ON THE CALCULATION OF AN INERTIAL NAVIGATION SYSTEM

by

N. Ya. Vovchenko

Moscow, Izdatel'stvo "Mashinostroeniye," 76-85 (1965)

Translated from the Russian

December 1966

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Disclaimer

The findings of this report are not to be construed as an official Department of the Army position.

Disposition Instructions

Destroy this report when it is no longer needed. Do not return it to the originator.
ON THE CALCULATION OF AN INERTIAL NAVIGATION SYSTEM

by

N. Ya. Vovchenko

Translated from the Russian

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Translation Branch
Redstone Scientific Information Center
Research and Development Directorate
U. S. Army Missile Command
Redstone Arsenal, Alabama 35809
A geometrical inertial navigation system with a gyrostabilized platform oriented along the axes of an inertial frame of reference and with an accelerometer platform oriented in a horizontal coordinate system finds use in the navigation near the earth. The problems of the theory of such systems are set forth by Fridlender, Karakashev, and Seleznev. In the present article the equations of dynamics cited in one of the works are defined more precisely, and an evaluation of the systematic errors due to the translational and Coriolis accelerations is given.

A simplified diagram of a geometrical inertial navigation system is shown in Figure 1. The main elements of the system are the gyro-stabilized platform which preserves its orientation of the axes relative to inertial space with the help of three quadratic integrating float gyroscopes, and the platform with two accelerometers which defines the normal of the system and which simulates the geographical coordinate system in an object. The platform with the accelerometers is an analog of Schuler pendulum and is set into the local normal with the help of a servodrive.

We will examine the operation of the system during the motion of an object in a great circle relative to the earth at the velocity W.

We will introduce the frames of reference. The inertial frame of reference has the following orientation of the axes (Figure 2). The axis is oriented upward, parallel to the earth's axis of rotation. At the initial instant of time, the axis is oriented toward the east. The axis forms a right-handed coordinate system with the axes and is oriented toward the north at the initial instant.

We will take the coordinate system as the horizontal coordinate system. The axis is oriented upward along the geocentric normal. The axis lies in a horizontal plane and is oriented toward the east. The axis lies in a horizontal plane, is oriented toward the north, and forms a right-handed coordinate system with the axes and.

---

4 Karakashev, loc. cit.
1 - The Gyroscopic Platform; 2 - The Float Integrating Gyroscopes; 3 - The Platform with the Accelerometers.

Figure 1. A Simplified Kinematic Diagram of a Geometric Navigation System
Figure 2. The Coordinate Systems Chosen for the Calculation
We will couple with the gyroplatform the system of the coordinates \( X_g, Y_g, \) and \( Z_g \) the axes of which at a zero value of the angles \( \psi_1, \psi_2, \) and \( \psi_3 \) are arranged in the following manner. The axis \( Z_g \) is oriented upward along the rotation axis of the gyroplatform relative to the inner ring of the gimbal. The axis \( Y_g \) coincides with the rotation axis of the inner in the outer ring of the gimbal. The axis \( X_g \) coincides with the rotation axis of the outer ring, relative to the framework of the device, and forms a right-handed coordinate system with the axes \( Y_g \) and \( Z_g \).

We will couple the coordinate system \( xyz \) with the accelerometer platform. The axis \( z \) is oriented upward, perpendicularly to the platform. The axis \( x \) lies in the plane of the platform and is oriented toward the east along the rotation axis of the platform. The axis \( y \) lies in the plane of the platform and forms a right-handed coordinate system with the axes \( x \) and \( z \). The axis \( y \) is oriented toward the north.

