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by 
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SUMMARY 
The guidance regime for  an optimal multi-stage lunar 

trajectory is derived by applying the mathematics of the cal- 
culus of variations as established by Denbow for the genera- 
lized problem of Bolza. The steering angle programs for  
four constant thrust level phases and the times to initiate 
and terminate the two coast phases are determined in order 
to  place ,maximum payload into a specified lunar orbit. The 
problem considered here is to determine an optimal trajec- 
tory consisting of six sub-arcs utilizing three vehicle stages 
on which maximum payload is transported from an exo-at- 
mospheric point near the Earth to a specified lunar orbit. 
The intermediate point constraints include two points at which 
stages are separated and mass discontinuities occur, an 
Earth parking orbit of specified energy and angular momen- 
tum magnitude, and four thrust magnitude levels. The 
Euler-Lagrange equations determine the optimal steering for 
the thrusting phases and the Denbow transversality equations 
are used to calculate the discontinuities at the ends of the sub- 
arcs. This method is applied here and the equations neces- 
s a ry  to solve this problem using a high-speed computer are 
derived. 
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this paper was initiated. 
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I NTR 0 DU CT IO N 

The calculus of variations is a well established mathematical tool for  the deter- 
mination of control functions and control parameters for optimal trajectories. The 
Euler-Lagrange equations yield the necessary conditions for  extrema1 solutions to the 
split boundary value problem of Bolza. Extensions to the theory to provide for inter- 
mediate point constraints, such as those introduced into the system by the separation 
of vehicle stages or  the initiation of a coast phase, were made by Denbow. 

In general, the path of an aerospace vehicle can be described by a set of n non- 
linear differential equations 

where 

- x (t) is an n vector of state variables, 
m 

E (t) is a n  m vector of control functions, 

c 
a is a k vector of control parameters, 

and T means transposed. A particular path results when the initial conditions x (to), 
the control functions E ( t )  for t& t 5 tf , and the control numbers, a, are given 
where to and tf a r e  the initial and f ina l  times. 

An optimal trajectory is one which results when ( t )  and Fi are chosen so that 
a specified terminal quantity 0 (X ( tf) , t f )  , called the pay-off, is maximized or  
minimized and a specified p vector of terminal constraints 

is satisfied. 
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The calculus of variations provides fo r  the solution of such problems by intro- 
ducing the n vector function X ( t )  of Lagrange multipliers, which satisfies the set  
of linear differential equations 

, 

i = 1,2,..., n 

subject to the m relations 

k = 1,2, ..., m 

as well as appropriate terminal conditions. 

The problem is complicated by the presence of intermediate point constraints. 
These divide the trajectory into a sequence of sub-arcs. Specifying the values of 
state variables o r  control functions a t  intermediate points imposes constraints on the 
Lagrange multipliers at these points. The calculation of these constraints a t  the ends 

1 of the sub-arcs so that the composite trajectory is an extremal was made by Denbow. 
His  results can be applied to intermediate points at which state variables or  control 
functions a r e  subject to specified finite discontinuities, e. g. , the cases of vehicle 
staging and switching from powered flight to  coast. These necessary conditions at the 
ends of the sub-arcs, which a r e  called transversality conditions, can be written in an 
elegant form as upper bounds on the rank of a prescribed matrix. 

This paper is an application of the theory of optimal control with intermediate 
point constraints to a specific lunar trajectory problem. This multistage trajectory 
is reduced to a two-point boundary value problem and the results comprise the 
necessary conditions for  an extremum. In order to obtain a specific optimal lunar 
trajectory, it is now necessary to solve the two-point boundary value problem. 
Numerical methods for  converging to a solution, i. e. , an extremal trajectory, have 
been described widely in the literature. 

Denbow, C. H. : A Generalized Form of the Problem of Bolza. Contributions to the 
Calculus of Variations, University of Chicago Press, Oct. 1937. 
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A list of symbols used in this Technical Memorandum is presented below: 

List of Symbols 

A 

C 

c 3  

c 3 *  

c7 

c7* 

E* 

Fi 

- 
G 

Hi 
H* 

I 

ISP 
M 

M* 

0 

R 

S 

Augmented matrix shown in Figure 3 

Sub-matrices of A defined on pp. 24, 25, and 27 

Matrix which relates Earth-centered and moon-centered coordinate 
systems 

Sub-matrix of A associated with the parking-orbit constraints 
defined on p. 23 

Non-singular submatrix of C3 

Sub-matrix of A associated with the lunar orbit constraints 

Non- singular sub-matrix of C7 

Matrices defined on pp. 32 and 33 

Matrix defined on p. 35 

Vehicle thrust magnitude during ith flight phase 
i = 1 , 2 ,  ..., 6 

Gravitational force 

The Hamiltonian evaluated a t  point i 

Expression defined on p. 33  

Identity matrix 

Specific impulse 

Sub-matrix of A defined on p. 28 

Product matrix defined on p. 33  

Matrix of zeros, dimensions indicated 

Distance to entry point of parking orbit 

Euler-Lagrange sum defined on p. 15 
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. 

