ON THE CALCULATION OF AN INERTIAL NAVIGATION SYSTEM

by

N. Ya. Vovchenko

Moscow, Izdatel'stvo "Mashinostroeniye," 76-85 (1965)

Translated from the Russian

December 1966

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Disclaimer

The findings of this report are not to be construed as an official Department of the Army position.

Disposition Instructions

Destroy this report when it is no longer needed. Do not return it to the originator.
ON THE CALCULATION OF AN INERTIAL NAVIGATION SYSTEM

by

N. Ya. Vovchenko

Moscow, Izdatel'stvo "Mashinostroeniye," 76-85 (1965)

Translated from the Russian

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Translation Branch
Redstone Scientific Information Center
Research and Development Directorate
U. S. Army Missile Command
Redstone Arsenal, Alabama 35809
A geometrical inertial navigation system with a gyrostabilized platform oriented along the axes of an inertial frame of reference and with an accelerometer platform oriented in a horizontal coordinate system finds use in the navigation near the earth. The problems of the theory of such systems are set forth by Fridlender, Karakashev, and Seleznev. In the present article the equations of dynamics cited in one of the works are defined more precisely, and an evaluation of the systematic errors due to the translational and Coriolis accelerations is given.

A simplified diagram of a geometrical inertial navigation system is shown in Figure 1. The main elements of the system are the gyro-stabilized platform 1 which preserves its orientation of the axes relative to inertial space with the help of three quadratic integrating float gyroscopes 2, and the platform 3 with two accelerometers A_x and A_y which defines the normal of the system and which simulates the geographical coordinate system in an object. The platform with the accelerometers is an analog of Schuler pendulum and is set into the local normal with the help of a servodrive.

We will examine the operation of the system during the motion of an object in a great circle relative to the earth at the velocity W.

We will introduce the frames of reference. The inertial frame of reference $e_\eta \xi$ has the following orientation of the axes (Figure 2). The axis ξ is oriented upward, parallel to the earth's axis of rotation. At the initial instant of time, the axis ξ is oriented toward the east. The axis η forms a right-handed coordinate system with the axes ξ and η and is oriented toward the north at the initial instant.

We will take the coordinate system $e_0 \eta_0 \xi_0$ as the horizontal coordinate system. The axis ξ_0 is oriented upward along the geocentric normal. The axis η_0 lies in a horizontal plane and is oriented toward the east. The axis η_0 lies in a horizontal plane, is oriented toward the north, and forms a right-handed coordinate system with the axes ξ_0 and η_0.

4 Karakashev, loc. cit.
1 - The Gyroscopic Platform; 2 - The Float Integrating Gyroscopes; 3 - The Platform with the Accelerometers.

Figure 1. A Simplified Kinematic Diagram of a Geometric Navigation System
Figure 2. The Coordinate Systems Chosen for the Calculation
We will couple with the gyroplatform the system of the coordinates X_g, Y_g, and Z_g the axes of which at a zero value of the angles ψ_1, ψ_2, and ψ_3 are arranged in the following manner. The axis Z_g is oriented upward along the rotation axis of the gyroplatform relative to the inner ring of the gimbal. The axis Y_g coincides with the rotation axis of the inner in the outer ring of the gimbal. The axis X_g coincides with the rotation axis of the outer ring, relative to the framework of the device, and forms a right-handed coordinate system with the axes Y_g and Z_g.

We will couple the coordinate system xyz with the accelerometer platform. The axis z is oriented upward, perpendicularly to the platform. The axis x lies in the plane of the platform and is oriented toward the east along the rotation axis of the platform. The axis y lies in the plane of the platform and forms a right-handed coordinate system with the axes x and z. The axis y is oriented toward the north.

As shown in one of the works the precession equations of motion of the gyroplatform are written in a simplified form in the following manner:

\[
\begin{align*}
\psi_1 &= \frac{1}{H} \int_0^t M_{V3}(t) \, dt, \\
\psi_2 &= \frac{1}{H} \int_0^t M_{V1}(t) \, dt, \\
\psi_3 &= \frac{1}{H} \int_0^t M_{V2}(t) \, dt,
\end{align*}
\]

where ψ_1, ψ_2, and ψ_3 are the angles of deflection of the system of the coordinates X_g, Y_g, and Z_g from the coordinate system $e\xi\eta\zeta$; H is the kinetic moment of the gyroscope rotor and M_{V1}, M_{V2}, and M_{V3} are the moments around the output axes of the gyroscopes, which cause a departure of the gyroplatform in the course of time from the inertial frame of reference.

