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AN ANALYSIS OF CRITICAL FUEL SOLUTION REACTORS 

CONTAINING ARRAYS OF VOID TUBES 

by Wendell Mayo 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

The problem of neutron streaming out  of empty tubes penetrating 

c r i t i c a l  reac tors  has been considered by many people i n  the  pas t  f e w  

years.  Homogenization i s  one possible method of t r ea t ing  the  void 

e f f ec t  but t h i s  generally leads t o  poor predict ions of reactor  c r i t i -  

c a l i t y .  Behrens ( ref .  1) derived equations fo r  anisotropic  d i f fus ion  

coef f ic ien ts  which may be used i n  c r i t i c a l i t y  calculat ions t o  account 

for  neutron streaming. Zimmerman t rea ted  the  c r i t i c a l  cy l indr ica l  

reac tor  with a s ingle  void tube on the axis (ref.  2 ) .  However, t h e  

reactor  geometry sketched i n  Figure 1 is of such a heterogeneous nature 

t h a t  Behrens' and Zimmerman's methods do not work very well .  The 37  

void tubes i n  the  reactor  shown are 7.62 em i n  diameter and arranged 

with a t r iangular  spacing. The height of t he  core depends on the UOZFZ 

concentration i n  the  f u e l  so lu t ion  surrounding the  void tubes. 

aqueous solut ion of uranyl f luor ide  enriched t o  93.2 percent i n  

An 

uranium 235 i s  used as fue l .  

Peak and Cohen ( r e f .  3) calculated a 37 tube configuration such as 

shown i n  Figure 1 using Behrens' method. The observed c r i t i c a l  height 

of t he  core, r a d i a l l y  r e f l ec t ed  by 15.24 cm of water, was  about 7 5  cm. 

However, the  calculated mult ipl icat ion fac tor  for t h i s  core was  0.94 

X-52302 
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compared with the  experimental value of uni ty .  

r a t e s ,  p a r a l l e l  t o  the  void tubes, were g rea t ly  overestimated by t h e  

calculat ions and indicated t h a t  an approach d i f f e ren t  from Behrens' was  

required.  

The multigroup leakage 

The purpose of t h i s  study i s  t o  inves t iga te  a ca lcu la t iona l  method 

involving d i r e c t  appl icat ion of exis t ing computer programs t o  extreme 

cases of heterogeneous voids. Ektreme heterogeniety, here, r e f e r s  t o  

arrays of l a rge  diameter voids i n  r e l a t ive ly  compact reac tors  where the  

t o t a l  leakage r a t e  per source neutron may approach 50 percent. 

The geometry of the reac tors  considered i n  t h i s  study is  i l l u s t r a t e d  

by t h e  sketch a t  the top of Figure 2 which shows a 19 void tube config- 

urat ion.  Another r ing  of 18 addi t ional  void tubes would give a 37 void 

tube assembly while omitting the s ix  corner tubes from the  37  void tube 

a r ray  results i n  a 31 void tube array. 

spacing) was e i t h e r  9.65 cm o r  10.92 cm. The core tank i s  76.2 cm i n  

diameter. 

The p i t ch  (center-to-center tube  

The method used i n  t h e  present analysis consis ts  pr imari ly  of two 

pa r t s .  

of t he  void tubes using t ranspor t  theory solut ions of an e x p l i c i t  c e l l  

containing a void tube and proportional p a r t  of t h e  surrounding f u e l  

solut ion.  "he second s t e p  is t o  incorporate these  axial leakage rates 

i n t o  a gross cy l indr ica l  reactor  calculat ion of t h e  e f f ec t ive  mul t ip l i -  

ca t ion  f ac to r .  

The f i rs t  i s  t o  obtain the  multigroup axial leakage rates out 
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The dot ted l i n e s  around the  center tube i n  the  reactor  geometry 

shown i n  Figure 2 a r e  l i n e s  of symmetry, i . e . ,  c e l l  boundaries. It i s  

assumed t h a t  t he  e n t i r e  void tube array i s  made up of these c e l l s .  

t h e  hexagonal boundary of the  c e l l  converted t o  an equivalent c i r cu la r  

boundary the  c e l l  may be represented i n  r - z  geometry. 

boundary is  chosen t o  conserve the proportional volume of f u e l  associ-  

ated with the  void tube. 

r -z  c e l l  as shown, which i s  extracted from the  geometry of a c r i t i c a l  

reac tor ,  gives the  axial leakage r a t e  per source neutron out of t he  c e l l .  