T 

V 

3 Z 

a 

ai j 

ci 
e 

fi 

g0 

mi 

I 

j 
S 

ti 

W 3 
3 Z 

- 
U. 
1 - 

x ( t )  

xi 
- 

- 
X 

S - 
“6 

Flight duration from exit of Earth parking orbit to entrance of lunar 
orbit or matrix transpose when used as a superscript 

Speed at entry point of parking orbit 

Cartesian ,coordinate components of 5 

k vector of control parameters 

General element of A 

Quantities constrained at  sub-arc boundaries 

Eccentricity of lunar orbit 

n vector of rates of state variables 

Gravitational constant at surface of Earth 

Semi-latus rectum of lunar orbit 

Variable vehicle mass at point i 

Magnitude of position vector in moon-cent-red co 

Time and state variables at sub-arc boundaries 

Time at point i 

rdinate system 

Vehicle velocity components in Cartesian coordinate system 

Vehicle velocity vector at point i 

Vehicle velocity vector in moon-centered coordinate system 

Vehicle position compone nts in Cartesian coordinate system 

General n vector of state variables 

Vehicle position vector at point i 

Vehicle position vector in moon-centered coordinate system 

Position of moon with respect t o  Earth-centered reference system 
at point 7 
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A 

Bi 

Y 

T 

Quantity defined on p. 17 

m vector of control functions 

Fuel burning rate during the ith flight phase 

- +1, used t o  indicate sign ambiguity 

The ith Lagrange multiplier 
T The vector ( A  I X I X ) evaluated at point i 

Gravitational constant of moon 

The vector (X I X I evaluated at point i 

Expression defined on p. 33 

T 

Expressions defined on p. 36 

General variable used to represent, in turn, each of the state 
variables and control functions 

Terminal quantity to be maximized o r  minimized, the payoff 

Thrust angle in pitch 

Thrust angle in yaw 1 shown in Figure 2 

General terminal constraint 

control variables 

Constraint describing specified lunar orbit 

Vector T 
[ $1 I +2  I . I ~1~ 1 
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THE PHYSICAL PROBLEM 

The vehicle is a variable mass  particle which moves from a point outside the 
Earth's atmosphere into a specified lunar orbit under the action of its own thrust and 
a gravitational field computed using an ephemeris. The problem is to program the 
thrust steering for the powered phases and the times of initiation and termination of 
the coast phases so that the payload placed in orbit about the moon is maximum. 

I A non-rotating, Earth-centered Cartesian coordinate system is the principal 
f rame of reference. The terminal orbit is given in a moon-centered system which is 
described when it is introduced. 

Conditions are imposed at seven points along the trajectory as shown in Figure 1. 
These divide the flight path into six sub-arcs on each of which the magnitude of the 
thrust is constant and designated F1, F2, F4, and F6 on the powered arcs. The two 
coast periods correspond to F3 = F5 = 0. The mass rate is a constant on each sub- 
arc. The vehicle has three stages so that the mass has a specified discontinuity at 
two points equal to the mass of the separated stage. 
parking orbit about the Earth which is only partially specified so that the remaining 
quantities may also be optimized. 

Further, the third sub-arc is a 

LAF, aa 

Figure 1. - Lunar trajectory for  three-stage vehicle with powered and coasting a rc s  
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The equations of motion are:  

u = - -  sin x cos x + x 
m P Y 

cos x cos x + Y * F  v = -  
m P Y 

w = -  sin x + z 
m Y 

x = u  

y = v  

2 = w  

T - T where = (x, y, z )  is the position vector, u = (u ,  v, w ) is the velocity vector, 
F and 8 are  specified constants different on each sub-arc, m is the mass,  x 
and x are  the steering angles for the thrust vector, as shown in Figure 2, and%, Y,  
Z are. the components of the gravitational field. We seek x ( t )  and X ( t )  and the 
times to initiate and terminate the coast phases. 