The platform with the accelerometers has two degrees of freedom relative to the gyroplatform. It can rotate about the axes Ox and Oz.

In Figure 3 is shown a block diagram of the measuring system with accelerometers for two channels. The signals of the accelerations

5 Karakashev, loc. cit.
$W_a(p) = \text{The transfer function of the accelerometer.}$

$W_i(p) = \text{The transfer function of the integrator.}$

$W_c(p) = \text{The transfer function of the correction device.}$

$W_{ch}(p) = \text{The transfer function of the clockwork.}$

$W_s(p) = \text{The transfer function of the adding device.}$

$W_u(p) = \text{The transfer function of the amplifier.}$

$W_{sp}(p) = \text{The transfer function of the servodrive.}$

Figure 3. The Block Diagram of the Measuring System with the Accelerometers for Two Channels.
with which the accelerometer platform moves in the directions \(x \) and \(y \)
are sent to the input of the channels and the absolute angles \(\alpha_{\text{abs}} \) and
\(\beta_{\text{abs}} \) of the turn of the platform about the respective axes \(z_g \) and \(x \),
i.e., the turns of the platform relative to the inertial frame of reference
are received at the output. A feedback circuit with the transfer function
\[
-\frac{1}{R_\text{p}^2}
\]
registers the turn of the horizontal coordinate system \(\xi_0\eta_0\xi_0 \)
relative to the inertial \(\eta_0\xi_0 \). The difference between the angles
\(\alpha_{\text{abs}} - \alpha_{\text{trans}} = \alpha \) and \(\beta_{\text{abs}} - \beta_{\text{trans}} = \beta \) constitutes the angle of inclina-
tion of the accelerometer platform relative to the horizontal plane.
Because of this inclination, the accelerometers measure the components
\(g\alpha \) and \(g\beta \) of the vertical acceleration \(g \).

Denoting by \(W_a(p), W_1(p), W_u(p), W_{sp}(p), W_c(p), W_{ch}(p), \) and
\(W_s(p) \) the transfer functions of the elements: accelerometer, integrator,
amplifier, servodrive, correction, clock, and adding mechanisms
respectively; denoting by \(a_x \) and \(a_y \) the signals received at the input of
the accelerometers \(A_x \) and \(A_y \) and denoting by \(\omega_3 \) the angular velocity
of the earth's rotation we will obtain, in accordance with the block
diagram shown in Figure 3, the following equations of the accelerometer
platform for each one of the channels:

\[
\alpha_{\text{abs}} = \left[(a_x - ga)W_a(p)W_1^2(p)W_{cx}(p) + \omega_3W_{ch}(p)\right]W_s(p)W_u(p)W_{sp}(p); \\
\beta_{\text{abs}} = (a_y - g\beta)W_a(p)W_1^2(p)W_{cy}(p)W_u(p)W_{sp}(p) .
\]

The angle \(\beta_{\text{abs}} \) is read counterclockwise if viewed from the side
of the positive direction of the axis \(x \). The minus sign in front of the
\(\beta_{\text{abs}} \) is explained by the fact that integration of a positive value of the
acceleration \(a_x \) leads to a decrease of the angle \(\beta_{\text{abs}} \).

We will take into account that

\[
\alpha_{\text{abs}} = \frac{\omega_{zg}}{p} \text{ and } \beta_{\text{abs}} = \frac{\omega_x}{p},
\]

where \(\alpha_{\text{abs}} \) and \(\beta_{\text{abs}} \) are the angles of deflection of the axes \(x \) and \(y \)
of the accelerometer platform relative to the axes \(\eta \) and \(\epsilon \) of the
inertial frame of reference, and where \(\omega_{x} \) and \(\omega_{zg} \) represent the angular

*i = integrator, ch = clockwork, c = correction device, s = adding
device, u = amplifier, sp = servodrive
velocity of the rotation of the accelerometer platform about the axes x and z_g relative to the vertical coordinate system.

