- . X-643-66-533
s 55757
* COMPUTING THE PSEUDO-INVERSE

| BY |
CHRISTOPHER R. HERRON

B

NOVEMBER 1966

'GODDARD SPACE FLIGHT CENTER ———
GREENBELT MARYLAND o

T Ne7S 123971

(THRU}
' {ACCESSION NUMBER) /
‘ t E & / .
1 \cobm
. T (PAGES) .
3 —75, ‘
; % - (CATEGOR

(NASA CR OR TMX OR AD NUMBER)

X-643-66-533

COMPUTING THE PSEUDO-INVERSE .

By
|\ Christopher R. Herron

November 1966

! GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

COMPUTING THE PSEUDO-INVERSE
By
Christopher R. Herron
ABSTRACT
An orthogonalization algorithm for producing the pseudo-

inverse of a matrix is described, and a FORTRAN program which
realizes the algorithm is given in detail.

iii

ACKNOWLEDGMENT

E. R. Lancaster, under whose supervision this paper was
written, was particularly helpful in the development of certain
theoretical aspects and supplied many perceptive suggestions on
overall organization. G. H. Wyatt's programming skill was in-
strumental in the debugging phase of the programming effort.

iv

To every matrix A there corresponds a unique matrix A* with the following
properties: '

CAA*A = A : (1)
A*AA* =AY (2)
(A*A)T = A*A | 3)
(AA+)T = AAY (4)

Penrose [1], one of the originators of this concept, called A* the generalized
inverse of A, and equations (1) through (4) are often called Penrose's Lemmas.
Recent usage applies generalized inverse to any matrix satisfying (1), (1) and
(2), or (1), (2), and (3), referring to the unique A* as the pseudo-inverse of A.
Other definitions of A* have been given (e.g. Albert [2], Ben-Israel (3]) but the
most common is that given above,

For simplicity's sake, the rest of this paper considers only real matrices,
although most results hold for complex matrices as well. The pseudo-inverse
provides a way to handle the ubiquitous matrix-vector equation

Ax =y . G

If A is square and non-singular, A* is A™! and the vector A'y solves the
equation. The particular advantage of the pseudo-inverse appears when A is
singular or non-square, since A’y then is the minimal vector for this equation;
that is, if M is the set of all vectors x, such that

[Axo ~ vl < llAx-vll (6)
for allx, then A*y ¢ M and

Ayl = min Al - -

Here we use the standard Euclidean norm.

A theorem which dates back to the time of Gauss (Newhouse [4]) states, in
effect, that if x, ¢ M, then x, is a solution of

ATAx = ATy .

This type of system, often called a set of normal equations, is found repeatedly
in least squares problems. (See, e.g., Rao [5]). Since A*ye M, the application
of A* in these circumstances is evident.

The same theorem also states that if x; ¢ M, then x, is a projection of y
onto the column space of A. Newhouse later gives a theorem which proves con-
dition (7), that A* y is the "shortest" of these projections, giving rise to
Greville's assertion [6] that A* y is the best solution to equation (5) in the least
squares sense.

Naturally, the theoretical existence of such a useful mathematical object
makes a method for its computation very desirable. Most of the methods sug-
gested, however, require that the product AT A be formed and that Gaussian
elimination (or one of its variants such as pivotal condensation or sweep out)
be performed on it. Should we be faced with an ill-conditioned matrix, it is
entirely possible that numerical difficulties will prevent any significant com-
putation using such methods. For example, consider the matrix

1 1 1 1]
5 6 7 8
101 1 1
6 7 8 9
H =
11 1 1
7 8 g 10
11 1 1
8 9 io i1 |

The Hilbert matrix is notoriously ill-conditioned with respect to Gaussian
elimination. The upper left-hand 4 x 4 corner of it has a condition number
X pax/Mmin 8iven by Marcus (Ref. [7]) as 15,514, so our 4 x 4 segment of it
would certainly be suspect. Fox (Ref. [8]) shows that our suspicions are
justified, giving the Gauss elimination process forH, in which the steady de-
crease in magnitude of the pivots leads to very unreliable quantities. More to

our point, he demonstrates that Gauss elimination fails completely when applied

to HT H, We should realize that a bad but workable problem can become path-
ologically unmanageable if such a product is formed, and, as a general rule,
avoid such approaches.

