THE NONDIPOLE PART OF THE GEOMAGNETIC FIELD IS MANIFEST

AT MAGNETOSPHERE BOUNDARY

by

Yu. D. Kalinin

(USSR)
THE NONDIPOLE PART OF THE GEOMAGNETIC FIELD IS MANIFEST

AT MAGNETOSPHERE BOUNDARY

(*)

by Yu. D. Kalinin

Geomagnetizm i Aeronomiya
Tom 7, No.2, 341-2,
Izd-vo "NAUKA", 1967

SUMMARY

The author establishes that the magnetosphere boundary is located
above the daytime part of the Earth at distances from the center of the Earth,
functions of not only interplanetary plasma parameters, but also of the non-
dipole part of the geomagnetic field, on the basis of data of Explorer-12 §-18.

* * *

Observations of the geomagnetic field from AES have permitted to determine
the boundary of the magnetosphere. It has been established that above the day-
time magnetosphere this boundary is at \(\sim 10 R_E \) from the center of the Earth.
On the daytime side of the magnetosphere the lines of force of the dipole field
are very much compressed, whereas on the night side they are stretched into the
train. There was so far no question of higher geomagnetic potential harmonics
in connection with the boundary of the magnetosphere. This is possibly connected
with the fact that at \(\sim 10 R_E \) the field does not contain any nondipole part
that one could attempt to make apparent under the existing precisions of measu-
rement and calculations and great magnetosphere variability in time.

The material from magnetic observations from AES Explorer-12 [1] allow us
to establish the presence of nondipole part of the geomagnetic field at magne-
tosphere boundary. Following are the data on 69 magnetosphere intersections
borrowed from [1]:

1) the distance \(R \) from the center of the Earth to each intersection of the
69 considered cases (in 1000 kilometers);
2) the date and the moment of universal time for each intersection.

The mean value of \(R \) was found for each hour U.T. After smoothing out the
series of average-hourly \(R \) by the formula \((a + 2b + c)/4 \), it was found that \(R \)
is dependent on U.T. In a period of about UT = 12, the value of \(R \) is \(66 \cdot 10^3 \) km
and near UT = 18, \(R = 80 \cdot 10^3 \) km. The question was considered whether this
dependence of \(R \) on UT is imaginary and conditioned by different average geo-
magnetic activity level for various hours UT. To that effect we took the

* NEDIPOL'NAYA CHAST' GEOMAGNITNOGO POLYA SKAZYVAYETSYA NA GRANITSE
MAGNITOSFERY.
aₚ-indices for the 3-hour periods to which the values of R were related. Upon grouping them by hours UT, it was found that the distribution of a is indeed insufficiently uniform (aₚ varying from 4 to 50). After that 8 values of R, related to three-hour intervals with aₚ > 39, were eliminated. Upon averaging by hours UT, the remaining 61 values of R gave for the aₚ-indices a variation from 4 to 12. The averaging of the 61 remaining values of R by hours UT gave, after smoothing out the R series, the numbers compiled in Table 1.

<table>
<thead>
<tr>
<th>UT</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P·10⁻² km</td>
<td>71</td>
<td>72</td>
<td>70</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>UT</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>P·10⁻² km</td>
<td>72</td>
<td>70</td>
<td>69</td>
<td>70</td>
<td>39</td>
<td>70</td>
<td>74</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>UT</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P·10⁻² km</td>
<td>80</td>
<td>80</td>
<td>75</td>
<td>68</td>
<td>69</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It may be seen from Table 1 that R varies within the limits from 68 to 80 · 10³ km, i.e., the elimination of 8 values of R did not affect the character of the dependence of R on UT.

The material on R according to data from AES Explorer-18 [2] was given the same treatment. 35 values of R were utilized. It was found that according to this material \(R = 70 \div 87 \cdot 10^3 \) km, whereupon the maximum values of R corresponded also to the hours 1500–1800 UT.

Both AES, to which it is referred here, had orbits inclined at \(\approx 30^\circ S \) to the geomagnetic equator plane (with apogee in the Southern Hemisphere). In the 1955 epoch, at the latitude of 30°S, the total strength \(T_0 \) of the geomagnetic field on the ground had the extreme values of 0.253 and 0.579 oe. The conversion of these values to distances corresponding to extreme values of R (according to data of Explorer-18) by the formula of the form \(T_h = T_0 r^{-3} \) (where \(r \) is the geocentric distance and \(T_h \) is the value of the total field strength at that distance), gave the values \(T_h = 19 \) and 23\(\gamma \). Thus, we may derive the conclusion that the interplanetary medium compresses the geomagnetic field to the region where it is equal to 20\(\gamma \) in all hours of the day. This region is disposed on different meridians at various distances R from the center of the Earth.

The determination of interplanetary plasma velocity \(v \) by the formula

\[
\frac{T^2}{8\pi} = 2mnv^2
\]

for \(n = 1 \) (\(m \) being the mass of the proton) gave the reasonable value

\[
v = 2 \cdot 10^7 \text{ cm sec}^{-1}.
\]
Therefore, it appears that over the daytime part of the Earth the magnetosphere boundary is disposed at various R not only as a function of interplanetary plasma parameters, but also as a function of the nondipole part of the geomagnetic field.

The author expresses his gratitude to Dr. Cahill for having sent him a preprint of the paper in ref. [1].

**** THE END ****

REFERENCES

CONTRACT No. NAS-5-12487
VOLT TECHNICAL CORPORATION
1145 19th St. NW,
WASHINGTON D.C. 20036.
Tel: 223-6700; 223-4930.

Translated by ANDRE L. BRICHANT
on 22 May 1967

DISTRIBUTION
same as ST-GM-PF-10606