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APPLICATION OF COMPUTERS TO THE FORMULATION OF
PROBLEMS IN CURVILINEAR COORDINATE SYSTEMS
By James C. Howard

Ames Research Center

SUMMARY

This report describes a means of extending the area of application of
digital computers beyond the numerical data processing stage and reducing the
need for human participation in the formulation of certain types of computer
problems. By the use of tensor calculus and a computer language designed to
facilitate the use of symbolic mathematical computation, a method has been
devised whereby a digital computer can be used to do non-numeric work: that
is, symbolic algebraic manipulation and differentiation.

To illustrate the technigues involved, a digital computer has been used
to derive the equations of motion of a point mass in a general orthogonal
curvilinear coordinate system. Since this operation involves a formulation in
terms of first- and second-order differential coefficients, it provides a good
demonstration of a computer's capability to do non-numeric work and to assist
in the formulation process which normally precedes the numerical data process-
ing stage. Moreover, this particular problem serves to illustrate the advan-
tages of the mathematical techniques employed. With the program prepared for
this purpose the computer will derive the equations of motion in any coordi-
nate system requested by the user. Results are presented for the following
coordinate systems: cylindrical polar, spherical polar, oblate spheroidal
and prolate spheroidal.

INTRODUCT ION

Research undertaken with the object of promoting man-computer interaction
has directed attention to the use of computers for non-numeric operations. In
particular, the possibility of using digital computers to derive the equations
of motion and of mathematical physics in a general curvilinear ccordinate sys-
tem has been explored. Traditionally, these functions were considered to be
the exclusive preserve of the scientist. Nevertheless, as is shown in this
report, digital computers can participate in the performance of such tasks.
These computers have been used almost exclusively in the past and continue to
be used extensively for numerical analyses of all kinds. In fact, excessive
preoccupation with their arithmetic capabilities has tended to obscure their
potential for non-numeric operations. Nevertheless, the extensive logic and
storage capabilities of these computers, combined with the evolution of new
computer languages, enable them to be used for a wide range of non-numeric
operations. The author is aware of only two previous attempts to use comput-
ers in this manner: (a) Reference 1 describes an interesting technique



whereby a digital computer uses the method of Lagrange to derive equations of

motion. The technique, as described, was not completely satisfactory in that

part of the operation has to be performed manually. (b) Reference 2 describes
how an IBM TO94 computer, equipped with a Formac compiler, was used to obtain

the Christoffel symbols of the first and second kind for 12 orthogonal curvi-

linear coordinate systems.

If the extensive logic and storage capabilities of these computers are to
be used to full advantage, a departure from conventional techniques of formu-
lation may be necessary. For example, when conventional methods are used, the
form which the equations of motion and of mathematical physics assume depends
on the coordinate system used to describe the problem. This dependence, which
is due to the practice of expressing vectors in terms of their physical com-
ponents, can be removed by the simple expedient of expressing all vectors in
terms of their tensor components.

As a consequence of the geometrical simplification inherent in the tensor
method, the operations involved in formulating problems in unfamiliar curvi-
linear coordinate systems can be reduced to routine computer operations. It
is this aspect of the tensor method which is so attractive for the types of
computer applications contemplated. It is the purpose of this report to use
the tensor method to show that digital computers can be used to do non-numeric
work. With this object in mind, a computer program was written to demonstrate
the effectiveness of the proposed technique. This program, in the Formac com-
puter language, was used to derive the equations of motion of a point mass in
a variety of curvilinear coordinate systems. To derive the equations of
motion of a particle by this method, the user need only know the coordinate
transformation equations relating the curvilinear coordinates to an orthogonal
Cartesian triad. When this program is used and the coordinate transformation
equations are supplied as input, the computer will derive the equations of
motion. The equations of motion obtained will be relative to the curvilinear
coordinate system specified by the coordinate transformation equations used as
input. The computer presents the results in Fortran language. However, for
the convenience of readers, the Fortran statements are translated to conven-
tional mathematical symbolism.

NOMENCLATURE
A vector
A physical components of A
Ai(x) contravariant vector components in the x coordinate system
Aj(x) covariant vector components in the x coordi?ate system
Aij(x) components of a contravariant bivector in the x coordinate system
Aij(x) components of a covariant bivector in the x coordinate system
Az(x) components of a mixed bivector in the x coordinate system




2Jd
Ai, s
75 (x)
&1 (x)
7t (x)
a'(x)
B (y)
B;(y)
BH(y)
B; ()
Bﬁ(y)
b;(y)

b (y)

Fi(Y)

FJ'(X)

Kl

=l

covariant derivative of a contravariant vector

covariant derivative of a covariant vector

system of base vectors in the x coordinate system

system of unit vectors in the directions of aj(x)

system of base vectors reciprocal to aj(x)

system of unit base vectors in the directions of Ei(x)
contravariant vector components in the y coordinate system
covariant vector components in the y coordinate system
components of a contravariant bivector in the y coordinate system
components of a covariant bivector in the y coordinate system
components of a mixed bivector in the y coordinate system
system of base vectors in the y coordinate system

system of base vectors reciprocal to Ej(y)

covariant component of gravitational force vector in the y coordi-
nate system

covariant component of gravitational force vector in the x coordi-
nate system

components of the inertia tensor in the x coordinate system
components of the inertia tensor in the y coordinate system
mass of space vehicle

position vector

scalar magnitude of T

thrust vector

contravariant component of the thrust vector

covariant component of the thrust vector



Uj(x) contravariant component of velocity in the x coordinate system

v (y) contravariant component of velocity in the y coordinate system .

xt system coordinates

x1(y1,y2,y®) functional form of the transformation from the y coordinate
system to the x coordinate system
yl system coordinates

yi(x1,x2,x3) functional form of the transformation from the x coordinate
system to the y coordinate system

Z displacement along the axis of a cylinder

[i3,k] Christoffel symbol of the first kind

{ji} Christoffel symbol of the second kind

a§ constant coefficients

o scalar magnitude of aj

Bi scalar magnitude of gl

63 Kronecker delta

] polar angle

T physical component of the thrust vector

P gravitational potential function

7P gradient of gravitational potential function

¥ angular displacement in longitude or azimuth
Superscripts

a,i,j,k,1 indices of contravariance
Subscripts

i,J,k,1 indices of covariance




ANALYSIS

Transformation Laws

Vector components.- To facilitate the computer processing of vectors and
bivectors, all such entities should be expressed in terms of their tensor com-
ponents and a corresponding set of base vectors, rather than in terms of their
physical components and a set of unit base vectors. When referred to a gen-
eral curvilinear coordinate system, a vector A may be expressed in the fol-
lowing alternative forms:

K = Aiai = AJEJ (l)

If, in some expression, a certain index occurs twice, this means that the
expression is to be summed with respect to that index for all admissible val-

ues of the index, that is,
n .
A'mg = z A'E;

=1

|=

n
. T
59 = .—j
Aja Z‘ AJa
J=1
J

where Al, A. are the tensor components of the vector K, and a;, a° are

the corresponding systems of base vectors. In accordance with established
convention, contravariant components will be denoted by superscripts and
covariant components by subscripts. It is necessary to keep in mind the dis-
tinction between contravariance and covariance because if general coordinate
transformations are contemplated, the transformation law for the components of
a contravariant vector denoted by superscripts differs from that for a
covariant vector denoted by subscripts. It must be emphasized, however, that
the covariance or contravariance of tensor components is not an intrinsic
property of the entity under consideration. The distinction is due to the way
in which the entity is related to its environment, the coordinate system, to
which it is referred. For a coordinate transformation from a coordinate sys-
tem x to a coordinate system y given by

vt = yi(x1,x2,%3) (2)

the transformation law for the components of a contravariant vector Al is
(see appendix A and ref. 3):

B3(y) = 2 al(x) (3)
oxt




where Al(x) are the contravariant components in the x coordinate system and
BJ(y) are the components when referred to the y coordinate system. For the
same transformation of coordinates, other vectors, such as the gradient of a
scalar point function, obey a different transformation law. These are the
covariant vectors denoted by subscripts. Assuming that the coordinate trans-
formation is reversible and one-to-one, the appropriate transformation law for
these vector components is (see appendix A)

Bi(y) = gﬁ% Ay (x) (%)

where A;(x) are the covariant components in the x coordinate frame and
Bj(y) are the covariant components when referred to the y coordinate frame.
As the following argument shows, the distinction between these two transforma-
tion laws vanishes when the transformation is orthogonal Cartesian. Let x*
be the components of a position vector T when referred to the x coordinate
system which is orthogonal Cartesian. Likewise, let yJ be components of the
same vector when referred to another orthogonal Cartesian system. In this
case the transformation of coordinates is given by

yl = Q,(Jj'xJ (5)

i _ s . .
where the a: are constants. The position vector T 1is invariant with
respect to coordinate transformations. Hence, the square of the vector is
also invariant. Therefore,

ko J.dk

i = OpXx"X

xdxd = ylyl = a?aﬁx
therefore o '
aga; = 6& (6)
where Sg is the Kronecker delta, that is, (see ref. %)
1 for J=k

0 for j £k

Equation (6) is the orthogonality condition which may be used to solve equa-
tion (5) for xJ. If both sides of equation (5) are multiplied by oy,

S S R .
Pk "

and

therefore,

xJ = a%yi (7)




From equation (5), it is seen that
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and from equation (7)
éxj. i
dyt J

I
Q
Py
O

It follows from equations (8) and (9) that

oyt _ oxd (10)
oxd oyt

As a consequence of equation (10), the distinction between contravariant and
covariant vectors disappears when coordinate transformations are confined to
orthogonal Cartesian systems. This also explains why there is no preoccupa-
tion with these vectors in the study of ordinary vector analysis.

