratory study has revealed a gage-constat-emission-current 
anomaly i n  the  1- t o  10-milliampere emission-current range i n  an open-end gr id  
Bayard-Alpert ionization gage. This study was performed f o r  t he  pressure .range 
from 6 x t o  1x 10-5 N/m2 on an orifice-conductance cal ibrat ion system with 
a computed pressure measurement uncertainty of k5.5 percent. 

Experimental data are presented which show variat ions i n  gage constant as 
high as  18 percent for low pressures (pressures l e s s  than N/m2) and fo r  
high emission currents generally used by most investigators.  I n  addition, t h i s  
anomaly was found t o  be independent of pressure and, therefore,  does not  a f fec t  
the  gage output l i nea r i ty .  However, a knowledge of t h i s  behavior i s  important 
when cal ibrat ion procedures with the  McLeod gage a re  considered, because these 
procedures require changing the  gage tube emission current. 

INTRODUCTION 

For the  measurement of pressures below 10-1 N/m2, some form of  the ioniza­
t ion  gage i s  generally used. Many gages of t h i s  type are  available t o  the 
investigator,  including both the  hot filament a d  cold cathode types. The gage 
most often used i n  t h e  pressure range from 10-lt o  N/m2 i s  the  hot filament 
ionization gage of t h e  Bayard-Alpert type. 

I n  most tests, the  effect  of the environmental pressure i n  space simulation 
f a c i l i t i e s  on the  experimental accuracy i s  o f - a  f i rs t  order. A detai led study, 
therefore,  of t he  Bayard-Alpert type of gage t o  determine i t s  r e l i a b i l i t y  and 
accuracy i s  required. 

-~ 

lAfter completion of this investigation, it was found t h a t  Kazuo Ishikawa 
found a similar anomaly i n  a closed g r id  Bayard-Alpert gage. Portions of h i s  
work were published i n  the  Japanese Journal of Applied Physics, vol.  4, no. 6, 
June 1965, pp. 461-463. 
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I n  the past ,  ionizat ion gage studies have been l imited i n  the accuracy of 
gage cal ibrat ion techniques and the i n a b i l i t y  t o  maintain an accurately known 
constant pressure. The use of the standard commercial ionization gage control 
un i t s  a l so  limits t h e  accuracy of such studies.  A cal ibrat ion system was needed 
which required no assumptions concerning the  operation of the gage tube. I n  
order t o  meet t h i s  need, a gas-flow-rate-orifice-conductance system ( r e f .  1)was 
chosen which could es tab l i sh  known pressures i n  the gage ca l ibra t ion  chamber t o  
within k3.3 percent of measurement over a range from 1 x 10-7 t o  6.65 x N/m2 
and hold these pressures constant t o  k1 percent of measurement. A monitored 
laboratory ionization gage control un i t  was used t o  make current and voltage 
measurements with a t o t a l  measurement uncertainty of k3 percent. 

It i s  the  purpose of this report  t o  document an emission-current-ion­
current anomaly fo r  emission currents greater  than 3 milliamperes and pressures 
l e s s  than N/m 2 unreported f o r  t h i s  Bayard-Alpert type of gage. This anomaly 
appears as  a change of gage constant as  a function of emission current.  The 
significance. of t h i s  anomaly i s  brought for th  i n  the cal ibrat ion procedure i n  
which the McLeod gage i s  used. This technique-allows the  use of a McLeod gage 
as  a cal ibrat ion standard by reducing the emission current i n  the ionization 
gage t o  avoid. the  well-known saturation e f f ec t  ( r e f .  2 )  a t  high pressure and 
high emission current.  The emission current i s  then ra i sed  a t  low pressure t o  
regain sens i t i v i ty  and.t o  avoid low-emission-current low-pressure e f f ec t s  
( r e f .  3 ) .  The use of t h i s  technique i s  questioned, however, since the data i n  
t h i s  report indicate  cal ibrat ion errors  as  high as  18 percent. 

