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THE AXTATLY SYMMETRIC RESPONSE OF AN ELASTIC CYLINDRICAL
SHELL PARTTATLY FILLED WITH LIQUID

By Richard M. Beam and LeRoy R. Guist
Ames Research Center

SUMMARY

The axially symmetric response of a circular cylindrical shell partially
filled with a liquid and subjected to axial displacements and pressurization
Tluctuations is investigated analytically and experimentally. Two solutions
are presented: one, an "exact" series solution and the other, an approximate
solution. The correlation of theoretical and experimental results indicates
that the theory presents a good mathematical model of the physical system and
that the approximate solution is adequate for many practical problems.

INTRODUCTTON

The use of liquid propellant for missiles and spacecraft launch vehicles
introduces problems associated with the dynamics of liquid-filled shells.
Initially, there were primarily control problems resulting from the "propel-
lant sloshing” or motion of the liquid free surface. ILater, however, as the
size of propellant tanks was increased and the ratio of wall thickness to
radius decreased, the coupling of the shell and liquid dynamics produced
unexpected and undesirable oscillations of flight vehicles. 1In particular,
the longitudinal oscillation resulting from the coupling of the liquid-shell
system with the shell support structure and the tank pressurization system
can influence the success of certain missions and can interfere with the
comfort of astronauts in manned vehicles.

Several papers have been published on the dynamics of the coupled liquid-
shell system (refs. 1-8). Most of these papers are limited to the anaxisym-
metric oscillations generally predominant in flutter calculations. Those
papers that consider the axisymmetric oscillations lack information required
to analyze the complete vehicle, namely, (a) the equations and coefficients
that couple the liquid-shell system and the shell support and pressurization
systems, (b) approximate equations suitable for preliminary design calcula-
tions, and (c) experimental verification of the applicability of the theory.

The purpose of this report is to present a method for computing the
response of a preloaded, thin circular cylindrical shell partially filled with
a liquid and subjected to axial base displacements and applied pressure fluc-
tuations in the liquid-free shell space. A general series solution is
obtained for the natural frequencies of oscillation and normal modes. In
addition, an approximate one-~term solution applicable to very thin shells is
presented. The equations coupling the motion of the liquid-shell system with



the base and pressure fluctuations are derived. Finally, a comparison is
made between the two analytical soclutions and experimental results.

SYMBOLS
Aps constant defined by equation (19)
an(t) coefficient of series of modal functions
BuiksC; constants defined by equation (19)
Cin constant defined by equation (29c)
Dy constant defined by equation (19)
E modulus of elasticity of shell material
e dimensionless length of shell, ﬁ%
h depth of liquid in shell
I, modified Bessel function of the first kind
Jo Bessel function of the first kind
J,k integers
2 length of shell
m,n integers
Ny shell axial preload (i.e., axial shell loading for static
condition)
- Ny
N, dimensionless shell axial preload, Ry
P force on bottom of shell
Py constant defined by equation (19)
P pressure in region occupied by liquid (also used as integer
subscript)
po(t) pressure in liquid-free volume of shell
B (t) dimensionless pressure in liquid-free volume of shell, %9
Qx constant defined by equation (19)



o] surface pressure on shell

R cylindrical coordinate

R dimensionless cylindrical coordinate, ;t

Ro radius of cylindrical shell

Rg constant defined by equation (19)

r, coefficient of Fourier-Bessel series

s integer

sn,sjS coefficients of Fourier sine series

t time variable

u axial displacement of shell bottom

u dimensionless axial displacement of shell bottom

W radial displacement component of shell wall

W dimensionless radial displacement component of shell wall,
fo

X cylindrical coordinate

ZinsZonsZan coupling coefficients defined by equations (29a), (29b), and
(33)

o8 dimensionless cylindrical coordinate, ﬁ%

B dimensionless shell thickness, g%

Py constant defined by equation (6b)

T dimensionless form of 8,, ®nRo

o) shell thickness

By constant defined by equation (6a)

€ dimensionless liquid depth, éi

n integration variable

A step function defined by equation (15a)



o)
" ratio of shell-material and liquid densities, 55

v Poisson's ratio for shell material
E integration variable

o liquid mass density

Pg shell-material mass density

g eigenvalue (frequency squared)

— . . Roop
o dimensionless form of o, o =
0] velocity potential function

Pg modal function

¥ displacement potential function
We frequency of oscillation

ANATYSTS

The liquid-shell geometry and coordinate system-are shown in figure 1.
The analysis is restricted to small (linear) displacements that are symmetric
about the axis of the cylinder. The liquid is incompressible and inviscid
and the flow irrotational. The liquid is bounded at the bottom of the cylin-
der by a rigid flat surface, at the free surface by a light (negligible den-
sity) gas at pressure py(t), and at the cylinder surface by the flexible
shell wall. The shell has simply supported boundaries and is preloaded with
a constant axial stress. Only the radial inertia of the shell is included in
the analysis. All body forces acting on the liquid are assumed to be zero;
therefore, the "sloshing" modes of the free surface do not appear in the math-
ematical model. In general, the body forces may be excluded from this type
of analysis because of the low frequency spectrum of the sloshing modes
relative to the liquid shell modes.

