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Introduction

Out of the welter of orbital data from a satellite it is frequently

useful to be able to isolate and examine the behavior of one phenomena.

We have been particularly interested in knowing where perigee is located

at any particular time in the lifetime of the 0GO-2 satellite, particularly
as a function of local time.

There are several reasons for this. First, the orbital plane of a
polar satellite moves very slowly with respect to the earth sun line, i.e.
the satellite position varies very slowly in local time. This fact is
significant when attempting to determine diurnal effects (as to eliminate
such effects) from experimental satellite data. Similarly, most geophysical
phenomena are latitude dependent and some phenomena may only be observed
at low or high latitudes. (For example, the equatorial electrojet phenomena
in magnetic field studies is both local time and latitude dependent). It
is therefore important for the experimenter to take orbital factors into
account in planning his experiment and in analyzing his results,

If a satellite were in orbit about a perfectly spherical earth with
no outside perturbations, its perigee would maintain a fixed latitude and
the local time of the orbital plane would depend only on the right ascension
of the sun. 1In fact, however, the earth is not spherical and the orbit is
subject to many outside perturbations.

As a result of these perturbations, the orbital elements are no longer
constant. By considéring a first approximation of those orbital changes

which have the major effects on the latitude and local time of perigee, we
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have devised a simple calculation giving results which, for a nine-month
period, check to within one degree in both latitude and local time with

a more sophisticated computation.

Method

If we consider three coordinate systems (Figure 1) such that X, Y, Z
are the geocentric inertial system of some epoch with X along the equinox,
X', Y', Z! are in the plane of the orbit with X! toward perigee and Z?}
chosen so that its angle with Z is less than 90°, and X%, Y?, Z® are a
rotation of X, Y, Z so that X° lies along the projection of the earth-sun
line in the X, Y plane.

Where:

{2 = right ascension of ascending node of the satellite
w = argument of perigee
i = inclination

RA = right ascension of the mean sun

The transformation from the X* system to the X system consists of
three rotations 1) through w, 2) through i, and 3) through Q. The trans-
formation from the X to the X® system is a rotation through RA. The

resulting transformation matrix from the X* to the X°® system is then given

by:

A11 AIB A13

A= Ay; Ays Azg (1)

Azy A3z Aas




Where:
A, = cos(w) cos(RA - Q) + sin(w) cos(i) sin(RA - Q)

A, = - sin(w) cos(RA - Q) + cos(w) cos(i) sin(RA - Q)

A, = - sin(i) sin(RA - Q)
Ay, = - cos(w) sin(RA - Q) + sin(w) cos(i) cos(RA - Q)
Ay, = sin(w) sin(RA - Q) + cos(w) cos(i) cos(RA - Q)
Ayy = -~ sin(i) cos(RA - Q)
Ay, = sin(i) sin(w)
App = sin(i) cos(w)
Asa = cos(i)
Now if a 1is the earth central distance to the satellite at perigee
then in the Y!' system perigee is at a
0
0

Therefore, applying the matrix A, perigee in the X® system is

a [:cos w cos(RA - Q) - sin w cos(i) sin(RA - Qz] -(2)
eaEE cos(w) sin(RA - ) + sin(w) cos(i) cos(RA - @H
a[:'sin(i) sin(wz]

Now in the X® system the tangent of (local time - 180°) equals the X®

coordinate of perigee divided by the Z® coordinate of perigee.

or
) - e LAt m o sunth oL
Also SIN (Latitude) = 2 coordimate of Perifie® - ginisinw  (4)

and
TAN(Latitude) = (iiziizii:ii%w)% (5)
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With the above results, then, we may easily and exactly compute both

the latitude and local time of a

i, RA, and a.

satellite if we know the values of {2, w,

Normally, however, one is given these values at some epoch,

along with values of ® and Q. We have then used the following approxima-

tions.

