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ANALYSIS O F  RADIATIVE HEAT TRANSjBR FOR 

LARGE OBJECTS AT METEORIC SPEEDS 

By Kenneth K. Yoshikawa 

Ames Research Center 

SUMMARY 

An e x p l i c i t  closed-form solut ion has been obtained f o r  rad ia t ive  heat 
t r ans fe r  t o  a body i n  f l i g h t  i n  the  ea r th ' s  atmosphere a t  speeds such t h a t  
radiat ion is  t h e  dominant mode of heat  t r ans fe r .  The solut ion w a s  a t ta ined  
by assuming a gray-gas rad ia tor  and then l inear iz ing  the  rad ia t ive  t r ans fe r  
equation. 
which allow the  solut ion t o  be applied t o  the  stagnation region of a shock 
layer  on an a x i s m e t r i c  body. 
solution is  readi ly  applicable t o  multi layer heat t r ans fe r  encountered during 
very high speed f l i g h t s ,  when the  interact ions among the  cold a i r  ahead of 
the  shock wave, the  heated air behind the  shock wave, and the  layer  of 
ablat ion gases adjacent t o  the  body surface must be considered. 

Approximations t o  the  one-dimensional flow equations are developed 

Because of i t s  charac te r i s t ics ,  t h e  l inear ized  

The development of the  f i r s t -order  l inear ized solution f o r  rad ia t ive  
heat t r ans fe r  i s  described, and some appl icat ions a re  presented and discussed. 
The results demonstrate t he  e f f ec t s ,  on rad ia t ive  and convective heat t r ans fe r  
t o  the  body surface,  of shock-layer energy loss by radiat ion,  absorption of 
rad ia t ion  within the  multiple layers ,  blockage of rad ia t ive  heating by blowing 
of ab la t ive  vapors, and the  absorption and emission of rad ia t ion  by the  body. 

INTRODUCTION 

For atmospheric entry a t  meteor ve loc i t i e s ,  radiat ion i s  the  dominant 
mode of energy t r ans fe r .  Many invest igators  have emphasized the  importance of 
understanding and predicting the  radiant  heat t r ans fe r  t o  bodies a t  these 
speeds (e.g. ,  r e f s .  1-3) .  These invest igators  have pointed out t h a t  energy 
l o s s  by radiat ion from the  shock layer  and t h e  reabsorption of rad ia t ion  i n  
the  shock layer  i t s e l f ,  i n  t h e  free stream, and i n  ab la t ion  products w i l l  
a f f ec t  both the  rad ia t ive  and convective heat t r ans fe r  t o  the  body. 

Both simplifying flow assumptions and i n t r i c a t e  numerical techniques have 
been used t o  solve t h e  gasdynamic problem. Examples of the flow assumptions 
t h a t  have been used are: 
ve loc i ty  d i s t r ibu t ion  and constant pressure i n  the  shock layer  ( ref .  5 ) .  
Reference 6 showed tha t  t h e  mass flow d i s t r ibu t ion  on t h e  stagnation stream- 
l i n e ,  ra ther  than t h e  ve loc i ty  d is t r ibu t ion ,  is r e l a t i v e l y  insens i t ive  t o  
rad ia t ive  heat t r ans fe r .  Examples of numerical techniques a r e  l o c a l  
s imi l a r i t y  ( r e f .  7) and the  in t eg ra l  method ( ref .  8 ) .  

one-dimensional porous flow (ref .  4) and a l i n e a r  



Most invest igators  have emphasized t h e  e f f e c t s  of rad ia t ion  cooling 
ra ther  than self-absorption on shock-layer s t ruc tu re .  The inclusion of self- 
absorption in to  the  problem introduces addi t iona l  complexities t h a t  require  
fur ther  s implif icat ion of e i t h e r  t he  equations o r  t he  forms of t h e i r  solu- 
t i ons .  These simplif icat ione generally involve t h e  subs t i tu t ion  of an expo- 
nent ia l  function f o r  t h e  exponential i n t eg ra l  that appears i n  t h e  solut ions of 
t he  t r ans fe r  equation, and/or t he  use of successive approximations employing 
combinations of simple functions (refs. 9-13). 

Subst i tut ing t h e  exponential function is  the  simplest means of evaluating 
reentry radiat ion,  including self-absorption, with reasonable accuracy. 

A t  r e l a t i v e l y  high free-stream density,  where t h e  rad ia t ion  mean free 
path i s  comparable t o  or smaller than the  body s i ze ,  one can assume t h a t  radi-  
a t ion  flux is  absorbed by t h e  media j u s t  ahead of t he  shock f ront  (preheating). 
The s t ruc ture  of t he  strong shock f ron t  has been investigated (refs. 14-17) 
f o r  plane shock flow of a perfect  gas .  
thermal rad ia t ion  e f f ec t s  on the  s t ruc ture  of t h e  shock wave ra ther  than the  
influence of preheating energy on rad ia t ive  heat ing.  

Such analyses e x p l i c i t l y  consider 

The ab la t ive  mass loss  from large meteors enter ing the  atmosphere w a s  
considered ( re f .  18) assuming a porous-flow analogy and the  Rosseland approxi- 
mation. The increase i n  t o t a l  shock stand-off dis tance due t o  a s izable  
amount of  ab la t ion  or  in jec t ion  has been shown, both theo re t i ca l ly  and experi- 
mentally, t o  obey a l i n e a r  correlat ion formula (refs. 19 and 20); t h i s  pro- 
vides a bas i s  f o r  calculat ing rad ia t ive  in te rac t ion  between shock and ablat ion 
layers .  

O u r  primary i n t e r e s t  here i s  t o  obtain the  simplest form of an ana ly t i ca l  
solut ion f o r  rad ia t ive  t r ans fe r  i n  t h e  shock layer ,  especial ly  exp l i c i t  
expressions f o r  rad ia t ive  net  fluxes a t  t h e  body and a t  the  shock. This solu- 
t i o n  includes t h e  e f f ec t  of self-absorption i n  a strong shock layer ,  t h e  
in te rac t ion  of thermal rad ia t ion  with the  shock layer ,  t h e  preheating zone, 
and the  ablated vapor layer .  
convective heating rates i n  adiabat ic  and nonadiabatic flow. 