The method of Rust, Burrus, and Schneeberger (Ref. [9]) was used to
compute the pseudo-inverse because it does conform to this general rule.
Briefly, it can be characterized as follows: if the mx n matrix A is in the form
[R|S], where the k linearly independent columns form the submatrix R and the
linearly dependent columns form the submatrix S, make up the n x n identity
matrix and write, symbolically,

Then perform the Gram-Schmidt (G.S.) orthogonalization process on [R|S],
and apply these elementary column operations to the lower submatrix to get

Qlo
Z -U
0 In-k

U
Next, perform the G.S. process on the submatrix [I] to produce

n-k

Qlo
Z—UP;
0O P

form the matrix

QT
[(UP) TZQ*]

and, finally,

| V4 -UP QT
At = [R|S]t = :
0 P (UP)TZQT

A complete derivation is given in Ref. (9] and a few auxiliary notes are given
in Appendix A.

Of course, not every matrix will be in the convenient [R|S] form, but if we
can determine which columns of A are dependent we can certainly permute
columns to produce it; then [R|S]"is found and by the authority of Theorems I
and I, Appendix A, the rows of [R|S]* are likewise permuted to get A*. Since
the G.S. process not only orthogonalizes the independent columns of A but also
makes the dependent ones zero, we can use it to find the dependent columns.

Now we have a straightforward way to proceed:

(1) Use G.S. to find the dependent columns.

(2) Permute to get (R|S].

(3) Use G.S. to find [R|S] *.

(4) Permute to get A",
The reader will have noticed thét the G.S. process is used in step (1) and again
in step (3). We could save some computation time if we combined the two steps
and performed the G.S. process only once. A closer examination of the process
reveals that we can, under certain conditions, make this combination.

Our program uses a modified Gram-Schmidt process which is more accurate
than the classic textbook version. A recursive algorithm describing our version

is:

(1) Orthogonalize c;, the next column of A

i1 /e +b.'
b, - Z<— >b
)) b".b.’ 1

i=1

(2) Is b, ® 0? If so, zero it out and go to step (1). If not, do step (3).

(3) Re-orthogonalize b;:

and go to step (1).

The initial condition is b," = c,. After we run out of columns, we normalize
each one and we have an orthonormal matrix A .

If we want to duplicate these elementary column operations on another
matrix D, we could save the numbers

c; b, ’
bil . bll
and then go through the algorithm again, this time letting c; be the columns of

D. More precisely, we might save these numbers in an n x n matrix S, defined
as

b b,
<——’) , and (b, b/)2
b.' . b_'))

c; * b .
S T B o (4> i),
b, b’
s.. = ——— j > i
1) bll 'bil (J) ?
= LN 1\1/2
S5 (b;" - by (12j =n)
As an example, let A be
1 1 3 6
2 2 6 7
3 3 9 8

Using eight-digit arithmetic and rounding the final answers to three digits,

we have

267 0
AL = |.535 0
802 0
[3.74 o0
1.00 0
S 7 ls00 o0
3.14 0

0 .873

0 .218

0 -.436

.213 x IO'ﬂ

0
0
3.27

Once we have done the G.S. process on A, we have done it for all column permuta-
tions of A which do not disturb the relative order of the independent columns. If
P is a permutation matrix such that AP @ [R|S], where R is the matrix of inde-
pendent columns of A in their original relative order, the orthonormal matrix

[Q| 0] produced by the G.S. process on [R|S] will be AP . In our example,

suppose

(1 0
0 0
S 0
0 1

Then
1
RIS] = AP = |2
3

and
. 267
(Qlo] = A,P = |.535
.802

0 0)
1 0
0 1
0 o .

1 3

2 6

3 @ |
.873 0 0
.218 0 0
-.436 0 0

We can also produce a new S matrix (F) by permutations. Referring back to
the definition of S, one can see that a particular column c, has its initial

»

orthogonalization coefficients(c, b,)/ (b b: yon the jth row and below the
diagonal, and its secondary coefﬁments (b, . b})/(b; . b})fall on the jth column
and above the diagonal. Once c, is converted 1nto b , all initial coefficients
having b as a factor fall on the jth column below the diagonal, and all such
secondary coefficients fall on the jth row above the diagonal. When b
normalized, its '"length' falls on the jth diagonal element. Moving c, to a new
position therefore means that we must move the jth row and column of S to
corresponding positions, or

F = PTsp
In our example,
3.74 213 x1077 0 0
3.14 3.27 0 0
F -
1.00 0 0 0
3.00 0 0 0

If we go through the algorlthm with c; taken as the columns of a matrix D and

the numbers (c, . b, D/, . b, ;)and(b, . b,)/(b b, Otakenas f ; and f;, re-
spectively, we have apphed the elementary column operations of the G. S process
on [R|S] toD.