The analysis is divided into four parts: (a) equations of motion of the
liquid, (b) coupling of the shell-liquid equations, (c) determination of natu-

ral frequencies and modes of oscillation, and (d) response of the liquid-shell
system to displacement and pressure disturbances.

Equations of Motion of the Liquid

For irrotational flow of an incompressible liquid, the velocity potential
® satisfies the continuity equation (ref. 9)

L
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v = 9 + %-ii-+ é;;> =0 (1)

in the region occupied by the liquid (0 < x <h, O <R <Rp). Since the
liquid displacements at the shell are dlrectly related to the shell wall dis-
placements, it is convenient to use a displacement potential, ¥ (where

= d¥/d%), rather than the velocity potential. In addition to being a har-
monlc function (v = 0), ¥ must satisfy the following boundary conditions.

On the free surface (x = h), the pressure is a prescribed function
[po(t)] of time
3%y
P = -0 % = po(t) (2)
x=h o2 lx=n ~°

where p 1is the pressure in the liquid and p is the liquid density.

At the shell bottom (x = 0), the liquid must have the same axial motion
[u(t)] as the rigid tank bottom

oY = u(t) (3)

9% lx=0

The liquid adjacent to the shell wall (R = Rp) must move radially with
the tank wall

oY = w(x,t) (4)

where w(x,t) is the shell-wall radial displacement component.

The displacement potential ¥ may be obtained by the method of separa-
tion of variables applied to the continuity equation (v®¥ = 0). If the arbi-
trary constants resulting from the separation of variables are chosen so that
boundary condition equations (3) and (4) are satisfied, the following function
is found
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cosh opx J (&R
¥(x,R,t) = rot) + Z rn(t) = sinhnanh JZEﬁZRi) + 2tho (R - 2x3) j’h w(k,t)dt
n=1
h IO(BKR)
Z <‘] w(E,t)cos Pt d§> - cos Bpx + xu(t) (5)
I R
— o(Bk o)
where
Jo(8pRo) =0 n=0,1, 2 (62)
=L k=1,2 (6b)

and J, and I, are Bessel functions and modified Bessel functions, respec-
tively, of the first kind and zero order. The arbitrary functions of time,
r,, may be used to satisfy the remaining boundary condition (eq. (2))

The value of rp may be determined in the following manner. The func-
tion ¥ is substituted from equation (5) into the free surface boundary con-
dition equation (2). The resulting equation is then multiplied by RJO(BSR)GR
and integrated from zero to Ry. After the appropriate algebraic manipula-
tions, the following expressions for rp resultt

1 The derivation of equations (7) and (8) is expeditediby the followiﬁéﬂ
identities

1 _ 1o,
(a) 5t cos PBxh = &= xZ cos Bpx dx

() [ 002" ax - 2—2 [ xst)an

(o]

% ;; [j W(x,t)cos Bgx dx] <$? X% cos Bpx d%)

cos Bxh 1
Bk.z + 652 68 Sin.h. 551’1

Ih cos BrxX cosh Bgx dx
o

no sinh ®,h
(a) I w(x,t)cosh 8gx dx = ————————-fh W(x,t)ax
o] 6sh o

. %i[f #(x,t)cos Bx de(j: cosh Syx cos Byx d)>

k=1



Ro B h h .
Fo(t) = [ e CPOL %E{l—o [ tema - o L (8,0 de]-hu(t)
Polt)
- °§, (7)
. 2 h
Fo(t) = R cosn oh L) W(E,t)cosh Bgk dt (8)
(0] S

The pressure in the fluid may now be expressed as a function of the
shell-wall displacement, the free-surface pressure, and the axial motion of
the shell bottom:

p(x R 2 cosh dpx . Jo(5nR)
E: R, B, sinh Buh cosh opn [i? w(E,t)cosh Byt dg] To(5,Ro)
1Ro 2 ., b oho 1oh 2
== ,t)d = = ,t)d = >t
M CPOL IR ¥ el R CROL R s I (CPLL

2 h X
ghR (R® - 2x ),J"O (e t)at

[k
?Z: [L) w(t ,t)cos Pyt d&} ﬁ%-fg%éggz% cos Brx - (x - h)i(t)
=1

P (%)

(9)

It is worthwhile to note that the expression for the pressure does not
depend on the shell boundary conditions and, accordingly, is applicable for
the analysis that includes any shell boundary conditions.