Y 
P Y 

z 
A 

X 

Figure 2. - Definition of x and x 
P Y 
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. 
The intermediate point and boundary constraints are specified at seven points, 

designated point 1, point 2, . . . , point 7, which divide the trajectory into six sub-arcs 
called First Stage, Second Stage A, Parking Orbit Coast, Second Stage B, Trans- 
Lunar Coast, and Third Stage. All quantities with finite discontinuities will exhibit 
this by plus o r  minus superscripts on their subscripts; e. g. , m2- and m2+ indicate 
the mass at point 2 just prior to, and just after, separation of the first stage, 
respectively. The description on conditions specified on the six sub-arcs are as 
follows. 

F i rs t Stag e 

Initially the vehicle is located a t  point 1, outside the atmosphere of the Earth 
with initial time, position vector, velocity vector, mass,  thrust magnitude, and 
burning rate specified. Thus we have tl, xl, ul, ml, F1, and B1 given. This 
stage terminates at a given time t2 when the empty fuel tank is separated. There- 
fore, the mass  at the end of this arc is: 

- -  

m = -B (t -t ) 2- 1 2 1  + ml 

Throughout this arc, F1 and B1 are held fixed and the thrust direction is optimized. 

Second Stage A 

At point 2, discontinuities in mass,  thrust level, and burning rate occur. Thus 
we have : 

m 
2+ 

= m  2- + Am2 

2 F2+ = F1 + AF 

B2 +  = B 1  + A B 2  

where Am2, AF2, and A B  are given. On this sub-arc the vehicle continues to 
thrust, varying its thrust direction angles optimally until it arr ives  in a parking orbit 
about the earth at point 3. The parking orbit is partially specified by requiring: 
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2 - - 
x3 . x3 = R 

2 - - 
u3 . u3 = v 

where R and V are given quantities. This is equivalent to specifying the energy 
and magnitude of the angular momentum of the orbit and that the vehicle enter the 
orbit at an apsis. The plane of the orbit and the inclination of the orbit in the plane 
are left free to be optimized. 

Park ing Orb i t  Coast 

When the orbit is achieved at point 3, the engines are switched off and discon- 
tinuities occur in thrust level and burning rate. Thus: 

- F2+ -F2+ = 0 
F3 - 

- 
B3 - f32+ -B2+ = 0 

The vehicle coasts in th i s  orbit until suck time as it is best to resume thrusting again 
in order to enter a trans-lunar coasting arc. The mass is constant until point 4 is 
reached and coasting terminates. 

Second Stage B 

Engines are turned on again at point 4 and powered flight resumes. There are 
then discontinuities in F and 8 of magnitudes F4+ and B4+, respectively, and 
these quantities remain constant throughout this phase. The time t4 is a quantity to 
be optimized, There is a restriction on the difference t7 - t4 where t7 is final 
time. This difference is the time of flight from the parking orbit to the lunar orbit 
and is a given number T. Thrusting continues under optimal steering until point 5 is 
reached at which point the trans-lunar coast begins. The time t5 is also optimized. 
At  this point the mass is given by 
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Trans-Lunar Coast 

At point 5, the second stage is separated and coasting resumes. Thus: 

m5+ = m 5- + Am5 
- F5 - F4+- F4+ = 0 

- 85 - B 4 +  - B4+ = 0 

where Am5 is specified. 
stage. Any unburned fuel is treated as par t  of the payload. 
vehicle to the vicinity of the moon and terminates at point 6, optimizing the time t6. 

Am5 can be considered the mass of the empty second 
This phase takes the 

Third Stage 

At point 6, thrusting resumes under optimal steering. Thus, there are dis- 
continuities in F and 8 of magnitudes F6+ and B6+, respectively, and these 
quantities are constant until the vehicle arrives in the specified lunar orbit. Point 7 
is the terminal point at which five constraints describing the given lunar orbit must 
be satisfied. Thus: 

- - 
$Ji(t7' u7' x7) = 0 f o r  i = lf2'...'5. 

These equations specify a conic section expressed relative to a rotating moon-centered 
coordinate system rigidly attached to the moon. These conditions are time-dependent 
because the coordinate system rotates with the moon. Recall that, as stated in 
Second Stage - B above, the time t7 was constrained to satisfy the equation 

t 7 - t  = T  4 

where T is a given number. 

