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VIBRATION AND BUCKLING OF PRESTRESSED SHELLS OF REVOLUTION^ 
By Paul A. Cooper 

Langley Research Center 

SUMMARY 

A linearized set of equations is developed for the infinitesimal vibration and 
buckling of an axisymmetrically prestressed thin shell with an arbitrary meridional con­
figuration. A finite-difference numerical procedure is given for finding the natural fre­
quencies, buckling loads, and associated mode shapes, and the procedure is applied to 
calculation of natural frequencies of an unstressed, simply supported cylinder. A 
closed-form solution is obtained for  the simply supported cylinder and is used to verify 
the numerical procedure, which is then used to solve some other example problems 
including the vibrations of particular shells of zero and positive Gaussian curvature. 

INTRODUCTION 

In the design of shell structures for launch vehicles, planetary atmospheric entry 
probes, or similar structures, knowledge of the natural frequencies and mode shapes of 
the systems is of fundamental importance in determining their dynamic behavior. For 
strength considerations of such shells, knowledge of the structural stability of the con­
figurations under varying aerodynamic pressure distributions is important. These shell 
configurations a r e  often too complex to allow solutions in closed form, and numerical 
techniques a re  appropriate for investigating their dynamic and static behavior. 

Several numerical methods have recently been developed for static stress analysis 
and non-prestressed f r e e  vibration analysis of general shells of revolution. Static s t ress  
analysis is considered in references 1 to 4 and non-prestressed vibrations a re  considered 
in references 5 and 6. Membrane and flexural vibrations of toroidal shells a re  treated 
in references 7 and 8 on the basis of the numerical approach of reference 1. 

The investigation of prestressed vibrations and buckling of shells requires a con­
sideration of the nonlinear shell equations. The object of this paper is to develop 

'The information presented herein is to be included with additional material to be 
offered in partial fulfillment of the thesis requirements for the degree of Doctor of 
Philosophy in Engineering Mechanics, Virginia Polytechnic Institute, Blacksburg, 
Virginia. 



differential and difference equations that govern the asymmetric vibration and buckling 
of a class  of shapes of prestressed shells of revolution. These equations a re  based on 
the nonlinear theory of reference 9. A finite-difference procedure similar to that of 
reference 1 (utilizing and extending the ideas of refs. 7 and 8) is then formulated to 
obtain solutions of the equations. A comparison with known solutions (refs. 10 to 13) 
for  free vibrations and buckling of a simply supported cylinder indicates the validity of 
the equations derived in the present paper. In addition, consideration is given to some 
problems which have not been previously treated in the literature. Natural frequencies 
are calculated for a cylinder with one end simply supported (with in-plane displacements 
free) and the other end clamped. Also, a comparison is made between natural frequen­
cies for a cylindrical shell and a similar shell with constant positive Gaussian curvature. 

SYMBOLS 

a reference length 

B extensional stiffness (eq. (16)) 

D bending stiffness (eq. (16)) 

Fx,iZe,Ex,EB nondimensional prestress  parameters (see eqs. (19) and (52)) 

E Young's modulus of elasticity 

h shell thickness 

station number, i = 0, 1, 2, . . . N 

kx,ke 


K crit ical  buckling load parameter 


nondimensional curvatures (eqs. (12)) 

m number of axial half-waves for  cylinder (see eqs. (26)) 

mX 
moment variable (see eqs. (20)) 

(e,Me 5 modified moment resultants associated with perturbed statet,Me>M 

n number of circumferential waves 
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N total number of intervals along the meridian 

modified stress resultants associated with perturbed state 

modified prestress  stress resultants 

surface loading 


nondimensional radius of c ros s  section, 


principal radii of curvature (see fig. 1) 


total meridional a r c  length 


p/a 

s/atotal nondimensional meridional a r c  length, 

time 

displacement variables defining perturbed state (see eqs. (20)) 

displacements in meridional (<), circumferential (e), and normal direc­
tions, respectively, of undeformed middle surface defining perturbed 
state (see eqs. (20)) 

nondime nsional meridional coordinate, [/a 

1d ry = - ­
rdx 

A length of interval between stations, S/N 

‘5 e middle-surface s t ra ins  associated with perturbed state 

0 circumferential coordinate in  undeformed shell 

K<’Ke?K<e middle-surface bending s t ra ins  associated with the perturbed state 

h thickness parameter, 	 h­
a 

I-1 Poisson’s ratio 

V mass  density 
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5 meridional coordinate in undeformed shell 

P cross-sectional radius (fig. 1) 

V57Ve7 V middle-surface rotations associated with perturbed state 

p r  estres s meridional rotation 

w natural frequency 

2a =a 2 w 2 v ( 1  - p2) frequency parameter
E 

Notations Used to Identify Load and Deformation Variables: 

Unmarked variables indicate variables associated with perturbed state only. 

r> indicates modified variables associated with the total deformation 

C )  indicates modified variables associated with the pres t ress  state only 

( lo indicates physical s t r e s s  resultant quantities 

The comma before a subscript denotes differentiation with respect to the following 
subscripted variable. A dot over a symbol indicates differentiation of the quantities with 
respect to time. 

