PROGRAMS FOR COMPUTING EQUILIBRIUM THERMODYNAMIC PROPERTIES OF GASES

by Harry E. Bailey

Ames Research Center
Moffett Field, Calif.
PROGRAMS FOR COMPUTING EQUILIBRIUM THERMODYNAMIC

PROPERTIES OF GASES

By Harry E. Bailey

Ames Research Center
Moffett Field, Calif.
PROGRAMS FOR COMPUTING EQUILIBRIUM THERMODYNAMIC PROPERTIES OF GASES

By Harry E. Bailey
Ames Research Center

SUMMARY

This report presents a series of subroutines, written in FORTRAN IV, for calculating the equilibrium thermodynamic properties of any mixture of reacting diatomic gases if the temperature, density, and molar concentrations of the species are given. One triatomic gas, carbon dioxide, may also be included in the mixture. Two additional subroutines permit the calculation of the molar concentrations of the species if the gas mixture is air. A sample main program is included which uses all these subroutines to compute the equilibrium composition and thermodynamic properties of air for a given density over a range of temperatures.

INTRODUCTION

Solutions to problems involving the flow of a chemically reacting gas require the computation of the equilibrium thermodynamic properties of the gas mixtures over wide ranges of temperature and density. These properties are available in tabular form for air (refs. 1, 2, and 3), in graphical form for carbon dioxide (ref. 4), and for three nitrogen carbon dioxide mixtures (ref. 5). However, neither the tabular nor graphical form is convenient for use in electronic machine calculations without elaborate and tedious curve fitting of the data. Therefore, the subroutines presented here should prove useful for the solution of many problems in the flow of a chemically reacting gas.

Five different subroutines are presented in this report. In addition, a main program designed to compute the equilibrium thermodynamic properties of air is presented to illustrate the use of the five subroutines. Two of the subroutines, SPECIE and ENTH, can be used to obtain the pressure, enthalpy, specific heat at constant pressure (with frozen composition), entropy, gas constant, and equilibrium constants of the components of a gas mixture. The various chemical and physical constants needed as input by subroutine SPECIE may be obtained from references 6 and 7. A third subroutine, RATCON, gives the reaction rates for eight chemical reactions in air. This subroutine would require modification if some other gas mixture were used. Two additional subroutines, GUESS and ITERA, calculate the equilibrium molar concentrations of each species for air at a given temperature and density. Although these subroutines would require major modification for any mixture other than air, they do provide a suitable basis from which similar programs for other mixtures could be written easily.
Each individual species is assumed to behave as an ideal gas. The thermodynamic properties of the diatomic species are approximated by the harmonic-oscillator rigid-rotator model with rotational and vibrational constants appropriate to the lowest electronic state. Computational results are given for two air models. Model A contains the species \(\text{N}_2, \text{O}_2, \text{N}, \text{O}, \text{NO}, \text{NO}^+, \text{O}^+, \text{N}^+, \) and \(\text{e}^- \). Model B contains the same nine species as model A plus two additional species, \(\text{O}^{2+} \) and \(\text{N}^{2+} \).

SYMBOLS

- \(c_p \): specific heat at constant pressure (with composition frozen)
- \(c_{pi} \): specific heat at constant pressure for the \(i \)th species
- \(E_n \): energy of the \(n \)th energy level
- \(F_i \): free energy of the \(i \)th species
- \(g_n \): degeneracy of the \(n \)th energy level
- \(H \): total enthalpy of the mixture
- \(H_i \): enthalpy of the \(i \)th species
- \(H_{0i} \): enthalpy of formation of the \(i \)th species
- \(K_i \): equilibrium constant for the \(i \)th reaction
- \(M_i \): molecular weight of the \(i \)th species
- \(n_i \): number of atoms in the \(i \)th species
- \(P \): total pressure of the mixture
- \(P_0 \): standard pressure of one atmosphere
- \(P_i \): partial pressure of the \(i \)th species
- \(R \): universal gas constant
- \(S \): total entropy of the mixture
- \(S_i \): entropy of the \(i \)th species
- \(T \): temperature, \(^o \text{K} \)
- \(T_r \): characteristic rotational temperature
- \(T_v \): characteristic vibrational temperature
ZN mass concentration of nitrogen atoms in cold mixture

ZO mass concentration of oxygen atoms in cold mixture

β₁ sum of β₁,j values over the index j

β₁,j difference of the stoichiometric coefficients of the jth species in the ith reaction

γ₁ concentration of the ith species in moles/gm

SAMPLE MAIN PROGRAM

This is a typical program (see appendix A) which uses all the following subroutines to compute the thermodynamic properties of equilibrium air. It is intended as a guide for the use of the subroutines SPECIES, ENTH, RATCON, GUESS, and ITERA. It by no means exhausts the possibilities for their use.

The sample program requires an input ΔT (DELTA), a density (RHO), and nine species concentrations for the cold mixture of nitrogen and oxygen (G(N)). The program will then call the appropriate subroutines for the computation of the thermodynamic properties pressure, gas constant, enthalpy, entropy, specific heat at constant pressure, equilibrium constants, reaction rate constants (as defined under subroutine RATCON), and the species concentrations. These computations will be performed at the given density for 25 temperatures starting at ΔT and ending at 25 ΔT. A sample output is given for air at a density of 0.01288 gm/cm³ and at 4 temperatures from 1000° K to 4000° K.