As shown in one of the works\(^5\) the precession equations of motion of the gyroplatform are written in a simplified form in the following manner:

\[
\begin{align*}
\psi_1 &= \frac{1}{H} \int_0^t M_{V3}(t) dt, \\
\psi_2 &= \frac{1}{H} \int_0^t M_{V1}(t) dt, \\
\psi_3 &= \frac{1}{H} \int_0^t M_{V2}(t) dt,
\end{align*}
\]

(1)

where \( \psi_1, \psi_2, \) and \( \psi_3 \) are the angles of deflection of the system of the coordinates \( X_g, Y_g, \) and \( Z_g \) from the coordinate system \( \xi \); \( H \) is the kinetic moment of the gyroscope rotor and \( M_{V1}, M_{V2}, \) and \( M_{V3} \) are the moments around the output axes of the gyroscopes, which cause a departure of the gyroplatform in the course of time from the inertial frame of reference.

The platform with the accelerometers has two degrees of freedom relative to the gyroplatform. It can rotate about the axes \( O_x \) and \( O_z \).

In Figure 3 is shown a block diagram of the measuring system with accelerometers for two channels. The signals of the accelerations

\(^5\)Karakashev, loc. cit.
$W_a(p) = $ The transfer function of the accelerometer.
$W_i(p) = $ The transfer function of the integrator.
$W_c(p) = $ The transfer function of the correction device.
$W_{ch}(p) = $ The transfer function of the clockwork.
$W_s(p) = $ The transfer function of the adding device.
$W_u(p) = $ The transfer function of the amplifier.
$W_{sp}(p) = $ The transfer function of the servodrive.

Figure 3. The Block Diagram of the Measuring System with the Accelerometers for Two Channels.
with which the accelerometer platform moves in the directions x and y are sent to the input of the channels and the absolute angles \( \alpha_{\text{abs}} \) and \( \beta_{\text{abs}} \) of the turn of the platform about the respective axes \( z_g \) and \( x \), i.e., the turns of the platform relative to the inertial frame of reference are received at the output. A feedback circuit with the transfer function

\[
-\frac{1}{R_p^2}
\]

registers the turn of the horizontal coordinate system \( \xi_0 \eta_0 \xi_0 \) relative to the inertial \( \xi_\eta \). The difference between the angles \( \alpha_{\text{abs}} - \alpha_{\text{trans}} = \alpha \) and \( \beta_{\text{abs}} - \beta_{\text{trans}} = \beta \) constitutes the angle of inclination of the accelerometer platform relative to the horizontal plane. Because of this inclination, the accelerometers measure the components \( g_a \) and \( g_\beta \) of the vertical acceleration \( g \).

Denoting by \( W_a(p) \), \( W_i(p) \), \( W_u(p) \), \( W_{sp}(p) \), \( W_{ch}(p) \), and \( W_s(p) \) the transfer functions of the elements: accelerator, integrator, amplifier, servodrive, correction, clock, and adding mechanisms respectively; denoting by \( a_x \) and \( a_y \) the signals received at the input of the accelerometers \( A_x \) and \( A_y \) and denoting by \( \omega_z \) the angular velocity of the earth's rotation we will obtain, in accordance with the block diagram shown in Figure 3, the following equations of the accelerometer platform for each one of the channels:

\[
\begin{align*}
\alpha_{\text{abs}} &= \left[(a_x - g_a)W_a(p)W_i^2(p)W_{cx}(p) + \omega_z W_{ch}(p)\right] \times W_s(p)W_u(p)W_{sp}(p) \\
\beta_{\text{abs}} &= (a_y - g_\beta)W_a(p)W_i^2(p)W_{cy}(p)W_u(p)W_{sp}(p) \quad \text{.} \\
\end{align*}
\]

(2)*

The angle \( \beta_{\text{abs}} \) is read counterclockwise if viewed from the side of the positive direction of the axis \( x \). The minus sign in front of the \( \beta_{\text{abs}} \) is explained by the fact that integration of a positive value of the acceleration \( a_x \) leads to a decrease of the angle \( \beta_{\text{abs}} \).

