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ABSTRACT 

An orthogonalization algorithm for producing the pseudo- 
inverse of a matrix is described, and a FORTRAN program which 
realizes the algorithm is given in detail. 
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To every matrix A there corresponds a unique matrix A+ with the following 
properties: 

AA'A = A 

(A+A) '  = A+A (3) 

( A A + ) T  = AA+ (4) 

Penrose [l], one of the originators of this concept, called A+ the generalized 
inverse of A ,  and equations (1) through (4) are  often called Penrose's Lemmas. 
Recent usage applies generalized inverse to any matrix satisfying (l), (1) and 
(2), or  (l), (2), and (3), referring to the unique A+ as the pseudo-inverse of A. 
Other definitions of A+ have been given (e.g. Albert [2], Ben-Israel [31) but the 
most common is that given above. 

For simplicity's sake, the rest  of this paper considers only real matrices, 
although most results hold for complex matrices as well. The pseudo-inverse 
provides a way to handle the ubiquitous matrix-vector equation 

Ax = y .  (5) 

If A is square and non-singular, A+ is A-' and the vector A + y  solves the 
equation. The particular advantage of the pseudo-inverse appears when A is 
singular o r  non-square, since A + y  then is the minimal vector for this equation; 
that is, i f  M is the set of all vectors x o  such that 

for a l lx ,  then A + y  E M and 

Here we use the standard Euclidean norm. 
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A theorem which dates back to the time of Gauss (Newhouse [41) states, in 
effect, that if xo E M ,  then xo is a solution of 

ATAx = ATy . 

This type of system, often called a set of normal equations, is found repeatedly 
in least squares problems. (See, e.g., Rao [51). Since At  y E M ,  the application 
of At in these circumstances is evident. 

The same theorem also states that if  xo E M ,  then x0 is a projection of y 
onto the column space of A. Newhouse later gives a theorem which proves con- 
dition (7),  that At  y is the "shortest" of these projections, giving r ise  to 
Greville's assertion [6] that At y is the best solution to equation (5) in the least 
squares sense. 

Naturally, the theoretical existence of such a useful mathematical object 
makes a method for its computation very desirable. Most of the methods sug- 
gested, however, require that the product AT A be formed and that Gaussian 
elimination (or one of its variants such as pivotal condensation or  sweep out) 
be performed on it. Should we be faced with an ill-conditioned matrix, it is 
entirely possible that numerical difficulties will  prevent any significant com- 
putation using such methods. For example, consider the matrix 

1 1 
6 7 8 9 

- 1 - 1 - - 

1 1 
5 8 9 10 

- 1 - 1 - 

The Hilbert matrix is notoriously ill-conditioned with respect to Gaussian 
elimination. The upper left-hand 4 x 4 corner of it has a condition number 
hmax/Amin given by Marcus (Ref. [71) as 15,514, so our 4 x 4 segment of it 
would certainly be suspect. Fox (Ref. [SI) shows that our suspicions a re  
justified, giving the Gauss  elimination process for H', in which the steady de- 
crease in magnitude of the pivots leads to very unreliable quantities. More to 
our point, he demonstrates that Gauss elimination fails completely when applied 
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to HT H .  We should realize that a bad but workable problem can become path- 
ologically unmanageable if such a product is formed, and, as a general rule, 
avoid such approaches. 

The method of Rust, Burrus, and Schneeberger (Ref. [91) was used to 
compute the pseudo-inverse because it does conform to this general rule. 
Briefly, it can be characterized as follows: if the m x n matrix A is in the form 
[RI SI , where the k linearly independent columns form the submatrix R and the 
linearly dependent columns form the submatrix S , make up the n x n identity 
matrix and write, symbolically, 

Then perform the Gram-Schmidt (G.S.) orthogonalization process on [Rl SI , 
and apply these elementary column operations to the lower submatrix to get 

Next, perform the G.S. process on the submatrix I to produce [ :!k] 

form the matrix 
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and, finally, 

A complete derivation 
in Appendix A. 

given nl Ref. [91 and a few auxiliary notes are  given 

Of course, not every matrix will be in the convenient [Rl SI form, but if we 
can determine which columns of A a re  dependent we can certainly permute 
columns to produce it; then [RISI'is found and by the authority of Theorems I 
and It, Appendix A, the rows of. [RI SI ' are  likewise permuted to get A'. Since 
the G.S. process not only orthogonalizes the independent columns of A but also 
makes the dependent ones zero, we can use it to find the dependent columns. 

Now we have a straightforward way to proceed: 

(1) Use G.S. to find the dependent columns. 