Base vectors.- Subscripts assigned to a system of base vectors indicate
that they are covariant in character and obey the covariant transformation
law. See equation (4) and appendix A. Therefore, if ai(x) are a system of
base vectors in the x coordinate system and ©bj(y) are the corresponding
base vectors in the y coordinate system, then

EJ(Y) = T ai(x) (ll)

In this connection it should be noted that to every system of base vector aj,
there exists a reciprocal system of base vectors &' with the following
property:

5 = _d =

ad . ay =08 =8; - & (12)
A superscript is assigned to the reciprocal base vectors to indicate their
contravariant character, and to emphasize the fact that they obey the cogtra—
variant transformation law. (See eg. (3) and appendix A.) Hence, if &l(x)
are the reciprocal base vectors in the x coordinate system and bJ(y) are the

corresponding base vectors in the y coordinate system, then

- ayj i
v(y) = pu a’(x) (13)

In a curvilinear coordinate system the base vectors are, in general, not
unit vectors, but are functions of the coordinates; that is,

i}

ai ai(xl)xz;xs) (14)

-a-j = gj(xl,XZ,XB) (15)
7



The base vectors a; may be obtained as follows: let dr be the
differential of a position vector T and let dx* be the corresponding dif-
ferentials of the coordinates. Then by substituting dF for A, and dx!
for A! in equation (1), we have

aF = ax'®m; (16)

From equation (16) the base vectors aj are given by

a., = — (17)

In an orthogonal Cartesian frame of reference, the base vectors aj consti-
tute a triad of mutually orthogonal unit vectors. However, in problem formu-
lation, it is usually convenient to use a more general curvilinear coordinate
system. When this is done, the magnitudes of the base vectors generally
differ from unity.

Vector Derivatives and the Christoffel Symbols

The scalar product of any two base vectors aj and Ej may be defined as
follovs:

Likewise, the scalar product of the reciprocal base vectors o and 7Y may be
defined as
gl .5l =g) . gt=gld (19)

The symmetry of gjj and gtd follows from the nature of the scalar product.
Certain combinations of the partial derivatives of these scalar products with
respect to the system coordinates are useful in obtaining the derivative of a
vector, in formulating the equations of motion, or writing the equations of
mathematical physics in a general curvilinear coordinate system. The defini-
tions that follow are ascribed to Christoffel and are called Christoffel
symbols (see ref. 5). There are two of these symbols, the first of which is
defined as

[ij:k] =

1%k | %83k _ %81 (20)
2\  oxJ oxi dxK

The Christoffel symbol of the second kind is

{fJ} = g%t [1j,1] (21)

Derivatives of a contravariant vector.- The utility of the Christoffel
symbols is immediately apparent when an attempt is made to find the partial

8




derivative of a base vector, or its reciprocal, with respect to any system
coordinate. Any vector A may be expressed in the forms given in equa-
tion (1). Furthermore, since the base vectors are, in general, functions of the
coordinates, it follows that the derivative of A with respect to any coordi-
nate must involve the Christoffel symbols. From equation (1), the partial
derivative of the contravariant form of the vector A with respect to the
coordinate xF is given by

- i . g

B _oal 410 (22)

o I

Since Ei "85 T 813 then

dos s Om- o
glJ = &ﬁ-’ . EJ +§i . _a_a.‘_g (23)
dxE  oxK S
Likewise,
dg - REP Ja
ﬁ&f:f_?.gk+aj.i1f (24)
dxt  oxt ox*
and
dogik 9a;  _ — 07;
e T (25)
oxJ  oxJ oxJ
Since 33
_or
TN

it follows that

l

65% _ 8. <2?'> _ 6. <2F.> _ 55; (26)
dxd  Axd \ox* dxt \oxd dx*

From equations (23) through (26)

o7y - .
2.5 = [14,k] (27)
dx9
Therefore if equation (12) is used, the rate of change of the base vector aj
with respect to Xj assumes the form
day
—L = [15,k]5" (28)
oxd

Equation (28) gives the required rate of change of the base vector aj Wwith
respect to a system coordinate, in terms of the Christoffel symbol of the
first kind and the reciprocal base vectors. A more convenient form is
obtained if both sides of equation (28) are multiplied scalarly by the



reciprocal base vector zl to yield

& . gl = gkl
therefore
o7 4
i .
— = [14,k]gt? (30)
oxY
In terms of the defining formula (21), equation (30) may be rewritten as
follows:
aal = .
{IJ} (31)
Therefore,

o7 ; ‘
_._3 = {izj} a; (32)
Ox

By substitution of equation (32) in equation (22) the partial derivative of a
vector A with respect to the system coordinate xK  is

N i
zAk - ZA { }al (33)
X

The indices 1 and 1 in the second term on the right side of equation (33)
are dummyl indices, and may therefore be replaced by any other convenient
indices, except k. To have a common base vector Ei, equation (33) may be
rewritten as follows

ry “Np L . . i
Gh (A dilad)g = aE (34)
dxK xK Jk L ’
Furthermore, since
Oh  ax® _ QE
oxk at dt

s already indicated, a repeated index implies summation with respect to
that index. Since the summation index can be changed at will, it is usually
referred to as a dummy index. Of course, the range of admissible values of
the index must be preserved.

10




and

aat ax®  aat

oxk dt T dt

the intrinsic derivative, or the total derivative with respect to time of the
contravariant form of the vector A, may be obtained from equation (34) in the

following form:
- i . . k
dA dA 1L 4d dx ploax -
= = |=— + . a;
at at {Jk} ) Ak Tqg %1 (35)

Where Alk is the covariant derivative of the contravariant vector AT with
respect {0 xK.

The notation A .3 suggests that the covariant derivative of a contra-
variant vector is not a simple covariant or contravariant vector. As the
notation implies, AfJ is a mixed tensor, with one index of contravariance

and one index of covariance (see appendix A). If a single-valued, reversible
functional transformation of the form given in equation (2) is assumed, the
transformation law for this type of entity is

oxP ()

yk B

where A%(X) are the components in the x coordinate system and Bﬁ(y) are
the corresponding components in the y coordinate system.

B()-y

In an orthogonal Cartesian reference frame
=-a-,.g,=5,=a oEj:gij
Therefore, since all these scalar products are constants, it follows that the
Christoffel symbols vanish. In this case, the covariant derivative of a con-

travariant vector reduces the sum of the partial derivatives of its physical
components along a set of fixed axes

O _ oA™ -

—_— i=1,2,3
dxE  oxK * =

Likewise, the intrinsic derivative of a vector reduces to the ordinary time
rates of change of the physical components along a set of fixed axes.

For a general space of three dimensions, equation (35) assumes the form

dA _ (aa , 1)z , (a2 2> - <dA3 ) = 6
s 4+ £ ) 7 QA" L 2 )Es + (& + 8 )7 36)
at at > 1 at 2 at ° (

where

11



- [ 5
) %

ol
BEE
SEEE

RS

e

R

i) %
e %

E+{l32} at 13JL >+A<

) () R
1 %)
) R
{35

2 )

dxt )31 dx2
at " le2f &

a5

(37)

Ld2lax
23] dt

(38)

31 ax®
* {23} &

(39)

The intrinsic derivative of a contravariant vector in a space of three dimen-
sions contains 27 Christoffel symbols. However, because of the symmetry of
the Christoffel symbols,

k k
{=h- {5} (o
ij Ji
and the number of independent Christoffel symbols reduces to 18.