We will take into account that

\[
\alpha_{\text{abs}} = \frac{\omega_{zg}}{p} \quad \text{and} \quad \beta_{\text{abs}} = \frac{\omega_x}{p} \quad \text{,}
\]

where \( \alpha_{\text{abs}} \) and \( \beta_{\text{abs}} \) are the angles of deflection of the axes \( x \) and \( y \) of the accelerometer platform relative to the axes \( \eta \) and \( \epsilon \) of the inertial frame of reference, and where \( \omega_x \) and \( \omega_{zg} \) represent the angular

---

\*i = integrator, ch = clockwork, c = correction device, s = adding device, u = amplifier, sp = servodrive
velocity of the rotation of the accelerometer platform about the axes $x$ and $z_g$ relative to the vertical coordinate system.

The transfer functions of the separate elements of the system are as follows:

For the accelerometers

$$W_a(p) = \frac{k_a}{T_{1a}p^2 + T_{2a}p + 1} \quad (3)$$

where $k_a$ is the transfer ratio of the accelerometer and $T_{1a}$ and $T_{2a}$ are the time constants of the accelerometer.

For the integrators

$$W_i(p) = \frac{k_i}{(T_i p + 1)p} \quad (4)$$

where $k_i$ is the transfer ratio of the integrator and $T_i$ is the time constant of the integrating drive.

For the correction devices

$$W_{cx}(p) = \frac{k_c}{\cos \phi} \quad \text{and} \quad W_{cy}(p) = k_c \quad (5)$$

where $k_c$ is the transfer ratio of the correction device.

For the amplifiers

$$W_u(p) = \frac{k_u}{T_u p + 1} \quad (6)$$

where $k_u$ is the amplification factor of the amplifier and $T_u$ is the time constant of the amplifier.

For the clockwork

$$W_{ch}(p) = \frac{k_{ch}}{p} \quad (7)$$

where $k_{ch}$ is the transfer ratio of the clockwork.
For the adding device

\[ W_s(p) = k_s \]

where \( k_s \) is the transfer ratio of the adding device.

For the servodrives

\[ W_{sp}(p) = \frac{k_{sp}}{T_{sp}p + 1} \]

where \( T_{sp} \) is the time constant of the servodrive and \( k_{sp} \) is the transfer ratio of the servodrive.

We will write the equations (2) in the following form:

\[
\frac{\omega_{zg}}{p} = \left[ (\alpha_x - g\alpha) \frac{k_ak_i^2k_c}{p^2(T_{1ap}^2 + T_{2ap} + 1)} \frac{1}{(T_ip + 1)^2 \cos \varphi} + \omega_3 \frac{k_{ch}}{p} \right] k_s k_u k_{sp} \times \frac{k_s k_u k_{sp}}{(T_{up} + 1)(T_{sp}p + 1)},
\]

\[
-\frac{\omega_x}{p} = (\alpha_y - g\beta) \frac{k_ak_i^2k_ck_u k_{sp}}{p^2(T_{1ap}^2 + T_{2ap} + 1)(T_ip + 1)^2(T_{up} + 1)(T_{sp}p + 1)}
\]

Usually the system is designed in such a manner that the lag of the separate elements does not affect materially the result of the measurement. To achieve this, the parameters \( T_{1a}, T_{2a}, T_i, T_u \), and \( T_{sp} \) of the system's elements must be sufficiently small. Without taking the lag of the system's elements into account the equations (10) assume the form:

\[
\frac{\omega_{zg}}{p} = \left[ (\alpha_x - g\alpha) \frac{k_ak_i^2k_c}{p^2 \cos \varphi} + \omega_3 \frac{k_{ch}}{p} \right] k_s k_u k_{sp} ;
\]

\[
-\frac{\omega_x}{p} = (\alpha_y - g\beta) \frac{k_ak_i^2k_ck_u k_{sp}}{p^2}.
\]

We will pass on to an examination of the dependence of the output signals of the accelerometers on the parameters of the object's motion. Signals measured by the accelerometers are determined in the following
manner. The platform with the accelerometers participates in a complex motion. The absolute acceleration of the platform is determined by the relative, translational, and Coriolis accelerations.

During the motion in a great circle, the relative acceleration is dependent on the motion of the object relative to the earth. During the motion of the object without a variation in the altitude of the flight, the relative acceleration consists of the normal or centripetal acceleration directed along the radius of the earth toward its center, and tangential acceleration directed along the travelling velocity of the object.