The liquid pressure, g, acting on the shell is obtained from
a = p(x,Ro,t)
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h
a(x,t) _ 2 cosh Bpx ho . 1 Ro .
Ro dp sinh dph cosh dph IO W(E,t)cosh Bpf At | - T T jo (g ,t)ae

P
=1
h h h

Ll. i W _.l_ = 2 1 =) o

e J’O w(t,t)ae + T j’o w(e,t)e2 ae + hRoax j; w(E ,t)ak
& h

5 2 Io(BkRo) e

- A —_— - -
Z [‘J.o (e, b)cos Pt dEJ kst T8 (ByRo) cos PyX (x - h)u(t)
k=1

With the dimensionless parameters,

- S
_RO’ —RO’ T]—RO: RO,
(11)
- T = = =
e—Ro, u—RO, 7n dnlRo W-—Ro
equation (10) may be rewritten
a cosh ypo .
OR2 - Z 2 7, sinh ype cosh yp€ J:3 w(n,t)eosh yyn dn
n=1
1 Ll- € o 1 € —_ 2 2 € 2
- <1L_€ t 3 e> Io w(n,t)dn + = [J; w(n,t)n% dn + o j(; w(n,t)dn:l
e T, (it /e) ()
- Z l:f W(n,t)cos Ll 1 dn} 2 —?——e cos & o - (o - €)u(t) + p02
o € kot 10 (ke /€) € Roop
k=1
(12)
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Equations of Motion of the Shell

If a circular cylindrical shell of uniform thickness, ®, is subjected to
a constant axial load,® Ny, uniformly distributed around the circumference,
and an axially symmetric surface load, q(x,t), the differential equation for
the radial deflection component w (ref. 10) is

EsS  d%w 33y  Ed 3w
W, X LB L., S W s, % 13)
12(1 - V2) ax4 X axg RO2 pS at2 q(X’ ) (

where B, v, 3, and py are the modulus of elasticity, Poisson's ratio,
thickness, and density of the shell material.

With the dimensionless notation

— N

= o - X - 8
B_RO’ NX ERO’ p‘ p (l)'l')

and q(x,t) from equation (12), the shell equation may be written

3 a— 2_
: 2 . Z - Ny 2 ; + Bw
12(1 - v5) ow o
2 00
Rg 0 . cosh 7 & € .,
= ——| 1BW(a,t) + AMa) 2 T 7 cosh 7 J‘o W(n,t)cosh yn dn

=1

€ .. € .. € ..
- <)+L€ + %€> fo w(n,t)an + -i— [j; W(n,t)n2 an + o jo Vf(n,t)dn:I

SN gt }ilo(kn/e) K . Po(t)
- éi; [I; w(n,t)cos = dn o EZEE;?;; cos = o - (o - )u(t)) + ngﬁ‘
(15)

2The value Ny is determined from the static loading condition, that
is, from any constant pressure in the shell plus axial loads applied to the
ends of the shell. It is assumed that the variation of axial loading result-
ing from py(t) and u(t) produces negligible variations of Ny (i.e.,

N, = constant).




where

1 0
AMa) = (15a)
0

IA
Q
[A
o

a
V
m

For simply supported boundary conditions, the shell displacement and its
derivatives must satisfy the following equations:

w(0) = ¥'(0) = W(e) = W'(e) = 0 (16)

where

!

EL W=Ww
da

Shell-Liquid Natural Frequencies and Modes of Oscillation

The shell-wall response to base displacements and pressure fluctuations
is the function % which satisfies equations (15) and (16) plus the initial
conditions. This response, which can be used to evaluate the desired cou-
pling characteristics is obtained in the following manner. First, a series
solution for the homogeneous part of equation (15) (py, = T = 0) will be
obtained by assuming that the time variation of W is proportional to
exp(ifo t). This will result in a set of eigenfunctions @g(@) that can be
used in computing the response W(a,t) to the disturbances p, and T (i.e.,
the nonhomogeneous eq. (15)). In this manner, let

7 = y s5 sin %ﬂa exp(iJo t) (17)
j=1

e

and substitute inbo equation (15). The equations for the coefficients s;
are obtained by multiplying the resulting equation by sin(mg/e)a do and
integrating from zero to e. The following set of simultaneous equations
results:

10
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€

. mx
‘f gin — o cosh y_ o do
5 e n

(o] o0
1 € 1 .
== -B = sp+ 2 8 sinﬂ cosh ¥ dn| -
E H5 Sm J e N ol & 7y Sinh ype cosh ype
O -

c 1 . c
+ f > 83 sinm—dn f @ sin B2 qu
/ e e
CI e o
e« (o]
N € o Io(kyr/e) €
-Z f ZSJ 51n———n-cos—e—q dT] p f sin — cos — o da
A k% T (i fe) e
k=1 J=1 ©
m=1, 2, 3, .y (18)