In summary, the purpose of this study, and the definition of optimal trajectory 
as used herein, is to determine the steering histories and switching times which yield 
a trajectory that is a mathematical extremum for placing maximum payload into a 
specified lunar orbit while satisfying the intermediate point and boundary constraints 
described above. 
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EULER-LAGRANGE EQUATIONS 

1 The work of Denbow has established that a necessary condition for an extremum 
of the generalized variatiowl problem is that the classical Euler-Lagrange equations 
are satisfied on each sub-arc of a path subject to intermediate point constraints. 
Note, that to be consistent with Ref. 1, maximizing m7, the mass of the vehicle at 
point 7, is equivalent to minimizing -m7. 

Recalling the equations of motion in the previous section, the Euler-Lagrange 
sum is: 

0' F S = X 1  (u + - sin x cos x -X) 
m P Y 

. 
+ A *  (v - m cos x cos x -Y) 

P Y 

sin x - Z) 
Y 

+ A 3  - 

+ A  ( H  - w) 6 

The Euler-Lagrange equations can be determined from the conditions stated in the 
Introduction or  equivalently from: 

where 'I = u, v, w, x, y, z, m,  Xp, andX The resulting equations are:  Y' 
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4 

i 2  = - A 5  

A = - A g  
3 

az a y  A ax 
A l q l - A 2 q l -  3 a y  i = -  

5 

az 
3 a z  

a y  A ax 
1 a z -  A 2  az - A s  - A  - - 

i = ' m  1 P Y 2 P Y ( - A  sin x cos x + A cos x cos x 

) F 
Y 0 = ---(Al cos x cos x + x 2  sin x cos x P Y P 

X sin x 
3 Y 

, 
cos x ) Y + A 2  cos x sin xy - A 3  

P 0 = E ( - A  sin x sin x 
m 1 P Y 

The last two equations yield: 

I tan x = - - 
X 2  , P 

A 2 A 3  cos x tan x = 
P Y 

The mathematical possibilities cos X = 0 and F = 0 lead to  trivial cases. The 
above equations can be written: Y 

sin x = -6 
'J- 
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cos x = 
P 

sin x = 
Y 

cos x = 
Y 

J- 

6 

y J x - T 7 - q -  1 2 

1 2  .2 

where 6p = 2 1 and 6 y  = - + 1. The ambiguities in the signs will be resolved in 
the next section. Note that we have the optimal steering angles, albeit in te rms  of 
the Lagrange multipliers, 

If we define the quantity A as: 

and 

- x I 

- 
G I FI ax = 

- 
ax ay - a z  
ax ax ax 
- 
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then the system of differential equations for the optimal trajectory can be summarized: 

ni = -B 

A, - - - F 6 A  
m * Y  

where the optimal steering is given by 

-$ 
I xp  = tan (- 2) 

-1 
X = sin 
Y 
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WEIERSTRASS NECESSARY CONDITION 

In Ref. 1, it is proved that the classical Weierstrass condition must hold on 
every sub-arc. Applied to this particular problem, this requirement reduces to  
specifying that the negative of the Euler-Lagrange sum, S, is a maximum with 
respect to the control functions on the optimal path. Considering only the te rms  
involving x and replacing these by their optimal values as found in the 
last section, the quantity to be maximized is: 

and X P Y 

This constraint resolves the ambiguity in 6 
has been restricted to  the first and fourth quadrants, the equation for  cos Xy 
in the preceding section indicates that 6y and 6p must have the same sign. 
Therefore, 6p = +l. The optimal steering functions are now 

6 is now seen to be +l. Since xy 
Y '  y 

-1 

xP  = t a n  (2)  
-1 

= s i n  xY 

where the quadrant of x 
and X 3  in the usual manner with - 

and Xy can be determined from the signs of xl, X2, P IT Tf 
5 x 5 2 . 
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. TRANSVERSALITY CONDITIONS 

Since the specified point constraints are insufficient to determine all required 
boundary conditions for the sub-arcs of the extremum, it is necessary to employ 

1 transversality conditions. We will apply the transversality relations of Denbow's 
generalized problem of Bolza to this particular problem. Each of these conditions 
applies to an end point of a sub-arc. 