The transfer functions of the separate elements of the system are as follows:

For the accelerometers

$$ W_a(p) = \frac{k_a}{T_{1ap}^2 + T_{2ap} + 1} \tag{3} $$

where k_a is the transfer ratio of the accelerometer and T_{1a} and T_{2a} are the time constants of the accelerometer.

For the integrators

$$ W_i(p) = \frac{k_i}{(T_i p + 1)p} \tag{4} $$

where k_i is the transfer ratio of the integrator and T_i is the time constant of the integrating drive.

For the correction devices

$$ W_{cX}(p) = \frac{k_c}{\cos \theta} \quad \text{and} \quad W_{cY}(p) = k_c \tag{5} $$

where k_c is the transfer ratio of the correction device.

For the amplifiers

$$ W_u(p) = \frac{k_u}{T_up + 1} \tag{6} $$

where k_u is the amplification factor of the amplifier and T_u is the time constant of the amplifier.

For the clockwork

$$ W_{ch}(p) = \frac{k_{ch}}{p} \tag{7} $$

where k_{ch} is the transfer ratio of the clockwork.
For the adding device

\[W_s(p) = k_s, \]

where \(k_s \) is the transfer ratio of the adding device.

For the servodrives

\[W_{sp}(p) = \frac{k_{sp}}{T_{sp}p + 1}, \]

where \(T_{sp} \) is the time constant of the servodrive and \(k_{sp} \) is the transfer ratio of the servodrive.

We will write the equations (2) in the following form:

\[
\frac{\omega_z g}{p} = \left(a_x - g \alpha \right) \frac{k_a k_1^2 k_c}{p^2 (T_{1a}p^2 + T_{2a}p + 1) (T_ip + 1)^2 \cos \varphi} + \omega_3 \frac{k_{ch}}{p} \times \frac{k_s k_u k_{sp}}{(T_u p + 1)(T_{sp} p + 1)},
\]

\[-\frac{\omega_x}{p} = (a_y - g \beta) \frac{k_a k_1^2 k_c k_u k_{sp}}{p^2 (T_{1a}p^2 + T_{2a}p + 1) (T_ip + 1)^2 (T_u p + 1)(T_{sp} p + 1)} \]

Usually the system is designed in such a manner that the lag of the separate elements does not affect materially the result of the measurement. To achieve this, the parameters \(T_{1a}, T_{2a}, T_i, T_u, \) and \(T_{sp} \) of the system's elements must be sufficiently small. Without taking the lag of the system's elements into account the equations (10) assume the form:

\[
\frac{\omega_z g}{p} = \left(a_x - g \alpha \right) \frac{k_a k_1^2 k_c}{p^2 \cos \varphi} + \omega_3 \frac{k_{ch}}{p} \left(k_s k_u k_{sp} \right); \]

\[-\frac{\omega_x}{p} = (a_y - g \beta) \frac{k_a k_1^2 k_c k_u k_{sp}}{p^2}. \]

We will pass on to an examination of the dependence of the output signals of the accelerometers on the parameters of the object's motion. Signals measured by the accelerometers are determined in the following
manner. The platform with the accelerometers participates in a complex motion. The absolute acceleration of the platform is determined by the relative, translational, and Coriolis accelerations.

During the motion in a great circle, the relative acceleration is dependent on the motion of the object relative to the earth. During the motion of the object without a variation in the altitude of the flight, the relative acceleration consists of the normal or centripetal acceleration directed along the radius of the earth toward its center, and tangential acceleration directed along the travelling velocity of the object.

Translational acceleration appears due to the earth's rotation. It also consists of the normal and tangential acceleration. The vector of normal acceleration lies in the meridian plane and is directed perpendicularly to the earth's axis of rotation. The vector of tangential acceleration is directed perpendicularly to the vectors of centripetal acceleration and angular velocity of the earth's rotation. Usually this acceleration may be neglected since the earth rotates almost uniformly.

Coriolis acceleration develops due to the earth's rotation and the motion of the object in a great circle. The vector of this acceleration is perpendicular to the plane in which the vectors of the earth's rotation lie and to the relative velocity of the motion of the object, and is set in that direction where the point of the relative-velocity vector tends under the effect of angular velocity.