The results w i l l  be used t o  r e l a t e  t he  

SYMBOLS 

an coef f ic ien t  of series expansion (eqs.  (15)) 

B 

BV 

Stefan-Boltzsnann function (eq.  (2b ) )  or blowing parameter 
(eqs. (101b)) 

2h 9 Planck's function, - 
c2 ehv/kT - 1  

Cv(0),C_,(e) indef in i te  i n t eg ra l  of modified Bessel function (eqs.  37) 

C,,C-, 

2 

d e f i n i t e  in tegra l  of modified Bessel function (eqs.  (38b)) 



cP 

c 1,c2 

En 

F 

F’ 
- 

f 

f W 

I 

k 

Lo ,LbO 

Lt 

L V  

M 

specif ic  heat a t  constant pressure 

constants associated with equation (26a) 

exponential in tegra l  function of order n (eq. (6) )  

thermal function defined by equation (14) 

auxi l ia ry  function defined by equations ( 1 8 ~ )  

pwvw 
pwvw 

blowing rate, - 

parameter defined by equations (101b) 

a l t i t u d e  

enthalpy 

h enthalpy r a t i o ,  - 
hS 

specif ic  in tens i ty  (eq.  (1)) 

modified Bessel function of first kind (order v) 

functions defined by equations ( 3 2 ~ )  and (38a) 

modified Bessel function of second kind (order v) 

constant associated with shock stand-off distance (eqs .  (76)) o r  
the Boltzmnn constant 

constant associated with blowing thickness (eq.  (94) ) 

nonadiabatic shock stand-off distance and nonadiabatic blowing 
thickness 

adiabat ic  shock and blowing thickness 

t o t a l  shock-layer thickness 

modified Struve function (eq. (C14a)) 

molecular weight 
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functions defined by equations (26)'  (33),  and (40) 
Mo ,Ml,M2 , 
M 3  ,M4 $5 

m 

n 

0 

P 

P 

qC 

%O 

s, 
R 

R* 

R+ 

r 

T 

Tef 

TO 
- 
T 

t 

U 

4 

constant (1/2), mss, or power of pressure r a t i o  

exponential constant 

order of 

pressure 

pressure r a t i o ,  2- 
PS 

function defined i n  equations ( 5 5 )  

net  rad ia t ive  f lux 

convective heat 

convective heat with no rad ia t ion  l o s s  

adiabat ic  rad ia t ive  heat ,  2pstts~Ts4LO 

dimensionless boundary value (inward d i rec t ion  is  pos i t ive)  
(eqs .  (8b) and ( c ) )  or body radius  

q 
2flB ( T f )  

dimensionless boundary value based on Tf,  

9 dimensionless boundary value based on Tsp, 
2 , ~  ( T~~ ) 

r e f l e c t i v i t y  

temperature 

e f fec t ive  surface temperature (eqs.  (54a) and (b)  ) 

surface temperature ahead of shock 

temperature r a t i o ,  Ts 

temperature r a t i o ,  uni ty  or 

temperature r a t i o  

dummy variable  

x component of ve loc i ty  

T 

T O  - (eqs . (68) ) 
TS 

T W  
'T, 



free-stream veloc i ty  vm 
V 

W 

X 

X 

Y 

Y 

- a 

Pl? P2 

r 

"S 

Y 

a 
6 

E 

5 

'1 

'10 

0 

y component of veloci ty  

Wronskian operator 

l i n e a r  solut ion defined by equation (26a) 

dis tance along body 

l i n e a r  solut ion defined by equation (26a) or adiabat ic  dis-  
tance (eq. (74a)) 

normal dis tance from shock t o  w a l l  

Bessel function defined by BVIv(n0) , 0%,(n0) 

values of Bessel function defined by equations (38b) 

constant defined by equations (Eb) 

a P  
dF 

average value of - (eq.  (l3d)) 

cha rac t e r i s t i c  constants (eqs.  (28))  

dimensionless rad ia t ive  f lux  function (eq.  (8a)) or gamma 
function as designated 

rad ia t ive  f l u x  absorbed by preheating zone (rsp - I?,) 

constant t h a t  characterizes flows (zero f o r  plane shock flow, 
one f o r  stagnation flow) 

determinant (eqs.  (33) and (40) )  

boundary-layer thickness (eq.  (103)) 

emissivity of boundary (eqs.  (67))  

heat of vaporization 

var iable  defined by equation (Flc)  

quant i ty  defined by equation (F3b) 

independent var iable  -rW - 7 (eqs . ( 1 8 ~ ) ) ~  angle of d i rec t iona l  
cosine, or apex angle 

IC mss absorption coef f ic ien t  (eq.  (2a) )  
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A a  

'b 

V 
0 

P 

P" 

- 
7 

i 7 

'wJ7wb 

'w , 'wb 

'w 

cp 

90 

6 

r a t i o  of rad ia t ive  heat t o  t o t a l  flow energy, 

2 a~,* 
P,V,hs 

r a t i o  of black-body rad ia t ion  lo s s  t o  t o t a l  energy, 

2 0 ~ ~ 4  

P,vOohW 

recurrence formula (eqs.  (C14c)) 

4Ps"saTs4Lo 
~ooVoohS 

adiabat ic  radiat ion l o s s  parameter, 

modified rad ia t ion  lo s s  parameter, C?) A, 

di rec t ion  cosine or viscos i ty  

quant i ty  defined by equation (F3b) 

order of Bessel function (eq. (35b)),  or frequency 

parameter, KKLET, 

dens it y 

absorption coeff ic ient ,  cm-' 

Stefan-Boltzmann constant 

op t i ca l  thickness defined by equation (2a) 

T 

op t i ca l  thiclmess a t  in te r face  

op t i ca l  thickness a t  w a l l  

r ad ia t ive  blockage function a t  wall (eq. (107)) 

rad ia t ive  leakage function, - rw 
rSP 

thermal function defined i n  equations ( 1 8 ~ )  

E u l e r ' s  constant (0.37721 . . . ) + 2 Zn 2 (eqs.  ( 5 5 ) )  



x 
W 

dimensionless mass flow r a t e ,  pv/pWvw (eqs . (u) ) 

absorption parameter (eq. (82)) 

Superscript 

2 direct ion toward f r ee  stream or downstream 

1,II 

* preheating zone, or  l imit ing value of Bessel function 

t modified function of dimensionless quant i t ies  (dimensionless function 

reference properties based on region I or region I1 

based on temperature behind shock) 