SUBROUTINE SPECIES

This subroutine (see appendix B) will compute the pressure (P),¹ enthalpy (H(21)), specific heat at constant pressure (with composition frozen) (CP(21)), entropy (FE(21)), equilibrium constants (BK(J)), reaction rate constants (AK(J)), and the gas constant (GCONST) for a given temperature (T), density (R), and the molar concentrations (GA(J)) of each species. On the first entry to the subroutine, all necessary chemical and physical constants are read from cards and stored in the program. Provision has been made for the computation of 20 species and 40 reactions.

This subroutine uses the following equations to compute the thermodynamic properties of the mixture from the thermodynamic properties of the components.

¹Characters in parentheses are those used in the FORTRAN listing in the appendixes. There is an unavoidable inconsistency between these characters and those defined under Symbols.
The enthalpy is given by

\[
\frac{H}{RT} = \sum \gamma_i \frac{H_i}{RT}
\]

(1)

The specific heat at constant pressure (with frozen composition) is given by

\[
c_p = \sum \gamma_i c_{p_i}
\]

(2)

The entropy of the mixture is given by

\[
\frac{S}{R} = \sum \gamma_i \left[\frac{H_i}{RT} - \frac{F_i}{RT} - \ln \frac{P_i}{P_0} \right]
\]

(3)

The total pressure of the mixture is

\[
P = \rho RT \sum \gamma_i
\]

(4)

The equilibrium constant for each reaction is

\[
\ln K_i = -\sum \beta_{ij} \frac{F_j}{RT} - \beta_i \ln(82.05581 T)
\]

(5)

The partial pressure of each species is computed from

\[
P_i = \frac{\gamma_i}{\sum \gamma_i} P
\]

(6)

The entropy of each species is computed in this subroutine as

\[
S_i = H_i - F_i
\]

(7)

The data that must be input to this subroutine are the number of reactions (IL), the number of species (JL), the stoichiometric coefficients for each reaction (B(I,J)), the number of electronic energy levels for each species (NL(J)), the energy (E(J,N)) and degeneracy (G(J,N)) of each of these electronic energy levels, the number of atoms in each molecule (EN(J)), the vibrational (TV(J)) and rotational (TR) temperatures of each diatomic species, the heat of formation (ENTA(J)) of each species, the molecular weight (EMWT(J)) of each species, and finally the percent by volume (GX(J)) of each species in the cold mixture. All this information is stored in the subroutine and used on all subsequent entries for the computation of the thermodynamic properties.

Each time the subroutine is called it must be given the temperature (T), in degrees Kelvin, the density (R) in gm/cm³, and the mass concentrations (GA(I)), in moles/gm. The subroutine will then compute all the quantities.
listed in the first paragraph of this section. In addition, the enthalpy
\((H(J)) \), entropy \((F(E(J)) \), and specific heat at constant pressure \((C(P(J)) \) for
each individual species \((J = 1, JL) \) will be computed.

Subroutine SPECIE uses two subroutines, ENTH and RATCON, which are
discussed in subsequent sections.

Sample input data required by subroutine SPECIE are shown in appendix F.
The input data are shown for model A and model B.

SUBROUTINE ENTH

This subroutine (see appendix C) will compute the enthalpy \((H) \), specific
heat at constant pressure \((C(P) \), and free energy \((F(E) \) of a given species for
given temperature \((T(X)) \). For each species, this subroutine must be given
the heat of formation \((E(NTAX)) \), the number of atoms in one molecule of the
species \((E(NJX)) \), the vibrational temperature \((T(VX)) \), the number of electronic
states \((N(LX)) \), as well as the energy \((E(X)) \) and degeneracy \((G(X)) \) of each elec-
tronic state and a constant \((E(MW(TX)) \) which depends on the molecular weight
of the species and the rotational temperature of the species.

The computations performed by this subroutine are based on the harmonic-
oscillator rigid-rotator model for all diatomic molecules. It is also pos-
sible to compute the thermodynamic functions for one triatomic molecule,
carbon dioxide. In this computation it is assumed that there is only a
ground electronic state for the carbon dioxide molecules.

The equations used by this subroutine for the computation of the
thermodynamic functions of each individual species are as follows. The free
energy is computed from

\[
\frac{F_i}{RT} = -\ln \sum g_n e^{-E_n/T} - [(n_i - 1) + 2.5] \ln T - 1.5 \ln M_i + 3.6649516
\]
\[+ (n_i - 1) \ln (1 - e^{-TV/T}) + (n_i - 1) \ln T_r + \frac{H_{0i}}{RT} \]

(8)

The enthalpy of each species is

\[
\frac{H_i}{RT} = [(n_i - 1) + 2.5] + \frac{1}{T} \sum g_n e^{-E_n/T} \frac{E_n}{T} - \frac{(n_i - 1) T_V}{T(e^{TV/T} - 1)} + \frac{H_{0i}}{RT} \]