1X 4 column matrices: 

'i dependent variable 

4 x 4 matrices: 

Ai7Bi7Ci7D07DN7E07EN difference-equation coefficients 

ejk7fjk boundary-equation coefficients 

Fjk,Gjk7Hj equilibrium -equation coefficients 

'i recursion coefficients 

a,P boundary -condition -selection matr ices 
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DEVELOPMENT OF GOVERNING EQUATIONS 

The shell geometry is illustrated in figure 1. The location of points on the middle 
surface of the shell is described by the principal coordinates ((,e), where 5 is the 
meridional distance measured on the 
middle surface from one boundary, 
and 0 is the circumferential angle. 
Since the shell is axisymmetric, it is 
completely described by the merid­
ional shape parameter p( 5) which is 
the radial distance from the axis of 
revolution to the middle surface of the 
shell. 

The principal radii of curvature 
of the middle surface, R5([) 
Re( t),are given by: 

and 

R =  P 
e i 

Figure 1.- Shell middle-surface geometry. 

The shell is assumed to  have a constant thickness h measured along the normal 
to  the middle surface and boundaries at ( = 0 and ( = s, where s is the total merid­
ional a r c  length. The material is assumed homogeneous and isotropic with mass den­
sity v, Young's modulus of elasticity E, and Poisson's ratio p. 

Governing Nonlinear Equations 

General nonlinear shell equations in which s t ra ins  are assumed to be small and 
rotations, moderately small, are given in reference 9. For a shell of revolution, these 
equations become, when inertia t e rms  a r e  added, 
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where the comma before a subscript denotes partial differentiation with respect to  the 
succeeding subscripted independent variables ( f  or 6) and dots over a quantity denote 
differentiation with respect to  time. The equilibrium equations (2a), (2b), and (2c) rep­
resent the sum of forces along coordinates of the undeformed surface, and the perturbed 
displacements of the middle surface U, V, and W are measured in the direction of 
the coordinates of the undeformed surface with W measured positive along the outward 
normal. 

The boundary conditions considered on the edges 5 = 0 and 5 = s may be chosen 
from any combination of the following four pairs  of quantities in which either quantity 
(but not both) of each pair  is prescribed: 
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The equations have been derived by use of the Kirchhoff-Love assumptions; that is, 
normals to the undeformed middle surface remain normal to the deformed middle surface, 
normal strain is zero, and the normal stress is negligible. Rotary inertia t e rms  have 
been neglected in the moment equations. Modified s t r e s s  and moment resultants have 
been used in the development of equations (2) and (3) and a re  defined as follows: 

N
N e = N g O  Me" 
Re 

Y 

Me = Me0 

The modified transverse shear stress resultants Q t
5 

and Qs may be found by applying 

the definitions in equations (4) to  the moment equilibrium equations (eqs. (2d) and (2e)). 
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The quantities N5'  Neo, Nteo, N e t ,  QC,and Qeo represent the total 

middle-surface stress resultants (fig. 2(a)), and the quantities M C ,  Meo, Mte", 

N o r m a l  

e 

(a) Stress resultants and displacements. 

L' cpt No-

P@- e
5 

(b) Moment resultants and rotations. 

Figure 2.- Middle-surface quantities. 

and Me tO represent the 

total middle-surface moment 
resultants introduced by the 
same combined effect 
(fig. 2(b)). No attempt is made 
to  relate these stress and 
moment resultants to the dis­
tribution of stress through the 
thickness of the shell. The 
equations of reference 9 have 
been derived without depend­
ence on such a relationship; 
thus, any formulation consist­
ent with thin-shell theory is 
acceptable. According to ref ­
erence 9, the addition of te rms  
like M?/R to the  No quan­
tities in the stress-strain 
relations does not introduce 
e r r o r s  any greater than those 
already introduced by neg­
lecting transverse shear flex­
ibility in the Kirchhoff -Love 
hypothesis. Consequently, the 

% quantities may be treated as s t r e s s  resultants without introducing an inconsistency in 
the thin-shell analysis. 