Subscript 

b 

e 

f 

i 

2 

P 

0 

r , r e f  

S 

6 1  

SP 

t 

W 

wo 

Wp 

00 

blowing layer  

edge of gas layer  

j u s t  ahead of shock wave, shock front  

interface 

l o c a l  

preheating e f f ec t  

adiabatic,  no absorpt-m, no ablation, no preheating e f f ec t  

reference condition 

immediately behind the shock wave 

sea l eve l  

shock wave due t o  preheating e f f ec t  

t o t a l  

w a l l  

w a l l  without preheating and inject ion 

w a l l  with preheating e f f ec t  

f r ee  stream 
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ANALYSIS 

The equation of rad ia t ive  transfer w i l l  be combined with a simplified 
gasdynamic energy equation f o r  one-dimensional flow, and the  thermodynamic 
propert ies  of a i r  w i l l  be introduced in such a way as t o  make the  resu l t ing  
equation l i n e a r .  Solutions f o r  t h i s  linear equation w i l l  be obtained fo r  
plane shock flow and stagnation stream-tube flows. The extension of t he  tech- 
nique t o  multiple gas layers (e.g., a zone of preheating o r  of injected o r  
ablated species) w i l l  be considered. 
t r ans fe r  rates a t  boundaries w i l l  be emphasized. However, aux i l i a ry  results, 
such as t h e  d i s t r ibu t ion  of enthalpy and temperature in t h e  shock layer  and 
the  reduction of shock-layer thickness as a result of rad ia t ive  t r ans fe r  w i l l  
be obtained. 
possible.  The notation used follows c lose ly  t h a t  of reference 2 o r  of 
reference 21  with minor differences.  

The calculat ion of rad ia t ive  heat- 

Details of t he  analyses are deferred t o  appendixes wherever 

1. 

2. 

3. 

4. 

5 .  

6 .  

Assumptions and Geometry 

The following assumptions are basic  t o  the  analysis:  

One-dimensional flow (plane shock flow and stagnation stream flow) 

Local thermodynamic equilibrium 

Gray-gas approximat ion 

Viscosity and heat t r ans fe r  by thermal conduction a r e  neglected. 
ever, t he  e f f e c t  of rad ia t ion  on convective heating w i l l  be estimated i n  
a la ter  sect ion.)  

In  the  solut ion of t he  t r ans fe r  equation, t he  exponential in tegra ls  a r e  
replaced by exponential functions.  

The term 'I@ 
a t h e r m 1  function i s  defined which incorporates t h i s  r e l a t ion  ( loca l ly  
l i n e a r  thermal r e l a t i o n ) .  

(How- 

i s  assumed t o  be l o c a l l y  a l i n e a r  function of enthalpy, and 

Figures l ( a )  and l ( b )  show the  geometry used i n  the  ana lys i s .  

Basic Radiative Equation 

If the  absorption coef f ic ien t  of t he  gas is  assumed t o  be independent of 
frequency (gray gas)  and the  gas t o  be i n  local'thermodynamic equilibrium, t h e  
rad ia t ive  t r ans fe r  equation f o r  plane p a r a l l e l  flow i s  

8 



where is  the specif ic  in tens i ty  ( r a t e  of rad ia t ive  energy flow per uni t  
area and so l id  angle) ,  and is  the d i rec t ion  cosine r e l a t ive  t o  the  f r ee  
stream (upstream di rec t ion  i s  pos i t ive) .  The opt ica l  thickness T and the 
Stefan-Boltzmann function B a r e  defined by 

I 
p 

T = s,” PK dy 

B =lm B, dv = 

where B, is Planck’s function and IC, the  mass absorption coeff ic ient .  

The formal solution t o  equation (1) is 

J O  

where I+ is the  specif ic  in tens i ty  in  the upstream direct ion (posi t ive p) 
and I- in the downstream direct ion (negative p); T~ is  the opt ica l  
thickness a t  the downstream boundary. 

The r a t e  of rad ia t ive  energy 

q - b )  = 

q + ( d  = 

It follows t h a t  

transport  per u n i t  area ( f i g .  l ( b ) )  is 



where 
( r e f s .  9 and 22) is 

q; = xI-(O), < = nI+(Tw), and the exponential in tegra l  

- ~ / p  n-2 
En(T) s s,I e x d x  

The net f l ux  t ransferred per un i t  area q is 

If the dimensionless notations 

r r(T) = q(T)/2d3s 

5 = T / T ~  

a r e  introduced in to  equation (71, we obtain 

function En 

(6  1 

The subscript s r e f e r s  t o  posit ion immediately behind shock Wave. The first 
and second terms in  equation (9a) represent t he  radiat ive fluxes at  
the  upstream and downstream boundaries, respectively,  attenuated by the  gas 
between T and the  boundaries. The t h i r d  and fourth terms represent the 
radiat ive fluxes a t  T f romthe  gas between T and the  upstream and down- 
stream boundaries, respectively,  attenuated by self-absorption. A t  the  

T from 

upstream and downstream boundaries, equation (ga) reduces 

-I- 

t ) d t  = Rw- rw 

where E3 (0) = 1/2.  

10 
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Equation (ga) is  applicable t o  multiple radiat ing and absorbing layers  
as w e l l  as s ingle  layers  (e .g . ,  a preheating zone i n  f ron t  of a shock wave or 
a layer  of injected or ablated gases from a sur face) .  
culat ion of fluxes i s  complicated by the  in te rac t ion  between layers .  To 
simplify the  calculat ion an a p p r o x d t i o n  is  introduced whereby t h e  ac tua l  
boundary fluxes are replaced by "equivalent w a l l "  fluxes. 
concentrates t h e  e f f e c t s  of other layers  a t  t he  boundaries of t h e  layer  f o r  
which the  solut ion i s  desired and allows equations ( 9 )  t o  be applied t o  each 
layer of t he  multi layer separately.  
presented i n  appendix A .  