Five energy group S4P1 t ranspor t  theory calculat ions with the  TDSN 

( r e f .  4) program a r e  used. 

( r e f .  5) and TEMPEST (ref.  6)  programs. 

boundary condition i s  used a t  the  curved surface and a 

ren t"  boundary condition i s  used a t  the c e l l  ends. 

t he  c e l l  is exploited so t h a t  only the half height of t h e  c e l l  need be 

specif ied.  The axial leakage rate from t h e  c e l l  i s  assumed t o  be applicable 

t o  t h e  e n t i r e  void region of t h e  core consis t ing of 1 9 ,  31, or 37 c e l l s .  

With 

The c i r cu la r  

A multigroup t ranspor t  so lu t ion  of t h e  e x p l i c i t  

Cross sections a r e  obtained from the  GAM-I1 

An " isotropic  r e tu rn  current" 

"no r e tu rn  cur- 

The a x i a l  symmet.ry of 

The gross cy l ind r i ca l  reactor  model used i n  t h e  one-dimensional 

r a d i a l  d i f fus ion  theory calculat ions cons is t s  of a homogenized void 

tube-fuel so lu t ion  region, a void-free f u e l  so lu t ion  dr iver  region, t he  

aluminum core tank and the  water re f lec tor .  

complex outer boundary of t he  void tube a r ray  by a c i r cu la r  boundary 

s o  as t o  permit one-dimensional calculat ions i s  probably the  poorest 

approximation i n  t h i s  ca lcu la t iona l  model, pa r t i cu la r ly  f o r  t he  37 void 

tube array which near ly  f i l l s  t h e  core tank. 

The representat ion of t h e  

The axial leakage r a t e  out 
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of the  homogenized void region i s  based on the  r -z  c e l l  solut ion.  

a x i a l  leakage probabi l i ty  per un i t  flux, or more precisely,  an axial 

leakage cross sec t ion  by group i s  defined by dividing the  axial leakage 

rate per  source neutron by the  volume i n t e g r a l  of t he  group f lux.  

f l ux  weighting, instead of volume averaging, i s  used t o  homogenize the  

voided region i n  order t o  account for the f u e l  "disadvantage" fac tors .  

An 

Spa t i a l  

The high leakage rates out of the void tubes, fo r  t he  shor te r  

reac tors  with the  more concentrated f u e l  solut ions,  depresses t h e  f lux  

i n  the  void. The "disadvantage" fac tors  ( r a t i o  of t he  average f l u x  i n  

t h e  f u e l  t o  t h e  average flux i n  the  c e l l )  for  t he  f u e l  a r e  thus grea te r  

than unity.  

thermal fluxes obtained by dysprosium ac t iva t ions  i n  a 37 tube assembly 

fo r  two f u e l  concentrations ( r e f .  7 ) .  The t raverse  shown w a s  made along 

a mador radius  of the hexagnnal a r rn ly .  

given as t h e  r a t i o  of t he  hydrogen-to-uranium 235 atoms i n  the  solut ion.  

Note t h a t  the  f lux  peaking i s  considerably grea te r  fo r  the  shor te r  

reactor  a t  H/U-235 = 150 than f o r  the  t a l le r  core a t  

Additional experiments 

peaking i n  t h e  f u e l  so lu t ion  var ies  with core height a t  a given f u e l  

concentration. A Seven tube reac tor  a t  H/U-235 = 150 with a height of 

1 6  cm shows an increase of t he  peak f lux of 14 percent compared t o  t h i s  

37 tube core which i s  32 cm ta l l .  The r - z  c e l l s  a r e  used t o  obtain the  

"disadvantage" fac tors  fo r  use i n  the  homogenized void region of t he  

reac tor  calculat ions.  

This e f f e c t  i s  evident i n  Figure 3 which shows experimental 

The file1 cencentraticns m e  

H/U-235 = 720. 

have shown tha t  t h e  magnitude of the  f l u x  



Figure 4 shows calculated mult ipl icat ion f ac to r s  f o r  19  

a s  a function of the  atom r a t i o  of hydrogen t o  uranium 235. 

a r e  shown: 

5 

tube reactors  

Three curves 

Curve A i s  obtained using the geometric buckling with energy 

dependent extrapolation distances t o  compute the  a x i a l  leakage. 

void tube region i s  homogenized by volume averaging the  void tube c e l l s  

and one-dimensional r a d i a l  calculations a r e  performed. The c r i t i c a l  

heights of the voided reactors  are shown on t h i s  curve. 