t It can be shown that there exists a matrix, called the augmented matrix A, 
I such that placing the proper restrictions on its rank yields all the necessary trans- 
I versality conditions. The matrix A for this problem is a (20 x 5 6 )  rectangular 

a r ray  with rank less than 20. Thus all (20 x 20) submatrices are singular. The 
term, aij , i#19, 20 of A is a partial derivative of a point constraint with respect 
to a state variable. This matrix is shown in Figure 3. If we designate by ci the 
quantities constrained at the end points of the sub-arcs, i. e. , at point 1, point 2, . . . 
point 7, then there are 18 such terms and as i takes on the integer values from 1 to 
18, ci takes on the values tl, u1, VI, w1, XI, y1, zl, "1, t2,  u3.113, ~ 3 . ~ 3 ,  ~ 3 ' ~ 3 ,  
t7-t4, $Jl, $J2, $ J ~ ,  $ J ~ ,  $J5. Let s .  designate an element of the time or  state at each 1 
of the critical points, i . e . ,  s1 = t l ,  s2 = ul, s3 - vl, s4 = wl, s5 - xl, 

There are 8 terms a t  each point and since there a r e  7 points, there a r e  56 values 
for s 

- -  

- - 

- - - s6 = y1y 57 - z1y s8 = mly s9 = t2, SI() - u2y ... 555 - 2 7 ~  556 = m7* 

The general term in the matrix can then be defined: 
, j *  

.L a = -  
ij as 

j 
i = 1,2 ,..., 18. 
j = 1,2 ,..., 56. 

1 The 9th row is associated with the payoff quantity, rnax-num terminal mass, and 
I contains -1 in the last column and zeros elsewhere. The 20th row consists of changes 

in the Hamiltonian and in the Lagrange multipliers evaluated at the seven endpoints 
of the sub-arcs. It is useful to divide the seven Lagrange multipliers into three parts 

I and call them: 

* t The work was done in 1963 by R. W. Hunt, Southern Illinois University, in an 
unpublished report entitled "A Generalized Bolza-Mayer Problem with Discontinuous 
Solutions and Variable Intermediate Points, 
Theory Division of the Aero-Astrodynamics Laboratory, George C. Marshall 
Space Flight Center, Huntsville, Ala. The paper by Denbow cited above gives 
sufficient information to construct the required matrix. 

for the Astrodynamic and Guidance 
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I 
I 

~ 

I 
! 
, 

I 

I 

I 
i 
I 

associating 1 with the vector u, 
given by 

with x and -A7 with mass. The Hamiltonian is 

- -  
P o ;  + A 7 B  a 

- -  
H = - X .  IJ - 

The 56 quantities in the 20th row are grouped into sets of eight, each set evaluated at 
one of the seven critical points. Thus the first eight elements are -H I --A , - p  I --A 

T each evaluated at point 1, the next eight elements are - A H ,  - ( A T  ) , -( and 
- A x  evaluated at point 2 and similarly for points 3, 4, 5, and 6. The last eight 
elements are H, -A , p , 

-T -T 

evaluated at point 7. -T -T 7 

We now impose upon A the condition that its rank be less than 20. By setting 
the determinants of all 20 x 20 submatrices of A to  zero, we will have all the 
necessary transversality conditions. 
zero and provide us with no information. 

Many of these determinants will be trivially 

A careful study of the augmented matrix A reveals that many of the submatrices 
belong to a special form that makes obtaining some of the transversality conditions a 
matter of inspection. Consider the ( 3 x 6 ) submatrix associated with the parking 
orbit constraints, 

- c3 = 

- 
c 

0 0 0 2u3 2v3 2w3 

0 0 0 2x3 2Y3 223 

3 y3 3 W 3 v3 U 3 z X 

- - 
This matrix must have rank 3 for  these three constraints to be independent. Let C3* 
be ( 3 x 3 ) non-singular sub-matrix of C3. In the same way, let the ( 5  x 7 ) sub- 
matrix C7 be that one associated with the terminal lunar orbit at point 7. These 
represent five independent constraints and so must have rank 5. Let C; be any 
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( 5  x 5 ) non-singular submatrix of C7. We can now write a very convenient (19 x 19 ) 
submatrix of A using all rows except the last one. Thus: 

Note that to obtain the (1 x 6 ) 0 matrix, the 25th column was added to the 49th 
column, an operation which does not change rank. 

I 

Since &l (20 x 2 0 )  submatrices of A are singular, we can augment A* with 
any (20 x 1) column not already partly used in A* and the corresponding part  of the 
last row, obtaining a singular ( 20 x 20 ) matrix. In particular, if this ( 20 x 1 ) 
column contains zeros in the first  19 rows, the last element in that column must 
vanish since A* is non-singular. There are 32 such columns, and thus we can 
obtain, by inspection, 32 transversality conditions: 

A* = 

(1 9 x 1 9 )  

- 
0 I 

I 

I 
I 
I 
I 

( A X ) i  = 0 ,  = 0, ( A X 7 ) i  = 0 f o r  i = 2,4,5,6. 