Derivatives of a covariant vector.- The second alternative from equa-
tion (1) may be used to express the vector A in terms of its covariant
tensor components and reciprocal base vectors; that is,

A=AF (41)

In this case, the partial derivative of the vector A with respect to

xk is given by
— oA, . =1
QA i=i o=
L s gt o+ A = (42)
oxk  oxK T ooxK
From equation (12)
3 . o7 «
GL Ej-f-_l 0__Q=O
O 3

12




therefore
_3 . R
a;a'l. . aj = _al . __J. ( ).L3 )
o A

Substituting equation (32) in equation (43) gives

2xk BT {Jk} {
_ {;{} 5 (k)

Substituting_equation (44) in equation (42) gives the partial derivative of
the vector A with respect to x¥X in the following form

— dA. . (s .
OB _ Mg {,1 A5l (45)

therefore

The indices 1 and j in the second term on the right side of equation (h5)
are dummies, and may therefore be replaced bK any other indices, except k.
In terms of the base vectors El, equation (45) may be rewritten as follows

CRCRHIEN

where A k defines the covariant derivative of the covariant vector A
with respect to xk.

It may be noted that the covariant derivative of a covariant vector is
not a vector. As the notation implies, Ai,' is a doubly covariant tensor,
that is, a tensor with two indices of covariance. If a single-valued,
reversible functional transformation, of the form given in equation (2) is
again assumed, the transformation law for entities of this kind is

o™ ox”

B. .(y
- dy* oy’

OL.B(X)

where AQB(X) are the components in the x coordinate system, and Bij(Y) are
the corresponding components in the y coordinate system. It may be men-
tioned in passing that moment of inertia, which is a second order tensor, has
a transformation law of this form. (See appendix A.)

It appears, therefore, that the operation of covariant differentiation
of a vector or tensor increases the covariance by one index. That is, the
xJ covariant derivative of the contravariant vector Al is AlJ, which is a

13



mixed tensor, with one index of contravariance and one index of covariance.
The xJ covariant derivative of the covariant vector A; is Aj 5. This is
a doubly covariant tensor or a tensor with two indices of covariance. The
intrinsic derivative of the covariant form of the vector A is obtained from
equation (46) in the following form

& _ (i [9), @i, @ (47)
at at ik 73 T3z 1k T3¢

For a general space of three dimensions equation (47) assumes the form

S @ )ee)e @) w

e[ B )l )
S\ SEHE S “
- e e fa e ot L {2 )

3| ax? 31 ax® 31 ax®
ths {?1}'_EE *'{ée}"&% ¥ {23}'755 } (20)

oot s S0
EEEIS SREIE SRE S ] oy

As in the case of the intrinsic derivative of the contravariant vector,
the intrinsic derivative of the covariant form of the vector A is seen to
contain 27 Christoffel symbols. However, because of the symmetry implied by
equagion (40), the number of independent Christoffel symbols is again reduced
to 10.

1k




Special Coordinate Systems

The large number of terms appearing in equations (35) and (47) is due to
the generality of these equations which are applicable to any space of three
dimensions. Fortunately, for the three-dimensional spaces most commonly used,
both of these equations reduce to a more manageable form.

For example, if base vectors of unit length are denoted by éi or él,
then in a cylindrical polar coordinate system,

1= &1 €11 =1
3o = xléo 8on = (Xl)z (52)
as = as gas = 1

and
Fl =41 gll = 1
=ea® (53)
53 = a3 g33 =1

As a consequence of equations (52) and (53) there are only two independent,
nonzero Christoffel symbols in a cylindrical polar coordinate system. These

o
BRI

Hence, a contravariant vector referred to this coordinate system has a time
rate of change as follows:

dA _ ( aa? 1l ax2) aa® 2 1 &2 | g2 dxt)| 5, dA® o
at —dE+AZ{22}_d'Ea1+[H+l2 M @mpr¥ g2z

(55)

(5%)

Likewise, the time rate of change of a covariant vector referred to this
coordinate system is given by

A _ (dA1 2| ax®\ o1 | (A2 1] ax2 2| ax1\ _, , dAs _4
o e e {12} )% T\m Ml R )Y T
(56)

15



In spherical polar coordinates,

a1 =& 811 = 1
- R 2
az = xlap gon = (x) > (57)
as = x1 sin x®83 gas = (x1 sin x2)%
J
and 3
a’l = é:l gll = 1
- 1 .. 1
2 = = 2 22 — 8
a xl a g (xl)z } (5 )
- 1 a 1
S T e a3 gSS =
x1 sin x2 (x1 sin x2)2

In this case there are six independent, nonzero Christoffel symbols. These

are
{gé}-= —x1 {;3} = —sin x2 cos XZW
2 = 2 = _l.. 3 ‘ = 3 = i"
12 " T . 13 Sl T
{53} = —x1 sin® x® ég} = {5;} = cot ¥

When the Christoffel symbols are substituted in equation (35), the time rate
of change of a contravariant vector referred to a spherical coordinate system
assumes the following form:

D (2 a2 o [1) @
Al C AT L AR
1 dx2 2 dx? s [2 ax® | =
i e ) e {5
aa® 131 (a2 3% | p3 A2 i’f s dx®)| g 60
ERNICE TR IR ICE ST Rl

The corresponding rate of change of a covariant vector is obtained by
substitution from equation (59) in equation (4#7). 1In this case,

(59)

~

16




£ on o e
dt 12 313
dA, 1| ax2 21| ax? 3| ax3
*(E‘Al{ze T{E'AZ{H}TE'A? 23}“—
dx3 dx?
Tmeoa{ym ey Em o E- )

Alternative Derivation of the Christoffel Symbols

(61)

In equations (20) and (21) the Christoffel symbols have been defined in
terms of the scalar product of two of the base vectors These symbols can
also be derived from the equations of coordinate transformation by the follow-
ing method, which is more suitable for the applications contemplated in this
report.

In a rectangular Cartesian coordinate reference frame, with coordinates
denoted by y', an element of arc of length d§ may be expressed in the fol-
lowing form

therefore
as? = &, - 8 dy™* ay® = SOB“ ay* ay® = ay® ay®

Consider a curvilinear coordinate system with coordinates denoted by xi, and

assume that the x and y coordinates are related by a set of transformation
equations as follows
yho= yh(x2,x2,x3) (62)

The element of arc ds in the x coordinate system assumes the form

a5 = &; ax' = & dx’

therefore

as? = (31 ax1) - (F; dxd) = gy ax? axd = ay™ ay®

O N A ] . . :
ay® ay® = W gyt gyl - g1j axt qxJ
dxt oxd
and @ o
3
Sy %y (63)

8ij = dxt oxJ

17



If the transformation equation (62) is reversible and one-to-one, then

xi = Xi(yl:yz:ys) (6k4)

By substitution from equation (63) in equation (20), the Christoffel symbol of
the first kind assumes the following form:

(o8
[1,k] = 2% 9y~ (65)
dxloxd oxk

Likewise, substituting equation (63) in equation (21) gives for the Christoffel

symbol of the second kind
i
JL k} ot (66)
J axJaxk 5y

COMPUTER APPLICATIONS

It is interesting to note that the preceding derivations differ from the
conventional approach only in the method of expressing a vector in terms of
its components and associated base vectors. Conventionally, a vector is
expressed in terms of its physical components and a corresponding set of unit
base vectors. The proposed method, which is the method of tensor analysis,
uses an almost identical formulation. The important difference being that in
this case the components are not, in general, the physical components.
Instead, they are the tensor components which obey transformation laws corre-
sponding to their variance. The transformation laws for contravariant and
covariant vectors are given by equations (3) and (4), respectively. When the
base vectors define an orthogonal Cartesian reference frame, the physical com-
ponents and the tensor components are equal. It follows that the tensor
method reduces to the conventional method for problems formulated in orthogonal
Cartesian reference systems.

As a consequence of the geometrical simplification inherent in the tensor
method, the operations involved in obtaining derivatives and formulating the
equations of mathematical physics in unfamiliar curvilinear coordinate systems
are routine operations. It is this feature of the tensor method which makes
it so attractive for computer applications. Because of their logic and stor-
age capabilities, digital computers are well suited to such routine operations
if they are properly programmed .