(9)
The specific heat at constant pressure (with frozen composition) is

\[c_{p1} = [(n_1 - 1) + 2.5] + (n_1 - 1) \left(\frac{T_v}{T} \right)^2 \frac{e^{T_v/T}}{(e^{T_v/T} - 1)^2} \]

\[+ \frac{1}{T^2} \frac{\left(\sum g_n e^{-E_n/T} \right) \left(\sum g_n E_n e^{-E_n/T} \right) - \left(\sum g_n E_n e^{-E_n/T} \right)^2}{\left(\sum g_n e^{-E_n/T} \right)^2} \]

(10)

SUBROUTINE RATCON

This subroutine (see appendix D) will compute the rate constants for a given temperature according to the formulas and constants of references 8 and 9 for the reactions listed below.

\[\text{O}_2 + \text{O}_2 \rightleftharpoons \text{2O} + \text{O}_2 \quad K_F \]
\[\text{N}_2 + \text{N}_2 \rightleftharpoons \text{2N} + \text{N}_2 \quad K_F \]
\[\text{NO} + \text{M} \rightleftharpoons \text{N} + \text{O} + \text{M} \quad K_F \]
\[\text{N} + \text{O}_2 \rightleftharpoons \text{NO} + \text{O} \quad K_F \]
\[\text{O} + \text{N}_2 \rightleftharpoons \text{NO} + \text{N} \quad K_F \]
\[\text{O} + \text{O} \rightleftharpoons \text{O}^+ + \text{e}^- \quad K_B \]
\[\text{N} + \text{N} \rightleftharpoons \text{N}^+ + \text{e}^- \quad K_B \]
\[\text{N} + \text{O} \rightleftharpoons \text{NO}^+ + \text{e}^- \quad K_B \]

The symbol \(K_F \) after a reaction indicates the forward rate constant; \(K_B \) indicates the backward rate constant.

This routine requires only the temperature as input. It is a simple matter to alter this subroutine to give the rate constants for any reaction desired.

SUBROUTINES GUESS AND ITERA

For any mixture of nitrogen and oxygen, two additional subroutines (see appendix E) are available that permit the computation of the equilibrium species concentrations at a given temperature and density. These two
subroutines require as input the temperature \((T)\), the density \((\rho)\), the atom concentrations of the cold mixture \((Z_N, Z_O)\), and eight equilibrium constants \((E_K(I))\).

The first subroutine \textsc{guess} estimates the relative magnitude of the various species concentrations. The second subroutine \textsc{itera} then refines these guessed values until they satisfy the three conservation equations, that is, conservation of oxygen atoms, nitrogen atoms, and charge, as well as six equilibrium equations. These two subroutines require a block of common storage called \texttt{/COM4/} which contains arrays for 20 equilibrium constants \((E_K(20))\), 20 mass concentrations \((B(20))\), 20 first guesses \((C(20))\) of the mass concentrations, the density \((\rho)\), and the cold mass concentrations of nitrogen atoms \((Z_N)\) and oxygen atoms \((Z_O)\).

The equations that must be solved by subroutine \textsc{itera} are listed below.

\[
Z_O = \gamma_0 + 2\gamma_0^2 + \gamma_0^N + \gamma_{NO} + \gamma_{O^+} + \gamma_{O^+} \tag{19}
\]
\[
Z_N = \gamma_0^N + 2\gamma_{N_2} + \gamma_{NO} + \gamma_{NO} + \gamma_{N^+} \tag{20}
\]
\[
\gamma_{e^-} = \gamma_{NO} + \gamma_O + \gamma_{N^+} \tag{21}
\]
\[
K_1 = \frac{\rho \gamma_0^2}{\gamma_0^2} \tag{22}
\]
\[
K_2 = \frac{\rho \gamma_N^2}{\gamma_{N_2}} \tag{23}
\]
\[
K_3 = \frac{\rho \gamma_0 \gamma_N}{\gamma_{NO}} \tag{24}
\]
\[
K_8 = \frac{\rho \gamma_{e^-} \gamma_{O^+}}{\gamma_0} \tag{25}
\]
\[
K_7 = \frac{\rho \gamma_{e^-} \gamma_{N^+}}{\gamma_N} \tag{26}
\]
\[
K_8 = \frac{\gamma_{e^-} \gamma_{NO}^+}{\gamma_0 \gamma_N} \tag{27}
\]

The convergence of the iteration process used in subroutine \textsc{itera} requires that equation (19) be solved for the largest of \(\gamma_0, \gamma_0^2,\) or \(\gamma_{O^+}\), and that equation (20) be solved for the largest of \(\gamma_{N_2}, \gamma_{NO},\) or \(\gamma_{N^+}\). The remaining \(\gamma_i\) values are then found from equations (22) through (27). The value of \(\gamma_{e^-}\) is always found from equation (21). The path taken in subroutine
ITERA depends therefore on the relative magnitudes of γ_0, γ_{O_2}, γ_{O^+} and of γ_{N_2}, γ_{N_2}, and γ_{N^+}. The function of subroutine GUESS is to provide an initial guess of these relative magnitudes. This initial guess is based on the temperature and density of the mixture and on the relative values of the equilibrium constants K_1 and K_6 for oxygen and K_2 and K_7 for nitrogen.