Now we have the desired result: once the G.S. process on Ais complete, it
is not necessary to do it again on [R|S] to derive its effects; merely execute the
indicated permutations on A, and S and we have all the necessary matrices.
Using this result, the procedure (1) through (4) on page 4 can be rewritten:

(1) Use G.S. on A; save the G.S. coefficients in S and save A;. Note which
columns are dependent.

(2) Permute A to get [Q]0] ; permute S to getF.

(3) Use the entries of F to operate on

producing

(4) Proceed as usual to find [R]S]*.
(5) Permute to get A",

The program whose flow chart and FORTRAN listing appear in Appendices
B and C has been checked with a variety of matrices on the IBM 7094 and appears
to run properly. Two particular cautions might be extended, however: first,
one will note that a decision on the dependency of any column is made by com-
paring the '"length' of the generated orthogonal column with the 'length' of the
original column. If the check number (b; . b,)/(cj ¢ is smaller than a certain
tolerance, the column bj is made zero. When the check number is very close to
the tolerance, any decision made will not be a good one and the resulting per-
turbations can become serious; for example, the Hilbert matrix gives poor
results for this very reason. One might vary the tolerance to suit special cases.

Second, although this program finds the inverse if it exists, there are
routines in general use which get better inverses. For example, the SHARE
routine MATINV was tested against this program on a sequence of Pei matrices
(Ref. (10], Ref. [11]) and consistently got one more accurate digit in the worst
cases. The difference is not great but the prospective user should realize that
it exists.

Finally, an experienced programmer will see that the FORTRAN realization
in Appendix C is not in optimal form. A more streamlined, double-precision
version is being prepared for the IBM 360 as of this writing. The author would
appreciate hearing of mistakes in, or improvements upon, the original.

APPENDIX A

(Supplementary notes for Ref. [9])

Theorem 1

If P is a permutation matrix (possibly a product of elementary permutation
matrices) and A* is the pseudo-inverse of A, then

(AP)* = PIA*

Proof: We need only verify that Penrose's Lemmas hold. Noting that PPT
= PTP = I, we have

(@) (AP)(PTA*) (AP) = AP

(b) PT A+ (AP)PT A+ PT A+

@ oo
@ [(e) apy]”

(AA*)T = AA* = (AP)(PTA*)

[PT(A*A) P]T

PT(A*A)™P = PI(A'A) P

(PTA*) (AP) .

Theorem I

If P is a permutation matrix and the operation AP effects a column permuta-
tion of A, then PTA effects that same permutation on the rows of A.

Proof: Suppose one of the effects of AP is to change column i to the jth place.
ThenP;, = 1,PT =1, and PTA changes row i to the jth place.

We use this result to get A* from a row permutation of [R|S] *— that same
permutation of columns which transformed A into (R]S].

The paper states (p. 383, right column) that the G.S. process turns a de-
pendent vector into the zero vector. One might check this statement by referring

to Hoffmann and Kunze, p. 230, Theorem III (Ref. [12}). If a,,, is a linear
combination of a;,***, a thenitis a linear combination of q,, « - -, q, since

the vectors q; span the space of the vectors a;. Furthermore, by the above-
mentioned theorem,

k

B4y Z (ak}il qi) q;

i=1

and c, ,, B 0.

On p. 384, left column we are to note that1__, remains unchanged. Suppose
we are operating on column k + p (p >0) of the matrix [R|S]. We have

Crsp = Byap T (ak+Pqi)qi

ak+p

|
'
™
—
™
A om
el
0
s
S
el
K,
|

H .
(ak+p qi) q;
=1 isk+1

But eachq,, k + 1 <i <k + p - 1, has been zeroed out already, since they came
from vectors dependent upona,, ¢+ ¢, a, , so the above is

k

Ck+p = ak+p - Z (ak!ip ql) qi

i=1

Similar column operations on the identity matrix then use only the first k columns,

whose lower n -k entries are all zero and cannot contribute to any modification
of I

n-k *

10

APPENDIX B

INITIALIZATION

BUMP COUNTER

ZERO THIS
COLUMN OUT

YES

NBY1

ORTHOGONALIZE
Nth COLUMN
WITH RESPECT
TO PREVIDUS
COLUMNS

[]

PUT ITS NUMBER
IN HOLD

[

NO

1§
THIS COLUMN
EPENDENT

RE-ORTHOGONALIZE
FOR ACCURACY

Y

PUT ITS NUMBER
IN JHOLD

NO

YES

WAS
THAT THE LAST
COLUMN?