SYMBOLS 

i+ ion col lector  current, amperes 
-

i emission current,  amperes 
-1


k l  ionization gage constant, (newtons/meter') 
-
2 average distance of t r ave l  of electron from filament t o  grid,  

centimeters 

n number density ,molecules/ centimeter3 

P pressure, newtons/meter2 (133 N/m2 = 1t o r r )  

Q gas flow ra t e ,  newton-liters/meter2-second 

S speed, litem/  second 

0 ionization cross section, centimeters2 
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DESCRIPTION OF APPARATUS 

The apparatus consisted of a gas -flow-rate-orifice-conductance vacuum gage 
ca l ibra t ion  system (ref. 1) f o r  establishing lmown pressure levels ,  a precision 
ionization gage control un i t  f o r  gage tube operation, and an open-end g r id  
Bayard-Alpert ionization gage. 

The vacuum gage cal ibrat ion system ( f i g s .  1, 2, and 3 )  u t i l i z e s  
500-liter/second ion pumps i n  conjunction with titanium sublimation and 
l i qu id  nitrogen cryopanels t o  produce an ultimate chamber pressure l e s s  than 
3 X 10-9 N/m2. This system generates known pressures i n  the  cal ibrat ion chamber 
by u t i l i z i n g  a constant pressure gas flowmeter f o r  generating and measuring a 
gas flow r a t e  Q i n t o  the cal ibrat ion chamber while pumping the gas from the  
chamber through a known conductance o r i f i ce  a t  a known speed S. The pressure 
i n  the  cal ibrat ion chamber i s  then calculated by the  relat ion:  

P = Q/S 

The assumption i s  made tha t  t h i s  gas flow r a t e  Q i s  much larger  than tha t  of 
a l l  other gas sources and t h a t  the speed S a t  the o r i f i c e  i s  much smaller than 
the pump speed. The cal ibrat ion range of this system extends from 1x t o  
6.65 x N/m2. 

A precision ionization gage control un i t  ( f i g .  4) was u t i l i z e d  for  operat­
ing the ionization gage tube. This control un i t  i s  completely metered f o r  
simultaneous monitoring of a l l  gage tube voltages and currents. 

The ionization gage tube ( f i g s .  5 and 6) consists of a hot filament, gr id ,  
and ion col lector .  Ionization of gas molecules i s  accomplished by using the 
hot filament as  an electron source. The electrons,  acce le ra t ed to  the  posi t ive 
gr id ,  ionize gas molecules which co l lec t  a t  the negative ion col lector  and 
produce a posi t ive ion current. This ion current should be proportional t o  the  
gas pressure i n  a given gas a t  a constant temperature. 

MEASUREMENT UNCERTAINTY 

A measurement uncertainty analysis was made on the a b i l i t y  t o  produce a 
known constant pressure and the  voltage and current measurements of the  pre­
cis ion laboratory ionization gage control un i t .  Since the  measurement of the  
flow r a t e  Q i s  determined from volumetric cylinder displacement, elapsed t i m e ,  
and pressure measurements ( r e f .  l), evaluation of the uncertaint ies  of these 
parameters by using the  technique of d i f f e ren t i a l  calculus ( r e f .  4) yields  a 
measurement uncertainty i n  Q of *3 percent. A similar analysis of the pumping 
o r i f i ce  speed S, whose measurement uncertaint ies  a r i s e  from uncertaint ies  i n  
o r i f i c e  diameter, thickness measurement, and var ia t ions i n  the vacuum pump speed, 
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yields an uncertainty of 52.5 percent. This analysis yields  a t o t a l  uncertainty 
i n  the  ch'amber pressure of k'3.5 percent. 