If the Christoffel symbols are stored for all coordinate systems that are
likely to be used, the rates of change of any vector can be obtained by a
straightforward application of equation (35) or (47). Alternatively, if the
functional forms given by equations (62) and (6k) are known, the Christoffel
symbols may be obtained from equations (65) and (66) without using storage
space. This technique may be illustrated by using the transformation from an
orthogonal Cartesian reference frame to a curvilinear coordinate system in
which x' are cylindrical polar coordinates. If the curvilinear coordinate
system is cylindrical polar, the Cartesian coordinates yl are related to the

18




curvilinear coordinates by the following transformation equations (see

sketch (a))

yl = x* cos x2
y3
y2 = x1 sin %2 (67)
¥ =
<3 The inverse transformation is given by
xt = J(y1)? + ()
X = tan—x(%> (68)
x° =

By substitution from equations (67) and
(68) in equations (65) and (66), all
the Christoffel symbols may be obtained.
For the special case considered there are only 2 independent, nonzero
Christoffel symbols out of a total of 18. Of course, in practical applica-
tions, the operation of obtaining Christoffel symbols from formulas (65) and
(66) and the transformation equations would be performed by a computer pro-
grammed for non-numeric operations.

Sketch (a)

By way of illustration, equation (66) will be used to obtain the nonzero
Christoffel symbols of the second kind. With the exception of the dummy index,
the superscripts appearing on the right side of the equation (66) must corre-
spond to those appearing in the Christoffel symbol. For example

e

Carrying out the summation implied by the dummy index a gives

{ } 52 1 ax aZyZ SX 1 aZyS axl
22 SESE oyt

+
3xPI2 3R P2 oy°
Substitution for the partial differential coefficients from the functional
relationships given by equations (67) and (68) gives

52 o8 axl

IxI%= ay

~-x1

{é;}-= [-x1 cos x2(cos x2) - x1 sin x2(sin x®)] =

Eis

Likewise,
o=
dxtox2 oy

Pyt oxF
oxtox® oyt

Py® 3B N
Bxlaxz oy

52 yS
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therefore
{?a} [—S1n x2< sin x2 + cos x2<é°s Xz)ﬂ {é;}

The procedure for determining the Christoffel symbols for a spherical
polar coordinate system is the same as that used for a cylindrical polar
coordinate system. In this case, however, the terms of equation (66) have to
be obtained from a different set of coordinate transformation equations. The
Cartesian coordinates y! are related to the spherical polar coordinates x1
by the following transformation equations. (See sketch (b).)

yl = x1 sin x2 cos x°
y2 = x1 sin x2 sin x3 (69)
y2® = x1 cos x°
The inverse transformation is given by
xt = Jr0® + ()% + ()7 )
1y2 2
X2 = tan—l'J(y )=+ ) } (70)
Sketch (b) x3 = tan—1<§§> J

By substitution from equations (69) and (70) in equation (66), all the
Christoffel symbols may be obtained. For the special case being considered
there are 6 nonzero Christoffel symbols out of a total of 18. Of course, as
indicated previously, the operation of obtaining Christoffel symbols from
formula (66) and the use of the transformation equations would be performed by
a computer programmed for this kind of operation. By way of illustration
equation (66) will again be used to obtain the nonzero Christoffel symbols.

By substitution from equations (69) and (70) in the expanded form of equa-
tion (66) it is found that

{]_} _ < 2yl oxt J2y2 axl RPy>  Ox > oyl
22 %232 oy?t szaxz oy ax25x2 ay°>

{2} ) Gayl o2 azyz a2 Py 3B\ | il 22 cos x
33 333yl axP3x® 9y2 x> 3y

- Ees e )45
12 x1x2 Iyt Oxtox2 o2 6x16x2 dy=. 2l
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{ } <52 1 ax azyz axs . 32 3 > { }
13 ox1ox3 oyl Bxlaxs oy2  oxBx® oy° 31
1 1 2 3 T
{ } <582 ox*t azyz ox N O%y®  Ox > = 51 gip2 2
33 x20x° Jyt  Ox33x® o0y oo dy>

G-z 2, oy )
23 dx ax dy* e dy®  ax2x> dy> 32

These results are seen to agree with those obtained in equation (59).

The Velocity Vector

Two methods of obtaining the Christoffel symbols have been indicated:
one using the methods of vector calculus and the other using known differen-
tial coefficients from the coordinate transformation equations. Since the
latter method is more adaptable to digital logic, equations (65) and (66)
rather than equations (27) and (31) are used to determine the Christoffel sym~
bols. Given the Christoffel symbols, it is seen that there are two forms for
the intrinsic or absolute derivative of a vector. Equation (35) gives the
intrinsic derivative in terms of the contravariant vector components; and
equation (47) gives the same in terms of the covariant components. Either of
these equations may be used. However, to avoid the necessity of transforming
covariant components into contravariant components, and vice versa, by the
methods of appendix A, it is better to match the formula to the variance of
the vectors. In the course of the analysis, it will become evident what the
variance of the vectors is. For example, the variance of the differential
elements can be determined as follows: the differential elements dy! in the
¥y coordinate system are related to the elements dxJ in the x coordinate
system by the following equation:

i by j
d dx 1
yt Sxcd (71)

By comparing this equation with equation (3), it is seen that the differential
elements are the components of a contravariant vector. Likewise, equation (71)
shows that the components of velocity in the y coordinate system are related
to those in the x coordinate system by the equation

dyi _ ayi 9xY

dt oxJd at
that is,
. ay
1 = U 2
v (y) 3%d (x) (72)
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where V(y) are the velocity components in the y coordinate system, and
Ud(x) are the velocity components in the x coordinate system. Comparison of
equation (72) with equation (3) shows that the components of the velocity
vector also obey the contravariant transformation law. To obtain the velocity
vector from equation (35), the position vector T 1s substituted for the
vector A; that is,

A=A3, =T (73)

At = x1 A% =0, Az = xB (74)

By substitution of these values in equation (55), the velocity vector is
obtained as follows

v _dx! = 2 1 dx2 = ax® =
V—-—a1+{12}x dta2+_ﬁa3

When the appropriate value of the Christoffel symbol is substituted from equa-
tion (54), the tensor components of the velocity vector are given by

= _ dx?! _ ax= — ax® —
V= = + == ==
au o1 T Tap %2 T Ty Bl
that is, _
_dxt —
= E ai (75)

In order to reduce equation (75) to the conventional form, where the physical
components of velocity are associated with a set of unit base vectors, equa-
tion (Bl) may be used to express the base vectors in unitary form. In this
form the velocity V is given by

m%ﬁ%a 1dX> —as (76)

If the coordinate x1 is identified with the radial distance r, the coordi-
nate x2 with the polar angle 6, and the coordinate x3 with the axial dis-
placement 2z, the equation for the velocity in a cylindrical polar coordinate
system assumes the familiar form

Y3 dI‘ A de A dz -
V = 3 81t <? aﬁ) a2 + 3 23 (77)

where &1, 82, and &3 are a triad of mutually orthogonal unit vectors in the
directions of increasing r, 6, and 2z, respectively.

22




In & spherical polar coordinate system, the vector T has the following
components.

Al:xl’ A2=A3=O

When these values are substituted in equation (60), the velocity vector in
this coordinate system is given by

= _ ax?t - 2 adx2 — 3 L dx3 =
V=agar” {;g} g %2 +'{;3} X" g %o

Again, by substitution of the Christoffel symbols from equation (59), the
velocity vector may be expressed in terms of its tensor components and a
corresponding set of base vectors as follovs:

= _ dx?t =+ ax2 5 4 ax3 =
T Tat T Tde 2t Tag e
that is, :
v oo Ax" =, 8
v _—d‘b ai (7 )

From a comparison of equation (75) with (78), it is seen that when expressed
in terms of its tensor components, the velocity vector has the same form in
both coordinate systems. This is true, in general, since by definition

Ve T (79)

Of course, the physical components of velocity are different, as can be seen
when the methods of appendix B are used to reduce the base vectors to unitary
form. By substitution from equation (57) in equation (78), the velocity vec-
tor may be expressed in terms of its physical components and a set of unit
base vectors as follows:

= _ dxt . dx2\ a . ax3\ ~
V = 3t 81 + (%l 3%/ 82 + (xl sin % —a% ) @3 (60)

When the coordinate x! is identified with the radial distance r, the coordi-

nate %2 with the polar angle 6, and the coordinate x2 with the azimuth
angle V, the equation for V assumes the more familiar form

v =4rg, a8 5 in g 4¥)a 81
v It 81t <% dg) ao + <? sin 6 3 ) &s (81)
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where él, ég, and 33 are a triad of mutually orthogonal unit vectors in the
directions of increasing r, 6, and V|, respectively.