YES

NORMALIZE ALL
COLUMNS

156

ARE
ALL COLUMNS
INDEPENDENT?

NO

PERMUTE A
T0 GET
(Q. 0 FORM;
PERMUTE FACTOR
TO MATCH

1

OPERATE ON

1%

YES

FORM

IDENTITY (A1)
WITH FACTOR

QT = ATR

ARE
ALL COLUMNS

157

INDEPENDENT?

KO

ORTHOGONALIZE
LAST (N - K}
COLUMNS OF
Al TO GET

Z UP
[u P]
KN
FORM
uPT 27

]
AUGMENT ATR
T0 GET

QT
[(um* zQ’] el
[1

FORM

157

AXATR = AINV

[]

PERMUTE AINV
T0 AGREE WITH
ORIGINAL

[}

WRITE RESULTS
AND CHECK

11

IR ol ol S LN Fand r\npv- r~ LRIV AT e bl o LI WA
PRREAL SO0 W S AN B wr FOPEEE SRR UL VP

APPENDIX C

TDIFENSTON “ATLG51075 FACTURTLG YO SETT0 1515 THOTUTIGT » JHOLD(ITTF ™™

lAl(lQaLO)9ORIG(10910)9PROUC10,10)sPRODlLlQ:lO)s

2FROD2(10s10)sATR(10s1C) sAINV(10s10)

B IMENSTON—UPTR109-1 0

DIMENSION AINV1(1Cs10)

DATA REAINIASHAINGLY

DATA PRASPRFACT sPR52/1HAs 4HFACT s2HS2/ " | . B
DATA PRALT/ZHALL . <

il

DATA PRAINV/&HAINV/
ATA PRURIGPRFR sFRFKL HKP\/.PKATRIAHUK n.aHDRQu.:HPRQDl.:HDRQDZ.‘

13HATR/
DATA PRUPTIR/LHUPTRYZ

154

RCAD(551) NROWS»NCULS | : | |
FORMAT{215) , -

DO 11z 1 = 1sNROWS - o o
READ(E.2) (A{lad}ed = 1.NCOLS) N L

N =

FORMAT(6El12.8)

TOL = (10 ¥0aS¥EDTI¥ED 4 _ y ' ?
DO 110 I = 1,NROWS - -
DO 110 J 1.NCOLS : -

110

ORIG(IsJ) = A(I4J)
DO 100 I=]1sNCOLS

IHOLD(1) = O
JHCLD (1) 0

i w

LO 102 J 14NCOLS -
S2(1sJ) = 0o

PROD1(IsJ)
PROD2(1,J)

O
O

ATR(IsJ) = O,
FACTOR(IsJ) = Q.

102
100

Al(TsJ) O
Al(l,s1) 1

I n

JHOLD(1) = 1
KK

JJ
I

Honn
O O

152

N =1 ‘ uE
NLESS]1 = N : b

N =N+1
CHECK = DOT(A.N;N.NROWS)

DO 101 1 = 14NLESS1
FACTOR(NeI) = DOT(AgNJP;NRQNSJLDQLLA41414NRQNSL

101

DO 101 J = 1. NROWS
A{JesN) = A(JsN) — FACTOR(NSI)*¥A(Js])

CHECK = DOT(AsNsN9yNROWS) /CHECK
IF(CHECK = JOL) 15091509151

150

DO 103 J = 1,NROWS

,113,,'..: '

103 A(JaNY = Qe

JJd = Jd + 1
IHOtD(JJ)Y = N

GO TO 155
151 DO 104 1 =]1.NLESS]

FACTOR(IsN) = DOT(AaN,I9NROWS)/DOT(A91913NROW5)1

DO 104 J = 1.NROWS

104 ALJsN) = A(JsN) - FACTOR(IsN)*A(J,1)

| KK = KK + 1 : ;
| JHOLD(KK) = N |
! ‘

155 IF(N = NCOLS) 15251539153

153 DO 105 J = 1,NCOLS
FACTOR(JoJ) = SQRT(DOT(AsJs s NROWS))

|
{ IF(FACTOR(JsJ) +EQs 0e) GO TO 105

DO 106 K = 1sNROWS
= A(KeJ) /EACTOR(JaJ)

iL5 CONTINUE
CAl |l WRITE(FACTORSNCOL S«NCOL S«PREACT)

| CALL WRITE(AsNROWS»NCOLSsPRA)
‘ _TFIKKLEQLNCOLS) GO TQ 156K

‘ DO 120 I = 1sKK
; ISUB = JHOLDUT)