11




With the definitions

N

€
. my -
Apg = <Io sin & @ cosh y & do (cosh y e) 7t
B = je in 2% o kn o da
e = U sin — cos -3
€ .
= . J7
Cj —J; sin <z n dn
€
Dy = fo a® sin mn?on do
€ . g (19)
EJ = 'J; a4 sin - do
Bs 4 . 2
P, = ————— <m—;‘> + ﬁx<m?> + B
12(1 - +®)
- 2 IQ(k’T/e)
% " E (/o)
R = 1
s 7 tanh ygqe
— 30200
T =—5 J
equation (18) can be simplified to
0 [oe]
e - e \ 11 L
<Pm -2—>sm+ o (- <|.,LB §> Sm + Z 2 Z AjnAman - <)-_I- z + -3- €> CJ'Cm
J= n=1
%
1 — =
+ E'(chm + C3Dy) - 24 BjkBkak s5) =0 m=1, 2, 3,
k=1 (20)

12
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The simultaneous equations (20) are homogeneous and therefore have a non-
trivial solution only if the determinant of the coefficients of s: wvanish.
This provides the eigenvalue problem for the eigenvalues og and the cor-
responding eigenfunctions Sjs which, in turn, lead to the modal functions
Py

(o]
it
Py = E; sjs sin %;-a (21)
j=1

The natural frequency of oscillation of the mode ¢g 1is related to Og
by

wg = E_ = Jog (22)

where wg 1s in radians per unit time.

Response to Pressure and Displacement Fluctuations

With the aid of the modal functions obtained in the previous section,
the solution to equation (15) may be expressed as

o0

Tet) = ) en(6)n(a) (23)

n=1i

where a, 1is as yet an undetermined function of time. The differential
equations for evaluating a are obtained by substituting w from equa-
tion (23) into equation (15?, multiplying the resulting equation by ¢ (a)de,
and integrating from zero to e, which produces

13




e v 3 >* 32
B Pu Ny S on ] t)e, d
\_[ z [12(1 _ 'V2) 8@4 + Bcpn a ( )(Pm_ %

N
oa
n=1

éln(t)cpncpm dov

(o]
€ (cosh 7 p% Yoy (@) da (£ . .
sinh y_e€ cosh 7 € fin ®n CcO8 7pn "l
o p=1 p =1

i <’+l_e+ % €> [e i 2,(t) oy [e @) ot

n=1

(24)

With the aid of equations (15) and (16) and the properties of the eigen-

functions of the previous section, the following orthogonality relationships
can be derived:

1L



- g,

€ €
e % 'j' @, cosh ygn dn _r (cosh yga) @y dx 1 he
—uBf cpncpmdoa+22° SO -<r+—>
7g cOsh yge sinh yg€ € 3

€ € 1 € € € o €
f P, dn f Py A% + 2 f o of da f ¢, dn + f Pan= dn f @, do
o

(¢] (o] 0 O (o]

Z € I (kr/e) €
ke 2 kgt
- f cpmc:os,e—n g‘iz(—"/'e_) cpncos—e-—cx.da, =0 maén (25)
=1 \\©
e g 84(Pl’l o

f Lg(l 2y o 5E B%}P‘n de=0  minw (26)

o} -V
and

e 3* 2
B® Pn "y ]
— -N —2 a
[ [12(1 - v3) dat X 3o P [P O

I
n]

) i 1_2(188—5)_ <%>4 " T <Je£>2 Bl(e7 5w (27)

The differential equation for a,(t) (eq. (24)) may be simplified to

an(t) + wpPap(t) = Zj_nﬁ(t> + Zopbo(t) (28)
where
o0
— €
_ On g
Zln = m f (CL - e)cpn(a)da = - m Z (EJ - €Cj)sjn (298.)
o j=1
P e 2 ﬂ|
_wp _ Wp e J
Zon * o | Bale)ce - Bon | L3 LD - 2yt (29%)

15



=1

B, (t) = =5 (30)

If the disturbances U and p are prescribed, the shell response is
readily obtained from equations (23) and (28). The coupling of the liquid-
shell system and the shell-support system requires, in addition, the axial
force acting on the bottom of the shell. The pressure in the fluid as a func-

tion of a, is obtained by the substitution of W from equation (23) into
the pressure equation (9).
[o0] (o] h _ fo'e)
=3 . cosn Y& J R
Ef“szzt) - Z By Z > 'nhn o(')’n) Amnsmp
eRo 7n 8100 Tn€ J5(rn)
p=1 m
(o] (2]
1 )-l- 1 =2 2 1
- e e = = - Py = D
[ e ¥ 3¢t e (R 20 ﬂ;{: CrSmP + 2 E: DpsSpy
m m
(o0}
= &,
o Iol(kr/e)R] kot 24 e E
- S~ ————— cos — a Bris Pl - (@ - e)u(t) + p.(t)
kTt 1 € mk™m o] 2
k Io(kﬂ/e) m pRO
(31)

The total force, P, acting on the bottom of the shell is f p(o,ﬁ;t)dA, where
the integral is over the area of the shell bottom; therefore,

o

.. 1 T3
P = ij Z 2Zaplp + =5 po(t) + eu(t) (32)
ARo
=1
where o0 o 00 00
- _ 2 p, 1 2¢ D

%ap =~ 3e Z CmSw™ + 3¢ Z P - Z (1) ® z Pk (33)

m=1 m=1 k=1 m=1

The coupling of the liquid-shell system and the shell-support and pressuriza-
tion system is thus provided by equations (28) and (32).