The Acceleration Vector

If the acceleration vector were required to formulate the equations of
motion of a particle, the velocity vector V would be substituted for the
vector A in the equation for the intrinsic derivative. As shown in equa-
tion (72), the velocity vector assumes the contravariant form; therefore, if
the tensor components of velocity are substituted for the components of A in
equation (35),

-~ = dx —
A=V==r% (62)

Hence, in a general curvilinear coordinate system, the acceleration vector is

given by
av _ dvl v (83)
at Jk

By substitution from equation (82) in equation (83), the acceleration vector
may be written in the following alternative form

gy - d2xi de dxk ) (8L)
dt dtZ Jk “dt at 84

This equation gives the acceleration in any coordinate system, provided the
Christoffel symbols are appropriate to the coordinate system chosen to
describe the problen.

In a three-dimensional cylindrical polar coordinate system, equation (83)
reduces to the form given by equation (55), when the vector V is substituted
for the vector A. Likewise, in a three-dimensional spherical polar coordi-
nate system, equation (83 reduces to the form glven by equation (60 , when
the vector V is substituted for the vector A. If equation (60) is used to
obtain the acceleration vector, the tensor components of velocity, rather than
the physical components,must always be used. The tensor components of veloc-
ity are given by equation (78). These are

dx?

at=2 a2 axz - 4 (85)

dt dt

Substituting these values in equation (60) gives the acceleration in terms of
spherical polar coordinates
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=

QY _ | (a3x?t ax2 ax2 ax® ax3®
dt dtz 22 Tdt 4t 33 4t dt
d2x2 2| dx?® dx2 2| ax® daxs
* <_dt2 *e {12} & at t {33} &
azx> 3| ax?t dx ax® ax
. ( a2 o {13} Tdt “at {23} Tdt dt> } (56)

By substitution of the Christoffel symbols from equation (59) in equa-
tion (86), the acceleration vector may be expressed in terms of its tensor
components and associated base vectors as follows:

7 1
dv _ |acxt - xt sin® x2( &X dx3 ¥ a
dt dt2 dt

242 1 g«2 2
+ [d X2 2 ax & i 2 cos x2<§§% ] B

]

dt2 x1 4t dt

a2x® 2 axtax® 2 dx® dx° 8
+ <'dt2 ps ol o + 2 cot X = =1 )Es (87)

The corresponding physical components of the acceleration vector may be
obtained from the base vectors expressed in terms of unit vectors in accor-
dance with equation (57). When appropriate substitutions are made, equa-
tion (87) gives

av _ d2 1 sin £ dx3 a
at dt2 dt "t 1

2
2 1 .
b lx2 83 L o XAy gip 42 oo 1B dx® 8o

at2 dt dt at

1 2 dzxs dxl ax® | 5.1 2 dx® dx°\ a
+ <% sin X = + 2 sin ¥ =< % it X cos 1% at as

Equations of Motion in a General Curvilinear Coordinate System
In using tensor methods to derive equations of motion, it is again
important to remember that the acceleration and force vectors must always be

expressed in terms of their tensor components rather than their physical com-
ponents. Hence, the two sides of every equation must balance with respect to
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their covariant or contravariant properties before applying Newton's second
law of motion. In this connection it is worth noting that, although the
acceleration vector is expressed in contravariant form in equation (84), the
force vector may appear in the form of a covariant tensor. The force vector
assumes the covariant form when it appears as the gradient of a scalar point
function. This occurs in the equations of motion of a space vehicle which, in
addition to the thrust force, is subject to gravitational forces. If the
gravitational forces are expressed in the form of the gradient of a gravita-
tional potential function, the force vector is

F=vp+T (88)

where ¢ 1is the gravitational potential function, which may include the
influence of oblateness and extraterrestrial gravitational forces, and T is
the thrust vector. (See refs. 6 and 7.)

The tensor form of the gradient of a scalar point function assumes the
following form
99 _

v = 3 5t (89)

The use of the reciprocal base vector &t in equation (89) is justified by
the following considerations: the components of the gradient of the gravita-
tional potential function in the y coordinate system are related to those
in the x coordinate system by the following equation:

3 99 3x?
dyt  dxd oyt

or
_ OxJ
Fy(y) = o1 F5(x) (90)
where
9
Fj_(Y) = a_y:(LP
L
FJ(X) dxd

The transformation of the components of the gradient vector from the x coor-
dinate system to the y coordinate system (eq. (90)) obeys the covariant
transformation law as defined in equation (k).

The equation of motion of a point mass which is subject to gravitational
and thrust forces is obtained by combining equations (&%) and (88) .
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d2x dxd axd®\ = _ =
<dt2 {Jk} Tat " at B (91)

where M 1s the mass.

It is seen that the acceleration domponents represented by the left-hand
side of this equation are all contravariant. The thrust vector, on the other
hand, is usually given in terms of its physical components, and as already
indicated in equation (90), the gravitational forces assume the form of
covariant vectors. To have a force system compatible with the accelerations,
it 1s necessary to convert all the force terms to the contravariant form. The
potential gradient function may be converted to contravariant form with the
aid of equation (A22). From equations (89) and (A22)

99 zd = gld 9% 5.

2
dxJ oxd * (92)

Vo =
The thrust vector may be expressed in the following alternative forms
= i

= .= 73,
T="Ta; =784

where T are the contravariant tensor components of the thrust vector, and
7L are the corresponding physical components. The physical components of the
thrust vector are related to the contravariant tensor components by
equation (Bl)
3 l .
T = T (93)

VB (ii)

By substitution from equations (92) and (93) in equation (91), the equation of
motion assumes the following form

a2x* i de dxk Y 5@ 7l —
Mi—mz +9; a; = (e ai
at Jkf “at “at, oxd  [e(11)

Therefore

(S5 - (i e ) -6 2 = (9%)
dat2 JkJ Tat at, dxd m

When the expression for the gravitational forces is expanded in a general
three-dimensional coordinate system, equation (94) becomes

dxd ax¥ i1 99, iz 99 . iz 09 1 5
< dt2 {ék} at 4t - E dx?t . 3% & x> [8(i1) (9]

However, in a rectangular coordinate system
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glJ =0 for i#3]
and
(ii) = 1/
g g(ii)
where the parentheses imply suspension of the summation convention.

Substituting these values in equation (95) gives for orthogonal systems
< a2 {ék}-dgi d§t> - g(ii) ai? + - (96)
V&(ii)
Equation (96) may be rewritten as follows:
(s 55 e W B ) - 38 S
or in the alternative form

dzxi s dxj dxk oo i
M <g(ii) 4zt il T dt) =53 T B T (97)

From the point of view of non-numeric computer operations, it is more expedi-
ent to eliminate the Christoffel symbols and the metric tensors from equa-
tion (97). These symbols are related to the coordinate transformation
equations by equations (65) and (63). Substituting from equations (63) and
(65) in equation (97) gives

)% GhDeel- B
X i x\d

at? xJoxK oxl/ dt dt ~/8x( ax(

(98)

As indicated previously, a repeated index implies summation with respect to
that index. An exception to this rule occurs when repeated indices are
enclosed in parentheses. Parentheses around an index imply that the summation
convention is to be suspended for that index. This means that for each value
of the index 1i, equation (98) must be summed on a, j, and k. For example,
when equation (98) is summed on o, it appears as follows:

M[ oyt Oyt . 9y®  3y® | 9y?  oy® a3t
x(i) Gx(i) Gx(i) 6x(i) Bx(i) dé(i) at®

+ (ﬁ_ oyt O R, B oy > ax dxk}
3

xdOoxK oxi  OxdoxK oxi axJaxk dxi/ “dt at

- 09, [oyt Oyl o oy® 97, Oy2 90 i (99)
dx1 ox (1) dx (1) ox{(1) dx(1) Ix(1) ox(i)
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The left side of this equation must also be summed on j and k. When each of
these indices is permitted to take the values 1, 2, 3, in turn, equation (99)
assumes the following form:

(2 2+ o By + 2 )
x\1 axG-j ax—(lj Sx(l) ax(l) 6}{(1) dt2

(s, e 0, R o) e

xDxt 3xt  oxBxl dxt  oxloxt oxr/ dt dt

. (Bazyl oyt , 932 o N #y? 9y dxt ax®
x2x2 Oxt  OxWx2 oxt  oxlox® ox/ dt at

Pyt oyt , B oF . %% &) ax!ad
Ox10x3 dx1  ox1Ox® oxlI  oxWx3 oxi/ dt dt

+<52-Vl oyt . By 7, O y)ad ax’
SEoxL oxk | oxPoxl oxt | oxPoxt 0wl @t at

+ —_

x2x® dxt  O0xBOx® Oxt  OxBdx2 dxY/ 4t at

. azyl ayl azyz ayz . aeys ay:s)%_z_dxz

Fyt oy, B o, & 5y3>ﬁ9£
x20x3 Ox1  O0x20x® Oxi  Ox20x3 OoxY/ dt at

+<82y1 ay1+ 2y2 Oy . 02y3 9y®\ ax® dx?
dx3oxt dxl d3x3dx 1t oxt dx33x1 oxl/ at at

+<62y1 e Gl o s af’)@ixj
Ox33x2 oxl  ox3ox2 oxl  oxBox2 oxi/ dt dt

. ( azyl ayl 82y2 ayz N azys 5y3> ax> dxs:]
o)

—~ + q -
x20x2 dxt SIS oxt 3x3ox® oxt/ 4t dt

- 99 oyl oyl dOy2  dyR 55 08 i
ax(i) : Bx(i) 3x (1) ’ éx(i) dx(1) ¥ dx(i) ax(i) ! (100)

The form of this equation is well suited to routine non-numeric computer oper-
ations. The large number of terms appearing in equation (100) is due to the
generality of this equation, which is applicable to any space of three dimen-
sions. Moreover, since this equation is applicable to any space of three
dimensions, it may be permanently stored in the computer. Hence, to obtain
the equations of motion in any system of coordinates, the only information
required is the special form of equation (2) relating that system of coordi-
nates to the orthogonal Cartesian coordinates ytl.
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Computer Derivations of Equations of Motion
in Special Systems of Coordinates

Spherical polar coordinates.- Consider a transformation of coordinates
specifying the relation between the spherical polar coordinates x1 and the
orthogonal Cartesian coordinates y». In this case, equation (2) becomes
(see sketch (b)):

yt = x! sin x2 cos x3
v = x! sin x® sin x°
y3 = x cos ¥

These coordinate transformation equations were supplied as input to an
IBM TO9k4 computer, which was programmed for non-numeric operations.

When the computer was instructed to perform the operations involved in
equation (100), the following output was obtained in Fortran language:

FOR I =1,
The expression input for Y(I) is given below.
X(1)*FMCSIN(X(2) ) *FMCCOS(X(3))$

FOR I = 2,
The expression input for Y(I) is given below.
X(1)*FMCSIN(X(2) ) *FMCSIN(X(3))$

FOR I = 3,
The expression input for Y(I) is given below.
X(1)*FMCCOS(X(2))$

FOR I =1

The equation for I = 1 is given below.
M*(P(1)-R(2)*¥%2.0%X(1)-R(3)**2 .0*X(1)*FMCSIN(X(2))**2.0)$
=DPHI(1)+TAU(1)$

FOR I = 2
The equation for I = 2 is given below.

M*(P(2) *X(1)**2 .04R(1)*R(2)*X(1) *2.0-R(3) **2 .0*X(1)**2 .0*FMCSIN(X(2) ) *FMCCOS
(X(2)))$=DPHI(2)+TAU(2)*X(1)$

FOR I = 3
The equation for I = 3 is given below.

M*(P(3)*K(1)**2 .0*FMCSIN(X(2) ) **2.04R(1)*R(3)*X(1) *FMCSIN(X(2) ) **2 .0%2 .04R(2)
¥R(3)*X(1)**2 .O*FMCSIN(X(2) ) *FMCCOS(X(2) )*2.0)$
=DPHI(3)+TAU(3)*X(1)*FMCSIN(X(2))4
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Comp/load Executive
Time on time, min time, min

920.09 0.78 0.41

In interpreting these Fortran statements, it must be remembered that:

. axt
R = =
(1) v
. a2x*
P(i) =
( at®

In terms of conventional mathematical symbolism, these equations assume
the following form:

[dle !< > —x1<81nx2dx>}=-—ag+Tl
at2 ax?t

2
12 d2x2 ; dx?1 dx2 1 of dx3 _ 99 1.2
M[(x ) e +2xt = S5 - (x ) sin x° cos x = g + xt

2 2.3
M(x? sin x ) X 4 2x1 gin2 x2 &X° ax* dx® + 2(x1)2 sin x2 cos x2 =2 x® dx>
a2 Tat dt “at dt

= S—g + x1 sin x27°
X

Because of its generality, equation (100) is applicable in all coordinate
systems. Therefore, to obtain the equations of motion in any other coordinate
system, all that is required is to supply the computer with the appropriate
coordinate transformation equations.

Cylindrical polar coordinates.- As a further illustration of the procedure
involved, consider the equations of motion in a cylindrical polar system of

coordinates. In this case, the coordinate transformation equations are (see
sketch (a)):

yi = x1 cos x2
y* = x1 sin x®
yo -

When these coordinate transformation equations were used to evaluate the terms
of equation (100), the following computer output was obtained.
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FOR I =1
The expression input for Y(I) is given below.
x(1)*rMccos(x(2))$

FOR I =2
The expression input for Y(I) is given below.
X(1)*FMCSIN(X(2))$

FOR I = 3
The expression input for Y(I) is given below.
X(3)$

The equation for I =1 is given below.
M*(P(1)-R(2)**2.0%X(1))$
=DPHI(1)+TAU(1)$

The equation for I =2 is given below.
M*(P(2)*X(1)**¥2.0+R(1)*R(2)*X(1)*2.0)$

=DPHI(2)+TAU(2)*X(1)$
The equation for I = 3 is given beloﬁ.
M*P(3)$
=DPHI(3)+TAU(3)$
Comp/load Executive
Time on time, min time, min
037.78 1.15 0.14

Translating these equations from Fortran language to conventional mathematical
symbolism yields the following:

1
a%x _ gl ax° ax° = 99 + 71
dt2 dt dt S3x 1

2 1
M (Xl)2 S + 2x1 9% | _ 99 + x71°
at2 dt dt Ox2

M(%2x3 L + 73
at?/  ox3

Prolate spheroidal coordinates.- Another interesting system of orthogonal
curvilinear coordinates is the prolate spheroidal coordinates. Coordinate
surfaces are obtained by rotating a family of confocal ellipses and hyperbolas
about their major axes. Rotating these conic sections gives rise to a system
of prolate spheroids and hyperboloids of two sheets. A family of planes
through the axis of rotation completes the system of orthogonal surfaces. The
curvilinear coordinate systems generated by the curves of intersection of

32




these surfaces are useful in certain quantum mechanical problems (ref. 8).
The transformation equations relating this system of coordinates to the
orthogonal Cartesian system are as follows:

y1 = a sinh x1 sin x2 cos x3
y2 = a sinh x! sin x® sin x3

a cosh x1 cos x2

w
il

To obtain the equations of motfon relative to a prolate spheroidal system
of coordinates, these transformation equations were substituted for equa-
tion (2) in the computer program. Execute time was 1.63 minutes. Omitting
the print-out in Fortran language, the equations of motion were obtained as
follows

2,1 1
' 2(ain2 cah2 1) 45X 2 s o dxt dx2
M a®(sin2 x2 + sinh® x1) ——EE + 2a2 sin x© cos X a3t at

12,1
+ a2 sinh x* cosn xt 38X g2 gy x1 cosh x1 dx® dx*
dt dt dt dt

R
= a \sin® x2 + sinh® x1 11 + 2
oxt

dx® dx3
“dt dt

- a2 sin® ¥ sinh x?! cosh x1 &

2 14,1
M[az(sin2 x2 + sinh® x1) Ex= a2 sin x2 cos x2 9X_ 4x~

dt2 dt 4t
1 2 2
+ 282 sinh x! cosh xt X2 @22 4 o2 o5 4@ cos @ BE X2
dt dt dt dt
ax® ax® A
- g2 2 2 2 g1 2 = in2 x2 + sinh® x1)t2
8% sin x2 cos ¥2 sinh® x1 —— —& a(ysin2 x sinh® x1)72 + 2