( A H ) i  = 0 f o r  i = 3 , 5 , 6  



This means that all the Lagrange multipliers are continuous at points 2, 4, 5, - 
and 6; H is continuous at points 3, 5, and 6; and X 7  is continuous all along the 
trajectory. 

Consider now the ( 16 x 16 ) sub-matrix: 

0 I 
I 

(8x8) - - - - - -  I 
0 - 1  I- 1 

c- -r - 
I o  

(1x1) I (1x7)  
I- - - -  

-1 0 
(1x1) ' (1x6) I 

I (7x1) I 0 

- -  
I O  

I--I - 

I (5x5) c7* I (5x1) 

We need to form all possible ( 2 0  x 2 0 )  matrices using A**, contributions from the 
( 3 x 6 ) matrix of parking orbit constraints C3 and the last row. Since A** is non- 
singular, the ( 4  x 6 )  matrix: 

has rank less  than 4. Thus, all (4 x 4) determinants vanish. This constraint 
yields three transversality conditions. We can write the above ( 4  x 6 ) matrix in a 
more concise manner as: 
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0 

(1x3) 

2G3 I 

(1x3) I - - -  - - -  
ax3 

(1x3 ) 
1 0 

(1x3 1 

If we post-multiply this matrix by the following ( 6  x 6 )  matrix, rank will be con- 
served. 

- I I - 
I 

0 

-- ' I - I -  -I - -  
I 

The product is a (4 x 6 )  matrix of rank less than 4 and, using the relations 
describing the parking orbit constraints, this matrix is: 

The vanishing of all (4 x 4) determinants yields the transversality conditions: 
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(E), 4, x X,) = 0 

The first two equations imply that the  vectors (m), and (F), are in the plane of 
u3 and x , i. e . ,  the flight plane. Note also that the last matrix above has rank 3 
which cod i rms  the requirement that our three parking orbit constraints are 
independent. 

- 

The last two transversality conditions can be obtained by considering the 
(14 x 14) sub-matrix: 

I 
I I 0 

0 I 

I - I 

We need now to join this matrix to a ( 6  x 6 ) one formed by considering the ( 5 x 7 ) 
submatrix associated with the terminal constraints and the contributions from the 
last row. Since A*** is non-singular, the ( 6  x 7 ) matrix, M 
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r c7 
(5x7) 1 

has rank less than 6 .  The term H7-AH4 arises from the need to eliminate the 1 in 
the 49th column by adding to the 49th column the 25th column. Such column operations 
leave rank invariant. The two remaining transversality conditions are obtained from 
this ( 6  x 7 ) matrix. We need now to impose upon the system the desired terminal 
constraint that the vehicle be in a specified lunar orbit. The lunar orbit is defined in 
a moon-centered coordinate system and so it is convenient at this point to digress for 
a description of the system and the establishment of a few useful relations. 

We recall that the vector equation: 

describes a lunar orbit which is a conic section with respect to a coordinate system 
rigidly attached to the moon and having a focus at the center of the moon. In this 
system, the position and velocity vectors of the vehicle are: 

T - 
x [Xst ysr zsl 
S 

The coordinate system is chosen in such a manner that the conic lies in the xsys 
plane, the major axis is co-linear with the xs axis, and the directrix associated 
with the focus at the moon crosses the positive xs axis. 

Let C be the ( 3  x 3 )  matrix such that the position of thejehicle  with respect - -  
to the moon-centered system at time t7, the terminal time, is X, = C ( X, -Xa  ) 
where X a  is  the position of the moon with respect to  the Earth-centered reference 
frame at time t7 .  Then: 

24 



- 
us = C ( U  -; ) + ax -x ) 7 8  7 4  

and 

Let 

ah - 
axk 

rn 

rn 

aJ15 - 
axk 

b e a  ( 5 x 3 )  matrix. 