(2) Permute to get [ R I  SI . 
(3) Use G.S. to find [RI SI '. 
(4) Permute to get A'. 

The reader will have noticed that the G.S. process is used in step (1) and again 
in step (3). We could save some computation time if we combined the two steps 
and performed the G.S. process only once. A closer examination of the process 
reveals that we can, under certain conditions, make this combination. 

Our program uses a modified Gram-Schmidt process which is more accurate 
than the classic textbook version. A recursive algorithm describing our version 
is: 

(1) Orthogonalize c j  , the next column of A : 
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(2) I s  b j  2 O ?  If so, zero it out and go to step (1). If not, do step (3). 

(3) Re-orthogonalize b j  : 

and go to step (1). 

The initial condition is b,' = c 1. After we run out of columns, we normalize 
each one and we have an orthonormal matrix A,. 

If we want to duplicate these elementary column operations on another 
matrix D, we could save the numbers 

c .  * bi' b j  * bi' 
(bl '  - b i )  ' ( b i  - b:) ' and (b j '  b j ' ) l I2  

and then go through the algorithm again, this time letting c be the columns of 
D. More precisely, we  might save these numbers in an n x n matrix S ,  defined 
as 

S j j  = ( b j '  - bj ') l i2 ( l l j  L n )  . 

As an example, let A be [::,11' 3 

3 3 9 8 
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Using eight-digit arithmetic and rounding the final answers to three digits, 
we have 

s =  

0 0 - .436_] 

- - 
3.74 0 0 .213 io-’ 

1.00 0 0 0 

3.00 0 0 0 

3.14 0 0 3.27 - - 

Once we have done the G.S. process on A ,  we have done it for all column permuta- 
tions of A which do not disturb the relative order of the independent columns. If 
P is a permutation matrix such that AP [RI SI , where R is the matrix of inde- 
pendent columns of A in their original relative order, the orthonormal matrix 
[QI 01 produced by the G.S. process on [ R (  SI will be A P  . In our example, 

suppose 

Then 

P =  

- 
1 0 O O l  

:I. 0 

0 0 1 

0 0 0 

0 1 0 - 

We can also produce a new S matrix (F) by permutations. Referring back to 
the definition of S, one can see that a particular column c has its initial 
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I 
4 + -  

orthogonalization coefficients( c. . bI )/(bI . br )on the j th row and below the 
diagonal, and its secondary coefficients(bj . bI)/(bl . bI)fall on the jth column 
and above the diagonal. Once cj is converted into bj '  , all initial coefficients 
having b j '  as a factor fall on the j th column below the diagonal, and all such 
secondary coefficients fall on the j th row above the diagonal. When bj '  is 
normalized, its 'length" falls on the j th diagonal element. Moving c j  to a new 
position therefore means that we  must move the jth row and column of S to 
corresponding positions, o r  

F = PTSP , 

In our example, 

F 3.00  

- 
213 10-7 0 0 

3.27 0 0 

0 0 0 

0 0 0 - 

If we go through the algorithm with c taken as the columns of a matrix D and 
the numbers(cj . b:)/(bi'. bi)and(bj . bi)/(bl . bI)taken as f j i  and f i j  re- 
spectively, we have applied the elementary column operations of the G.S. process 
on [R(s]   to^. 

Now we have the desired result: once the G.S. process on A is complete, it 
is not necessary to do it again on [RI SI to derive its effects; merely execute the 
indicated permutations on Al and S and we have all the necessary matrices. 
Using this result, the procedure (1) through (4) on page 4 can be rewritten: 

(1) Use G.S. on A; save the G.S. coefficients in S and save Al. Note which 
columns are  dependent. 

(2) Permute A~ to get [QI 01 ; permute s to get F. 

(3) Use the entries of F to operate on 
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producing 

(4) Proceed as  usual to find [RI SI '. 
(5) Permute to get A'. 

The program whose flow chart and FORTRAN listing appear in Appendices 
B and C h a s  been checked with a variety of matrices on the IBM 7094 and appears 
to run properly. Two particular cautions might be extended, however: first, 
one will note that a decision on the dependency of any column is made by com- 
paring the "length" of the generated orthogonal column with the "length" of the 
original column. If the check number (bJ . b, ) / ( c ,  . c,  ) is smaller than a certain 
tolerance, the column bJ is made zero. When the check number is very close to 
the tolerance, any decision made will not be a good one and the resulting per- 
turbations can become serious; for example, the Hilbert matrix gives poor 
results for  this very reason. One might vary the tolerance to suit special cases. 