The 

Curve B i s  obtained from r a d i a l  calculat ions using the  reac tor  

ca lcu la t iona l  geometry i n  the  same manner as fo r  Curve A except t h a t  t he  

axial leakage cross sect ions obtained from the  r - z  c e l l  a r e  used. Homo- 

genization of t he  voided region is by s p a t i a l  f l ux  weighting. 

Curve C i s  fo r  unvoided reactors .  The i n f i n i t e  mul t ip l ica t ion  

fac tor  of t he  f u e l  so lu t ion  does not char!!e with ?mid cmtcnt ;  therefore,  

t h e  unvoided c r i t i c a l  reac tors  have the same process r a t e s  per source 

neutron as t h e  c r i t i c a l  voided reactors  using t h e  same f u e l  so lu t ion  

regardless  of t h e  void content. The unvoided reac tors  a re  r e l a t i v e l y  

simple systems from a ca lcu la t iona l  standpoint, and therefore  provide an 

excel lent  bas i s  with which t o  compare results of calculat ions f o r  voided 

reac tors .  

A pos i t i ve  r e a c t i v i t y  correct ion fo r  t h e  1 .27  cm th i ck  aluminum core 

tank bottom worth is included i n  a l l  of these calculations;  

calculat ions give tank bottom corrections of 1.8 percent, 0.8 percent 

and 0.4 percent AK a t  H/U-235 values of 324, 789, and 1082, respect ively.  

S4Po ax ia l  



6 

The discrepancy between curves B and C i s  about 0.5 percent as compared 

t o  seve ra l  percent fo r  Curves A and C where t h e  r - z  c e l l  r e s u l t s  are 

not incorporated. 

the mult ipl icat ion fac tor  ofunityshows a reasonably uniform pos i t ive  

deviat ion of from about 0.2 percent t o  0.8 percent AK. 

Comparison of Curve C w i t h  t he  experimental value of 

An examination of t he  axial leakage cross sect ions f o r  a reactor  

w i t h  a c r i t i c a l  f u e l  so lu t ion  height of 41.9 cm shows qua l i t a t ive ly  

why the reac tor  calculat ions using t h e  r - z  c e l l  model pred ic t s  smaller 

and more accurate mult ipl icat ion factors  than those computed using the  

completely homogenized c e l l  model. 

leakage cross sect ions f o r  each of the f i v e  neutron groups used i n  t h e  

calculat ions.  

abscissa .  

equations. 

examined. 

the first four groups but decrease 

i s  a t t r i b u t e d  t o  the  shor te r  mean f r ee  path of thermal neutrons i n  the 

f u e l  solut ion.  On the  other hand, t h e  homogenized c e l l  values show more 

va r i a t ion  with the  grea tes t ,  and most important difference being a 

smaller thermal group cross sect ion.  Since the group flux in t eg ra l s  

a r e  nearly t h e  same i n  these two calculations,  t he  r e l a t i v e  leakages 

r a t e s  by group are indicated by the histogram. 

of t h e  a x i a l  leakage cross sect ions f o r  group 5 by the two methods of 

calculat ion i s  about 2.8 which i s  also t h e  r a t i o  of the  axial leakage 

rates. 

Figure 5 is  a histogram showing 

The lower energy of each group i s  shown along the  

The leakage cross sections are calculated using the indicated 

The trends i n  t h i s  h i s tog rm are t . n i c a l  of all of the cases 

The r-z  c e l l  leakage cross sect ions a r e  almost constant for 

i n  t h e  thermal group; t h i s  decrease 

For example, t he  r a t i o  
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The reac tor  r e s u l t s  t o  t h i s  point have been fo r  1 9  void tube con- 

f igura t ions .  Several addi t ional  reactors  were calculated.  Table 1 

presents  a summary of the reac tors  studied and the  calculated m u l t i p l i -  

cat ion f ac to r s  f o r  both voided and unvoided reac tors .  All t he  r e s u l t s  

have been corrected f o r  the  worth of the core tank bottom. The l a r g e s t  

discrepancy between t h e  voided and unvoided calculat ions of 1 . 2  percent 

occurs fo r  t he  t h i rd  case. 

t o  the geometric approximations a t  t h e  void region-driver region i n t e r -  

face; an addi t ional  contributing factor  may be the  high c e l l  m u l t i p l i -  

ca t ion fac tor  of 1.098 which indicates subs t an t i a l  leakage radial ly  

i n t o  the t h i n  dr iver  region. This i s  t o  be contrasted w i t h  the  second 

case which has 31 void tubes; th is  case has a l a rge r  void tube spacing 

and has about t he  same thickness of driver region. The c e l l  multi-  

p l i ca t ion  f ac to r  i n  t h i s  s e c m d  c ~ s e  is m a z e r  t o  uni ty  indicat ing L i t t l e  

i n t e rac t ion  of t he  dr iver  and voided region. 