Z1, Zo, and Zs will be called "coupling coefficients"
follow.

The coefficients
in the discussion to

16
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Approximate solution (thin shells) .- The complexity of the frequency
equation and coupling coefficients in the previous sections makes that solu-
tion unattractive for preliminary design or analysis of a system. Since most
liquid-shell systems used in missile and spacecraft construction have very
thin wall shells, an approximate membrane solution of respectable accuracy can
be expected. For thin shells subjected to loading that changes only gradually
over the shell surface, the bending rigidity may be neglected in the interior
of the shell. TIn addition, for the liquid-shell system under consideration,
the shell boundary conditions (eq. (16)) may also be neglected since their
influence is localized near the boundary.

A displacement potential satisfying the fluid boundary conditions
equations (2), (3), and (4) is

t .t

¥ = (x-h)u(t) - % J J po(t)dts aty+ Z

o 0O k=1

2 fh w(€,t)cos Ppt At
o
hIé(BkRo)Bk

COS( ka) IO( BkR)

(5")
where 5. - ( i %>ﬂﬁ (60')

Note that By, as defined by equation (6b'), differs from the B of equa-
tion (6b). The simplification of the displacement potential and thus the new
definition of B results from the relaxation of the boundary conditions on
the shell and the lack of shell bending rigidity, that is, the displacement w
at x = 0, is not required to be zero and, in addition, it is known a priori
that the shell displacement, w, will be zero at the free surface (x = h).

The pressure in the liquid is
h LX)
@ [ i(e,t)cos Bk At
Z 2 2 cos(Byx) Io(BKR)

nIS(BRo) B
= o(BxRo) By (97)

|

B~ (x - n)ii + 3 py(t)

and the surface loading q(x,t) on the shell is

ale,t) . N I°K - 9

(@ - 0F - o aolt) - )

N
fe S ,t)COS[< - %> %n]d'q cos[( - -12:> TGL @1 (12')
)
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The equation for the shell-wall displacement W (neglecting shell bending

rigidity) is
0 1\ T
= a w ROZD - (X3 2 IO[( ] § e:]

Wy Sz BY = -uBW + ;;—zpo(t) - (o - )T - Zl <k -%)“I"’IKK -%>T€{'
[ s Dt ol -3
[®)

The frequency equation is obtained by substituting

¥ = sy cos[<' - %>rv g]exp(i\/?t) (17")

into the homogeneous part of equation (15') (i.e., p, = U =

ﬁXK‘j'%)%TW T IO[._%%} - 0

) A |
| 6]
NAEEEE

The frequency equation 1s thus reduced to a single equation as opposed to the
infinite determinant of the previous solution where the shell boundary
conditions were included.

MR
e
\___\r___J
~~
(Sl
N
S

c
S/

201)

o
|

The response of the shell wall can be expressed in terms of the modal

functions @j = cos[(ﬁ - %>n %] as
¥ o= Z an(t)cos[< - %)rr %:I (231)

=1

The equations for a, are obtained by substitubtion of W from equation (231)
into equation (15' ), multiplication of the resulting equation by

cos{< - §>n %Jda and integration over the interval zero to ¢

18
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gn(t) + wpan(t) = Zigi(t) + ZopBo(t) (28")

where
o, 1
Zim = g (29a')
1m 1\«
2
W, €
_ m m
ng = = (—l) (29b')

Cyp = {N‘XKm - %) Tei] + s}g (29c1)

The total force on the shell bottom P = [~ [~ p(0,E,t) a0 aF is
(o] (o]

X
4l \' . 1 L
P = prnRg ZJ 2Zgpip + E§—§ po(t) + eu(t) (327)
o
p=1
where
Zap = - (33)

1
2
-9
2/ €
The frequency equation and coupling coefficients of this approximate
solution are obviously more tractable than those of the series solution. The

accuracy and applicability of the two solutions will be discussed further in
the succeeding sections.

COMPARISON OF SERTES AND APPROXIMATE SOLUTIONS

This section presents the results of a brief numerical investigation
designed to illustrate the convergence of the series solution and to compare
the series and approximate solubions. First, the convergence of the series
solution with increasing size of the frequency determinant is illustrated and
compared with the approximate solution. Next, the convergence of the series
solution with increasing shell thickness-to-radius ratio is considered, and,
finally, the mode shapes and coupling coefficients from the two solutions are
compared. ©Shells with large radius-to-thickness ratios (i.e., thin shells)
were selected for the examples since the series solution rate of convergence
(with frequency determinant size) should be slowest in these instances. The
following discussion is limited to the first (lowest) two frequencies since

19
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these are generally of primary concern to the analyst. The accuracy of the
two solutions (as compared with experiment) will be discussed in the next
section.