The sum of the moments about the normal direction is 

Hence, from the definition of the modified s t r e s s  resultants 

Y Y 


N e t  = (5) 
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Therefore, the sixth equilibrium equation, that of equilibrium of moments about the nor­
mal, is identically satisfied by symmetric modified stress resultants. 

Vibration and Buckling Equations 

In the derivation of the vibration and buckling equations, the total rotations and 
total s t r e s s  and moment resultants are separated into the parts associated with the initial 
axisymmetric prestress  and the par ts  associated with the infinitesimal perturbed dis­
placements about the prestressed state. The perturbed quantities can be time dependent 
for infinitesimal vibration investigations or static for buckling investigations. Symbols 
with ba r s  represent those quantities associated with the prestress  conditions and symbols 
without bars  represent those associated with the perturbed state. Thus, the total s t ress  
state may be completely described by these quantities from the relations: 

The total rotations a re  
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and the total surface loading is described by 

F5 -- F  5 

since no additional surface loading is assumed to  be associated with the perturbed state. 

Substitution of equations (6), (7),and (8) in equation (2a) yields 

where 9-derivatives of barred quantities vanish as a result of axisymmetry of the pre­
stressed state. The prestressed shell is in equilibrium; thus, the sum of the te rms  
enclosed by the first se t  of braces in equation (9) vanishes identically. Furthermore, 
the perturbation of the shell away from the prestressed configuration is governed by 
linear theory. Therefore, the nonlinear te rms  enclosed by the second pair of braces are 
neglected . 

The te rm in equation (9) enclosed by the third pair of braces  (i.e., the interaction 
between the pres t ress  deformation and the perturbation stress resultants) is usually neg­
lected in the procedure followed in the classical linearization process for a cylinder. If 
this term is neglected, the general assumption is made that the pres t ress  rotation is 
uniformly zero throughout the shell. The e r r o r  introduced is usually negligible, but for 
certain boundary conditions o r  for  sharply varying surface loads, this te rm may be sig­
nificant and is consequently retained in this analysis. If p 5  and (p

5 7  5 a re  neglected, 
the problem may be reinterpreted as that of a prestressed but undeformed shell of revo­
lution perturbed about the undeformed state. With this te rm retained, the equilibrium 
equation in the meridional direction (eq. (9)) reduces to 
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By the same procedure, the remaining equilibrium equations (eqs. (2b) to  (2e)) are 
linearized. Solving equations (2d) and (2e) for Q5 and Qe and substituting for them 
into equations (2a), (2b), and (2c), eliminates these quantities from the system. The 
parameters defining the geometry of the middle surface can be nondimensionalized by 
using a reference length a, as follows: 

x = - 	5 
a 

a 

and nondimensional curvatures can be defined as 

ke  = -a 

Re 

Upon completion of these manipulations, the following equilibrium equations result: 

5070 
- g N  

6
) + k

xdx &Me + i ( 3 s  - ke)Mte,edx 
*M 5 + rkxM 5 P  - kx dx 
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d2r  d r  2 d r  1 
dx2 - dx--M -Me,x + ;;i;;M5e,e + 2M5e,xe + 7 Me,ee 

Similarly, the boundary conditions (eqs. (3)) a r e  given as 

N 5 = O  or U = O  

N + f i e ) q = O  or V = O  

'p5 = O  or  M ( = O  J 

The modified stress-resultant-strain relationships, if physical linearity is assumed, a r e  
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where 

B = - Eh 
1 - p2 

D =  Eh3 
1 2 ( 1  - p2)  

The linearized strain-displacement relationships, from reference 9, reduce to 

The middle -surface rotations a r e  given in te rms  of displacements as 

The pres t ress  t e rms  are given nondimensionally as 

5 -- BFX(x) fie = Bee(x) 



Reduction to Ordinary Differential Equations 

With equations (13) and (15) to  (19), the equilibrium equations can be reduced to 
three partial differential equations with the displacements as the unknown dependent 
variables where the highest order derivative in x is a fourth-order derivative. How -
ever, since the solution, in general, can only be achieved by numerical techniques, the 
procedure of reference 1 is followed, where dependence on 8 is removed by assuming 
a solution of the separable type and introducing M 5 as an additional unknown. This 
procedure yields a set of four second-order ordinary differential equations with variable 
coefficients. The fourth equation is simply the equation for M I  in te rms  of the dis­
placements. This reduction in order is essential for the numerical treatment that 
follows. 

A solution is assumed of the form 

u = u(x)(cos no)eiwt 

v = v(x)(sin ne)eiwt 

w = w(x)(cos ne)eiwt 

M - Eh3-mx(x)(cos n0)ei w t  J 
5 - a2 

Defining the perturbation displacements in this manner assures  compatibility in the 
8-coordinate. The special case of axisymmetric torsional vibration or torsional 
buckling is precluded in this investigation by the introduction of this form of 6-variation. 
This vibration mode uncouples from the extensional and bending modes (see ref. 14)and 
may be treated directly by interchanging the sines and cosines in equations (20). 