Also: 

aJll - 
aYk 

rn 

rn 

rn 

aJ15 

ayk 

Similarly for 

a z S  

ay7 
- 

a i s  
and - - auS Similarly f o r  7 

au7 7 ax 

a z k  

a i i k  

, k = s o r 7  
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and 

axk 
a t  
- = - -  ["k f T f  ayk - "k]  a t  a t  , k a s ,  7 ;  

similarly for auk - .  a t  

From the above definitions, one can readily establish the following relations: 

a Xs - - -  
7 a i i  

C 

a Us 

a i  
- - -  

7 
C 

0 

a x ,  
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Now, we return to the task of extracting two transversality conditions from 
the matrix M, in which C7 is shown explicitly. M is a ( 6  x 7 ) matrix which 
can be partitioned: 

M =  

This m t r ix  h 

- a ?  I 
I a t  

(5x1) I 5x3) 
- -  t- - 

- 
- a ?  I 

I a i i 7  

1 (5x3 1 
I- - -  

s rank less  than six. Thus all ( 6  x 6 ) submatrices are s,.igular. 
The setting of two non-trivially vanishing determinants to zero yields the remaining 
necessary conditions. But the matrix M is not in convenient form. It can, how- 
ever, be transformed into a very simple form by a sequence of multiplications by 
elementary matrices. These operations conserve rank. Before we embark on this  
procedure, the matrix M can be written in terms of the moon-centered coordinate 
system by using the relations stated above. Thus, we have: 

M =  I 

- T  I 

1 x 7  
H 7 -  (AH) L 

Careful examination of the partitioned matrices will reveal 
elementary matrices a r e  useful for studying the rank of M 
upper right hand submatrices contain the term 8 5  . This 
plication by the (7 x 7) non-singular matrix: 

- 

p 7  
- T  _I I 

1 

. which multiplications by 
1 .  Notice that the two 
suggests that postmulti- 
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- - 

will eliminate the second term in the upper right submatrix. Thus we have: 

MEl - - 
axs a t  a i s  a t  

H7- (AH) 

- --  I 

-I - 

In a similar way, we can use the upper right submatrices to null the upper left 
submatrix. Consider the (7 x 7 ) non-singular matrix 

E2 - 

- 
-1 axs I -c - a t  
(3x1)  1 
I 

0 
(3x3)  I 

I 

I 
(3x3 1 

- - -  
0 I I 
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I 
. 

Post-multiplication yields: 

ME1E2 

I 

t 
P 
I 

- auS 

- T  
A 7  

- where 

- TC-1 - -  aus 
H* E H7-(AH)4-X7 a t  

To eliminate the terms C, we use: 

- 
E3 - 

Thus: 

1 0 0 

0 c-l 0 

0 
- 

C 

I 
S 

a: 

I -  - 

I 
- T - T  I P 7  - A 7  

-1 0 C 

- 
C 

c-1 t 

0 

H* 

auS 

A *  

where 
- T c-l 

7 A *  = (A1*, A 2 * ,  X3*) = 1 

- T -  -1 
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-1 
By the way, the inverse C 
fact, will be replaced by CT since C is orthogonal. Further simplifications 
require the specification of 5.  

we have been using so liberally, does exist and, in 

An arbitrary lunar orbit can be described in the following way. We choose 

2 
our moon-centered coordinate system after the orbit is specified. We choose the 
xs, ys plane to be the plane of the orbit and s o  zs  = 0 and rz = x i  + ys . 
The constants are e ,  the eccentricity of the orbit, R , the semi-latus rectum and 
p4, the gravitational constant of the moon, i. e . ,  the product of the universal 
constant of gravitation and the mass of the moon. The following equations may be 
derived directly from Kepler’s laws: 

+ e x  - L = O  94 =s S 
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Now, it is useful to display M* completely. 

a+l  ax 0 1 0 0 
S 

1 0 y2 
0 0 

a x S  

0 ' 0  0 1 0 

0 0 0 0 0 

H* Y A 2 * x3* p 1 *  

aJ'l 0 
YS a 

3 0 

0 0 

0 1 

p 2 *  p 3 *  

The following non-singular matrix will be used to yield an even simpler matrix. 