The precision ionization gage control un i t  was used t o  produce the required 
voltages and currents for t he  proper operation of the gage tube. The uncertain­
t i e s  of these voltage and current measurements a re  given i n  the  following table:  

Measurement Uncertainty, 
percent 

Grid voltage, V o t o  300 fl (full sca le )  

Collector voltage, V o t o  150 21 ( fu l l  scale)  

Emission current, mA 0.01 t o  100 k1.5 (of reading) 

Ion current,  A t o  l 21.5 (of reading) 

For gage tube operation a t  saturated g r id  and col lector  po ten t ia l s ,  the
+ 

it o t a l  uncertainty i n  determining the gage constant k l  = - a t  any given pres­
i p  

sure, emission current, and ion current was computedto be k8.5 percent. 

EXPERIMENTAL STUDIES 

The Bayard-Alpert type ionizaticm gage was combined with the precision gage 
control ler  and the d i g i t a l  voltmeter, as  i l l u s t r a t e d  i n  f igure 6. The gage tube 
was connected t o  the gage cal ibrat ion system by using tubulation having a calcu­
l a t ed  conductance of 7.8 l i t e r s / sec .  If the gage pumping speed i s  assumed t o  be 
proportional t o  emission current with a value of 0 .1  l i t e r / s e c  ( r e f .  5)  a t  
10 milliamperes emission current, then the  pressure i n  the  gage tube i s  0.987 
t h a t  of the  known pressure i n  the cal ibrat ion system. Similarly, a t  1m i l l i ­
ampere emission the pressure i n  the  gage tube would be 0.998 t h a t  of the  known 
pressure i n  the cal ibrat ion system. Thus i f  the  gage constant i s  determined a t  
1milliampere emission current,  use of this gage constant a t  10 milliamperes 
should indicate  a gage pressure 1 . 3  percent below the  known pressure leve l .  

The cal ibrat ion system was evacuated t o  a pressure of l e s s  than N/m2. 
A l l  data i n  t h i s  report  w e r e  taken with nitrogen gas a t  known pressures a t  l e a s t  
two decades above the ult imate pressure of the  system. The following voltages 
were applied t o  the gage tube: 

Collector t o  filament -30 vo l t s  
Grid t o  filament 130 vo l t s  

The filament was biased a t  30 vol t s  t o  obtain a grounded col lector .  The gage tube 
was outgassed by using both high-temperature bakeout and resis tance outgassing 
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u n t i l  an indicated background current of approximately 2 X 10-l’ ampere was 
obtained i n  i t s  operational mode. This value of the  background current, which 
i s  the known value for  t h i s  ionization gage due t o  photon ejected electrons from 
the col lector  (ref. 6 ) ,  i n d i c a t e d t h a t  t he  tube elements a re  f r ee  from adsorbed 
gases. The thermal t ranspirat ion e f fec t  ( r e f .  7) was computed t o  determine 
measurement e r ror  due t o  gas temperature i n  the gage. The temperature of the 
gage envelope, adjacent t o  the  filament, was measured a t  emission currents of 
1and 10 milliamperes. If the  gas i s  i n  equilibrium with the wall temperature, 
the measured 6’ K change i n  envelope temperature produces a difference between 
the  indicated gage pressure and the  hown cal ibrat ion system pressure of approxi­
mately 1percent. 

I n  order t o  determine the  charac te r i s t ics  of the gage, the  va l id i ty  of the 
known ionization gage equation ( r e f .  8) 

must be determined. Use of the idea l  gas law a t  room 

14n = 2.42 x 10 p 

Theref ore 

14  - ­i+= 2.42 x 10 1 3 2 i  p 

The gage constant i s  defined a s  

i’kl = ­
i p  

Combining equations ( 3 )  and (4 )  gives 

i+kl = -= 2.42 x 101 4ai 
i p  

temperature (3W0 K )  y ie lds  

( 3 )  

(4) 


( 5 )  

I n  order t o  t e s t  the  va l id i ty  of equation ( 5 ) ,  it i s  necessary t o  assure t h a t  

+ ­
i = k$. 