For the buckling problem, the time dependence of the perturbed displacements is 
removed by allowing w (eqs. (20)) to vanish. The perturbed displacements then repre­
sent a possible equilibrium state. Any loading that would maintain this equilibrium state 
as well as the prestressed equilibrium state is a critical loading for buckling. 

Performing the operations indicated and utilizing the following geometric 
relationships 

J 
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which are the Codazzi and Gauss equations, respectively, yields the governing equations, 
as follows: 

F 3 1 ~ "+ G 3 1 ~ '+ H 3 1 ~+ F 3 2 ~ "+ G 3 2 ~ '+ H 3 2 ~  

+ FQ3w'' + G 3 3 ~ '+ H 3 3 ~+ F34mx11+ G34mx' + H34mx = 0 

G41~1+ H41u + H 4 2 ~  + H44mx = 0+ Fq3w1' + G 4 3 ~ '+ H 4 3 ~  

The same procedure yields the boundary conditions, as follows: 

ellul + fllu + f 12v + e 1 3 ~ '+ f 13w = 0 or u = 0 (234 

f 2 1 ~  + e23w' + f 2 3 ~+ e22v' + f 2 2 ~  = 0 or  v = 0 (23b) 

+ e 3 2 ~ '+ f 32v + e 3 3 ~ 1e 3 1 ~ '+ f 3 1 ~  + f 33w + e34mx1 + f34mx = 0 or  w = 0 (23c) 

f 41u + e43w ' = O  or m x = O  (234 

Pr imes  denote total differentiation with respect to  the nondimensional variable x, and 
the coefficients are subscripted for  convenience in subsequent matrix manipulations. The 
coefficients Fjk, Gjk, Hjk are given in appendix A in t e rms  of the parameters  y 

and X, where 
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m m  

For the vibration problem, the frequency parameter a2 occurs in H1l'  H22' 
and H33, where 

2 2  
! 2 =  a w v ( 1 - p 2 )2 

E 

CLOSED-FORM SOLUTION FOR CYLINDER VIBRATIONS 

The vibratory characteristics of a "freely supported" cylinder (simply supported 
but unrestrained in the axial direction) with pres t ress  deformations neglected a re  well 
known. (See refs. 10, 11, and 12.) Thus, these known resul ts  can be used as a check of 
the validity of the governing equations and of the accuracy of the numerical techniques to 
be suggested subsequently in this report. 

When pres t ress  deformations a re  neglected and the in-plane s t resses  a re  constant, 
the equations (22) reduce to ordinary differential equations with constant coefficients 
which, for freely supported boundary conditions, have a solution of the form 

m mU(X)= Am COS -
S 1 

v(x) = Bm cos -
S 

mx(x) = Dm sin - J m = 1,2, . . ."s" 
where S is the length-radius ratio of the cylinder (a = cylinder radius). The classical 
procedure of neglecting pres t ress  deformations to ensure constant coefficients in the field 
equations implies that the cylinder is initially prestressed as a shell with free edges and 
then subsequently supported for vibration. 

Equations (26) are substituted into equations (22) to yield a set  of linear homogene­
ous algebraic equations. For a nontrivial solution to exist, the determinant of the coef ­
ficient matrix of the resultant set  of equations must vanish. This procedure leads to the 
characteristic equation 

where the coefficients Ai are given in appendix B. 
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Equation (27) has  been solved for  the frequency parameter for an unstressed c i r ­
cular cylindrical shell with 1-1 = 0.3, h = 0.001, and S = 3; and the results for the axial 
mode m = 1 are  given in figure 3. For the purpose of comparing the results of equa­
tion (27) with those given in references 10, 11, and 12, the in-plane inertia te rms  are 
dropped from equations (22a), (22b), and (22c), so that equation (27) is reduced from a 
cubic to a linear equation in Q2. In all studies performed, the frequencies calculated, 
when in-plane inertias were neglected, agreed closely with those given in references 10, 
11, and 12, and all trends observed in these references were similarly verified. 

The effect on the natural frequencies due to the neglect of in-plane inertia is illus­
trated in figure 3. The e r r o r  introduced by this approximation decreases as n 
increases, the largest  e r r o r  occurring at n = 2. For n larger  than 5 the e r r o r  is 
negligible. For n = 0, the fundamental frequency, which corresponds to pure torsional 
oscillations, is excluded when the assumption of negligible in-plane inertias is made. 