Second, although this program finds the inverse if  it exists, there are 
routines in general use which get better inverses. For example, the SHARE 
routine MATINV was tested against this program on a sequence of Pei matrices 
(Ref. [ lo] ,  Ref. [ll]) and consistently got one more accurate digit in the worst 
cases. The difference is not great but the prospective user should realize that 
it exists. 

Finally, an experienced programmer will see that the FORTRAN realization 
in Appendix C is not in optimal form. A more streamlined, double-precision 
version is being prepared for the IBM 360 as of this writing. The author would 
appreciate hearing of mistakes in, o r  improvements upon, the original. 
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APPENDIX A 

(Supplementary notes for Ref. [91) 

Theorem I 

If P is a permutation matrix (possibly a product of elementary permutation 
matrices) and A +  is the pseudo-inverse of A,  then 

(AP)' = PTA' 

Proof: We need only verify that Penrose's Lemmas hold. Noting that PPT 
= P T P  = I ,  we have 

(c) [(Ap)( PTA+ )]' = (AA')T = AA+ = (AP)( PTA+ ) 

= P'(A+A)~P = PT(A+A) P 

= ( PTA+ ) (AP) . 

Theorem II 

Lf P is a permutation matrix and the operation AP effects a column permuta- 
tion of A, then PTA effects that same permutation on the rows of A. 

Proof: Suppose one of the effects of AP is to change column i to the j th place. 
Then Pi j  = 1, P; = 1 ,  and PTA changes row i to the j th place. 

We use this result to get A+ from a row permutation of [RI SI +- that same 
permutation of columns which transformed A into [RI SI. 

The paper states (p. 383, right column) that the G.S. process turns a de- 
pendent vector into the zero vector. One might check this statement by referring 
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to Hoffmann and Kunze, p. 230, Theorem III (Ref. [121). If ak+l  is a linear 
combination of a l ,  , ak then it is a linear combination of q, , , qk since 
the vectors q i  span the space of the vectors a i .  Furthermore, by the above- 
mentioned theorem, 

and c k + l  0. 

On p. 384, left column we w e  to note that In - remains unchanged. Suppose 
we are operating on column k t p (p  > 0) of the matrix [RI SI. We have 

k + p - 1  

a k + p  - C (akH+pqi) qj 
- - 

'k+p 

i = l  

But each q i ,  k + 1 5 i 5 k + p - 1, has been zeroed out already, since they came 
from vectors dependent upon a 1 ,  , ak , so the above is 

Similar column operations on the identity matrix then use only the first k columns, 
whose lower n - k entries a re  all zero and cannot contribute to any modification 
Of In-k 
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APPENDIX B 

INITIALIZATION u 

.. 

BUMP COUNTER 
N BY I 

ORTHOGONALIZE 
Nth COLUMN 

WITH RESPECT 
TO PREVIOUS 1 COLUMNS 1 

RE-ORTHOGONALIZE 
NO FOR ACCURACY 

ZERO THIS 
COLUMN OUT 

t -  
I 

t 
PUT ITS NUMBER 

lU 1 NO 

i 

I NORMALIZE A L L  I 
COLUMNS 

PERMUTE A 
TO GET 

[Q. 01 FORM; 
PERMUTE FACTOR 1 TO HATCH 1 

PUT ITS NUMBER 
IN JHOLD 

FORM 
QT = ATR 

ORTHOGONALIZE 
LAST i N  . K) 

COLUMNS OF 
A I  TO GET 

AUGMENT ATR 
TO GET 

A a ATR = AlNV u 
TO AGREE WITH 

ORIGINAL 

WRITE RESULTS 
AND CHECK 
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APPEWIX C 

K K  = 1 
JJ = 0 
I 1  = 0 
N = l  

1 5 2  N L E S S l  = N 
N = N + l  
CHFCK 
DO 1 0 1  I = 1 , N L E S S l  

DO 1 0 1  J = 1, NROWS 
1 0 1  A(J ,N)  = A ( J , N )  - F A C T O R ( N , I ) * A ( J I I )  

C H k C K  = DOT(A,N,N,NROWS)/4HECK 

- - T ( A,  N r N  9NROWS 1 

F A C T O R ( N . 1  1 - - T I A r N .  T ' q W S  1 /DOT ( A ,  I I ,NROWS I 

I F  ICHFC K - I )  1 5 0 , 1 5 0 , 1 5 1  
-I-'- ' I 

- -A - -  - 
~ ~ 

~ -_ - _  
1 5 0  DO 1 0 3  J = 1,NROWS 

- f3-- 



I 
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I f F ( K K , E Q . ( N C O L S - l ) )  GO T O  158 

DO 128  J = 1 9 N C O L S  
, 

t -  
L' 



c 



END 

.- 
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