Translational acceleration appears due to the earth's rotation. It also consists of the normal and tangential acceleration. The vector of normal acceleration lies in the meridian plane and is directed perpendicularly to the earth's axis of rotation. The vector of tangential acceleration is directed perpendicularly to the vectors of centripetal acceleration and angular velocity of the earth's rotation. Usually this acceleration may be neglected since the earth rotates almost uniformly.

Coriolis acceleration develops due to the earth's rotation and the motion of the object in a great circle. The vector of this acceleration is perpendicular to the plane in which the vectors of the earth's rotation lie and to the relative velocity of the motion of the object, and is set in that direction where the point of the relative-velocity vector tends under the effect of angular velocity.

In the projections on the axes $\xi_0$ and $\eta_0$ of the horizontal coordinate system, the absolute acceleration acting on the accelerometer platform has the following form according to Fridlender:

$$ a_{\xi_0} = \dot{W}_E - 2\omega_3 \sin \varphi W_N - W_N \frac{W_E}{R} \tan \varphi ; $$

$$ a_{\eta_0} = \dot{W}_N + \frac{1}{2} R \omega_3^2 \sin 2\varphi + 2 \omega_3 \sin \varphi W_E + \frac{W_E^2}{R \cos \varphi} . $$

We will introduce the following notations:

$$ \Delta a_{\xi_0} = -2\omega_3 \sin \varphi W_N - W_N \frac{W_E}{R} \tan \varphi ; $$

---

Fridlender, loc. cit.
In that case we have
\[ a_{\epsilon_0} = \dot{W}_E + \Delta a_{\epsilon_0} \]
\[ a_{\eta_0} = \dot{W}_N + \Delta a_{\eta_0} \]  \hspace{1cm} (14)

If it is taken into consideration that under the actual conditions the angles \( \alpha, \beta, \) and \( \delta \) and the quantities \( \dot{\alpha}, \dot{\beta}, \) and \( \dot{\delta} \) are small, then the sines of the angles may be replaced with the angles themselves and the cosines may be assumed to be equal to unity. In addition to this, we will consider as being indefinitely small those items in which \( \alpha, \beta, \delta, \dot{\alpha}, \dot{\beta}, \) and \( \dot{\delta} \) or the products of their multiplication by the quantities of the order of \( \omega_3 \) and \( W/R \) are the co-factors. With this taken into account in the projections on the axes \( x, y, \) and \( z, \) the formulas (13) are written in a simplified form in the following manner:

\[ a_x = \dot{W}_E + \Delta a_{\epsilon_0} \]  \hspace{1cm} (15)
\[ a_y = \dot{W}_N + \Delta a_{\eta_0} \]

With account taken of the formula
\[ p = \frac{pa}{\cos \varphi} \]  \hspace{1cm} (16)

where \( p \) is the angle of turn of the accelerometer platform about the axis \( z_g, \) the angular velocities of the rotation of the accelerometer platform in the case of an ideal stabilization of the axes of the gyro-platform have the form:

\[ \omega_x = -p\beta - \frac{W_N}{R} \]  \hspace{1cm} (17)
\[ \omega_{zp} = \frac{pa}{\cos \varphi} + \omega_3 + \frac{W_E}{R \cos \varphi} \]

After substituting the expressions (15) and (17) into formula (10) in conformity with Schuler's conditions according to which in the case under consideration
we will obtain differential equations of motion of the accelerometer platform in the following form:

\[
\begin{align*}
\ddot{a} + \frac{g}{R} a &= \frac{\Delta a \epsilon_0}{R}, \\
\ddot{\beta} + \frac{g}{R} \beta &= \frac{\Delta a \eta_0}{R}.
\end{align*}
\]  

(19)

Setting a particular solution of the system (19) in the form of

\[a_g = a_g(t) \quad \text{and} \quad \beta_g = \beta_g(t),\]

the errors of the inertial system may be written as follows when determining:

the normal of the location

\[a_g = \frac{\Delta a \epsilon_0}{g} \left( 1 - \cos \sqrt{\frac{g}{R}} t \right),\]