However, the  exact cal- 

This approximation 

The d e t a i l s  of t he  procedure are 

Pseudo One-Dimensional Flow Model and Thermal Function 

In hypersonic flow, as the  gas t r a v e l s  downstream from the  shock wave, 
i t s  enthalpy decreases as a result of rad ia t ive  l o s s  t o  t h e  surroundings. 
Since t h i s  study is concerned with f l i g h t  conditions f o r  which rad ia t ive  heat- 
ing is the  dominant mode of ene rgy t r ans fe r  (e .g . ,  f o r  a meteoric object 
entering the  atmosphere), t he  energy equation i n  the  shock layer  may be 
wri t ten 

p v d h = d q  

where heat conduction and changes in  t h e  gas k ine t i c  energy have been 
neglected. The mass flow along the  stagnation streamline is  expressed i n  
terms of op t i ca l  thickness.  F i r s t ,  we introduce the  mass flow d i s t r ibu t ion  

Many authors (e.g. ,  refs.  5,  13, 23) have assumed a l i n e a r  r e l a t ion  between 
mass flow d i s t r ibu t ion  and physical thickness 

where y is  a constant (zero or one) t h a t  character izes  the  flow. Flow with 
y = 0 corresponds t o  plane shock f l o w  such as i n  shock tubes, piston problems, 
and porous type flows; flow with y = 1 corresponds t o  stagnation streamline 
flow. For present purposes, it is  convenient t o  replace physical thickness 
in  equation ( l l b )  with op t i ca l  thickness.  Thus, we assume i n  t h i s  paper t h a t  

' Y  
x=@-+) 

where y has the  s a m e  meaning as before.  The v a l i d i t y  of t h i s  replacement 
is  discussed in a later section, where it i s  shown t h a t  equation ( l l c )  is as 
good an approximation t o  the  ac tua l  mass flow d i s t r ibu t ion  as equation (llb) 
or b e t t e r .  
equation becomes 

With t h e  mass flow d i s t r ibu t ion  of equation ( l l c )  t he  energy 

ll 
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The thermodynamic var iables  are now expressed by a dimensionless 
function (thermal function) F so that 

or  

1 Fs - F = -  ~mVCu (hs - h )  = - (1 - h) 
2dS4 A a  

where Aa 
t o t a l  flow energy. 

i s  the  r a t i o  of the black-body rad ia t ion  a t  the  shock wave t o  t h e  

E = h/hs 

After integrat ing t h i s  las t  equation 
constant densi ty) ,  one can r ead i ly  obtain 

f o r  a constant pressure process (or  
( ref .  4) 

where 

J e t c .  

The var ia t ions  of 
reference conditions.  

h and F w i t h  temperature are shown i n  f igure 2 f o r  two 

It can be seen from f igure  2 t h a t  t he  temperature var ia t ion can be 
fur ther  simplified f o r  wide ranges of enthalpy as 

T4 = 1 - a(Fs - F) 0 5 c  1 
- 

i f  CL 
reference poin t .  Thus, 

i s  taken from the  average slope of (a;lff/aF) a t  t h e  designated 

12 



a = = Aa(g)av 
Appendix B gives a more de ta i led  discussion of the  thermal function. 

From equations (13) and (12) the  dimensionless thermal function is thus 
r e l a t ed  t o  the  rad ia t ive  function by 

Linearization of Radiative Transfer Equation 

The d i f f e r e n t i a l  form of equations (9)  is  

Subst i tut ing equations ( l5c )  and (16) in to  equation (l7), we obtain a l i n e a r  
in tegrodi f fe ren t ia l  equation with a singular kernel 

with an i n i t i a l  value of 

where 

q = F s - F  1 
N o  attempt i s  made t o  f ind  a general  solut ion f o r  equation (18a) except f o r  
y = 0, f o r  which several  numerical calculat ions have been car r ied  out by a 
successive i t e r a t i o n  method merely t o  compare it with the  approximate 
solut ion.  



Approximate Solutions f o r  a Single Layer 

In  t h e  present paper-an approximate so lu t ion  t o  t h e  t r ans fe r  equation is  
given e x p l i c i t l y  i n  ana ly t ic  and closed form when t h e  exponential i n t eg ra l  
function E~(T) is  replaced by an exponential function. W e  introduce t h e  
commonly used approximat ion 

where choice of m and n w i l l  depend on the  o p t i c a l  thickness a t  t h e  w a l l  
( T ~ )  of t h e  plane layer ,  and w i l l  be constant f o r  given 
m and n are discussed l a t e r ;  meanwhile, t h e  solut ion i s  car r ied  out without 
assigning values t o  these constants.  

T ~ .  The values of 

It follows from equation (19) and the  propert ies  of t he  exponential 
in tegra ls  t h a t  

The in tegra l  equation (ga) then becomes 

d t  + m L  T~ pe-n(t--r)  d t  
-n(T-t) 

- mn S,' p e  
-n ( T ~ - T  ) r = - 2 m ~ ~ e - ~ '  + 2 m ~ s  

After d i f f e ren t i a t ing  the  above equation twice, we obtain the  following 
second-order nonlinear d i f f e r e n t i a l  equation: 

d? - + 2m - - n2r = o d2r 
dT2 dT 

(Equation (22) is  equivalent t o  t h e  Milne-Eddington approximation except with 
d i f f e ren t  constants . )  
becomes 

From equation (16) the  der ivat ive of t he  temperature 

With the  simplified equations ( l l c )  and ( 1 3 ~ )  and t h e  transformation 

e = T W - - r  



A l inear ized form of equation (22) is  now obtained as 

with boundary values, from equation (21), 

rs = -2ms + 2mflVnTw 

-nT rw = -2mRse w + 2 m R ,  

J O  

r T w  -4 -n(TTt) 
- m  T e  d t  

J O  

(For consistency, E3(0) = m i s  used instead of 1/2.) 

The general solution of equation (25a) has the form 

where c 1  and c2 a re  constants and X and Y a r e  functions t o  be determined. 
In  equation (26a) X and Y y = 0 a re  the ordinary exponential functions, 
and for Y = 1, the modified Bessel functions. Solutions w i l l  be obtained i n  
exp l i c i t  and closed form for  these two cases.  

f o r  

It w i l l  be shown tha t  the solutions of equation (25a) lead t o  the  fol-  
lowing important l i n e a r 1  re la t ions  between the  boundary values 
and the fluxes a t  the  boundaries: 

Rs and Rw 

- Expressions for the  M functions w i l l  be given i n  terms of a and opt ica l  
thickness T ~ .  

Plane shock flow ( y  = O ) . -  The d i f f e r e n t i a l  equation (25a) fo r  y = 0 
become s 

- .  

%'his is  a consequence of choosing a l i nea r  thermal function (eq. ( l 5 c ) )  
and does not require the  exponential approximation (eq. (19)). 