Based on these guessed values, subroutine ITERA then computes the species concentrations by iterating equations (19) through (27) until all the equations are satisfied. At each step in the iteration the newest value of each concentration is computed as the average between the value obtained on the previous iteration and the value computed on the present iteration. The iteration is terminated when the change in the values for two successive iterations is less than a specified amount (10^{-7} for model A and 10^{-5} for model B) and when all the equations are satisfied to within a specified amount (5×10^{-8} for model A and 10^{-6} for model B).

Appendix E gives two listings for subroutine ITERA and two listings for subroutine GUESS. In each case one listing is for model A (contains no O$^{++}$ or N$^{++}$) and one listing is for model B (contains O$^{++}$ and N$^{++}$).

POSSIBLE USES OF THE PROGRAMS

A series of programs for computing the thermodynamic properties of a variety of gases is presented. In addition, two of the programs permit the computation of the equilibrium species concentrations of air or any other mixture of nitrogen and oxygen, as well as the thermodynamic properties of the mixture.

The programs are presented in a form which can be modified easily to suit the user's needs. For instance, the thermodynamic properties of any diatomic or monatomic gas may be obtained simply by altering the input data to subroutine SPECIE. Subroutine RATCON can be easily altered to give any rate constant desired. Subroutines GUESS and ITERA may be rewritten to give the equilibrium concentrations of gas mixtures other than air. All the subroutines as presented may be used in a new main program to compute the equilibrium flow properties behind a normal shock wave.

DISCUSSION OF RESULTS

The main program described in this report has been used to compute the thermodynamic properties of air. Two different models have been used. In model A the species assumed to be present are N_2, O_2, NO, N, O, NO^+, N^+, O^+, and e^-. Model B contains N^{++} and O^{++} in addition to the species in model A. The values obtained are compared to the values presented in references 2 and 3 (table I) and to the values presented in reference 1 (table II).
The dimensionless enthalpy, \(H/RT \), computed for model A agrees with the values presented in reference 2 to within 1 percent except at 15,000° K, where the error rises to 1.39 percent at 100 times standard density and to 8.46 percent at 10^{-7} times standard density. The dimensionless entropy, \(S/R \), computed for model A, agrees with that computed in reference 2 to within 0.5 percent except at 15,000° K and 10^{-7} times standard density where the error is 2.54 percent. The pressure (in atmospheres), for model A, agrees with that computed in reference 2 to within 3 percent except at 15,000° K and 10^{-7} times standard density where the error is 3.27 percent.

The increase in error at 15,000° K for enthalpy, entropy, and pressure is attributed to inadequacies in model A. The neglect of species \(N^{++} \) and \(O^{++} \) begins to be felt at 15,000° K. That this is indeed the case may be seen by comparing the results computed for model B to the results of reference 2. At 15,000° K and \(\rho/\rho_0 = 10^{-7} \), the error in the dimensionless enthalpy drops from 8.46 to 0.13 percent, the error in dimensionless entropy drops from 2.54 to 0.25 percent, and the error in pressure drops from 3.27 to 0.28 percent.

The highest temperature available in references 2 and 3 is 15,000° K. Therefore, for comparisons at higher temperatures, it is necessary to use the results of reference 1. The comparison between values in reference 1 and the present calculations is presented in table II. Again, comparison is made with both the model A and model B air of the present report. At 18,000° K and 25,000° K and at \(\rho/\rho_0 = 10^{-8} \), the errors in model A are seen to be enormous. However, for model B, which includes \(N^{++} \) and \(O^{++} \), the errors at these points are drastically reduced. In fact, they become comparable to the errors in the low temperature region.

CONCLUSIONS

A series of subroutines written in FORTRAN IV is presented. These programs may be used to compute the thermodynamic properties at a given density and temperature of any diatomic gas plus the one triatomic gas, \(CO_2 \), if the molar concentrations are given. In the special case of air, additional subroutines are included that permit the computation of the molar concentrations themselves. The thermodynamic properties of two models for air are compared to the results obtained by other investigators.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Dec. 28, 1966
129-01-08-20
APPENDIX A