5 




for a constant pressure, where 

and, i n  addition 

+
i = k3p 

where 

-
k3 = kli 

Equations (6) and (7) may hold separately but f o r  equation ( 5 )  t o  be val id  both 
must hold i n  the  range of emission current and pressure i n  question. 

Equation (6)  was t e s t ed  by p lo t t ing  a curve ( f i g .  7)  of ion current as a 
function of emission current f o r  a number of constant pressures. This curve 
shows t h a t  equation (6 )  ho1d.s f o r  emission currents less than 3 milliamperes 
and pressures less than 6.2 X N/m2. This f igure i l l u s t r a t e s  t he  expected 
nonlinearity ( ref .  2) a t  high pressures (p > N/m2) and high emission cur­
ren ts  (i' > 3 d).However, a nonlinearity a t  pressures l e s s  than N/m2 and 
emission currents greater than 3 milliamperes i s  a l so  demonstrated. These data 
es tabl ish a gage-constant-emission current anomaly f o r  open-end Bayard-Alpert 
ionization gages and show the  deviation from l inea r i ty  t o  be as high as  18 per­
cent a t  10 milliamperes emission current. The observed nonlinearity i s  large 
compared with the  sca t t e r  i n  the  experimental data as w e l l  as the  maximum pos­
sible measurement uncertainty of +4percent since the  value of the constant 
pressure i s  not considered. 

Since the  deviation from l inea r i ty  f o r  a given emission current i s  constant 
fo r  pressures below 6.2 x N/m2, equation (7)  i s  va l id  i n  t h i s  range. If 
the  same data a re  p lo t ted  i n  the  form of ion col lector  current a s  a function of 
pressure f o r  several emission currents above 3 milliamperes ( f i g .  8), equa­
t i o n  (7)  i s  shown t o  be va l id  i n  t h i s  emission current range. The net  e f fec t  
of this anomaly is  a change i n  gage constant as  a function of emission current. 
The data from figure 7 a re  presented i n  the  form of gage constant as a function 
of emission current i n  figure 9 t o  display t h i s  e f fec t .  The average gage con­
s tan t  for an emission current of 1milliampere i s  8.4 x (N/m2)-', whereas, 
fo r  an emission current of 10 milliamperes, it i s  6.9 x (N/m2)-'. These 
values show an e r r o r  of 18 percent, which evolves when emission currents a re  
changed i n  this pressure range. These t e s t s  were repeated f o r  three other gages 
and the data agreed within t h e  instrumentation accuracy. The e f fec ts  demonstrated 
by the  data i n  f igure 7 are summarized i n  the  following table:  
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Pressures, N/m2 Emission range, mA Equations va l id  	 I 
I 

3.9 x t o  6.2 x 0.05 t o  3 
~ 

13.9 x 10-5 to 6.2 x 10-2 3 t o  10 
~ _ _  

1>6.e x 10'2 3 t o  10 None I 

The importance of t h i s  anomaly i s  emphasized by the  f ac t  t ha t  gages a re  ca l i ­
brated a t  high pressures (p > 10-2N / m 2 )  t o  allow the use of a McLeod gage as the  
calibration standard and a t  l o w  emission currents (i-< 1mA) t o  avoid the  w e l l -
known saturation effect .  It i s  then customary t o  r a i se  the  emission current t o  
a larger  value (i-zz 10 mA) t o  regain sens i t iv i ty  and t o  avoid low-pressure­
low-emission-current e f fec ts  ( ref .  3 ) .  The data i n  t h i s  paper indicate  t h a t  
t h i s  calibration procedure can introduce large eryors and, therefore,  should be 
avoided whenever possible. 