I I I I I I I I I 
0 4 a 12 16 20 24 28 

Circumferential harmonic wave number, n 
Figure 3.- Natural frequencies of freely supported circular cylindrical shell. 

= !!= 0.001. s = 5 = 3. m = 1. 
' a ' 
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DEVELOPMENT OF NUMERICAL PROCEDURE 

Development of Difference Equations 

A numerical procedure is needed for those shells of revolution and loading condi­
tions which do not admit a solution in closed form. The meridian of the shell is divided 
into increments and a three-point central difference method is used to reduce the differ­
ential equations to algebraic form. The distance measured along the meridian between 
adjacent stations is constant and is represented nondimensionally by A where 

A = xi - S 
= N­

and where the subscript i on symbols and matrices indicates the evaluation of the sub­
scripted variable or  matrix at the ith station, i = 0, 1, 2, .. .,N and where 

S total meridional a r c  length of the nondimensional shell, s/a 

N total number of intervals 

The three-point difference formulas, when applied at the ith station for some func­
tion z(x), a r e  

Reference 2 indicates that this simple approximation leads to sufficiently accurate results. 

The governing equations (22) may be written in matrix form at station i as 

FiZi" + G.Z. '  + H . Z .
1 1  

1 1  = 0 (30) 

where 

F 1 l  0 F13 0 

0 F22 3 0 

F3 1 F32 F33 F34 

0 0 F43 0 
i 
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e22 

-


Gi = 

H1l 

H.1 = 1:; 
H41 

and 

G12 

G22 

G32 

0 

H12 

H22 

H32 

H42 

G13 14 

G23 0 

G33 G34 

G43 0 
-

-
H13 14 

'23 '24 

H33 H34 

H43 H44 

i 

i 

i 

Similarly, all the boundary equations (23) may be written in matrix form at the 
boundaries, i = 0 and i = N, as 

where 

ell 0 e 13 0 

e23 0 

(334  
eo,N= [31 e32 e33 e34 

0 e43 0 -

19 



and where 

9-47 

pO,N = 

r 

12 


22 


f32 


0 

-
1 0 

0 "y22 


0 0 

0 0 

(1 - 9 1 )  0 

O (1 - 3 2 )  

0 0 

0 0 
-

13 
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f33 34 


0 0i1O,N 

-
0 0 

0 0 

3 3  0 

0 a44_ 

(34) 


0 0 

0 0 

(1 - 33) 0 

0 (1 - a44 

The elements a.. take on the value 1 or  0 depending on the prescribed conditions.
JJ 

The a- and p-matrices (eqs. (34))a r e  used to select the prescribed boundary con­
ditions. If, for example, u = 0 is prescribed at i = 0 then ("1d0 = O  andif u is 

not prescribed at i = N (Le., if the u displacement is unrestrained in the meridional 
direction of the undeformed shell), then 

( W N  
= 1. If desired, the present theory can 

be extended to allow for elastic and directional supports in the boundary conditions by 
appropriate redefinition of the a- and p-matrices. 

When equations (29)a re  applied to equations (30)and (32), the governing equations 
become 
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and the boundary equations become 

--@ N ~ N  @ N ~ N  
2A ‘N-1 -I- (@NfN-I- &)‘N -I-7‘N+I= O J 

Equations (36) can be solved for Z-l and ZN+l and the results can be substi­
tuted into equation (35) to yield, at i = 0, 

and, at i = N, 

L 

where 

-
1 0 0 

0 1 0 
I =  

0 0 1 0 

0 0 0 i1 
-

The difference equations (35), (37), and (38) constitute a complete set of field equations 
governing the behavior of the perturbed state. 

Numerical Solution 

The problem is now one of solving a set of homogeneous equations (eqs. (35), (37), 
and (38)). This set  constitutes an eigenvalue problem such that the mode shape Zi is 
the eigenvector and the frequency parameter a2 is the corresponding eigenvalue for the 
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vibration problem. The eigenvalue for  the buckling problem is contained in all barred 
terms. The fourth equation, being simply the definition of m, in te rms  of displace­
ments, will not contain an eigenvalue for either problem. For a nontrivial solution to  
exist, the determinant of the coefficient matrix must vanish. 

The coefficient matrix will be a 12-element-wide band matrix. A convenient tech­
nique for solution of this problem can be formulated by modifying the method of refer­
ences 7 and 8. Such a modification is presented herein to handle the free vibrations and 
buckling of a prestressed shell governed by four second-order difference equations with 
two-point boundary conditions. 