15 
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Its solution is 

where 

P 1  = G + J Z  

p2 = -nm. +&ma)" + 1 

Fluxes a t  the  boundaries a r e  

To evaluate the  constants 
equations (25b) and ( 2 5 ~ )  

c 1  and c2, combine equations (29)  w i t h  

-nPaTw -mW 'W ?4,-nt 
c 1  + c2e = -2mS + -e d t  

J O  

where ('?)4 may be expressed in  terms o f  c 1  and cg by subst i tut ing equa- 
t ions  (28) in to  equation (16) and integrating between Thus, with 
equation ( L ~ c ) ,  

0 and T .  

Substi tuting equation (31) in to  equations (30) gives two simultaneous 
algebraic equations f o r  c 1  and cp of the  form 

y3c1 + K4c2 = KG 

where 

16 

.. . .. - . . . . I 



With some algebraic manipulation, equations (29)  and (32) can be expressed i n  
the  l i n e a r  form: 

- 
where the M values depend only on my n, a, and Tw, and are given by 



The terms M, and & 
ditions;  M1 and & 
wave (at T = 0); similarly,  I'& and M5 show the  e f f ec t s  of re f lec t ion  or 
emission a t  T = T#. 

a re  fluxes from the shock layer without boundary con- 
show the e f f ec t s  of re f lec t ion  o r  emission from the  shock 

For the  present case, y = 0, it can be shown t h a t  
M1 = -M5. 

Stagnation streamline flow ( 7  = .- 1) .- The d i f f e r e n t i a l  equation (25a) f o r  
7 = 1 becomes 

which can be transformed t o  the modified Bessel equation of order 
and 25); i t s  general solution is  

v ( r e f s .  24 

r = ev[clI,,(ne) + c2K,,(ne)I ( 3% ) 

where 
respectively, and 

I,, and K, a r e  modified Bessel functions of the first and second kind, 

Y = ItIIlET, + 1/2 ( 3% 1 
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The constants 
plane shock flow. 
of the  Bessel functions required f o r  the  present analysis . )  

c 1  and c2 are evaluated by a procedure similar t o  t h a t  f o r  
(Appendixes C and D give detai led evaluations of properties 

where 

By integration one obtains 

Thus, 

(374  
where 

Then K takes the following forms: 



w *  + - e Z-. 
-nT 1 

2 

K 5  = 2m ($ - RE) - 2me-nT(i - Rw) 

where 

V Z, r Z , ( T ~ )  = T~ I,(nT, 

f z* 
- ’  

where r ( v )  i n  equations (38b) is a g a m  function. Boundary fluxes are 

rs = clzv + c2z 

rw = c2zTV 

-V 

20 



The re la t ion  between fluxes and boundary values is again 

rs = M, + MIRs + &Rw 

where M now has the  following forms: 

Mo - - n m (. - e-nTw) [(& + & ) Z V  - (Ki + .KS)Z-~] 

The same physical interpretat ion can be ascribed t o  these values of M a s  t o  
those i n  equations (33) .  From equation (35a) it follows t h a t  the f lux  
gradient a t  the w a l l  is  

I rw = o 

The enthalpy gradient a t  the wall from equations (36) depends on v 

21 



where 

The physical interpretat ion of t h i s  dependence of enthalpy gradient on 
v w i l l  be considered in  a l a t e r  sect ion.  

Approximate Solutions for Optically Thin and Thick Layers 

In  t h i s  section, t he  solutions t o  equations (26) a r e  simplified fo r  
op t ica l ly  t h i n  and opt ica l ly  thick shock layers .  
these simplifications a r e  presented here.  
appendixes. 

Only the  major r e su l t s  of 
Detai ls  a r e  presented in  

Plane shock flow (7 = O). -  The following a r e  the  r e su l t s  fo r  two 
l imit ing cases. 

Optically t h i n  layers  (T 
by Taylor se r ies ,  the quant i t ies  K 

<< 1): If the  exponentials a r e  approximated w i n  equations ( 3 2 ~ )  become, t o  order 
TW2 , 

7 K1 = 1 + - 1 mt1GPlTw 2 
2 

t 
K5 2 -2m(Rs - Q) + mn(1 - 2RW)-rw 

(43) 

With the r e l a t ion  derived from equations (28) 

22 
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p 1  - p2 = 2nm (44) 

The M values then d i r e c t l y  follow from equations (33) and a r e  
\ 

Mi zi -2m + 0(-rw2) 

J M5 =2m + O ( T , ~ )  

The fluxes a t  the  boundaries f o r  m = 1/2 and n = 2 are 

rw 2 -[1 - (1 + &-,)TW]Tw - (1 - 2Tw)Rs + Rw ( 46b 

Here, we have omitted second order terms f romthe  boundary fluxes because, i n  
pract ice ,  Rs and R, w i l l  usual ly  be small. The choices of m and n will be 
j u s t i f i e d  l a t e r .  

Optically th ick  layers  ( - T ~  >>1): For l a rge  op t i ca l  thickness, K takes  
K1 t he  following forms ( the  second and t h i r d  i d e n t i t i e s  f o r  

eqs. (28) ) :  
follow from I K i  zz 1 + s P i / ( l  + Pi) = K4 2 (1/2)(1 + Pi) 

K2 zz (1 /2) (1  - P2)e 

Ke3 = -E 

K 4  

K5 " m ( 1  - 2Rs) 

-np27, 

1 + "/(1 + P 2 ) 1  

KG = - m ( l  - 2%) 

(47) 
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The determinant A becomes 

A (1 + P d 2  

N e t  f luxes a t  both boundaries 

2m 
1 + P 1  

r =  S 

J 

from equations (26) a r e  

Flux var ia t ion  and temperature var ia t ion f o r  1 << T << T~ a r e  

-n P 17 r -  2m (1 - 2Rs)e 
1 + P 1  

The gas temperature a t  the  w a l l  ( T  = T~ >> 1) i s  

Effective surface temperatures t h a t  emit equivalent radiant f luxes from both 
boundaries are 

( 54a ) 

= (2rw)1’4Ts (54b 1 

1 / 4  
( T e f ) s  = (2 r s )  TS 
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It i s  noted from equations (3Ob) and (53) that radiant  f lux toward t h e  wall 
f o r  an op t i ca l ly  th ick  layer  with no boundary e f f ec t  is  always grea te r  than 
t h e  l o c a l  black-body rad ia t ion  a t  the  edge of t h e  l aye r .  
i n  references 4 anif 12.  

This w a s  a l s o  shown 

Stagnation streamline flow (7 = 1).- Appendixes E and F give d e t a i l s  of 
t h e  derivations f o r  
t i o n  of t he  Bessel functions becomes complicated. 
results. 

