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ABSTRACT

The damping of high-frequency waves, in a hot plasma in an
external uniform magnetic field in the presence of weak Coulomb
collisions, is investigated by using the Fokker-Planck equation.
The electron-ion collisions play the dominant role; nevertheless,
the electron-electron collisions are important for disturbances
of finite wave lengths. As far as the electron-ion-collision con-
tribution is concerned, the frictional term exceeds the diffusion
term but in electron-electron case, both the frictional and the
diffusion contributions are of the same order. The two-body
Coulomb collisions have a stabilizing effect on these plasma
waves; the magnetic field however does not affect the longitudinal
waves but has a tendency to stabilize left-handed polarized wave

and to destabilize the right-handed polarized wave.




I. INTRODUCTION

The small amplitude oscillations in a fully ionized plasma in
a uniform external megnetic field were studied by Bernstein}} He
showed that in a collision-free plasma, the self excitation of the
waves around thermal equilibrium'is not possible.

Comisar® and Buti and Jain® studied the high-~frequency plasma
waves in a hot plasma in the absence of any external magnetic field
but they took into account the weak Coulomb collisions by using the
Fokker-Planck equation of Rosenbluth et al?. They found that the
electron-ion collisions play more important role in damping the
longitudinal as well as the transverse waves; the electron-electron
collisions,one has to take into account only if one is interested in
finite-wave-length distrubances.

The wave motion in a plasma, where the collisions are too
frequent and the applied magnetic field is strong, has been studied
by Oppenheim® and Liboff® using the models known as isotropic
Fokker-Planck model and the Liboff-Krook model respectively. Both
predicted an infinite number of Larmor resonances; in addition
Oppenheim's model described the diffusion process in velocity space.
in cold plasma regime and the long wave length magnetohydrodyramicz
regime, to lowest order, these two models gave the same results.

Following Comisar and Buti and Jain, we consider the effect of
an external uniform weak magnetic field on the plasma waves when the
collisions are not too frequent which allows us to neglect the mary-
body collisions. The magnetic field B does not affect the nature

of the collisions provided the Larmor radius Ri is much larger
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than the Debye length Ay i.e., if the plasma frequency CUp is much
larger than the electron-cyclotron frequency I, = eBo/mC.. For
such small magnetic fields, the radiation is also negligible; so the
Fokker-Planck co-efficients remain unaltered and we can use the
Fokker-Planck equation of Rosenbluth et al*. In this study, we take
the contributions of the frictional and the diffusion terms separate-
ly both for the electron-electron and the electron-ion collisions;
in the former case both contributions are of the same order but in
the latter case frictional contribution is much larger than that

of diffusion which is comparable to the contributions due to
electron~electron collisions. The magnetic field as well as the

collisions tend to stabilize the system under consideration.

II. GENERAL THEORY

Let us consider a fully ionized hot plasma in a uniform exter-
nal magnetic field; the ions in the plasma form a neutralizing back~
ground. In equilibrium both the electrons and the ions have

Maxwellian distribution of velocities i.e.,

~-3la v/ (avd
Foe = (a’v "'9“&'.) e ) (1)

and
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the equilibrium electron and ion distribution functions. For small

. perturbations, the linearized Fokker-Planck equation for electrons

is given by
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where § 1s the perturbed electron distribution function and B,

is
the externally applied magnetic field which we shall take along
the Z-axis. The collision term (%/at)c takes care of both
the electron-ion and the electron-electron collisions and is re-
presented by3’3
35) = _2 (<A> ) e (
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If we take the Fourier transforms in space and Laplace transforms

in time of all the perturbed quantities, then Eq. (3) goes over to

2y
35, 3 ,35‘, (12)
\rL YL = —_— N E S 0
3% JZ=| ( € )c.i 2 €520,

where §/ and Elf,_ are the Fourier-Laplace transforms of § and
E and g(ﬁ ,X)is the Fourier transform of the initial perturbation
in the distribution function. In writing Eq. (12), we have made
use of the cylindrical polar co-ordinates for the velocity i.e.,
N = (V_,,ltb,‘fz) . On taking the Fourier-Laplace transforms of

Maxwell equations, we obtain
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where € and B, correspond to initial perturbations in the electric
and the magnetic fields respectively.
Egs. (12) and (13), we get

On eliminating .E.'.'k from

. ¢ ]
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J
where A = Wp S/(S"-Q- c:‘k':) = (4w NeR /m)

For wave propagatlon along the directlon of the magnetic field

i.e., k kez on introducing the integrating factor exp [—- (Ss+ thz)
(+-+') [ ] Eq. (14) can be solved to give

+ . : )
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with ¥/ = (V., 4" Vz.) On substituting Eq. (2) in Eq. (15)
and on performing &' - integration, Eq. (15) reduces ta
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In order to simplify further, we shall take the Fourier trans-
forms in velocity space and if we define
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ITI. DISPERSION RELATION

Let us introduce the Coulomb mean free path L. = Oy [(NP)
and if we assume that the collisions are infrequent, then the
effective collision frequency Ve = So/L. is much smaller than Wp;
S0 to the lowest order in ~J. , Eq. (19) yields

") = kg [ 0F), ],
=%

where
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represents F in a collision free plasma. To obtain the dispersion

relation, we shall study Eq. (25) for the longitudinal and the
transverse oscillations separately.