In the projections on the axes ϵ_0 and η_0 of the horizontal coordinate system, the absolute acceleration acting on the accelerometer platform has the following form according to Fridlender:

$$a_{\epsilon_0} = \dot{W}_E - 2\omega_3 \sin\varphi \ W_N - \frac{W_E}{R} \ \text{tg} \ \varphi ;$$

$$a_{\eta_0} = \dot{W}_N + \frac{1}{2} R \omega_3^2 \sin 2 \varphi + 2 \omega_3 \sin \varphi \ W_E + \frac{W_E^2}{R \cos \varphi} .$$

We will introduce the following notations:

$$\Delta a_{\epsilon_0} = - 2\omega_3 \sin \varphi \ W_N - \frac{W_E}{R} \ \text{tg} \ \varphi ;$$

6 Fridlender, loc. cit.
In that case we have

\[a_{\epsilon 0} = \hat{\omega} E + \Delta a_{\epsilon 0} ; \]
\[a_{\eta 0} = \hat{\omega} N + \Delta a_{\eta 0} . \]

If it is taken into consideration that under the actual conditions the angles \(\alpha, \beta, \) and \(\delta \) and the quantities \(\dot{\alpha}, \dot{\beta}, \) and \(\dot{\delta} \) are small, then the sines of the angles may be replaced with the angles themselves and the cosines may be assumed to be equal to unity. In addition to this, we will consider as being infinitely small those items in which \(\alpha, \beta, \delta, \dot{\alpha}, \dot{\beta}, \) and \(\dot{\delta} \) or the products of their multiplication by the quantities of the order of \(\omega_3 \) and \(W/R \) are the co-factors. With this taken into account in the projections on the axes \(x, y, \) and \(z, \) the formulas (13) are written in a simplified form in the following manner:

\[a_x = \hat{\omega} E + \Delta a_{\epsilon 0} ; \]
\[a_y = \hat{\omega} N + \Delta a_{\eta 0} . \]

With account taken of the formula

\[p\epsilon = \frac{pa}{\cos \varphi} \]

where \(\epsilon \) is the angle of turn of the accelerometer platform about the axis \(z_g, \) the angular velocities of the rotation of the accelerometer platform in the case of an ideal stabilization of the axes of the gyro-platform have the form:

\[\omega_x = -p\beta - \frac{W_N}{R} ; \]
\[\omega_{zp} = \frac{pa}{\cos \varphi} + \omega_3 + \frac{W_E}{R \cos \varphi} . \]

After substituting the expressions (15) and (17) into formula (10) in conformity with Schuler's conditions according to which in the case under consideration
we will obtain differential equations of motion of the accelerometer platform in the following form:

\[
\begin{align*}
\ddot{a} + \frac{g}{R} a &= \frac{\Delta a_{\varepsilon_0}}{R}, \\
\ddot{\beta} + \frac{g}{R} \beta &= \frac{\Delta a_{\eta_0}}{R}.
\end{align*}
\]

(19)

Setting a particular solution of the system (19) in the form of

\[
\begin{align*}
a_g &= a_g(t) \quad \text{and} \quad \beta_g &= \beta_g(t),
\end{align*}
\]

the errors of the inertial system may be written as follows when determining:

\[
\begin{align*}
a_g &= \frac{\Delta a_{\varepsilon_0}}{g} \left(1 - \cos \sqrt{\frac{g}{R}} t\right), \\
\beta_g &= \frac{\Delta a_{\eta_0}}{g} \left(1 - \cos \sqrt{\frac{g}{R}} t\right);
\end{align*}
\]

(20)

the normal of the location

\[
\begin{align*}
\Delta W_N &= \Delta a_{\eta_0} \sqrt{\frac{R}{g}} \sin \sqrt{\frac{g}{R}} t, \\
\Delta W_E &= \Delta a_{\varepsilon_0} \sqrt{\frac{R}{g}} \sin \sqrt{\frac{g}{R}} t;
\end{align*}
\]

(21)

the position coordinates

\[
\begin{align*}
\Delta \varphi &= -\Delta a_{\eta_0} \frac{1}{g} \cos \sqrt{\frac{g}{R}} t, \\
\Delta \lambda &= -\Delta a_{\varepsilon_0} \frac{1}{g} \cos \sqrt{\frac{g}{R}} t.
\end{align*}
\]

(22)
As a numerical calculation indicates, the systematic errors of a geometric inertial navigation system due to the effect of the translational and Coriolis accelerations are considerable and must be compensated in an exact measurement of the parameters by the system.