(20)

\[\beta_g = \frac{\Delta a \eta_0}{g} \left( 1 - \cos \sqrt{\frac{g}{R}} t \right);\]

the flight velocity

\[\Delta W_N = \Delta a \eta_0 \sqrt{\frac{R}{g}} \sin \sqrt{\frac{g}{R}} t,\]

(21)

\[\Delta W_E = \Delta a \epsilon_0 \sqrt{\frac{R}{g}} \sin \sqrt{\frac{g}{R}} t;\]

the position coordinates

\[\Delta \phi = -\Delta a \eta_0 \frac{1}{g} \cos \sqrt{\frac{g}{R}} t,\]

(22)

\[\Delta \lambda = -\Delta a \epsilon_0 \frac{1}{g} \cos \sqrt{\frac{g}{R}} t.\]
As a numerical calculation indicates, the systematic errors of a geometric inertial navigation system due to the effect of the translational and Coriolis accelerations are considerable and must be compensated in an exact measurement of the parameters by the system.

The method used in the work for writing the differential equations of the system on the basis of its block diagram makes the solution of the problem easier and also makes it possible to evaluate the effect of the dynamics of the separate elements in a more complete examination of the processes using the methods of the control theory.

**SELECTED BIBLIOGRAPHY**

## DISTRIBUTION

<table>
<thead>
<tr>
<th>EXTERNAL</th>
<th>No. of Copies</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air University Library</td>
<td>1</td>
<td>U. S. Atomic Energy Commission</td>
</tr>
<tr>
<td>ATTN: AULST</td>
<td></td>
<td>ATTN: Reports Library, Room G-017</td>
</tr>
<tr>
<td>Maxwell Air Force Base, Alabama 36112</td>
<td></td>
<td>Washington, D. C. 20545</td>
</tr>
<tr>
<td>U. S. Army Electronics Proving Ground</td>
<td>1</td>
<td>U. S. Naval Research Laboratory</td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
<td>ATTN: Code 2027</td>
</tr>
<tr>
<td>Fort Huachuca, Arizona</td>
<td></td>
<td>Washington, D. C. 20390</td>
</tr>
<tr>
<td>U. S. Naval Ordnance Test Station</td>
<td>1</td>
<td>Weapons Systems Evaluation Group</td>
</tr>
<tr>
<td>ATTN: Technical Library, Code 753</td>
<td></td>
<td>ATTN: Code 20305</td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Ordnance Laboratory</td>
<td>1</td>
<td>John F. Kennedy Space Center, NASA</td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
<td>ATTN: KSC Library, Documents Section</td>
</tr>
<tr>
<td>Corona, California 91720</td>
<td></td>
<td>Kennedy Space Center, Florida 32899</td>
</tr>
<tr>
<td>Lawrence Radiation Laboratory</td>
<td>1</td>
<td>APG (PGBPS-12)</td>
</tr>
<tr>
<td>ATTN: Technical Information Division</td>
<td></td>
<td>Eglin Air Force Base, Florida 32542</td>
</tr>
<tr>
<td>P. O. Box 808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Livermore, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandia Corporation</td>
<td>1</td>
<td>U. S. Army CDC Infantry Agency</td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
<td>Fort Benning, Georgia 31905</td>
</tr>
<tr>
<td>P. O. Box 969</td>
<td></td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>Livermore, California 94551</td>
<td></td>
<td>ATTN: Report Section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9700 South Cass Avenue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Argonne, Illinois 60440</td>
</tr>
<tr>
<td>U. S. Naval Postgraduate School</td>
<td>1</td>
<td>U. S. Army Weapons Command</td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
<td>ATTN: AACSWE-RDR</td>
</tr>
<tr>
<td>Monterey, California 93940</td>
<td></td>
<td>Rock Island, Illinois 61201</td>
</tr>
<tr>
<td>Electronic Warfare Laboratory, USAECOM</td>
<td>1</td>
<td>Rock Island Arsenal</td>
</tr>
<tr>
<td>Post Office Box 205</td>
<td></td>
<td>ATTN: SWERI-RDI</td>
</tr>
<tr>
<td>Mountain View, California 94042</td>
<td></td>
<td>Rock Island, Illinois 61201</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>2</td>