0 0 0 

0 

(-2)l 
0 

0 

-1 -(?) 
($)I 

0 0 1 
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provided - aJ14 + 0 
axS 

where 

p 1 * *  = - A  1 * 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

Al* A 2 *  A 3 *  

0 

0 

0 

1 

0 

P1** 

- 
0 0 

0 0 

0 0 

0 0 

0 1 

P 2 * *  p 3 *  - 

-1 
Q** = A1* [%(2) a$l - ay, a$l (%)I a " 4  

It can be concluded here that H* = p 2**  = 0 if  M*E* is to have rank less than 
six. The matrix M*E* was developed from M by a sequence of multiplications 
by non-singular triangular matrices. These operations leave rank invariant. Thus 
we may direct our study of rank to the ( 6  x 7 ) matrix M*E* . We know its rank 
is less than six. Therefore, all ( 6  x 6 )  matrices  are singular. Thus, H* = 0 
and p 2 * *  = 0. 
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But replacing p ** by its value from its definition, we have: 

c 1 

- - a $ 2  
aYs  ay, + x 2 *  - - 

axS axS 

- p 1 *  ( a y  ax + p 2  * ("4)-l ay, = o  

Now, Q1, q 2 ,  and 1L4 (from the Kepler equations for the lunar orbit) are: 

The required partial derivatives a r e  then: 
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. 
- - -  

a YS 

2 

3 

X S - 

xs + e 9 0  r 
a Q 4  - - -  - 

s 

The above transversality condition, using these relations, is then: 

x *  1 

I- 1 
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I Simplifying, we have: 

But the equations = $ 2  = Q4 = 0 are  equivalent to: 

rs + exs = R 

Using these relations, we have 

The definitions of * and * are: 

- A *  = ( A l * ,  A2*, A 3 * )  = x, T c-l 
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and using the fact that C is an orthogonal matrix, we have: 

- '& T T- T T o  T - x  
rS 

c xs + (P,T-X7 c C) c us = o 3 7  

These last two transversality conditions a r e  then: 

ais - T-1 T T' T - (AH4) - X7TCT at - ( P 7  7 C C ) C  F = o  
H7 

- T - x T T *  T -  - ' U  T T- C C ) C  u s = o  3 7  x c xs + (0, 7 
S J. 
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b THE SWITCHING FUNCTION 

The transversality conditions implying that the Hamiltonian is continuous at 
points 5 and 6 will now be examined closely. Thus, at point 5 ,  we have: 

o r  equivalently , 

But other transversality conditions have shown that all the Lagrange multipliers are 
continuous at point 5. Since is also continuous and B5+ is zero, we have: 

5 
X 

. 
I 

Note that U - is acceleration and specific impulse is given by 

F I =- . 
SP 9, B 

It was shown in Section V that: 

where A = 1x1 . 

37 



Then the continuity of the Hamiltonian at point 5 implies: 

I go sp 
m5- 

A 5  - ( X 7 I 5  = 0 

Similarly, the continuity of the Hamiltonian at point 6 implies: 

A s  - ( h 7 ) 6  = 0 . go Isp 
6+ m 

These conditions can be used as switch-ig functions; points 5 and 6 can ,e determined 
by the vanishing of these expressions. 

If the switching function changes sign more than twice between points 4 and 7, then one 
o r  more thrusting periods, intermediate to points 5 and 6 ,  may be required. 
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b 

SUMMARY OF BOUNDARY CONDITIONS 

The conditions, which apply at the end points of the sub-arcs of an optimum 
trajectory and which cannot be trivially satisfied, are summarized below. In addition, 
the initial conditions which are unknown a priori  at the endpoints of the sub-arcs are 
stated. A condition implying continuity of a quantity over a boundary point will not 
be stated and its value at the boundary point will not be considered to be free. 

Point 1 
- 

I Unspecified Quantities: 11 t t P 1 t 71 (A 21 is arbitrarily set equal to unity 
since all equations are homogenous in the Lagrange multipliers). 

Point 3 

2 - -  
U'U = v  3 3  Const r aints : 

2 - -  
x 3 * x 3  = R 

- -  
U3'X3 = 0 

(E)3* (U3 x x3)  = 0 

- 2 -  - 2 -  V (Ah)3*x3 = R ( A P ) ~ * u ~  

 AH)^ = 0 

- - 
Unspecified Quantities: t 1 3+ I P 3+ 
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Point 4 

Unspecified Quantity: t4 

Point 7 

These last two transversality conditions are then: 

ax 
a t  

- T - T T *  T S -(AH4) - A 7  C at -b7  - A 7  c C)C - = o  H7, 
- T T  

and 

- T - T T .  T- h7~cTiis + ( p ,  - a 7  c c ) c  us = o - 3  * 
S J. 

There are a total of 14 unknown quantities in the problem, precisely enough to  satisfy 
the 14 conditions. Some of these conditions can be easily satisfied; for example, one 

can integrate the differential equations up until the time a t  which x 
can be chosen to be that time at which the distance from the Earth's center is R. 

2 - -  
t3 = R ; Le.  , 

3' x3 
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