PO 120 J = 14NCOLS
AlJel) = A(JeISUbB)

120 S2(Jsl) = FACTOR(JsISUB)
DO 121 1T = 14KK

IsuB = JHOLD(I)
DO 121) = 1,NCQOLS

121 FACTOR(IsJ) = -S2(15UBsJ)
KK = KK + -] i

DO 125 I = KKsNCOLS
11 = 11 + 1

IsuB2 = THOLD(II)

DO 12% J = 14NCOLS
i 125 FACTOR(Isd) = S52(15UBLsJ)
‘ DO 162 1 = KKsNCOLS
DO 162 J = 14NROWS
162 Aldel) = 0o

KK = KK =1

156 CALL WRITE(AJNROWS NCOLSSPRA)
] CALL WRITE(FACTORsNCOLSsNCOLSsPRFACT)
S CAlY WRITE(ATSNCOLSeNCOLS PRAT)

DO 502 I = 2,NCOLS
1LESS] = [-1

DO 500 J = 1+1LESSI

14

PRECEDING PAGE BLANK NOT FiLvEL.

PO_500 K’= 1sNROWS .
’) 1500 Al(Ksl) = AL(Ksl) = FACTOR(I,J) * Al(KyJ)
- : DO 592 J =]4JLESS]

DO 502 K. = 1sNROWS

02 AlIKaI) = AL(KeI) - FACTOR(J;I) * A1 (KeJ) _
. DO 501 1 = 1sKK o '
0O 501 J = 1,NROWS . _

501 Al(Js1) = Al(Jsl1)/FACTOR(Is1)
' CALL WRITE(A1,NCOLSINCOLSsPRAL)

CALL TRANSP (AsNROWSsKKsATR)
CALL, WRITE(ATRaNCOLSsNROWSs PRATR)

IF(KK.EQ.NCOLS) GO TO 157
1ST = kK + 1

IF(KKeEQe (NCOLS-1)) GO TO 158
N = kKK 4+ 1

159 - | NLESS1 = N
SN = N +1
’ DO 107 1 = ISTsNLESS1 =~
FA(TOR[N,I) = DOT(Al;N.I NCOLS)/DOT(AI.I I.NCOLS)
o DO 107 J = 1sNCOLS
Q7 A1(N = Al(JeN) = FACTDR(NLLl * All e Iy

DO 108 I = IST.NLESSI
‘ EACTOR(TI 4N} = DOT{AleNs] .NCOI%I/DDTIAI.L.I.NCOLSY

| | DO 108 J = 1,NCOLS

! 10B AVQJGN) = Al JeN) = FACTOR({IGN) % A1(Jel}
IF(NeLT«NCULS) GO TO 159 :
: CALL WRITE(A14NCOLSeNCOLS PRATY : I
158 DO 128 I = IST,NCOLS '
EACTOR(141) = SORT(DOT(ATI,1,14NCOIS})

DO 128 J = 14NCOLS

~ . i3 . R

128 AT 17 2 ATTY, TV 7FACTORTITIT S —

CALL WRITE(ALWNCOLSSNCOLS«PRALY .

CALL MATMPY (Al sKK:sKKs ATRsNROWSsPRODI)

—Al(J;ISUBl)

122 UPTR(1sJ) =

CALL MATMPY (UPTRsLIMsKK sPROD1 s NROWS4PROD2)
CALd WR|IEjER““2.|IM,NRHWQ.PRPR?)

DO 123 I = 14LIM
.lSUBB:KK+1 ,
D0 123 J = 1yNROWS

}23

ATR(1SUB35J) = PROD2(15J)

1157

CALL WKITE(ATRsNCOLSsNROWSs PRATR)
CALL MATMPY (ALl sNCOLSyNCULSIATRsNROWSSAINY)

CALL

WRITE(AINVSNCOLSyNROWS 9 PRAINV)

CALL WRITE(ORIGINROWSSNCOLSsPRORIG)

DO 126 1 = 1,4KK

1SUBYG

= JHOYD(T)

126

DO 126 J = 14NROWS
AINV]I(ISUB4sJ) = AINV(IeJ)