Inasmuch as the  emission current and pressure i n  equation ( 5 )  are  measurable, 
a change i n  gage constant as  a function of emission current must be caused by a 
change i n  ion production or collection. Since the  ion current i s  a l inear  func­
t ion  of pressure ( f i g .  8)  over the  range of pressures investigated, the  col.lec­
t ion  of ions a s  a cause of the anomaly i s  doubtful. The production of ions 
appears t o  be the cause. The right-hand portion of equation ( 5 )  
(kl = 2.42 x 1 0 1 4 ~ ? )indicates t ha t  the anomaly i s  caused by a change i n  path 
length, a change i n  ionization cross section, o r  by both. If only the  ions 
produced inside the  gr id  contribute t o  the ion current, and i f  the  electron 
energy i s  130 vol t s ,  the  poten t ia l  i n  the  gr id  s t ructure  would have t o  drop t o  
50 vol t s  ( r e f .  9 )  i n  order t o  account f o r  t h i s  e f fec t .  Since a drop i n  voltage 
of t h i s  magnitude i s  unlikely, a path length change appears t o  be the  major 
cause. 

A p lo t  ( f i g .  10) of gage constant as a function of gr id  t o  filament voltage 
indicates t ha t  fo r  voltages greater than 130 vol t s  the  e r ror  caused by emission-
current change decreases. T h i s  t rend strongly indicates a space charge buildup 
inside the gr id  s t ructure  which could a f fec t  the cross section o r  path length 
a t  high emission currents and thus cause the anomaly. The data of f igure 10 
also indicate tha t  operation of the  gage a t  higher filament t o  gr id  voltages 
would minimize the anomaly. However, the  disadvantages of t h i s  operation a re  
increased X-ray background current ( r e f .  6 )  and increased outgassing produced 
by higher gr id  power dissipation. 

Inasmuch as  these problems could seriously disturb the measurements, it i s  
recommended that the gage be cal ibrated and operated a t  a f ixed emission current 
by using l5O-volt g r id  t o  filament voltage and thereby avoiding t h i s  anomaly. 
Since the  ion col lector  current i s  saturated above 20 vol t s  f o r  a l l  pressures 
and emission currents, the  use of 30 vol t s  fo r  t he  col lector  i s  recommended. 
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CONCLUSIONS 

The data i n  t h i s  report  describing the  operational character is t ics  of the  
open-end Bayard-Alpert ionization gage have l e d  t o  the  following conclusions: 

1. When the  gage i s  operated a t  a constant emission current,  the  ion cur­
rent  as a function of pressure i s  l inear .  

2. The ion-current-emission-current charac te r i s t ic  curve i s  nonlinear 
(18 percent) a t  emission currents greater than 3 milliamperes and a t  pressures 
l e s s  than N/m2. This nonlinearity r e su l t s  i n  a change i n  gage constant as 
a function of emission current. 

3. A lmowledge of the gage-constant-emission-current anomaly i s  important 
when cal ibrat ion procedures with the  McLeod gage a re  considered, because these 
procedures require changing the gage tube emission current. 

4. These data are offered t o  describe t h i s  anomaly and should not be con­
strued as correction data. Corrections can only be determined by proper ca l i ­
bration of the gage under consideration. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va. ,  September 29, 1966, 
125-24-03-03-23. 
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Figure 1.- Block diagram of gas-flow-rate-orifice-conductance calibration system. 
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Figure 2.- Gage calibration system, L-65-8258.1 
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Figure 3.- System control panel. L-65-8261.1 
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Figure 4.- Precision gage controller. L-65-8260.1 



Figure 5.- Unshieided ionization gage on gage calibration chamber. L-65-8257.1 
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Figure 6.- Cutaway view of Bayard-Alpert ionization gage connected to  block diagram of precision gage control  less emission 
regulation and ac power. 
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Figure 7.- Ion-emission c u r r e n t  characteristic for a Bayard-Alpert ionization gage. 
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Figure 8.- Bayard-Alpert ionization gage calibration for several emission currents. 
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Figure 9.- Gage constant as a funct ion of emission cur ren t  for several pressures. 



m 
z 
-a 

10 x 10-2 

/ 

6 '  I I 


I I 
60 100 140 181) 220 


Grid to filament voltage 

Figure 10.- Gage constant a s  a function of grid to filament voltage for several emission currents. 
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