$IBFTC MAIN NCREF
CPMAIN CHECKOUT BAILEY
CDPKN/CMDA/EK(20),B(20),C(20),RHD,ZN,ZO
DIMENSION AK(20),BK(20),HI(11),CP(21),S(21),G(21)
READ(5,12) NMAX
12 FORMAT(13I)
READ(5,2) DELTA
2 FORMAT(15.6)
REAC(5.4) (GIN,N=1,9)
4 FORMAT(5F15.6)
ZN=2.*G(5)
ZC=2.*C(4)
1 READ(5,2) RHC
TEMP=0.
13 FORMAT(12H TEMPERATURE/79H DENSITY,PRESSURE,GAS CONSTANT,ENTHALPY,
ENTROPY,CONSTANT PRESSURE SPECIFIC HEAT/9H ENTHALPY/9H ENTRPY/32H
2 CONSTANT PRESSURE SPECIFIC HEAT/21H EQUILIBRUM CONSTANT/4H REAC
TION RATE/19H MASS CONCENTRATION/34H G,N,E-,O2,N2,NO,NO+,O+,N+,O++
4,N++) DO 3 N=1,NMAX
TEMP=TEMP+DELTA
CALL SPECIES(TEMP,RHD,PRSS,G,H,CP,S,AK,BK,GCONST)
DO 8 N=1,11
IF(BKN(N)=0.1) 9,9,1G
9 EK(N)=10.*B(K(N))
GO TO 8
10 EK(N)=1.E+36
8 CONTINUE
CALL GUESS
CALL ITERT
DO 11 N=1,11
11 G(N)=B(K(N))
CALL SPECIES(TEMP,RHD,PRSS,G,H,CP,S,AK,BK,GCONST)
WRITE(6,5) TEMP,RHD,PRSS,GCONST,H(21),S(21),CP(21)
5 FORMAT(1HO,E15.6/10X,E15.6)
WRITE(6,6) (GIN,N=1,11)
WRITE(6,6) (SPH,N=1,11)
WRITE(6,6) (CPH,N=1,11)
WRITE(6,6) (AKH,N=1,10)
WRITE(6,6) (GKH,N=1,11)
6 FORMAT(1H ,11H11.4)
3 CONTINUE
WRITE(6,7)
7 FORMAT(1HO,10HEAD OF RUN)
GC TC 1
END
APPENDIX B

SUBROUTINE SPECIE(T,P,G,CP,FE,AK,BK,GCONST)
DIMENSION G(20,10),E(20,10),ENJ(20),TV(20),ENTA(20),EMT(20)
DIMENSION EPX(20),NL(20),BT(40),BT(40,20),EX(20),GX(20)
DIMENSION GA(2),AK(2),BK(2),CP(2),H(2),FE(2)
IF (H77=7) 2,3,2
2 NT7=7
C=4342948
READ(5,4) IL,JL
4 FORMAT(2I3)
DC 5 I=1,1L
5 READ(5,6) (B(I,0),J=1,1L)
6 FORMAT(20F4.1)
DC 7 I=1,1L
BT(I)=0.
DO 7 J=1,1L
BT(I)=BT(I)+B(1,J)
DC 8 J=1,1L
READ(5,4) NL(I)
NLL=NL(I)
DC 9 N=1,1L
READ(5,10) (J,J),E(J,J)
10 FORMAT(5F15.6)
9 E(J,J)=1.4387868*E(J,J)
READ(5,10) ENJ(1),TV(1),ENTA(1),EMT(1),TR
EMX(J)=EMT(J)
ENTA(J)=ENTA(J)/1.9647
IF (EN(J)=2.5) 16,16,17
17 EMT(1)=1.5*ALOG(EMT(1))-3.6645516-ALOGTR
GO TO 8
16 EMT(1)=1.5*ALOG(EMT(1))-3.6645516-(EN(J)-1.)*ALOGTR
8 CONTINUE
READ(5,10) GX(2),N=1,1L
CP=1.7,
DC 10 N=1,1L
19 EMW=EMW+GA(N)*EMX(N)
TSTD=273.15
PSTD=1.01325E+06
3 TX=T
RX=RX+GA(21)*G
DC 1 N=1,1L
1 GA(21)=GA(21)+GA(N)
GCONST=8.3143E+04*G
PX=RX/T*GCONST
P=PX
DO 11 J=1,1L
NTCP=NL(J)
DO 12 N=1,1L
GX(N)=GT(J,N)
14 ASUM=ASUM+B(1,J)*FE(J)
13 BK(I)=D*I-ASUM ALG(I) B(1,1)
H(21)=0.
CP(21)=0.
DO 15 N=1,1L
CP(21)+CP(21)+CP(N)*G(N)
15 H(21)=H(21)+G(N)*H(N)
CP(21)=CP(21)/G(21)
H(21)=H(21)+TX*8.3143E+07
DC 18 N=1,1L
18 FE(N)=H(N)-FE(N)
FE(21)=0.
DO 20 N=1,1L
IF (G(N)) 20,20,21
PPX=PPX+G(N)/G(21)
PPX=PPX/PSTD
FE(21)=FE(21)(N)(G(N)-ALOG(PPX))
20 CONTINUE
FE(21)+FE(21)+8.3143E+07
CALL RACCCN(AK,T)
RETURN
END
APPENDIX C