Define the following (4X 4)matrices: 

Fi Gi 
% = - - - 2A~2 

2 Fi 
Bi = Hi 

A2 

Fici = -+ -Gi 
~2 2A 

Equations (35), (37), and (38) may now be written as 

AiZi-l + Bizi -I-CiZi+l = 0 (i = 1, 2, . . ., N - 1) 

DOZO+ EOZl = 0 

ENZN-l + DNZN = 0 
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For such a set of homogeneous equations, a recursion formula for Zi may be 
written as 

(i = 1, 2, . . ., N - 2) 

and 

zi + Pizi+l = 0 ( i = o  if z O # o )  (43) 

I( i = N - 1  if Z N # O )  

where Pi is a (4 X 4) recursion matrix. To find Pi, combine equation (43) and equa­
tion (40) to obtain 

-1 
Zi + (Bi - AiPi-l) CiZi+l = 0 (i = 1, 2, . . ., N - 1) (44) 

Comparison of equation (44) with equation (43) shows that 

-1 
i i-1) Ci (i = 1, 2, . . ., N - 1) (45)P i =  (B.1 - A P  

Comparison of equation (41) with equation (43), the latter written at i = 0, shows that 

p0 = D ~ - ~ E ~  (46) 

From equations (45) and (46), Pi may be found at all points with the exception of the 
point i = N. This process of determining all required values of Pi in t e rms  of Po 
is in essence a Gaussian elimination process. 

Equation (43) written at i = N - 1, in combination with equation (42), yields 

E ZN # 0, then for a solution to exist, 

Therefore, any frequency parameter SZ2 (or buckling parameter in the corresponding 
stability problem) which satisfies equation (48) contains a natural frequency (or critical 
load) of the system. The natural frequencies can be found by trial and e r r o r  by selecting 
successive values for a2,calculating the matrices of equations (39), and using equa­
tions (45) and (46) to evaluate the determinant in equation (48). This procedure is con­
tinued until the desired zeroes of the determinant a r e  found. 

The method must be slightly modified for the case ZN = 0. Substituting equa­
tion (43) written at N - 2 into equation (40) written at N - l yields 
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(BN-1 - AN-1pN-2)zN-1 = (49) 

If ZN-l = 0, then Z i  = 0 from equation (43), and the solution is trivial. Therefore 

IBN-l .,AN-1pN-21 = (50) 

Consequently, for  the case ZN = 0, equation (50) is used in  place of equation (48) in the 
elimination process. 

After the natural frequencies have been found, the mode shapes are determined by 
first solving equation (47) for ZN in t e rms  of an appropriate normalizing factor. For 
the case where ZN = 0, equation (49) is used to solve for ZN-l. The remaining Z i t s  
a r e  then determined by using the recursion formula, equation (43). 

This numerical procedure is particularly well suited for use with a large number 
of stations since only the band elements need be retained during the computation process. 
References 1, 2, and 4 give further advantages in using this general method of solution. 

In an investigation of buckling, the procedure must be slightly altered. The exter­
nal axisymmetric loading 5 and can be given by 

P(x)= KD(x) J 
where 5 and characterize the form of the external applied load and K is a con­
stant governing its magnitude. If linearity between the external applied loads and the 
prebuckling in-plane s t resses  and deformations is tacitly assumed, the prebuckling quan­
tities may be written as 

and it follows that 
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where Ex, Eo, @[ characterize the in-plane s t ress  and deformation due to 55 
and F. These quantities can be found, for example, from the stress program of refer­
ence 1. Thus, K becomes the buckling load parameter, and any value of K which 
allows two (or more) equilibrium states to exist simultaneously defines a critical 
buckling load for the system. The numerical procedure is followed directly, as before, 
with trial values of K rather than Q2 selected to satisfy equation (48)or  equation (50). 
With K known, equation (51) yields the critical loading for  the particular harmonic 
wave number n investigated. 

Although equation (48) (or eq. (50)) contains all the roots of the system of equa­
tions (40), (41), and (42), this method of elimination introduces spurious singularities in 
the determinants of equation (48) or (50). For some shell configurations and boundary 
conditions, it is found that the roots and singularities very nearly coincide, and the usual 
predictor-corrector methods fail to indicate a root if  the increments given to the f re ­
quency parameter or buckling load parameter a re  too large. Moreover, some of these 
singularities a r e  associated with a change in sign in the value of the determinant even 
though no zero exists at that value of the frequency or buckling parameter. A technique 
for avoiding this difficulty is presented in reference 15. 