calculated reactor  r e s u l t s  i s  only 0.4 percent.  The las t  case l i s t e d  

i s  e s sen t i a l ly  t h e  same configuration as the  second (though the  f u e l  

solut ion,  c r i t i c a l  height and r e f l ec to r  a r e  d i f f e r e n t ) ,  but has a high 

c e l l  mult ipl icat ion f ac to r  of 1.152 and shows a 1 percent discrepancy. 

Although the  number of cases s tudied is l imited,  a reasonably consis tent  

f inding i s  t h a t  t h e  major p a r t  of t h e  small observed differences a r e  

associated w i t h  t h e  geometric representation i n  t h e  gross cy l indr ica l  

reac tor  calculat ions ra ther  than i n  t h e  r-z c e l l  representation. 

Most of t h i s  discrepancy can be a t t r i bu ted  

The discrepancy i n  the  
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It should be pointed out that while one-dimensional radial 

calculat ions were used i n  t h i s  gross cy l indr ica l  reactor  calculat ion,  

t h e  method does not preclude two-dimensional calculat ions.  

mesh d i f f i s i o n  theory program would permit more accurate representat ion 

of the geometry of the reactors .  

A triangular 

Considering the  wide range of reactors  calculated the model used 

appears t o  be reasonably accurate and amenable t o  d i r e c t  appl icat ion.  

Further t a i l o r i n g  of the model t o  a pa r t i cu la r  reac tor  o r  t o  a l imi ted  

range of reactors  could r e s u l t  i n  improved accuracy. 

technique f o r  other reac tors  containing voids depends primarily upon 

an adequate de f in i t i on  of the appropriate r - z  c e l l .  

The use of t h i s  



TABLE I 

CALCULATED MULTIPLICATION FACTORS FOR C R I T I C A L  R U C T O R S  

(r-z C e l l  M e t h o d )  

H/U -2 35 R e f l e c t  o r  

324 water 

324 w a t e r  

324 none 

7 89 water 

789 none 

1082 water 

No. Tubes 

19 
0 

31 
0 

37 
0 

37 
0 

3 1  
0 

31 
0 

Pitch 

9.65 cm --- 
10.92 --- 

9.65 --- 
9.65 --- 
9.65 --- 

10.92 --- 

H e i g h t  

21.0 cm 
15.5 

28.4 
15.5 

40.8 
15.7 

64.7 
22.4 

67.9 
22.8 

83.7 
29.1 

Keff 

0.624 0.999 
0.999 

I,. 024 1.003 
0.999 

1.098 1.014 
,1.002 

1.093 1.016 
1.007 

1 116 1.010 
1.008 

1.152 1.016 
1.006 
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C M  
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15. 5 
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15 .5  

40. 8 
15.  7 

6 4 . 1  
2 2 . 4  

61 .9  
22. 8 

8 3 . 1  
29. 1 

- 
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1 . 0 2 4  
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0 .999  
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MODEL GEOMETRY 

r-z  cell U C D - 9 0 9 5  

Reactor model 

Figure 2 

THERMAL NEUTRON FLUX DISTRIBUTIONS 

3 7  T U B E S ,  9 . 6 5  C M  P I T C H  

H I U - 2 3 5  H E I G H T  
0 1 5 0  3 2  C M  

7 2 0  7 8  C M  

0 8 1 6  2 4  3 2  4 0  
R A D I A L  D I S T A N C E ,  C M  c5-43353 

Figure 3 
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CALCULATED MULTIPLICATION FACTORS, K,ff 

UNREFLECTED, 19 TUBES, 9 . 6 5  C M  P I T C H  

A - HOMOGENIZED CEQ D n 2 ( H  + 1 .42htr ) -2  
B - 2 D ( r  - z )  CELL / J  . d?/ /cpdV 
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T A N K  B O T T O M  CORRECTION I N C L U D E D  

V O I D  CORE 
HEIGHT. 

i E X  P E R  I MENT 

COMPARISON OF AXIAL LEAKAGE CROSS SECTIONS 

EL 0 .8  M e V  5 . 5  K e V  3 e V  0 . 4  e V  0 
Figure 5 (343356 