SUBFC TC1210 NOREF
SUBROUTINE ENTHI(TX,ENTAX,ENJX,TVX,EMWTX,EX,GX,NLX,N,C,FP,FE)
DIMENSION EX(20),GX(20)
NR=IFIX(ENJX)
GO TO (1-0,2,3,4)
1 SUM1=0.0,
SUM2=0.0
SUM3=0.0.
DO 4 N=N1,NLX
XX=GX(N)*EXP(-EX(N)/TX)
SUM1=SUM1+XX
SUM2=SUM2+XX*EX(N)
4 SUM3=SUM3+EX(N)+EX(N)*XX
FE=ALOG(SUM1)-2.5*ALOG(TX)-EMWTX+ENTAX/TX
H=2.5+SUM2/(TX*SUM1)+ENTAX/TX
CP=2.5*(SUM1+SUM3-SUM2**2)/(TX*SUM1)**2
GO TO 5
2 SUM1=0.0,
SUM2=0.0,
SUM3=0.0.
DO 1 M=1,NLX
XX=GX(M)*EXP(-EX(M)/TX)
SUM1=SUM1+XX
SUM2=SUM2+XX*EX(M)
6 SUM3=SUM3+EX(M)+EX(M)*XX
FE=ALOG(SUM1)-3.5*ALOG(TX)-EMWTX+ENTAX/TX
H=3.5+SUM2/(TX*SUM1)+ENTAX/TX
CP=3.5*(SUM1+SUM3-SUM2**2)/(TX*SUM1)**2
IF(TVX/TX-88.01 .) TL7,0
VIBH=0.
VIBC=0.
R2=0.
GO TO 9
7 A1=EXP(TVX/TX)
R2=ALOG1.1-EXP(-TVX/TX)
A1=A1-1.
VIBH=(TVX/TX)/A1
VIBC=(TVX/TX)**2
VIBC=(VIBC/A1)*(A1/A1)
9 CP=CP+VIBC
H=H+VIBH
FE=FE*R2
GO TO 5
3 VI81=1932.1/TX
VIB3=960.1/TX
VIB3=930.0/TX
VIB3=1.1/(1.-EXP(-VIB1))
VIB2=1.1/(1.-EXP(-VIB2))
VIB3=1.1/(1.-EXP(-VIB3))
VIB1C=VIB1**2*EXP(VIB1)/(EXP(VIB1)-1.)**2
VIB2C=VIB2**2*EXP(VIB2)/(EXP(VIB2)-1.)**2
VIB3C=VIB3**2*EXP(VIB3)/(EXP(VIB3)-1.)**2
VIB1=VIB1/(EXP(VIB1)-1.)
VIB2=VIB2/(EXP(VIB2)-1.)
VIB3=VIB3/(EXP(VIB3)-1.)
H=3.5*VIB1**2.*VIB2**2*VIB3**2-EMWTX+ENTAX/TX
FE=3.5*ALOG(TX)-ALOG(VIB11*VIB22+VIB22+VIB33)-EMWTX+ENTAX/TX
CP=3.5*VIB1C+2.*VIB2C+VIB3C
5 RETURN
END
SUBROUTINE RATCON(AK,TX)
DIMENSION AK(10)
T15=TX*SQRT(TX)
AK(1)=3.6E+21*EXP(-59380./TX)/T15
AK(2)=1.5E+20/T15
AK(3)=5.18E+21*EXP(-75490./TX)/T15
AK(4)=1.0E+12*EXP(-3120./TX)*SQRT(TX)
AK(5)=5.0E+13*EXP(-30016./TX)
AK(6)=6.0E+24/(T15*TX)
AK(7)=AK(6)
AK(8)=1.0E+21/T15
RETURN
END
APPENDIX E

MODEL A

$1BF7C TC1207 NOREF
SUBROUTINE GUESS
COMMON/COM4/EX(2C), B(20), C(20), RHO, ZN, ZG
CL=5*EK(1)/RHC
IF(C1-100.) 9,9,10
9 B(11)=C1+SQR(T(C1+C1+4.*C1+C1+2C)
GO TO 6
10 B(1)=2.*ZC+(1.-ZC/C1)
6 B(1)=B(1)/2.
B(4)=$Z-B(11)/2.
IF(B(4)) 1,1,1
1 B(4)=0.
2 C2=5*EK(2)/RHC
IF(C2-100.) 11,1,1,12
11 B(2)=C2+SQR(T(C2+C2+4.*C2+ZG)
GO TO 8
12 B(2)=2.*ZG+(1.-ZG/C2)
8 B(2)=B(2)/2.
B(5)=ZG-B(2)/2.
IF(B(5)) 3,3,4
3 B(5)=0.
4 B(6)=B(1)+B(2)*RHO/EX(3)
B(3)=SQR(B(1)+B(2)+EK(8))
B3=SQR(B(2)+EK(7)/RHC)
IF(B3-B(3)) 5,5,7
5 ZG=0.9*ZN
B(3)=AMIN(B3,2CC)
B(8)=25*B(3)
B(5)=0.75*B(3)
GO TO 13
5 B(7)=B(3)
13 RETURN
END