Frequency Parameters

The series solution frequency equation (determinant of coefficients
of eq. (20) equated to zero) was approximated with various numbers of rows
(m) and columns (j) (m = j) for a liquid-shell system with the following
properties:

e =2.4
€ = 2.0
Ny = 0.286x107°
v = 0.3
n=28.6
B = 0.0004k, 0.04k

The eigenvalues and eigenvectors of the resulting frequency equation
were obtained with the aid of a digital c omputer using the threshold Jacobi
eigenvalue routine. The variation of frequency parameter with determinant
size is shown graphically in figure 2. The first and second mode frequency
parameters (E/B) are shown for two values of shell thickness-to-radius ratio
(B). Note that the second mode frequency "jumps" as the size of the determi-
nant is increased from M = 11 to m = 13 and, correspondingly, the perturba-
tion of the first mode frequency parameter plot is slight (almost undetectable
in the figure) in the same region. Examination of the mode shapes reveals
that this discontinuity is possibly a result of convergence to an "incorrect"
second mode (i.e., lack of sufficient terms in the series to adequately
describe the second mode) if m < 13.

For the thinner shells (B = 0.0004k4) the gradient of the shell-wall dis-
placement should be very large in the vicinity of the shell bottom and, there-
fore, a slow convergence of the mode shape and frequency would be expected
(due to the behavior of the sine series solution for a = 0). As the shell
thickness is increased, the convergence should improve. This is borne out
by the frequency parameter plot (fig. 2) for the shell 100 times the thickness
(B = 0.04) of the thinner shell. The approximate solution for the two shells
is shown in figure 3. Note that for the thinner shell the difference between
the two solutions is less than 2 percent for the first mode and 6 percent for
the second mode. Even for the thicker shell (B = 0.04) the discrepancy
between the series and approximate solution frequency parameter is less than
5 percent for the first and second modes.
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MODE SHAPES

The mode shapes corresponding to the previous shell parameters are shown
in figure 3. (The results for the approximate solution are indistinguishable
for B = 0.04%4, B = 0.000L4k.) Here again the improvement of convergence of
the geries solution with increasing shell thickness is demonstrated. The
first mode shape is, in fact, probably better représented by the approximate
solution than by the series solution for o > 0.

Coupling Coefficients

The natural frequencies and coupling coefficients are or primary impor-
tance in the analysis of the liquid-shell system. The coupling coefficients
for the two shells under discussion are plotted in figure 4 as functions of
frequency determinant size. (The results for the approximate solution are
indistinguishable for B = 0.044, B = 0.0004Lk.) Note the relatively small
percent discrepancy (less than 6 percent except for Zss) between the series
and approximate solutions for the thinner shell and the only slightly
increased discrepancy for the thicker shell.

This rather limited numerical investigation indicates that the conver-
gence of the series solution can be expected to be good even for thin shells
and that the approximate and series solutions differ by small percentages for
thin shells and are, therefore, almost equally applicable. As the shell
thickness increases (B increases), the discrepancy between the two solutions
increases and the convergence and applicability of the series solution improve
correspondingly .

EXPERIMENTAL OBJECTIVES

The experimental work was conducted to determine the dynamic properties
of very thin liquid-filled cylindrical tanks subjected to axial vibration.
The specific objectives were:

1. To determine the fundamental natural frequency of axisymmetric
motion and the natural frequency of as many higher modes as feasible for
various liquid levels and internal pressures,

2. To determine the frequency response curve for the fundamental axi-
symmetric mode indicating the ratio of internal pressure at tank bottom to
tank base acceleration versus driving frequency,

3. To identify the asymmetric modes of vibration at several values of

internal pressure and water level. This was done primarily to aid in dis-
tinguishing the symmetric modes from the asymmetric modes.
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Test Specimens

The test specimens used in this study are shown in figure 5. The first
specimen was a 5-inch-diameter, 6-inch-long, 0.00l-inch-thick brass shim stock
tank which was later replaced by a 0.0007-inch-thick electrodeposited nickel
tank of the same dimensions. An ll-l/2-inch—diameter 5 23-1/2-inch-long 5
0.001-~inch-thick brass shim stock tank was used in the final phase of testing.
The specimen size and thickness affected the choice of test apparatus and
equipment. The following factors were given primary consideration in
selecting specimen and apparatus properties.

1. Very thin tanks are difficult to manufacture and handle, but have
lower natural frequencies for a given tank size, or for a given natural
frequency, the tank size is smaller.

2. A large tank size requires a larger shaker and support fixture,
resulting in lower frequency elastic modes within the shaker-fixture system.

3. A large thin tank with the resulting lower natural frequency and
higher mass perwmits better control of acceleration level and waveform at low
acceleration levels.

4. A large thin tank has a low burst pressure; hence, permissible
acceleration levels are low.

5. A low-frequency test range provides a better acceleration waveform
from the shaker and less distortion of the waveform due to shaker-fixture
dynamics.