2 1
a® sin® x® sinh® x1 d2x® + 282 sin2 x2 sinh x1 cosh x1 %= d®
dt=2 “at Tat

3
+ 2a2 sin x2 cos X° sinh2 x1 L 2 dx® = a sin X2 sinh x1 73 + —%
dt dt 3%

Oblate spheroidal coordinates.- Confocal ellipses and hyperbolas rotated
about their minor axes generate the oblate spheroids and hyperboloids of one
sheet (ref. 9). These surfaces, together with a family of planes through the
axis of rotation, constitute a family of orthogonal surfaces. The curvilinear
coordinate systems generated by the curves of intersection of these surfaces
are called oblate spheroidal coordinates. Oblate spheroids are sometimes
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referred to as planetary ellipsoids, because the Earth and the planet Jupiter
are approximately of this form. The transformation equations relating this
system of coordinates to the orthogonal Cartesian system are as follows:

a cosh x1 sin x2 cos x°

yl
y2
ys

These transformation equations take the place of equation (2) in the computer.
In this case, the time required to execute the program was again 1.63 minutes.
Omitting the print-out in Fortran language, the equations of motion relative
to a system of oblate spheroidal coordinates were obtained in the following
form:

a cosh x1 sin x2 sin x3

a sinh x1 cos x2

2x1 1 541
M aa(sinhz x1 + 0082 XZ) .d—x._ + az(sinh x1 cosh Xl) dx-— dx
at2 dt dt
1 2
- 282 cos x2 sin x@ BT X2 o2 oih w1 cosn x2 &E 4
at dt dt dt
3
_ a2 cosh x1 sinh x1 sin? x@ &£ @O } = a(5inn2 xI + cos® x2)7L + 99
dt dt ox !
2 1 gxl
M a®(sinh® x1 + cos2 x2) A2X2 | .2 gin ¥@ cos x2 axt dxt
at2 dt dt
1 2
+ 222 sinh x! cosh x1 g§€ Qﬁ% - a® sin %2 cos ¥° gg% 9§£
> J
- a® cosh® x1 sin x2 cos x2 95_ gfi] = aJéinhZ x1 + cos? ¥ T2 + g
dt dt Ox
2 1
M a2 cosh? x1 sin? x@ EX | 242 sinn x1 cosh x? sin? x@ X 42
2 dt dv
5 v
+ 2a2 cosh® x?1 sin x2 cos x2 ég% 9%{] = g cosh x% sin x273 + 99
CONCLUSIONS

The extensive logic and storage capabilities of digital computers, com-
bined with the new computer languages, enable them to be used for a wide range
of non-numeric operations. Research indicates that these computers can be
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used more effectively for this purpose if all vector quantities are expressed
in terms of their tensor components, rather than in terms of their physical
components. Because of the geometrical simplification inherent in the tensor
method, the formulation of problems in curvilinear coordinate systems can be
reduced to routine computer operations. The results obtained suggest that the
exploitation and extension of these techniques should lead to a substantial
reduction in the man hours required to formulate and process engineering and
scientific problems.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Dec. 8, 1966
125-19-01-37

32



APPENDIX A
TRANSFORMATION FORMULAS FOR VECTORS AND BIVECTORS

Base Vectors

The transformation laws and, hence, the covariant and contravariant
character of the base vectors and their reciprocals may be obtained as fol-
lows: Let the differential of a position vector be denoted by dr. Then if
g3(x) are the base vectors in the x coordinate system, and bj(y) the base
vectors in the y coordinate system, the differential dr may be expressed
in the following alternative forms:

- s J oo
oF = 5(x)axt = B(y)ayd = 5;(y) 2_YI axt (A1)
X
Therefore .
7 (x) = Sk b (y) (a2)
1 xi J
Likewise, )
— oxl = i
{(x) = ay? = B5(y)ay?
dyY
therefore
= oxt — ,
b = — ajlx A
i = 55w (A3)

It is seen from equations (A2) and (A3) that the base vectors aj and Ej obey

the covariant transformation law; consequently, the use of subscripts is
Justified.

Reciprocal Base Vectors

To each system of base vectors a; there exists a reciprocal system of
vectors #®J with the following property

g -8l =8 =8 . &y (Ak)

where 6% is the Kronecker delta; that is,

for J=1

for Jg# i

gd = 1
1

?ci%ar multiplication of each side of equation (A2) by bY(y) gives on using
A
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By) - = 2 (85)

T - By = (6)

Equation (Al) referred to the reciprocal system of base vectors assumes the
form

ar = al(x)ax; = vd(y)ay; (A7)
therefore
dyy = bs(y) - & (x)ax;
_ oxd
and
dx; = 3;(x) - bU(y)ay;
therefore 3
d
ax, = =L dy. (A9)
1 axl J
From equations (A7) and (A8)
—i | axi
a, (X)Xm =D (y) s—y-:]- Xm
therefore .
. i_.
7l(x) = 2 5i(y) (A10)
dyd
Likewise, from equations (A7) and (A9)
- J _s
5I(y) = A= Fi(x) (a11)
ox?t

From equations (A10) and (All), it is seen that the reciprocal base vectors
obey the contravariant law of transformation; therefore, the superscript
notation is Jjustified.

Vector Transformations

Equations (A10) and (All) may be used to obtain the transformation law
for a vector A, where
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T - alx = a .59
A=Aa; =A@ (A12)

If A = Ai( ( when the vector A 1is referred to the x coordinate sys-

ER
tem, and if K J(y )o.(y) when referred to the y coordinate system,
invariance of A requires that

BI(3)D5(y) = AN (x)E3(x) (A13)

From equations (A2) and (Al3), the appropriate transformation law is obtained
as follows:

. J .
BI(y) = %ﬁf at(x) (AL)

Equation (Alh) is the contravariant transformation law for the components of
the vector A. When A 1is referred to the x coordinate system with base
vectors #ji(x), which obey the covariant transformation law, the components
A*(x) obey the contravariant transformation law; hence, the use of super-
scripts is Justified. If A 1is referred to the reciprocal base system 51,
then from equation (Al2)

X = aqEt

On a transformation of coordinates from the x coordinate system to the ¥y
coordinate system, invariance of A requires that

Ay (0)aN(x) = B0 (y) (415)

From equations (A10) and (Al15), the appropriate transformation law is obtained
as follows:

()— A( (A16)

It is seen that when a vector A 1is referred to a coordinate system with
reciprocal base vectors, which obey the contravariant law, the corresponding
components of A obey the covariant law, and the use of subscripts is
therefore justified.

Raising and Lowering of Indices

Lowering indices.~ The vector A may be expressed in the alternative
forms given in equation (Al2). Scalar multiplication of each side of equa-

tion (Al2) by &y gives

(=, - EJ)Ai = Aj('éfj - 7y) (ALT)




By substitution from equations (18) and (A4) in equation (Al7), the following
result is obtained

g. Al = A, (A18)

Again by substitution for Aj from equation (A18) in equation (A12)
a; = 8ij§J (A19)

Equation (A18) gives the transformation from the contravariant components to
the covariant components of a vector. The corresponding transformstion of
base vectors is given by equation (A19). These operations are usually
referred to as lowering the index.

~ Raising indices.- Scalar multiplication of each side of equation (Al2) by
al gives

al(@; - &l) = ay@E) - 8l (A20)
Substitution from equations (19) and (A4) in equation (A20) gives

AL = giJAj (A21)

When this expression for Ai is substituted in the left-hand side of equa-
tion (Al2), the following result is obtained

giJAjai = AJEJ

therefore
3d = gijai (A22)

Equation (A21) enables the contravariant components of a vector to be
expressed in terms of its covariant components. Equation (A22) gives the
corresponding transformation of base vectors. These operations are usually
referred to as raising the index.

Bivector Transformations

A second-order tensor is characterized by having two indices. Both
indices can be superscripts, in which case the tensor is doubly contravariant.
Tensors of this kind are sometimes referred to as the contravariant components
of a bivector (ref. 10). When both indices are subscripts, the tensors are
doubly covariant, or the components of a covariant bivector. It sometimes
happens that one of the indices is a superscript and the other one a subscript.
Entities of this kind are called mixed tensors or the components of a mixed
bivector.
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Contravariant bivectors.- As in the case of vectors or first-order
tensors, bivectors are entities whose properties are independent of the ref-
erence frames used to describe them. Equations (Al3) and (A15) are mathemati-
cal expressions of this statement, insofar as it applies to vectors. As might
be expected, the invariance of a bivector in going from a coordinate system X
with base vectors aj(x), to a coordinate system y with base vectors bily),
involves the equality of two dyadics. The coefficients of the individual

dyads in these dyadics are the components of the bivectors. If in the Xx
coordinate system with base vectors Ej the bivector is given by

AP (x)E, (x)E5(x)

and if in the y coordinate system with base vectors Ei this bivector
assumes the form

B ()11 () 5(y)
invariance requires that

B (1)51(1B;(y) = 2P (x)a, (0 () (123)

By substitution from equation (A2) in equation (A23)

15/ y— - _ap oyt — dyd = .
B ()b (y)05(y) = 477 (x) Sﬁa b; (¥) Sﬁﬁ b (y) (A2k)

Therefore, by equating coefficients of like dyads in equation (A24), the
required transformation law is obtained as follows:

pli(y) = QUL 9yd pab(y) (A25)

Ox® 3xP
This is the transformation law for the components of a contravariant bivector.