MODEL B

$1BF7C GUESS NOREF
SUBROUTINE GUESS
COMMON/COM4/EX(2D), B(20), C(20), RHO, ZN, ZG
CL=5*EK(1)/RHC
IF(C1-100.) 9,9,10
9 B(11)=C1+SQR(T(C1+C1+4.*C1+C1+2C)
GO TO 6
10 B(1)=2.*ZC+(1.-ZC/C1)
6 B(1)=B(1)/2.
B(4)=$Z-B(11)/2.
IF(B(4)) 1,1,1
1 B(4)=0.
2 C2=5*EK(2)/RHC
IF(C2-100.) 11,1,1,12
11 B(2)=C2+SQR(T(C2+C2+4.*C2+ZG)
GO TO 8
12 B(2)=2.*ZG+(1.-ZG/C2)
8 B(2)=B(2)/2.
B(5)=ZG-B(2)/2.
IF(B(5)) 3,3,4
3 B(5)=0.
4 B(6)=B(1)+B(2)*RHO/EX(3)
B(3)=SQR(B(1)+B(2)+EK(8))
B3=SQR(B(2)+EK(7)/RHC)
IF(B3-B(3)) 5,5,7
7 ZG=0.9*ZN
B(3)=AMIN(B3,2CC)
B(4)=0.
B(5)=0.
B(1)=0.
B(2)=0.
IF(EK(10)/(B(3)+RHO)-1.) 14,14,15
15 B(11)=.75*B(3)
B(9)=.25*B(11)
GO TO 16
14 B(9)=.75*B(3)
B(11)=.25*B(9)
16 IF(EK(9)/(B(3)+RHO)-1.) 17,17,18
17 B(10)=.25*B(3)
B(8)=.25*B(10)
GO TO 13
17 B(8)=.25*B(3)
B(10)=.25*B(8)
GO TO 13
5 B(7)=B(3)
B(8)=0.
B(9)=B(8)
B(10)=B(9)
B(11)=B(10)
13 RETURN
END
SUBROUTINE ITERA
COMMON/COM/EK,120,8120,14,90,ZN,20
DATA DEL1,DEL2/1,E-O/2,E-0/8,
CO 9 N=1,20
IF(B4)-B11)+1,1+2
B(4)+B(4)+B(4))/2.
B(4)+B(4)+B(4))/1.
B(1)+B(1)+B(1))/2.
B(1)+B(1)+B(1))/1.
B(1)+B(1)+B(1))/1.
B(1)+B(1)+B(1))/2.
B(1)+B(1()+B(1))/2.
B(1)+B(1)+B(1))/2.
APPENDIX F

MODEL A

<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>9</th>
<th>IL AND JL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>1</th>
<th>OXYGEN ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>0.0</td>
<td>OXYGEN ATOM</td>
</tr>
<tr>
<td>5.0</td>
<td>0.0</td>
<td>OXYGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>159.0</td>
<td>OXYGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>227.0</td>
<td>OXYGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>15988.0</td>
<td>OXYGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>33792.0</td>
<td>OXYGEN ATOM</td>
</tr>
</tbody>
</table>

| 1.0| 1.0| 58980.0| 16000 | 1.0 | C |

<table>
<thead>
<tr>
<th>5</th>
<th>2</th>
<th>NITROGEN ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>2.0</td>
<td>28840.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>11259.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>NITROGEN ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>2.0</td>
<td>2726.0</td>
<td>32000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>NITROGEN ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>3.0</td>
<td>50256.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>6000.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>2.0</td>
<td>3374.0</td>
<td>28014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>NITROGEN ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>2.0</td>
<td>121.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>2.0</td>
<td>4396.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>65918.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>2.0</td>
<td>2719.0</td>
<td>21477.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>7</th>
<th>NITROGEN ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>20000.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>6.0</td>
<td>31000.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>6.0</td>
<td>36000.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>2.0</td>
<td>3397.0</td>
<td>234970.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>8</th>
<th>NITROGEN ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>6.0</td>
<td>26808.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>26829.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>4.0</td>
<td>40467.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>2.0</td>
<td>40468.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>372900.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>9</th>
<th>NITROGEN ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>3.0</td>
<td>44.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>5.0</td>
<td>131.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>5.0</td>
<td>15316.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>32687.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>5.0</td>
<td>47168.0</td>
<td>NITROGEN ATOM</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>447700.0</td>
</tr>
</tbody>
</table>

| 0 | 0 | 0.21153 | 0.78847 |
010011
2. -1. -1.
1. 1. -1. -1.
1. -1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. -1. 1.
1. -1. 1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
1. -1. 1.
1. 1. -1. -1.
REFERENCES