The method used in the work for writing the differential equations of the system on the basis of its block diagram makes the solution of the problem easier and also makes it possible to evaluate the effect of the dynamics of the separate elements in a more complete examination of the processes using the methods of the control theory.

SELECTED BIBLIOGRAPHY

DISTRIBUTION

<table>
<thead>
<tr>
<th>EXTERNAL</th>
<th>No. of Copies</th>
<th>U.S. Atomic Energy Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air University Library</td>
<td>1</td>
<td>ATTN: Reports Library, Room G-017, Washington, D.C. 20545</td>
</tr>
<tr>
<td>ATTN: AULST</td>
<td></td>
<td>U.S. Naval Research Laboratory</td>
</tr>
<tr>
<td>U.S. Army Electronics Proving Ground</td>
<td>1</td>
<td>Weapons Systems Evaluation Group</td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
<td>ATTN: Technical Information Division, Kennedy Space Center, Florida 32899</td>
</tr>
<tr>
<td>Fort Huachuca, Arizona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Ordnance Test Station</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library, Code 753</td>
<td></td>
<td>John F. Kennedy Space Center, NASA</td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
<td>ATTN: KSC Library, Documents Section</td>
</tr>
<tr>
<td>U.S. Naval Ordnance Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corona, California 91720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawrence Radiation Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Information Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.O. Box 808, Livermore, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandia Corporation</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.O. Box 969, Livermore, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Postgraduate School</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monterey, California 93940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Warfare Laboratory, USAECOM</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Post Office Box 205, Mountain View, California 94042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library (TDS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4800 Oak Grove Drive, Pasadena, California 91103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Missile Center</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library, Code N3022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Mugu, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Army Air Defense Command</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: ADSX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent Air Force Base, Colorado 80912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Intelligence Agency</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ATTN: OCR/DE-Standard Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry Diamond Laboratories</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific & Tech. Information Div., NASA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: ATS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library, Bldg. 313, Aberdeen Proving Ground, Maryland 21005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Sci. & Tech. Information Facility</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ATTN: Acquisitions Branch (S-AK/UL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.O. Box 33, College Park, Maryland 20740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Army Edgewood Arsenal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Librarian, Tech. Info. Div. Edgewood Arsenal, Maryland 21010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>No. of Copies</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>National Security Agency</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: C3/TDL</td>
<td>\textit{Technical Information Division}</td>
<td></td>
</tr>
<tr>
<td>Fort Meade, Maryland 20755</td>
<td>ATTN: Classified Documents Group</td>
<td></td>
</tr>
<tr>
<td>Goddard Space Flight Center, NASA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library, Documents Section</td>
<td>Upton, Long Island, New York</td>
<td></td>
</tr>
<tr>
<td>Greenbelt, Maryland 20771</td>
<td>Watervliet Arsenal</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Propellant Plant</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td>ATTN: SWEWV-RD</td>
<td></td>
</tr>
<tr>
<td>Indian Head, Maryland 20640</td>
<td>Watervliet, New York 12189</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Ordnance Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Librarian, Eva Liberman</td>
<td>U. S. Army Research Office (ARO-D)</td>
<td></td>
</tr>
<tr>
<td>Silver Spring, Maryland 20910</td>
<td>ATTN: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>Air Force Cambridge Research Labs.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: CBRDLR/Stop 29</td>
<td>Box CM, Duke Station</td>
<td></td>
</tr>
<tr>
<td>Bedford, Massachusetts 01730</td>
<td>Durham, North Carolina</td>
<td></td>
</tr>
<tr>
<td>Springfield Armory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: SWESP-RE</td>
<td>Lewis Research Center, NASA</td>
<td></td>
</tr>
<tr>
<td>Springfield, Massachusetts 01101</td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Materials Research Agency</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMDR-ATL</td>
<td>21000 Brookpark Road</td>
<td></td>
</tr>
<tr>
<td>Watertown, Massachusetts 02172</td>
<td>Cleveland, Ohio 44135</td>
<td></td>
</tr>
<tr>
<td>Strategic Air Command (OAI)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Offutt Air Force Base, Nebraska 68113</td>
<td>Systems Engineering Group (RTD)</td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal, USAMUCOM</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: SMUPA-VA6</td>
<td>ATTN: SEPISR</td>
<td></td>
</tr>
<tr>
<td>Dover, New Jersey 07801</td>
<td>Wright-Patterson Air Force Base, Ohio 45433</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Command</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: ANSEL-CB</td>
<td>U. S. Army Artillery & Missile School</td>
<td></td>
</tr>
<tr>
<td>Fort Monmouth, New Jersey 07703</td>
<td>ATTN: Guided Missile Department</td>
<td></td>
</tr>
<tr>
<td>Sandia Corporation</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td>Fort Sill, Oklahoma 73503</td>
<td></td>
</tr>
<tr>
<td>Albuquerque, New Mexico 87115</td>
<td>U. S. Army CDC Artillery Agency</td>
<td></td>
</tr>
<tr>
<td>ORA(RRTT)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Holloman Air Force Base, New Mexico 88330</td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Report Library</td>
<td>Fort Sill, Oklahoma 73504</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 1663</td>
<td>U. S. Army War College</td>
<td></td>
</tr>
<tr>
<td>Los Alamos, New Mexico 87544</td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>White Sands Missile Range</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td>Carlisle Barracks, Pennsylvania 17013</td>
<td></td>
</tr>
<tr>
<td>White Sands, New Mexico 88002</td>
<td>U. S. Naval Air Development Center</td>
<td></td>
</tr>
<tr>
<td>Rome Air Development Center (EMLAL-1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: Documents Library</td>
<td>ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>Griffiss Air Force Base, New York 13440</td>
<td>Johnsville, Warmister, Pennsylvania 18974</td>
<td></td>
</tr>
</tbody>
</table>