IF (KK +EQeNCOLS) GO TO 160

KK = KK + 1

IT =

0

DO 127 1 = KK oNCOI S

|
|
—

Il =

ISURS

1T + 1
= HOID(IT)

|
|

127

DO 127 J = 1+NROWS
AINVIEISUBDJ) = AINVI]IeJ)

KK =
CALL

Kk = 1]
WRITE (ALNV12NCOLSs NROWS sPRAINT)

CALL
CALL

MATMPY (ORIGsNROWS s NCOLS s AINV1 s NROWS 4 PROD)
WRITE(PROD yNROWSsNROWS s PRPK)

CALL
CALL

MATMPY (PROD s NROWS s NROWS s URIG s NCOLS 9y PROD2)
WRITE (PROD2 s NROWS s NCOLSsPRPR2)

CALL
CALL

MATMPY(AINVl,NCOLSsNROWSoPROD;NROWS,PRODZ)}
WRITE(PROD2yNCOLSysNROWSsPRPRZ)

CALL
CALL

MATMPY (AINV1 4NCOLS sNROWS sORIGsNCOLS,PROD)
WRITE(PRODSNCOLSINCOLS9PRPR)

GO TO 154

END

A
FUNCTION DOT (AsJyKsNROWS)
DIMENSION A(10.10)

DOT

O

DO 10 [= 1NROWS

10

DOT

DOT + A(lsJ) * A(lsK)

RETURN

END

RUBQOUTINE_NRLIELXJNBQMS.N(OIQQNAMEJ

DIMENSION X(10s10)
WRITF(643) NAME

FORMAT(1HO////7H MATRIXs1AT7)
DO 21 1 = 1«NROWS ,

21

WRITE(694) (X(IsJ)sJd = 14NCOLS)

16

A .FORMAT(1H098E16 8)
RETURN
END

SUBROUT INE MATMPY (A« NRA SNCALHBNCRZPROD)
-DIMENSION A(loslo)9B(10,10),PROD(10 10)

DO 600 1 =1 NRA

DO 600 J = 1,NCB -

PRAD(I+J) = (. : ,

DO 600 K = 1sNCA . !
,) _ n |

RETURN - !

END - |

SUBROUTINE TRANSP{AsNRASNCAsATR)

- DIMENSION A(10210)sATR(10»10Q)

DO 601 I = 14NRA
| DO 601 J = 14NCA |
1601 ATR(Js 1) = AllsJ)

RETURN ~

END

17

PRECEDING PAGE BLANK NOT FILMEL.

10.

11,

12,

BIBLIOGRAPHY

Penrose, R.: A generalized inverse for matrices, Proc. of the Cambridge
Philosophical Society, Vol. 51, 1955, pp. 406-413,

Albért, A.: An Introduction and Beginner's Guide to Matrix Pseudo-Inverses,
ARCON, 803 Mass. Ave., Lexington 73, Mass., 1964, particularly pp. III-8
to HOI-16.

Ben-Israel, A.: An iterative method for computing the generalized inverse
of an arbitrary matrix, Math. of Comp., Vol. 19, 1965, pp. 452-455.

Newhouse, S.: Introduction to Matrix Generalized Inverses and Their
Applications, GSFC X-643-66-34, 1966.

Rao, C. R.: A note on a generalized inverse of a matrix with applications
to problems in mathematical statistics, J. of the Royal Stat. Soc., Series B.
(Methodological), Vol. 24, No. 1, 1962, pp. 152-158,

Greville, T.: The pseudoinverse of a rectangular or singular matrix and
its application to the solution of systems of linear equations, SIAM Review,
Vol. 1, No. 1, 1959, pp. 38-43.

Marcus, M.: Basic Theorems in Matrix Theory, National Bureau of
Standards, Applied Mathematics Series, No. 57, p. 23,

Fox, L.: An Introduction to Numerical Linear Algebra, Clarendon Press,
Oxford, 1964, pp. 136-142,

Rust, B., Burrus, W., and Schneeberger, C.: A simple algorithm for com-
puting the generalized inverse of a matrix, Comm. of the ACM, Vol. 9,
No. 5, 1966, pp. 381-387.

Pei, M. L.: A test matrix for inversion procedures, Comm. of the ACM,
Vol. 5, No. 10, 1962, p. 508,

La Sor, W.: Test matrix for inversion, Comm. of the ACM, Vol. 6, No. 3,
1963, p. 102.

Hoffmann, K. and Kunze, R.: Linear Algebra, Prentice-Hall, Englewood
Cliffs, N. dJ., 1961,)

19