<table>
<thead>
<tr>
<th>References</th>
<th>Present</th>
<th>Error</th>
<th>Relative error</th>
<th>References</th>
<th>Present</th>
<th>Error</th>
<th>Relative error</th>
<th>References</th>
<th>Present</th>
<th>Error</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>3.9604</td>
<td>0.0064</td>
<td>0.0016</td>
<td>24.6611</td>
<td>0.0048</td>
<td>0.0010</td>
<td></td>
<td>7.3248</td>
<td>0.0008</td>
<td>0.0010</td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td>4.6138</td>
<td>0.0334</td>
<td>0.0090</td>
<td>27.5933</td>
<td>0.0714</td>
<td>0.0094</td>
<td></td>
<td>1.4710</td>
<td>0.0073</td>
<td>0.0090</td>
<td></td>
</tr>
<tr>
<td>6,000</td>
<td>5.2804</td>
<td>0.0226</td>
<td>0.0059</td>
<td>29.7875</td>
<td>0.2174</td>
<td>0.0062</td>
<td></td>
<td>2.3204</td>
<td>0.0339</td>
<td>0.0059</td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td>5.9777</td>
<td>0.0140</td>
<td>0.0039</td>
<td>31.5639</td>
<td>0.0929</td>
<td>0.0032</td>
<td></td>
<td>3.2093</td>
<td>0.0473</td>
<td>0.0032</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>6.7300</td>
<td>0.0205</td>
<td>0.0030</td>
<td>33.1365</td>
<td>0.0055</td>
<td>0.0032</td>
<td></td>
<td>4.4968</td>
<td>0.0479</td>
<td>0.0032</td>
<td></td>
</tr>
<tr>
<td>12,000</td>
<td>8.0548</td>
<td>0.0175</td>
<td>0.0027</td>
<td>33.7469</td>
<td>0.0048</td>
<td>0.0028</td>
<td></td>
<td>6.0414</td>
<td>0.0781</td>
<td>0.0028</td>
<td></td>
</tr>
<tr>
<td>15,000</td>
<td>9.9741</td>
<td>0.1359</td>
<td>0.0139</td>
<td>39.0986</td>
<td>0.0040</td>
<td>0.0139</td>
<td></td>
<td>8.9572</td>
<td>0.0952</td>
<td>0.0139</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References 2 and 3</th>
<th>Present report</th>
<th>Error</th>
<th>Relative error</th>
<th>References 2 and 3</th>
<th>Present report</th>
<th>Error</th>
<th>Relative error</th>
<th>References 2 and 3</th>
<th>Present report</th>
<th>Error</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>7.5706</td>
<td></td>
<td></td>
<td>49.1448</td>
<td>0.0056</td>
<td>0.0018</td>
<td></td>
<td>5.8576</td>
<td>0.0076</td>
<td>0.0018</td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td>9.3290</td>
<td></td>
<td></td>
<td>62.4266</td>
<td>0.1649</td>
<td>0.0026</td>
<td></td>
<td>2.4067</td>
<td>0.0473</td>
<td>0.0026</td>
<td></td>
</tr>
<tr>
<td>6,000</td>
<td>11.0796</td>
<td></td>
<td></td>
<td>75.5196</td>
<td>0.2819</td>
<td>0.0035</td>
<td></td>
<td>4.4922</td>
<td>0.0650</td>
<td>0.0035</td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td>12.8292</td>
<td></td>
<td></td>
<td>90.0072</td>
<td>0.7071</td>
<td>0.0078</td>
<td></td>
<td>1.3930</td>
<td>0.0981</td>
<td>0.0078</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>14.5788</td>
<td></td>
<td></td>
<td>105.8953</td>
<td>0.3060</td>
<td>0.0071</td>
<td></td>
<td>1.7500</td>
<td>0.0479</td>
<td>0.0071</td>
<td></td>
</tr>
<tr>
<td>12,000</td>
<td>16.3284</td>
<td></td>
<td></td>
<td>122.6472</td>
<td>0.3552</td>
<td>0.0078</td>
<td></td>
<td>2.2179</td>
<td>0.0479</td>
<td>0.0078</td>
<td></td>
</tr>
</tbody>
</table>

Letters in () indicate gas model.

Indicates values obtained from reference 3 since no value was given in reference 2.

TABLE II - COMPARISON OF RESULTS TO THOSE OF REFERENCE 1

<table>
<thead>
<tr>
<th>References</th>
<th>Present report</th>
<th>Error</th>
<th>Relative error</th>
<th>Reference 1</th>
<th>Present report</th>
<th>Error</th>
<th>Relative error</th>
<th>Reference 1</th>
<th>Present report</th>
<th>Error</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>6.995 (A)</td>
<td></td>
<td>0.022</td>
<td>3.529E+1</td>
<td>0.0022</td>
<td>0.0032</td>
<td></td>
<td>3.631E+2</td>
<td>0.0014</td>
<td>0.0032</td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td>6.995 (A)</td>
<td></td>
<td>0.021</td>
<td>4.259E+1</td>
<td>0.0016</td>
<td>0.0024</td>
<td></td>
<td>7.506E+2</td>
<td>0.0025</td>
<td>0.0024</td>
<td></td>
</tr>
<tr>
<td>6,000</td>
<td>11.548 (A)</td>
<td></td>
<td>0.193</td>
<td>4.976E+1</td>
<td>0.0013</td>
<td>0.0024</td>
<td></td>
<td>1.395E+2</td>
<td>0.0025</td>
<td>0.0024</td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td>12.825 (A)</td>
<td></td>
<td>0.086</td>
<td>6.156E+1</td>
<td>0.0014</td>
<td>0.0037</td>
<td></td>
<td>2.204E+2</td>
<td>0.0024</td>
<td>0.0037</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>14.222</td>
<td></td>
<td>0.053</td>
<td>7.528E+1</td>
<td>0.0013</td>
<td>0.0037</td>
<td></td>
<td>4.297E+3</td>
<td>0.0024</td>
<td>0.0037</td>
<td></td>
</tr>
<tr>
<td>12,000</td>
<td>15.008</td>
<td></td>
<td>0.044</td>
<td>9.743E+1</td>
<td>0.0012</td>
<td>0.0034</td>
<td></td>
<td>7.386E+5</td>
<td>0.0024</td>
<td>0.0034</td>
<td></td>
</tr>
<tr>
<td>15,000</td>
<td>16.705</td>
<td></td>
<td>0.033</td>
<td>1.249E+2</td>
<td>0.0011</td>
<td>0.0036</td>
<td></td>
<td>1.097E+7</td>
<td>0.0024</td>
<td>0.0036</td>
<td></td>
</tr>
</tbody>
</table>

Letters in () indicate gas model.
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546