T~ << 1 and Tw >> 1, respectively,  since t h e  manipula- 
The following a r e ' t h e  

Optically t h i n  l aye r s  ( T ~  << 1) : For v = [ (1/2) + mn%-w] f ixed and t h e  
argument of t h e  Bessel functions approaching zero, t he  values of 
equations (38a) are 

K i n  

7 

K5 -2m(Rs - R,) f mn(1 - 2 R w ) ~ w  

K6 e -2m(Rs - R,) - mn(1 - 2RS)Tw 

A nTw2(1 - 2mnE'P0~w)Q1"s, 

where 

= 2 2n 2 + 0.57721 (where second term i s  E u l e r ' . s  
'PO 

vo = mnETW 

1 -2( 1-v> 1- v 
Q1 = (:) r(v) Tw 

a, = 1 2 n  (2)1-vr(l - v) J 
I 



r( v) and r(l - v) i n  equations (55b) are gamma functions.  
are 

The values of M 

J ~5 = 2m11 - o(T,~)] 

The boundary fluxes for m = 1/2 and n = 2 are 

The thermal function i s  

which, t o  order T ~ ,  can be fur ther  simplified as 

From equation (141, and l e t t i n g  
p ro f i l e  within the  layer becomes 

Rs = Q = 0 i n  equation (58b) the  enthalpy 

which i s  similar t o  t he  expression i n  equation (15) of reference 23 for 
TW << 1. 
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The temperature d is t r ibu t ion  follows d i r e c t l y  from equation ( l5c)  

which i s  equivalent t o  t h a t  of reference 5 f o r  T~ <<1. 

It is interest ing t h a t  t he  boundary fluxes f o r  plane shock flow 
(eqs . (46) ) and stagnation flow (eqs. (57) ) d i f f e r  on ly  i n  second order of 
TW . f o r  TW << 1. 

Optically thick layers  ( T ~  >> 1): Asymptotic expressions f o r  K and M 
are : 

. 
1 

K 1  = p (1 + P d Z ,  

27 
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-4m 
1 + P 1  

Mi E 

1 - Pa 

1 +&E 
~4 z -4m 

4m 
1 + &  

M5 2 

Thus, t h e  boundary fluxes are 

A s  noted from equations (62) and (49), f luxes with no boundary e f f e c t s  
and &,) are near ly  independent of t h e  constant 
weakly dependent on n ) .  
t i o n  comes f romthe  constant m. Note t h a t  t he  asymptotic values of rw f o r  
stagnation flow decrease inversely as t h e  square root  of T~ whereas rw f o r  
plane shock flow reaches f in i te  asymptotic values.  

(M, 
i n  eqs. (62) is very n (& 

The major contributing f ac to r  t o  t h e  f l u x  calcula- 

Asymptotic radiant  f lux var ia t ions f o r  1 << 7 << Tw are 
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and the  thermal function becomes 

Fs - F 2 %(l - 2Rs) 1 - - - 1I : "XY 
2 Final ly ,  the  temperature d i s t r ibu t ion  i s  wri t ten 

F4 -u 1 - Mo(l - 2Rs)a -[ 1 - - 7e" "Zyt"'] 

The asymptotic values of t he  radiant  functions above y ie ld  ident ica l  results 
t o  those f o r  
propert ies  are independent of ve loc i ty  p r o f i l e  f o r  1 << T << Tw. 

y = 0 which shows t h a t  t h e  asymptotic values of radiant 

2 
For an op t i ca l ly  th ick  layer ,  the  Rosseland approximation of ne t  f l u x  

is  

Applying t h i s  equation t o  equation (66),  we obtain 

which d i f f e r s  from 
(2/3)nPlE. If the  

equation (64) when conibined with equation (63a) by a fac tor  
Rosseland approximation is  t o  apply, higher der ivat ives  of - temperature d i s t r ibu t ion  m u s t  vanish, o r  nP1 << 1. Since a i s  a f i n i t e  

constant, it is required t h a t  (2/3)(nPl)E << 1. 
coeff ic ien t  ( n P l ) h  cannot be unity, i n  f a c t ,  P 1  2 1; consequently, t h e  
Rosseland approximation f o r  a high enthalpy flow f i e l d  with radiat ion,  i n  
general, is  not applicable.  This a l s o  implies t h a t  agreement with Rosseland 
approximation fo r  an op t i ca l ly  th ick  layer  in a flow f i e l d  is  not a property 
of t he  asymptotic solut ion ( t h i s  approximation can be commonly used f o r  non- 
flow cases) and it may sometimes lead t o  incorrect  solut ions i f  proper care 
is  not exercised. 

Now it is obvious t h a t  t he  
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Calculation of Boundary Conditions 

Boundary values 
r e f l e c t i v i t y  of boundaries since the  boundary values introduced i n  
equations (8b) and (c )  can be written3 

Rs and Rw may be expressed in  terms of emissivity and 

4 + 
9; = + 'Sqs + (external  f luxes from upstream) 

1 f lux  ref lected 
from shock wave 

4 q+ = EW'JTW + r w q ,  + (external f luxes from the  wall) 
W 

[flmwa;;orn] [flux reflected1 
from w a l l  J 

In  dimensionless form, equations (67a) and (b)  may be writ ten ( fo r  no external  
f luxes ) 

R s  - % - 4  - 7 T s  + rsrs+ 

cw - 4 + r r- 
2 w w  Rw = - Tw 

- - 
where Ts = To/Ts and Tw = Tw/Ts. From equations (9) and (26) it follows 
t h a t  

r i  = M~ + (1 + M = ) R ~  + M ~ R ,  (694  

Combining equations (68a) and (b)  with equations (6ga) and (b)  gives 

- 1 { 11 - r,(2m - M 5 )  I E ~ T ,  - 4  + rsM,~,TW43 + rs{ [I - rw(2m - M 5 )  1% - rwM2&] 
- - -  . . . . . - . . . . . . . . . .  ~ ~ 

- 2  

{I1 - rs(2m + M d 1 1 1  - rw(2m - M 5 ) 1  + rsrwM2M4} 
R s  - 

. _ _  - - - . - - - . - ._ - 

3Radiative f lux  will be reflected-back in to  the shock layer ,  f o r  example, 
just pr ior  t o  an impact. 
the  shock can be t rea ted  s imilar ly .  

Radiative f lux  from a surface placed ju s t  ahead of 



Boundary temperatures 
t h a t  they could include fluxes impinging from external sources added 
independently from the  system. 