The ll—l/2-inch—diameter specimen was selected as the best trade off
among the above factors. The smaller tanks used in earlier tests were easier
to fabricate and were intended as preliminary models to indicate problem
areas in testing technique and data quality.

As shown in figure 5, the specimens were constructed with thick end
flanges so that they could be attached to a base plate and fitted with a 1lid.
The cylindrical shell was soldered directly to the end flanges, providing
essentially a "built in" end condition, since it was not feasible or necessary
to simulate the "pinned” end condition assumed in the analysis for such a
thin shell. The base plates were designed to support the tank on the vibra-
tion fixture, to provide a pressure seal, and to carry pressure cells. The
lids also served as pressure seals, and means for filling and pressurizing
the tank.

Test Apparatus
The general arrangement of the test apparatus is shown in figure 6. An
electrodynamic shaker driving a hydraulic "slip table" produced the unidirec-

tion sinusoidal motion of the specimen. The tank was pressurized with a shop
air supply through a mercury manometer. Before the tank was pressurized, the
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water level was measured with a water manometer connected to the tank base.
The weight of the support fixture, the moving element of the slip table, and
the specimen were counterbalanced by means of a hanging weight and pulley
arrangement using elastic "bungee" cord to isolate fixbture motion from the
welght.

Instrumentation

The instrumentation arrangement is shown in figure 7. A differential
pressure cell in the center of the tank base plate sensed the difference
between pressures at the bottom of the liguid and the airspace above the
water. Two accelerometers at the tank base provided signals for controlling
shaker awmplitude and for measuring base acceleration. The use of dual accel-
erometers eliminated any interaction problem between the recording instruments
and the shaker servo-control circuit. Lateral motion of the tank wall was
detected by capacitive type noncontacting displacement probes. These probes
were attached to an overhead mounting fixture that provided axial and rotary
movement of the probes to any point on the tank surface.

Procedure

The test procedure was essentially the same for all specimens. First,
the frequency of longitudinal motion was swept from 50 to 1200 cps for the
5-inch-diameber tanks and from 50 to 500 cps for the 11-1/2-inch-diameter tank
for a number of water levels. These sweeps were intended to locate and iden-
tify as many system modes as possible. The acceleration level was varied ini-
tially to determine, by trial and error, a level for which subharmonic surface
resononce and liquid surface instabilities (ref. 11) produced minimum distor-
tion of acceleration and pressure signals. The upper limit of the accelera-
tion level was of course determined by the requirement that peak pressures
encountered at symmetric mode resonance be below the tank yield pressure.

The amplitudes of base acceleration, center pressure, and top accelera-
tion, as well as phase angle relative to base acceleration, were recorded
during each frequency sweep. Frequency sweeps were made for various values
of internal pressure up to 1.5 psi for the large tank and 4 psi for the small
tanks, and for various water levels from empby to full. Asymmetric modes
were ldentified by rotating the displacement probes around the tank and noting
the variation of wall motion amplitude as a function of angular position of
the probe while frequency and base acceleration amplitude remained constant.
These modes are easily identified since they characteristically exhibit an
even number of peaks of radial displacement amplitude in 360O of rotation.

First symmetric mode frequency response data were obtained by sweeping
the excitation frequency at a constant acceleration and observing base accel-
eration and pressure amplitudes. The response curve for the 5-inch-diameter
tank was taken for the nearly full condition (approximately 1/2 inch below
the tank 1id), while the half full condition was used for the 11-1/2-inch-
diameter tank.
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RESULTS

The first symmetric mode frequency is plotted in figure 8 as a function
of water level for 3.0 psig internal pressure for the 5-inch-diameter nickel
tank. Figure 9 is a similar plot for the ll-l/2-inch-diameter tank with 1.0
psig internal pressure. In both figures, the theoretically predicted curves
are shown for comparison. Figure 10 is a plot of the first symmetric mode
frequency as a function of internal pressure for the 5-inch-diameter tank
nearly full (approximately 1/2 inch of airspace above the water).

The experimental frequency response curves for the 5-inch-diameter and
ll-l/2—inch-diameter tanks, respectively, are shown in figures 11 and 12.
These curves show the ratio of pressure amplitudes at the center of the tank
base to base acceleration as a function of driving frequency. For the 5-inch
tank, the nearly full condition with 3.0 psig internal pressure was chosen,
while a 12-inch water level and 1.0 psig internal pressure was used for the
11-1/2-inch-diameter tank response curve. In either case, water level, inter-
nal pressure, and acceleration level were chosen to yield the best data.

Test conditions were selected by trial and error to obtain the set of condi-
tions where acceleration and pressure waveforms showed the least distortion
from subharmonic surface resonance, liquid surface instabilities, asymmetric
breathing modes, and shaker-fixture dynamics. The extent of distortion
appeared unpredictable, but certain combinations of test conditions yielded
better waveforms than others.