If we are given &o, Qo> S, W, i, RAy, and a at some initial

time, ty, we have assumed i, a, wg, and {}y to remain constant and have

computed 2, w, and RA at time ¢t
RA =

Q =

W =

RA

and then substituting in (3) and

If O and @ are unknown, they may

From (1) page 32:

Where:

using:
360/365.256
%+ 0 (£ - tg)

W + wy (t - to)

(6)

RA, + RA, (t - t4)

(5) above.

be approximated readily.

3kN (2 - 2.5 sin®?i)

TBr1 L 2N\2
a* (1 - e2)3

(7)

-3kN cos (i)

az(l - e° )=

.606546

GM/a®/2

Universal gravitation constant
Mass of the earth

Semi-major axis of orbit

Eccentricity



Inserting the constants gives

3kN _ 20.8158 (10'®)
a2 (l - e2)2 aS.S(l - e2)2

where a is in kilometers.
Discussion

Conrath (Reference 1) classifies perturbations as either secular or
periodic and states (Pg. 12): '"In considering the behavior of the orbit
as a whole, the secular perturbations provides the best picture, and the
periodic terms can be neglected. However, if the calculations of an
ephemeris is desired, the periodic perturbations must be considered.' Since
we wish to construct a picture of how the orbit is situated with respect to
local time, we have considered that a first approximation to the secular
terms (& and @) is sufficiently accurate. These two variations primarily
result from the R™® term in the potential expansion of the earth's gravita-
tional field and, therefore, from the non-sphericity of the earth. From
the approximate expressions given in (7) it may be seen that the position
of the ascending node regresses in proportion to the cosine of the inclina-
tions, and is therefore quite small for a polar satellite, and that the
motion of arguments of perigee depends upon the sign of (2 - 2.5 sin®i). It
is thus constant for i = 63° 26'. Plots of the rate of change of these
angles of a function of i may be found in Reference 1, pages 42-48.

For our computations we have used the right ascension of the (fictitious)
mean sun (Ref. 4, Pg. 139-141). This brings our computations into agreement

with the computation of Universal Time where the mean sun is also used
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(Ref. 3, Pg. 139-141, Ref. &, Pg. 73-76). The actual sun may differ from
the mean sun by a maximum of approximately 3° or 12 minutes of local time.
In order to compute the "actual" local time the apparent right ascension

of the (real) sun should be substituted for our right ascension of the

mean sun. The apparent right ascension of the real sun may be found in

the American Ephemeris and Nautical Almanac, Pages 18-33; the right ascen-
sion of the mean sun is equivalent to the longitude of the mean sun (Ref. 3,

Page 140) tabulated on Pg. 50 of the Almanac.

Results
The 0GO-2 satellite was launched October 14, 1965 into a low polar
orbit with the following characteristics (0GO-2 operations center, Nov. 23,

1965) at epoch October 24th, O hrs., 0 min., 0 sec.

a = 7340.5 km

i = 87.359 degrees
RA, = 208.26 degrees
Q, = 280.49 degrees
Wo = 144.211 degrees

Q = -.2839°/day

® = -3.0476°/day

Using these figufes, we have produced the plot shown in Figure 2.
Each dot represents perigee position at zero hours on a particular day
with the first day of each month labeled. The black dots indicate perigee
in the southern hemisphere and the open dots indicate perigee in the
northern hemisphere. The plot is polar with 6 representing local time

and r representing latitude. A comparison of our results for the 0GO-2
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satellite with the ORB-1 printout from the GSFC Theory and Analysis Office
showed agreement in both latitude and local time within one degree for a

period of nine months.

Summary and Conclusions

We have developed a procedure for a graphic display of one specialized
feature of a satellite orbit, the relationship of the perigee of the orbit
to latitude and to local time. From such a plot (e.g. Fig. 2) it is a very
simple matter to see exactly when in a satellite lifetime it will encounter
a particular sunlight configuration. One may also readily see at what
latitude the satellite approaches closest to the earth. Obvious applications
are predictions of eclipse times and periods of maximum drag. From a geo-
physical viewpoint, one may predict when satellite data should be examined

for effects which are local time and/or latitude dependent.
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