To and Tw may be taken as ef fec t ive  temperatures so  

Selection of Constants m and n 

Replacing the  exponential i n t eg ra l  function by an exponential function is 
e s sen t i a l  t o  t h e  present analysis  and i s  comonly used as an ana ly t ic  
approximation f o r  rad ia t ive  t r ans fe r  problems. Here the  r e l a t ion  

-n-r 
E3(7) = me 

i s  introduced where m and n are constants chosen i n  some plausible  fashion. 

Although many d i f f e ren t  values f o r  m and n are found i n  t he  l i t e r a t u r e ,  
depending on the  appl icat ions,  the  first constant, m, i s  not a rb i t ra ry ;  it 
m u s t  be 1/2 t o  s a t i s f y  the  asymptotic solut ions f o r  both op t i ca l ly  t h i n  and 
th ick  layers .  This is  c l ea r  f o r  op t i ca l ly  t h i n  layers  since 

(71) 1 Ea(0) = m = - 
2 

For op t i ca l ly  th ick  layers ,  m must a l s o  be 1/2, as w i l l  be shown i n  Results 
and Discussion where exact and approximate solutions of t he  equations are 
compared. The exponential constant n i s  l e s s  r e s t r i c t ed ,  and proposed 
values of n between 3/2 and 2 are found i n  the  l i t e r a t u r e .  The value 3/2 
is associated with Eddington's approximation and has been preferred f o r  as t ro-  
physical problems (ref .  21) .  In t h i s  paper, values of n which depend on 
t o t a l  op t i ca l  thickness 
op t i ca l ly  t h i n  and th i ck  layers .  The c r i t e r i o n  is chosen t o  match the  area 
under E3 with the  area under the  exponential function: 

-rW are used t o  provide correct  results f o r  both 

o r  
s TW s," 0 

E3(T)dT = m 

~~ 

4 Q ~ i ~ k  convergence results i f  equation (72) is rearranged as 
6 = e-n'w - 1 + 2n[( l /3)  - E ~ ( T ~ ) ]  and solved f o r  E: = 0. 

I 
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Thus, f o r  Tw + 03, &(Tw) + 0, and n = 3/2 when m = 1/2. For TW + 0 ,  
-EA(O) = E2(O) = an and n = 2 
is tabulated in  t a b l e  I f o r  various values of Tw and f o r  m = 1/2. 

when m = 1/2.  A set of exponential constants 

This completes t h e  solut ion of t h e  rad ia t ive  t r ans fe r  equation i n  terms 
of op t i ca l  thickness .  

Conversion of Optical  Thickness t o  Physical Thickness 

To f a c i l i t a t e  appl icat ion of t h e  solut ion t o  physical  problems t h e  
op t i ca l  thickness m u s t  be converted t o  physical  thickness.  
i n t o  the  shock layer  is  r e l a t ed  t o  op t i ca l  depth by 

Physical dis tance 

dy = d T / p  ( 73a 1 

Integrat ing equation (73a) between 0 and -rW 
distance L as 

gives  the  nonadiabatic standoff 

For stagnation 
in to  the  shock 

Therefore, t h e  

From equations 
distance i s  

An approximate 
( ref .  3 )  is  
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flow, Goulard ( ref .  5) has shown t h a t  t he  nonadiabatic distance 
layer, y, is  re la ted  t o  the  adiabat ic  dis tance Y by 

adiabat ic  standoff dis tance Lo i s  

(73a) and (74a) t h e  r a t i o  of nonadiabatic t o  adiabat ic  standoff 

re la t ion  between adiabat ic  dis tance and op t i ca l  thickness 

d(Y/Lo) E d(T/TW) = dy ( 75b 1 



Incorporating t h i s  approximation in to  equation (75a) gives the  following 
simple expression fo r  standoff dis tance,  which i s  consistent with t h e  present 
approximation f o r  mass flow, equation ( I ~ c ) .  

In  order t o  use equations (74b) and (75c) t h e  densi ty  r a t i o  (p/ps) and 
absorption coef f ic ien t  (PIC) can be expressed i n  terms of power s e r i e s  of 
enthalpy r a t i o  (ref. 26),  and t h e  shock-layer thickness readi ly  evaluated by 
numerical calculat ion.  Finally,  t he  Hayes-Probstein formula relates Lo t o  
body radius and densi ty  r a t i o  across the  normal shock wave (ref.  27) by 

where 

and an average value is  

k = 3 f o r  - Ps 2 16 
4 

(See a l s o  r e f .  28.) 

Approximate Solutions f o r  Multilayers 

Absorption of rad ia t ion  by the  free-stream (preheating).-  If appreciable 
amounts of radiat ion are absorbed by the  free-stream media just ahead of t he  
strong shock f ront ,  there  i s  an important e f f ec t  on the  s t ruc ture  of t he  
shock layer  and the  rad ia t ive  heating t o  the  body is  changed s igni f icant ly .  
(Emission e f f ec t  from upstream is somewhat similar t o  increasing the  ref lec-  
t i v i t y  of t he  shock f r o n t . )  Following references 16 and 29 t h e  present paper 
assumes negl igible  change i n  k ine t i c  energy and near ly  constant densi ty  ahead 
of t h e  shock wave5 (as opposed t o  near ly  constant pressure i n  t h e  shock 
layer ) ;  t he  thermal function f o r  a i r  i n  the  preheating zone is  therefore  
determined by a constant densi ty  process. Furthermore, t he  flow i n  f ron t  of 
t h e  shock wave is planar and t h e  analysis  previously presented f o r  y = 0 can 
be applied t o  the  preheating region. 
approximation (appendix A )  f o r  t h e  boundary conditions a t  the  shock wave, t h e  
flow can be separated in to  two regions with var iable  boundary conditions: 

Therefore, with the  "equivalent w a l l "  

5 
These assumptions are considered i n  more d e t a i l  in reference 29. 
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Region * is  the  preheated free stream with p -" p, (constant)  and 7 = 0.  
Region I is  t h e  shock layer  with p = ps (constant)  and 7 = 1. 