EXAMPLES OF APPLICATION O F  NUMERICAL PROCEDURE 

Cylinder Vibrations and Buckling 

An indication of the accuracy of the numerical procedure is obtained by investi­
gating the free vibration and buckling of an unstressed, freely supported, cylindrical 
shell. The freely supported boundary conditions are introduced by defining 

0 0 0 0 
@O,N = 

0 0 0 0 

The particular shell investigated has the parameters p = 0.3, X = 0.001, and S = 3, 
where the reference length is taken to be the cylinder radius, so that X is the ratio of 
the thickness to the radius and S is the ratio of the length to the radius. The calcula­
tions a re  based on 200 intervals. 

The lowest frequency for each circumferential harmonic mode number is found for 
an unstressed shell and compared with the corresponding results calculated using the 
closed-form solution of equation (27) with m taken as 1. If S is held constant and 
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m is varied for  any n, it can be shown that the lowest frequency will result for m = 1. 
The numerical and exact results agree to three significant figures or  better for all values 
of n from 1to 15. 

The same cylinder is investigated with one edge clamped and one edge freely sup­
ported. The clamped edge is introduced by defining 

A comparison between the two edge conditions for  the lowest frequency for each circum­
ferential harmonic mode number is presented in figure 4. A s  expected, introducing the 

1.c 	 clamped edge increases the nat­
ural  frequencies of the system, 
the lowest natural frequency 
having a relative increase based 
on the freely supported cylinder 
of 26 percent. A s  n increases, 
the effect of the edge conditions 
appears to diminish rapidly. 

The buckling load is found 
for a closed circular cylinder 
subjected to uniform hydrostatic 

3k0J 	 pressure.  The results from the 
numerical procedure a r e  com-

II 
C pared with the closed-form solu­

tions based on Donne11 theory 
given in reference 13. Pre ­
buckling deformations are neg­
lected in the derivation of refer-

Freely supported both ends -.-.- ence 13; consequently, to allow 

Clamped on one end---.---.--- for consistent comparisons, the 
assumption is made that q 5= 0. 

0.0; I I I I I I 1 I I I I I I I For a closed cylinder under -1 3 5 7 9 11 13 15 
- Neexternal pressure, N 
5 

= -.
2 

Thus, unit s t r e s s  conditions 
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-
characterizing this loading are introduced by letting Eo = -1 and E = - -I x 2’
from equations (19) and (52) 

Hence, 

where No may be taken to be Pp, P is the uniform external pressure (P is a nega­
tive quantity), and p is the radius of the cylinder measured to the middle surface. 
Thus, the buckling load parameter is 

K =  -0p 
(54)

EX 

The corresponding K from reference 13 in te rms  of the nondimensional param­
eters used in this development is given by 

The lowest buckling load occurs for this shell at n = 9. The closed-form solution is 
generally accepted as giving accurate resul ts  for n greater than 4; thus, the closed-form 
value for K = 0.888 x at n = 9 is a valid basis for  comparison. By use of the 
numerical procedures outlined herein, the crit ical  buckling load was similarly found to 
be at n = 9 and gave a relative e r r o r  of 0.68 percent. For n = 1 and n = 2 it is 
known that the lowest buckling load calculated, when the closed-form solution is used, 
will be in e r r o r  on the high side. The numerical procedure gave relative e r r o r s  based 
on the closed-form solution of -18.13 percent for n = 1 and -54.23 percent for n = 2. 
These e r r o r s  indicate that for  these cases  the use of the numerical procedure coupled 
with the more consistent shell theory yields more accurate results. 

Vibrations of a Shell of Positive Gaussian Curvature 

The previous examples are applications of the numerical procedure for  both 
buckling and vibration of systems governed by equations with constant coefficients. The 
capabilities of the numerical procedure are further demonstrated by investigating the 
vibration characteristics of a shell of positive Gaussian curvature with a constant positive 
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meridional curvature and comparing them with those of a corresponding shell of zero 
Gaussian curvature (cylinder). The correspondence is introduced by requiring the total 
surface area (and thus the mass) of both shells to be equal. Furthermore, the meridional 
lengths of both shells are selected to  be equal and thus the perpendicular distance from 
the axis of revolution to the centroid of the meridional curve is the same for both shells. 
This distance is selected as the reference length for each shell. 

The shapes of both shells investigated are illustrated in figure 5 along with a tabu­
lation of the equations used in the numerical program to  define the geometries. The 

I 
I I Shell of positive Gaussian curvature 

(constant positive meridional curvature)
I 

I r = 3 cos (-	1- 5)  - 1.8792 3 

I 3 k = -1 
x 3 

I -+-

I 
I I 

I 1.438 
k =  1e 3 COS (2- ”) - 1.879 

I s = 3  
I 
I *  . II sin (3 - -) 

1 

I I cos (21­////
Y = 

3 cos (5 -

1 

;) 

3 

-
3 
x 

1.879 

I I
I I 
I I
I I 
I I 

Figure 5.­
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Corresponding cylindrical shell 
(zero Gaussian curvature) 

r = 1  

k = O  
X 

k = 1e 

s = 3  

y = o  

Geometry of shells investigated. 



lowest natural frequencies for successive circumferential harmonic mode numbers, 
based on freely supported edge conditions, have been found for each unstressed shell. 
The results are presented in figure 6. 