These distortions were clearly caused, in part, by the subharmonic
liquid surface resonance and capillary wave formation associated with breath-
ing modes as reported by Kana, Lindholm, and Abramson (ref. 11). They also
reported that, at certain acceleration levels, a Jump phenomenon caused a
sudden change in breathing mode response amplitude when the natural frequency
was approached from below. The beat phenomenon (ref. 11) that involved a low
frequency amplitude modulation of the pressure and radial wall displacement
signals was also observed at certain frequencies. This amplitude modulation
was always accompanied by a large, visible liquid surface motion and a modu-
lation of the audible energy from the tank wall, both at the same freguency.
No attempt was made to study these phenomena quantitatively because the test
apparatus was inadequate for such an analysis and they were not important to
the purpose of the present study.

The frequency spectrum of the most predominant asymmetric breathing
modes for the 5-inch-diameter brass tank is plotted in figure 13. These
modes were identified to determine when they were likely to distort the
symmetric mode response.

Discussion of Experimental Results
The comparison of experimental and analytical frequency versus water

level curves (fig. 8) indicates agreement within 10 percent for water levels
above 2 inches. Below the 2-inch water level, however, the experimental
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values of fundamental frequency are as much as 16 percent higher than pre-
dicted. For water levels above 3-1/2 inches, both fundamental and second
mode data agree with predicted values within 2 percent.

The comparison of predicted and experimental frequency versus water
level curves for the ll-l/2-inch-diameter tank (fig. 9) indicates agreement
within 5 percent for all data obtained. Data for water levels above 1L inches
were not obtained because the test specimen ruptured accidentally at that
point. Attempts to locate the fundamental frequency at water levels below
L inches were unsuccessful because the distortion of both acceleration and
pressure signals was high throughout the frequency spectrum. Testing with a
new specimen at higher water levels was discontinued since the data of both
figures 8 and 9 indicatedvery good agreement between prediction and experiment
at higher water levels.

The measured variation of fundamental natural frequency with internal
pressure (fig. 10) indicates a frequency change of approximately 2 percent as
the pressure varies from 1 to 4 psi, which agrees with the theoretical result
that frequency is essentially independent of internal pressure (see egq.(20')).
Data from the other two specimens also indicate that frequency is essentially
independent of internal pressure.

The frequency response curves of figures 11 and 12 indicate that the test
system behaves essentially as a linear single-degree-of-freedom system near
the fundamental frequency. The amplification factor was not calculated since
no attempt was made to assess system damping.

The natural frequencies of symmetric modes of the liquid-tank system
were difficult to determine primarily because of the presence of other phe-
nomena (ref. 11) that distorted the symmetric mode motion. The excitation of
asymmetric tank breathing modes at frequencies very near symmetric mode fre-
quencies was almost unavoidable partly because these breathing modes are
capable of subharmonic excitation. ILarge amplitude breathing mode motion at
1/2 and 1/3 harmonics was not uncommon and it is suspected that even lower
harmonics were present although they could not be clearly identified. The
fact that breathing mode frequencies vary with pressure, however, while the
symmetric mode frequencies are essentially independent of pressure provided a
means of isolating the symmetric modes. Another phenomenon that caused diffi-
culty, primarily in attempting to establish precise pressure-to-acceleration-
amplitude ratios, was the frequency modulation of symmetric mode motion at
the same frequency as some low frequency liquid surface mode. This phenom-
enon was more pronounced at higher acceleration levels and resulted in large
surface motions. A difficulty which arose from the test apparatus configura-
tion was that of producing a pure sinusoidal axial motion of the tank base as
a rigid plate. This became impossible at higher test frequencies where the
inevitable deformations of the base undoubtedly excited unwanted system modes.
As mentioned earlier, this problem would be difficult to remedy because, even
though larger tanks have lower frequencies, base flexibility also increases
with tank size.
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CONCLUDING REMARKS

A comparison of the two theoretical solutions demonstrated that the
series and one-term approximate solutions are equally applicable for thin
shells; however, the ease of application of the approximate solution warrants
its use. As the shell thickness-to-radius ratio becomes larger, the series
solution converges more rapidly while the accuracy of the approximate
solution deteriorates.

The experimental results of this study indicate that the theory does, in
fact, provide a good mathematical model for thin shells filled with liquid.
The best agreement between theory and experiment was obtained for liquid
depths greater than the radius of the shell, indicating that surface dynamics
should be included for lower liquid levels.

It should not be overlooked that this study attempts to explain only one
of the physical phenomena associated with the vibration of liquid filled
elastic tanks subjected to axial excitations. In fact, as demonstrated in
the experimental phase, it is often difficult to isolate this particular phe-
nomenon. This analysis is useful, however, in problems where the primary con-
cern is the force transmitted across the tank bottom (i.e., longitudinal
dynamics of a missile) and not the local motion of the fluid flow (sloshing).

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 3, 1966
124-11-05-03-21
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