<td>U. S. Army C&amp;G &amp; General Staff College</td>
</tr>
<tr>
<td>ATTN: Library (TDS)</td>
<td></td>
<td>ATTN: Acquisitions, Library Division</td>
</tr>
<tr>
<td>4800 Oak Grove Drive</td>
<td></td>
<td>Fort Leavenworth, Kansas 66027</td>
</tr>
<tr>
<td>Pasadena, California 91103</td>
<td></td>
<td>Combined Arms Group, USACDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fort Leavenworth, Kansas 66027</td>
</tr>
<tr>
<td>U. S. Naval Missile Center</td>
<td>1</td>
<td>U. S. Army CDC Armor Agency</td>
</tr>
<tr>
<td>ATTN: Technical Library, Code N3022</td>
<td>1</td>
<td>Fort Knox, Kentucky 40121</td>
</tr>
<tr>
<td>Point Mugu, California</td>
<td></td>
<td>Michoud Assembly Facility, NASA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Library, 1-MCHI-OSD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. O. Box 29300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Orleans, Louisiana 70129</td>
</tr>
<tr>
<td>U. S. Army Air Defense Command</td>
<td>1</td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td>ATTN: ADSX</td>
<td></td>
<td>ATTN: Technical Library, Bldg. 313</td>
</tr>
<tr>
<td>Ent Air Force Base, Colorado 80912</td>
<td>1</td>
<td>Aberdeen Proving Ground, Maryland 21005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U. S. Army Edgewood Arsenal</td>
</tr>
<tr>
<td>ATTN: OCR/DE-Standard Distribution</td>
<td>1</td>
<td>Edgewood Arsenal, Maryland 21010</td>
</tr>
<tr>
<td>Washington, D. C. 20505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Security Agency</td>
<td>1</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>ATTN: C3/TDL</td>
<td></td>
<td>Technical Information Division</td>
</tr>
<tr>
<td>Fort Meade, Maryland 20755</td>
<td></td>
<td>ATTN: Classified Documents Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upton, Long Island, New York</td>
</tr>
<tr>
<td>Goddard Space Flight Center, NASA</td>
<td>1</td>
<td>Watervliet Arsenal</td>
</tr>
<tr>
<td>ATTN: Library, Documents Section</td>
<td></td>
<td>ATTN: SWWV-RD</td>
</tr>
<tr>
<td>Greenbelt, Maryland 20771</td>
<td></td>
<td>Watervliet, New York 12189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Propellant Plant</td>
<td>1</td>
<td>U. S. Army Research Office (ARO-D)</td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
<td>ATTN: CRD-AA-IP</td>
</tr>
<tr>
<td>Indian Head, Maryland 20640</td>
<td></td>
<td>Box CM, Duke Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Durham, North Carolina</td>
</tr>
<tr>
<td>U. S. Naval Ordnance Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Librarian, Eva Liberman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Spring, Maryland 20910</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Force Cambridge Research Labs.</td>
<td>1</td>
<td>Lewis Research Center, NASA</td>
</tr>
<tr>
<td>ATTN: CBXLR/Stop 29</td>
<td></td>
<td>ATTN: Library</td>
</tr>
<tr>
<td>Bedford, Massachusetts 01730</td>
<td></td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Springfield Armory</td>
<td>1</td>
<td>Systems Engineering Group (RTD)</td>
</tr>
<tr>
<td>ATTN: SWSP-RE</td>
<td></td>
<td>ATTN: SEPIR</td>
</tr>
<tr>
<td>Springfield, Massachusetts 0101</td>
<td></td>
<td>Wright-Patterson Air Force Base, Ohio 45433</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Army Materials Research Agency</td>
<td>1</td>
<td>U. S. Army Artillery &amp; Missile School</td>
</tr>
<tr>
<td>ATTN: AAMDFR-ATL</td>
<td></td>
<td>ATTN: Guided Missile Department</td>
</tr>
<tr>
<td>Watertown, Massachusetts 02172</td>
<td></td>
<td>Fort Sill, Oklahoma 73503</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategic Air Command (OAI)</td>
<td>1</td>