(a) Longitudinal Oscillations.
Injthis case

&,
A_[%i k F(k.0,8)s %:—:)o-;.,] = £k & F(%k,0,5 (1)

DR
and
(A \& 0~> = 54\/ o T rahb' -+ 9 (& ’)
2,% r i A ) 5, X
(28)
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which when substituted in Eq. (25) immediately gives
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From Egs.(29) and (30), it is apparent that the dispersion relation
would be independent of flLand hence the longitudinal oscillations
are unaffected by the external magnetic field.

(b) Transverse Oscillations.

In this case ¥ (-k‘o.s’)as well as (3‘:/30;.)0..:0 are zero;

so Eq. (26) reduces to

Fo = Q(%&, c-)+ Ta (%) (’BF + L AF. )rﬂ

. (27)

’303 S:':.O /

which for the right-handed polarized wave further simplifies to give

4 =QK&’°‘:‘>+I“\€>(%*L¥§>TO . (28)

Now if we use Eq. (28) in Eq. (24), we get (see appendix),
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with AL =Q+ Wl-/M). @ 5 is obtained from @, by putting AN = &
and \JvP = - The kernel Ky in Eq. (29) consists of two parts
i.e.,\(3=|<';+ Kg” where the superscripts & and d refer to the
frictional and the diffusion parts respectively and are given by
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Once again K, is obtained by putting aL = 8, and Y.o = ¥, in K,

In writing Eq. (33), we have made use of the cylindricel co-ordinates

for g!\ i.e., ‘é:(a;,e,i,z’), Ty (%) isasgivenin

Eq. (22). From Eq. (25), (28) and (29), we get
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which can also be put into the form
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We notice that ¢ (%,S) depends only on the initial conditions of
the system and if we consider the case when & (%,S) is analytic

in the complex s-plane then to determine the current density of the
system, we have to take into account the zeros of Y (i;g)which are

given by

. 3

\_(aIz+L QI:L) v vz P (k0)
’30';‘ t)‘2 T=0 J=i /

where

P = Xali, i L L2k . (11)

The subscript 1 correspond to electron-ion collisions whereas 2
and 3 represent electron-electron collisions. Egq. (40) gives the

required dispersion relation.

IV. COLLISION CONTRIBUTION

On meking use of Eq. (35), from Eq. (41), we obtain

o - LA &L N iiwjl
Pr = v §4§, St exp [—lo~ Gl
3 RJI% TR 02 4 ( 2 )
| 2
00 v/ (au2
5 dt exp [_ /,0E - %f’. (kt+ gz)'l] Sa\& vV, € )
) (42)

[Faso[io-igy-«(s-e] [ s+ <

-~ 00 wq‘a'

L e &
LG Q/'. { !
4 T -4 (vig
Wt & gL &‘“ &) [ J

- 14 -




—

where A, = (S~"Q>/JL . In writing Eq. (42), we have already

substituted for T g (&) the following expression:

e —gadl v 2 K)
Ia(‘é&) = —% L€ e dt ex\bER.JLt'_ %“ <kt+‘c",-{_)].(u3)
J

(o]

this is easily obtained from Eq. (22) if we meke use of the follow-

ing relations:

ACaoS P c0 Lnd
= 2 In (k) e (L)
N=~-0
and”’
2
© P ou > - /(4"',‘)
j 44 e (by) = 2 . )

Jo and. Iv are the Bessel functions of the first kind and are

related by7

N2

I, (iz) = e Tn (2) . | (46)

On putting (47_43') = B in Eq. (42) and on performing V, and <

integration, after some simplifications we obtain
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in simplifying use has been made of the recurrence relation, namely
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The & -integration can be easily performed by writing Q/ﬁ‘l) as

VWA

e} -JC .
jo dvv e B and on further making the assumption that ¢ = k'l’o/(s-wl))

is much less than unity, the other integrations can be performed

to give
p2 2 A(s-ia)* g
3 = . (49)