Covariant bivectors.- Since covariant bivectors are characterized by two
subscripts, it follows that the formulation of the dyadics will be in terms
of the reciprocal base vectors. That is, if AaB(x) are the components of the
covariant bivector in the x coordinate system, and Bjj(y) are the corre-
sponding components in the y coordinate system, invariance of the bivectors
requires that

B (0B )BI(y) = Aap(x)a*(x)5"(x) (a26)

Substitution from equation (A10) in equation (A26) gives
B —

— — R LS N d . /
B ; (01 (1)pd(y) = A 4(x) d—’;; o™ (y) 3’;- bJ(y) (A27)
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therefore

Byj(y) = ay - AC(,B(X (28)

Equation (A28) is the transformation law for the components of a covariant
bivector.

Mixed bivectors.- A mixed bivector has one index of covariance and one
index of contravariance. In this case, the bivectors consist of base vectors
and reciprocal base vectors. The invariance requirements may be stated as
follows:

B§(y>si<y>sj<y> - A‘;(x)aa(x)aﬁ(x) (429)

Substitution from equations (A2) and (AlO) in equation (A29) gives

s oxP
Bl (B (7B () =A%) ay By 25 5(y)
y

Therefore, B
x) (A30)

The components of mixed bivectors transform according to equation (A30)

Moments and Products of Inertia as the Components of a Bivector

Moments and products of inertia provide a good illustration of the com-
ponents of a bivector. Moreover, since the moments and products of inertia
are the components of a Cartesian bivector, either equation (A25) or (A28) ma
be used to transform the components. The equality of covariant and contra-
variant components of Cartesian bivectors follows from equation (lO).

Consider the rigid-body shown in sketch (c). Let m be the mass of a
particle of the body at the point P, and T its position vector relative to
the point O, the center of mass of
the body. The moment of inertia I
of the body about an axis through O,
in the direction of the unit vector ﬁ

A . .
h is given by
= oo(Txp) - (Txp) =0 - 0 -0
where ¢ 1is the inertia dyadic which
is defined as follows:
Sketch (c) ¢ = ¥m(r®T - rT)
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and I is the identity dyadic; therefore,

A A A A A A A A A A AN
®_uﬂﬂ%%_lﬂﬂ%%—Iﬂ@%%_lﬁﬂ%%+lﬁﬁ%%_lﬁﬁ%%
~ A N ”~ ~ "~ )
- Liay18321 — Iyayxe®38s * Lig 38383

The components Ixixj are the moments and products of inertia.

In order to take advantage of the tensor notation, the inertia tensor will
be denoted by I'J4j835 when it is referred to the x coordinate system, and
by Tijbibj when referred to the y coordinate system. See sketch (d). The
components of the inertia tensor are
related to the components of the iner-
tia dyadic ¢ as follows:

¥ 4
o>
(<}
—
a>
O

. .) - ) .
\ 39 =1 (5) (5)
x'\Yx
\ (431)
iy _ . .
\ TV Lag tA
\ 92 Consider a transformation of coor-
— dinates in which the transformation
7 \‘\\\\ equations are:
/ T~
/ -~ vyl =x! cos 6 - x3 sin 6
b
A 2
a) // y2 = x° (A32)
{ y2 = xY sin 6 + x® cos 6
&
|

These equations represent a rotation
about the 32 axis, the angle of rota-
Sketch (d) tion being 6.

Equation (A25) may be used to find the moments and products of inertisa
relative to the y coordinate frame. These are:
s Sl d J
TH - 9y Oy qab (A33)
Ox* 3xP
When equation (A32) was supplied as input to a digital computer, which was

programmed to determine the inertia components T1J according to the trans-
formation law (A33), the following output was obtained in Fortran language:
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000000 $0°Z#e(VI3HIL
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¢=r ¥04d Z =1
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1=f ¥0J Z =1
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*MC138 N3AIS SI FI¥VE] Y03 LNdINO NOISSIYdX3

Z=C ¥0d 1 =1

000000 SN*Z#aiv)IH]
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1=C ¥0d 1 =1
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¥0d
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¥0d
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IHL
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¥0d

43



In terms of conventional mathematical symbolism, these equations assume the
following form:

H
[

C%0I,1,1 + COSOL 3 T CO86L g 3 + 5%601,a,3

I = —C6L,140 + S0Lysy0 = Lyaia

Lo = COS0T, 1,1 - C20T,1,0 + 82010, - 8000 ey0 = Tyaya
Tyey2 = Tyexe

Loays = ~S0L2,1 - C6La.0 = Lyaye

Loys = 5% 1,1 - S6COI 1 5 - COSOI,a .1 + c*6Ia,0

where

(017 cos 6

and

56 sin 6

I

Lh




APPENDIX B

PHYSICAL COMPONENTS

The transformation from covariant to contravariant components and vice
versa was discussed in appendix A. This appendix is concerned with the trans-
formation from covariant and contravariant components to physical components
and vice versa (ref. 11).

It frequently happens that an analysis can be performed and the results
obtained, without reference to physical components. However, sometimes a
quantity, such as a force, is known only in terms of its physical components.
In this case, the transformation from physical components to tensor components
mist be determined. The appropriate transformations may be obtained as fol-
lows: From equation (18)

1]

aj * a5 =gij
therefore
& 0 %1 T B(i3)

Let

>

aj = %484

where a3 as a scalar magnitude and &4 1is a unit vector. With this notation
— — ( )2
- Qs =
! + 1 E(i1)
Therefore,

o = fB(11)

that is,

where the parentheses imply suspension of the summation convention. Hence, if

Al are the contravariant tensor components of a vector A, and if AL are
the corresponding physical components, then

i= - [ —al)a. = 413,
Alai = <g(ll)A > ai J4 al

therefore
At = [E(an) A (82)
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Likewise, from equation (19),

Let

i . . { . . .
vhere B8 is a scalar magnitude and 41 is a unit reciprocal base vector.
Therefore,

gl w2 g1 - (ph)®

i = /g(ii)
gt = Jglil) gt (83)

Hence, if A; are the covariant components of a vector K, and if u4i are
the corresponding physical components

AgE = (J;(l_l)- Ai> at =48t
AN

Moreover, if the coordinate system is orthogonal, the physical components
can be expressed in the following alternative forms

A, = Jelit) a, = —2— 4, (Bl4)
& i ’EZZ;; i

Equation (A18) may be used to show that A5 = Al in orthogonal coordinate
systems. From equations (B4) and (A18)

therefore

therefore

therefore

That is
_ A1
u@i =A

That A& %‘41 in nonorthogonal coordinate systems may be seen as follows:
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A; = g Ay = Jg\tt gijAJ

Therefore, in this case,

Ai%Jg_(_i_i)'Ai=Ai

The fact that AL %.li in nonorthogonal coordinate systems is a consequence
of the relation

= J
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APPENDIX C
TRANSFORMATION FORMULAS FOR COVARIANT DERIVATIVES

The transformation from covariant tensor components to contravariant
tensor components and vice versa, was discussed in appendix A. The relation-
ship between physical components and tensor components was derived in appen-
dix B. In this appendix, it will be shown that the covariant derivative of a
covariant vector may be obtained from the covariant derivative of a contra-
variant vector and vice versa. The method is analogous to the procedure of
raising and lowering of indices, which was discussed in appendix A.

From equations (34) and (46)

oal  [il 5\ = L /%A1 Jl, =i
g )m e G- ey o

—i _ —3 _ i
Ay (B = Ay B = ALE (ce)

that is

From equation (Al9)

1}
]

gi @) = 83 (c3)

Substitution from (C3) in (C2) gives
R .
A:k(gija ) Ay, k2
therefore

i _
gijA,k = A, (C)'|')

(Y- 2 i

Similarly, from equation (A22)

that is

1
of
.

Substitution from equation (C6) in equation (C2) gives
Aj,k(g al) A,kal
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Therefore,

that is,

oalt

ok

i2 i)
Ay = 87°A5 ¢

- )

(c7)

(c8)



10.

11.
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