<td>U. S. Army CDC Artillery Agency</td>
</tr>
<tr>
<td>Offutt Air Force Base, Nebraska 68113</td>
<td></td>
<td>ATTN: Library</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fort Sill, Oklahoma 73504</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal, USAMUCOM</td>
<td>1</td>
<td>U. S. Army War College</td>
</tr>
<tr>
<td>ATTN: SMUPA-VA6</td>
<td></td>
<td>ATTN: Library</td>
</tr>
<tr>
<td>Dover, New Jersey 07801</td>
<td></td>
<td>Carlisle Barracks, Pennsylvania 17013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Command</td>
<td>1</td>
<td>U. S. Naval Air Development Center</td>
</tr>
<tr>
<td>ATTN: ANSEL-CB</td>
<td></td>
<td>ATTN: Technical Library</td>
</tr>
<tr>
<td>Fort Monmouth, New Jersey 07703</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandia Corporation</td>
<td>1</td>
<td>Frankford Arsenal</td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
<td>ATTN: C-2500-Library</td>
</tr>
<tr>
<td>P. O. Box 5800</td>
<td></td>
<td>Philadelphia, Pennsylvania 19137</td>
</tr>
<tr>
<td>Albuquerque, New Mexico 87115</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORA(RRRT)</td>
<td>1</td>
<td>Div. of Technical Information Ext., USAEC</td>
</tr>
<tr>
<td>Holloman Air Force Base, New Mexico 88330</td>
<td></td>
<td>P. O. Box 62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oak Ridge, Tennessee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>1</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>ATTN: Report Library</td>
<td></td>
<td>ATTN: Central Files</td>
</tr>
<tr>
<td>P. O. Box 1663</td>
<td></td>
<td>P. O. Box X</td>
</tr>
<tr>
<td>Los Alamos, New Mexico 87544</td>
<td></td>
<td>Oak Ridge, Tennessee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Sands Missile Range</td>
<td>1</td>
<td>Air Defense Agency, USAACDC</td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
<td>ATTN: Library</td>
</tr>
<tr>
<td>White Sands, New Mexico 88002</td>
<td></td>
<td>Fort Bliss, Texas 79916</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rome Air Development Center (EMAL-1)</td>
<td>1</td>
<td>U. S. Army Air Defense School</td>
</tr>
<tr>
<td>ATTN: Documents Library</td>
<td></td>
<td>ATTN: AK&amp;AAS-DR-R</td>
</tr>
<tr>
<td>Griffiss Air Force Base, New York 13440</td>
<td></td>
<td>Fort Bliss, Texas 79906</td>
</tr>
</tbody>
</table>
| No. of Copies | U. S. Army CDC Nuclear Group  
Fort Bliss, Texas  79916 | 1 |
| Manned Spacecraft Center, NASA  
ATTN: Technical Library, Code R46  
Houston, Texas  77058 | 1 |
| Defense Documentation Center  
Cameron Station  
Alexandria, Virginia  22314 | 20 |
| U. S. Army Research Office  
ATTN: STINFO Division  
3045 Columbia Pike  
Arlington, Virginia  22204 | 1 |
| U. S. Naval Weapons Laboratory  
ATTN: Technical Library  
Dahlgren, Virginia  22448 | 1 |
| U. S. Army Engineer Res. & Dev. Labs.  
Fort Belvoir, Virginia  22060 | 2 |
| Langley Research Center, NASA  
ATTN: Library, MS-185  
Hampton, Virginia  23365 | 1 |
| Research Analysis Corporation  
ATTN: Library  
McLean, Virginia  22101 | 1 |
| U. S. Army Tank Automotive Center  
ATTN: SMOTA-RTS.1  
Warren, Michigan  48090 | 1 |
| Hughes Aircraft Company  
Electronic Properties Information Center  
Florence Ave. & Teale St.  
Culver City, California | 1 |
| Atomics International, Div. of NAA  
Liquid Metals Information Center  
P. O. Box 309  
Canoga Park, California | 1 |
| Foreign Technology Division  
ATTN: Library  
Wright-Patterson Air Force Base, Ohio  45400 | 1 |
| Clearinghouse for Federal Scientific and Technical Information  
U. S. Department of Commerce  
Springfield, Virginia  22151 | 1 |
| Foreign Science & Technology Center, USAMC  
ATTN: Mr. Shapiro  
Washington, D. C.  20315 | 3 |