14
U. S. Army CDC Nuclear Group
Fort Bliss, Texas 79916

1

Manned Spacecraft Center, NASA
ATTN: Technical Library, Code RW6
Houston, Texas 77058

1

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

20

U. S. Army Research Office
ATTN: STINFO Division
3045 Columbia Pike
Arlington, Virginia 22204

1

U. S. Naval Weapons Laboratory
ATTN: Technical Library
Dahlgren, Virginia 22448

1

U. S. Army Engineer Res. & Dev. Labs.
Fort Belvoir, Virginia 22060

2

Langley Research Center, NASA
ATTN: Library, MS-185
Hampton, Virginia 23365

1

Research Analysis Corporation
ATTN: Library
McLean, Virginia 22101

1

U. S. Army Tank Automotive Center
ATTN: SMOTA-Rt5.1
Warren, Michigan 48090

1

Hughes Aircraft Company
Electronic Properties Information Center
Florence Ave. & Teale St.
Culver City, California

1

Atoms International, Div. of NAA
Liquid Metals Information Center
P. O. Box 309
Canoga Park, California

1

Foreign Technology Division
ATTN: Library
Wright-Patterson Air Force Base, Ohio 45400

1

Clearinghouse for Federal Scientific and
Technical Information
U. S. Department of Commerce
Springfield, Virginia 22151

1

Foreign Science & Technology Center, USAMC
ATTN: Mr. Shapiro
Washington, D. C. 20315

3
ON THE CALCULATION OF AN INERTIAL NAVIGATION SYSTEM

Translated from the Russian

N. Ya. Vovchenko

12 December 1966

N/A

RSIC-621

AD

None

Same as No. 1

This article presents a refinement of previously derived dynamics equations for the calculation of a geometrical inertial navigation system. The operation of the system during the motion of an object in a great circle relative to the earth is considered. An estimate is made of the methodological errors due to translational and Coriolis accelerations.
UNCLASSIFIED

Security Classification

KEY WORDS

<table>
<thead>
<tr>
<th>ROLE</th>
<th>WT</th>
<th>ROLE</th>
<th>WT</th>
<th>ROLE</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK A</td>
<td></td>
<td>LINK B</td>
<td></td>
<td>LINK C</td>
<td></td>
</tr>
</tbody>
</table>

- Gyrostabilized platform
- Equations of dynamics
- Translational and Coriolis acceleration
- Schuler pendulum
- Inertial frame of reference

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing informations.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR’S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. “Qualified requesters may obtain copies of this report from DDC.”
 2. “Foreign announcement and dissemination of this report by DDC is not authorized.”
 3. “U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ______.”
 4. “U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ______.”
 5. “All distribution of this report is controlled. Qualified DDC users shall request through ______.”

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.