'5 "IT\Ia, \903

The other constituents of ©; can be evaluated by proceed-
d
ing on the lines similar to the evaluation of Pgz and we final-

ly cbtain

Ay
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o= A0N  (sinf? (1-12 25%) (51)
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PE = A (s-tay? (-2 s?) (53)
3"““3.-\9°3 S
and
P;l = 2N (s_un,)""" g ) (54)
5w vl

It is interesting to note that though the frictional term is al-
ways much greater than the corresponding diffusion term but as far
as the electron-electron contribution (F%L4'FE[) is concerned, two
contributions are of the same order. The total electron-ion and

the electron-electron collisions contributions are

_ 2,
P, — _ QN S-{n (\—- 28 (55)
T EmRul E-en) ) ’
and
P X = - LAY S—'\n’—a %a‘ '
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V. DISCUSSION
If we substitute Egs. (43), (55) and (56) in Eq. (40), we get

the dispersion relation in the form

| = — CO&S (S—t;ﬂ.‘)—‘ \— Sa'_.‘_ 324— \)C X
(5%+ c2k?) mY2 (s-lw)

x {&;"’ Q_ag'z) _ 3,5_-_ g&}] , (57)

which on putting S=—(Ccd+“f') , Y=Y+ for |¥|<< [W] gives

the following relations:

COQ’ = Ca'k,&'_p CQ&ECO 4 ‘k"wcz + 2 kl‘ Wali ] (58)
+w) (Ca+gr)2 +n)4d

2 2 2 =1
e T ihad s I
3@ame L+ay] eyt e ()

and

2, B
o o Ve St P S A 3] o
SR @y @-\-a)‘i LW+ ) @+

and the electron-electron(Ye)parts of « vanish. Eg. (58) which
gives the characteristic frequency is the same as obtained by
Bernsteinl; so we shall not discuss it here. Moreover, when -0,
Eqs.(38) - (60) reduce to the ones given in ref.a(B}, On replacing
N by (- JL) , we get the corresponding results for the left-harded
polarized wave.

It is worth pointing out that the results obtained here are
valid only when the magnetic field is weak; under such circum-

stances, Egs. (59) and (60) can be rewritten as (to lowest order in Ju)
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& 2, .
= Mo b k [\_._lﬁ.igx_ci (62)
5TV & € 2 w3

where the upper and the lower signs correspond to the right-handed
and the left-handed polarized waves respectively and ¢J is given

by Eq. (58). The requirement, that Q{L/LJF) Eg much less than unity,
demands that for densities of the order of 10 particles per cm3,
the magnetic field ®, be much less than 3x10° gauss; this is plau-

sible in many physical systems of interest.

VI. CONCLUSIONS

The two-body collisions have a stabilizing effect on the high-
Trequency plasma waves when the wave propagation is along the direc-
tion of the uniform external magnetic field. However, the magnetic
field itself, though stabilizes the left-handed polarized wave, Las
a tendercy to destabilize the right-handed polarized wave. To the
lowest order in collision frequency the electron-ion collisions
play a domirant role in plasma diffusion; however, the electror-
electron collisions are important for disturbances of Tirnite wave
lengths.

In strong magretic field (\11_)(,._)',), the collisions take place
in a somewhat different manner and the theory outlined here does rot
hold gocd and needs modification. In fact the Fokker-Planck co-2ffi-
cients will have to be reevaluated. This study is under irvestigatior

and will be reported shortly.
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APPENDTX
From Eq. (24), we have

; v [P -
ot | \f\. o0 c

Let us consider first the frictional contribution; this is given by

-.F —ta=y (P - -
OF! - de‘ e Lg;"& d'e *($-
9&: Vi )

On substituting forg A >ol from Eq. (7) ard on using ttre relatioca
WAA,

jdv Foi &Y.) eut%ly‘ — V2

l

Bg. (A2) can be written as

. —ilg— _ — !
(’a ) _ LN L jd:{h e ANTRNA jd‘t“e < (b 43)
ot Jci 2N TR

2 ' S (e _ 2V
2y [‘a () Jog By e (e T)] .
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Now if we use Eq. (16) to zeroth order for 4’ (}L’) for the right-

handed polarized wave, Eq. (A3%) after some simplificatiors goes

cver to
’ oF\F ~fnraun (ay v o "5
¢ ~IS€’ - "“_—_:z' [>9 4
« < F= Fo L\‘TT'&'JLUQ

* (P (R -OF i

S d’ fee 3’\:) < ¢ )J dt < e

! oo o

S d%  exp (ceq.i' ~ 5‘@3) RF_ , ( 2F )

e * % oY/ T=a (AL )

where Q"g is defined by Eq. (30). Eq. (AL) can ve immediately rc-
writter in the form of Eq. (29). Proceeding on the similar i\ines,
the other elements of (3? ’/ab) cjcar be easily evaluated ard the

results giver ir the text follow.
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