**INTERNAL**

| No. of Copies | Headquarters  
U. S. Army Missile Command  
Redstone Arsenal, Alabama  
ATTN: AMSMI-D | 1 |
| U. S. Army CDC Nuclear Group  
Fort Bliss, Texas  79916 | 1 |
| Defense Documentation Center  
Cameron Station  
Alexandria, Virginia  22314 | 20 |
| U. S. Army Research Office  
ATTN: STINFO Division  
3045 Columbia Pike  
Arlington, Virginia  22204 | 1 |
| U. S. Naval Weapons Laboratory  
ATTN: Technical Library  
Dahlgren, Virginia  22448 | 1 |
| U. S. Army Engineer Res. & Dev. Labs.  
Fort Belvoir, Virginia  22060 | 2 |
| Langley Research Center, NASA  
ATTN: Library, MS-185  
Hampton, Virginia  23365 | 1 |
| Research Analysis Corporation  
ATTN: Library  
McLean, Virginia  22101 | 1 |
| U. S. Army Tank Automotive Center  
ATTN: SMOTA-RTS.1  
Warren, Michigan  48090 | 1 |
| Hughes Aircraft Company  
Electronic Properties Information Center  
Florence Ave. & Teale St.  
Culver City, California | 1 |
| Atomics International, Div. of NAA  
Liquid Metals Information Center  
P. O. Box 309  
Canoga Park, California | 1 |
| Foreign Technology Division  
ATTN: Library  
Wright-Patterson Air Force Base, Ohio  45400 | 1 |
| Clearinghouse for Federal Scientific and Technical Information  
U. S. Department of Commerce  
Springfield, Virginia  22151 | 1 |
| Foreign Science & Technology Center, USAMC  
ATTN: Mr. Shapiro  
Washington, D. C.  20315 | 3 |
UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)
   Redstone Scientific Information Center
   Research and Development Directorate
   U. S. Army Missile Command
   Redstone Arsenal, Alabama 35809

2a. REPORT SECURITY CLASSIFICATION
    Unclassified

2b. GROUP
    N/A

3. REPORT TITLE
   ON THE CALCULATION OF AN INERTIAL NAVIGATION SYSTEM

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
   Translated from the Russian

5. AUTHOR(S) (Last name, first name, initial)
   N. Ya. Vovchenko

6. REPORT DATE
   12 December 1966

7a. TOTAL NO. OF PAGES
   15

7b. NO. OF REFS
   4

8a. CONTRACT OR GRANT NO.
   N/A

8b. PROJECT NO.
   N/A

8c. ORIGINATOR'S REPORT NUMBER(S)
   RSIC-621

8d. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
   AD

10. AVAILABILITY/LIMITATION NOTICES
   Distribution of this document is unlimited

11. SUPPLEMENTARY NOTES
    None

12. SPONSORING MILITARY ACTIVITY
    Same as No. 1

13. ABSTRACT
    This article presents a refinement of previously derived dynamics equations for the calculation of a geometrical inertial navigation system. The operation of the system during the motion of an object in a great circle relative to the earth is considered. An estimate is made of the methodological errors due to translational and Coriolis accelerations.
GYROSTABILIZED PLATFORM
Equations of dynamics
Translational and Coriolis acceleration
Schuler pendulum
Inertial frame of reference