6
i 

CONCLUDING REMARKS 

A set of linear equations governing the infinitesimal vibrations and buckling of 
axisymmetrically prestressed shells has been developed and both the in-plane inertia 
and pres t ress  deformation effects have been retained in  the analysis. The equations 
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derived are consistent with first-order thin-shell theory and can be used to describe the 
behavior of shells with arbitrary meridional configuration having moderately small  pre -
stress rotation. 

A numerical procedure has  been given for  solving the governing equations for the 
natural frequencies, buckling loads, and associated mode shapes for a general shell of 
revolution with homogeneous boundary conditions. The numerical procedure uses  matrix 
methods in finite-difference form coupled with a Gaussian elimination to  solve the gov­
erning eigenvalue problem. 

Examples of applications of the numerical procedure have been presented. Results 
for  natural vibration frequencies and buckling under hydrostatic pressure of a simply 
supported cylinder were found to  be in good agreement with previously published results. 
A brief comparison between the vibration characterist ics of two geometrically similar 
shells having positive and zero Gaussian curvature displayed the markedly greater stiff ­
ness and resulting higher frequencies of the doubly curved shell. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 14, 1966, 
124-08-06 -11-23. 
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APPENDIX A 

COEFFICIENTS O F  EQUATIONS (22) AND (23) 

Coefficients of Equations (22) 

The coefficients of t e rms  in the governing equations (22) are defined as follows: 

F l l =  1 

F13 = -Tt  

- 2 2 1 
F22 - 2 + w ( 3 k e  - %) + T(gx + ee)96 

F33 = -E+ (1 + ,)yj+ e, + $12 

F34 = x”(1 - p2) 

F43 = F34 

G12= 2r  
+ d ( 3 s - ke) (3ke - kx) - A(.

X 
+ ze)

96r 4 r  

= -G12 

2 96G22= (1-cL)y - h ( 3 k e  - k x ) E  2 - y(5$ - 3ke,] + &(Fx + se)+ $(Fx + ee) 
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2 %p)yke - -+ 2rdx 
3y(kx - k e d  + (1+IJ.)n% 

d F  
- G ~ ~~ 3 1 =  - 2Yq5 - 2 

dx 

G41 = -G14 

G43 = x2 (1 - P") PLY 



- - 

APPENDIX A 

- -(5ke -H a l =  - -+ 
2r  121-

[(l + p ) y V e  + i 6 k x k e  - 7 G 2  3.:) 	 1%
4 d x  

(1 - p )  2- 2 + (1 - p ) c%-+ a2 
2 kg  'p5 2 Q d x  
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H34 = -h2(1 - p2)  F1 - p)kxke + d]
r 2  

2 
H44 = 12h2 (1 - p2)  

Coefficients of Equations (23) 

The coefficients of the t e rms  associated with the boundary conditions (eqs. (23)) are 
defined in the following equations: 

ell = 1 
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e33 -+B + (1 + P)Y 9+ zx+ q* 

e34 = x2(1 - 1.2) 

e43 = e34 

2 
f21 = - Q-Ah- U ( 3 ’ 5 (  - ke)  (3ke - a)+ d(e + e0)Zr 9 6r 

f34 = h2(1 - P)(1 - P2) y 

f41 = -A2(1 - p2)kx 
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APPENDIX B 

COEFFICIENTS O F  EQUATION (27) 

The coefficients of equation (27) are defined as follows: 

Ro= ra11a22a33 - all(a23) 2 - a22(a13)2 - a33(a12)2 + 2a12a23a131a44 

2 2 
+ Ealla22a34 + 2alla23a24 + (a12) "34 - 2a12a24a13]a34 + ka13) - alla33](a24y 

2 
'1 = E22a33 + alla22 alla33 - (a12) - (a23)2 - (.13)Ya44 

'3 = a44 

where 
n("")d - 522

"11 = H1l - F1l s 
"12 = G12( 7)  
"13 = G13( y )  

2 
a22= H22 - F22(y)- a2 

a23 = H23 - F23 (""f 
"24 = H24 


a33 = H33 - F33(yf
- 522 

2 
"34 = H34 - F34(?) 

a44 = H44 
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