In the  preheating zone, t he  energy equation i s  

where q* is  the  ne t  radiant  heat f lux  i n  t h e  preheating zone and 9, is  t h e  
radiant  heat f l ux  escaping from the  zone (sketch ( a ) ) .  Physically, t h i s  model 

TaT*O T Tw 

Preheating Shack wave Wall 
edge 

Sketch (a) Preheating and shock layer .  

is adopted because, in real air ,  only 
the  far u l t r av io l e t  portion of t h e  
f l u x  leaving t h e  shock wave w i l l  be 
absorbed in the  free stream near t h e  
shock layer .  Consequently, i n  the  
present analysis  t he  portion of t he  
rad ia t ion  leaving the  shock f ront  
(G) is  allowed t o  escape f romthe  
system. 
pute 
parameter in the  analysis .  

No attempt i s  made t o  com- 
Q, but  it simply becomes a 

In the  shock layer  t he  energy 
equation may be wri t ten from 
equation (10) as 

= d(qsp - S) (78) 

where qsp 
Equation (78) shows t h a t  preheating changes t h e  enthalpy l e v e l  in the  shock 
layer. This increase i s  proportional t o  (q  SP - b) since energy balance a t  
t he  shock wave ( y  = 0)  is  

is  t h e  ne t  rad ia t ive  heating a t  the  shock wave due t o  preheating. 

which can be rewri t ten as 

since 

Thus, t he  increases in  enthalpy immediately ahead and behind the  shock are 
obtained. 

From equations (78) and (79a) three  types of energy prof i les  can be 
established. 
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Case (a) is  f o r  no preheating and i s  the  case previously discussed. 
is  f o r  i n f i n i t e  layers  t h a t  reach adiabatic equilibrium Rankine-Hugoniot 
temperature as 
contains strong absorption, or a preheating e f f ec t  and w i l l  be discussed here. 
In  dimensionless form equation (79a) becomes 

Case (b) 

T~ + 03 ( fo r  1 << T << T ~ ) .  Case ( c )  is a general one, and 

- F, -u rsp - r 00 (79b) 

where r,, = qsp/2fiBs. From equation ( l5c ) ,  the corresponding temperature 
r i s e  behlnd the shock wave is 

Temperature i n  the preheating zone is usually r e l a t ive ly  small compared 
t o  tha t  i n  the  shock layer;  thus emission from t h i s  zone may be neglected. 
(An extension of t h i s  par t  of the analysis which includes emission from the  
preheating zone is given i n  appendix G . )  With t h i s  assumption and fur ther  
assuming negligible w a l l  emission (Rs = Rw = 01, we have, f o r  given 
from equation (26b) 

TW and a, 

-4 
where 
shock wave due t o  preheating. 
wall is  

Tsp must be inserted t o  account fo r  the  higher temperature behind the 
Similarly, from equation ( 2 6 ~ ) ,  the flux a t  the 

-4 rwp = 

We now define 

Combining t h i s  def in i t ion  with equations (80) and (81) gives 
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Since emission in the  preheating zone has been neglected, the t ransfer  equa- 
t i o n  (9) i n  t h i s  zone takes on the pa r t i cu la r ly  simple form 

I?* = rsP2E3(T*) (84) 

We use equation (84) t o  define 7, so t h a t  7, = T* when Y* = roo. Hence 

and 7, is fixed by through the r e l a t ion  

(86) 1 E3(7,) = - (1 - 0) 2 

Finally, the enthalpy d is t r ibu t ion  i n  the preheating zone (from eq. (77)) is 

which a t  the shock f ront  becomes 

where hf i s  enthalpy immediately ahead of the shock. Pressure and tempera- 
t u r e  i n  t h i s  zone a re  now obtained d i r e c t l y  from the thermodynamic chart  f o r  
constant density (p* = p,) . The d is t r ibu t ion  of thermal properties i n  the 
shock layer  with preheating may be found by adjusting the thermal function 
previously found (eqs.  (14) and (1%)) t o  account f o r  the higher temperature 
due t o  preheating immediately behind the shock wave. If the  normalization 
temperature f o r  t he  thermal function F and the  function I' is  changed from 
Ts t o  TSp9 then the previous analysis of the shock layer ,  equations (35) and 
(371, may be applied d i r ec t ly .  Therefore we define a new thermal function i n  
the shock layer,  Ft ,  normalized with respect t o  GP by fl = F/Cp,  or 

This new thermal function i s  re la ted  t o  the  or ig ina l  thermal function 
(without preheating) by 

Fs - F 

Fs - F = (F, - Fsp) + (Fsp - F) 

-4 
= -(rsp - r,) + T ~ ~ ( F ~ ~  - 



.. . .. ... .. . .. _._. 

The enthalpy and temperature d is t r ibu t ions  in the shock layer  obtained in a 
similar manner are 

h = l  + Aa[(rsp - F;p(Fsp - 

Inject ion and ab la t ion  layers . -  It is  assumed t h a t  a secondary layer  of 
vapor iza t ionmater ia l s  from the  w a l l  is  separated from t h e  primary shock layer 
by an in te r face .  
and 3 0 ) .  
a t  the  in te r face .  The analysis  of the  vaporization layer  i s  similar t o  t h e  
analysis  f o r  a shock layer  in t h a t  constant pressure with 
flow) i s  assumed. A s  in t h e  shock layer, it is assumed t h a t  t he  thermal prop- 
ert ies i n  t h e  vaporization layer  can be correlated by a l i n e a r  equation relat- 
ing T4 and enthalpy. The reference temperature for t h i s  correlat ion is 
taken as the  temperature of t he  vapor a t  t he  w a l l .  It is  fur ther  assumed t h a t  
t he  injected gases a r e  r e l a t i v e l y  cool compared t o  the  a i r  i n  t h e  shock layer; 
therefore,  the  emission from the  injected vapors may be neglected. An exten- 
s ion of t h e  analysis  i n  which t h i s  las t  assumption is  relaxed is  presented i n  
appendix H .  

Experimental observations support t h i s  assumption (refs. 20 
Figure 1 indicates  t h e  geometry with a stagnation point i n  the  flow 

y = 1 (stagnation 

W e  define a rad ia t ive  blockage function as 

where rwb is rad ia t ive  flux penetrating t o  t he  w a l l  through the  vapor layer 
and rwo i s  the  rad ia t ive  f l u x  f o r  t he  same f l i g h t  conditions without a vapor 
layer  but,  for consistency, with the  s a m e  w a l l  temperature with and without 
vaporization. 

The op t i ca l  thickness of the  vapor layer  is  measured from the  w a l l  t o  t h e  
interface and conditions i n  t h e  vapor layer  are denoted by the  subscript  b .  
Thus, Tb = 0 a t  the  W a l l  and 
layer  a t  t h e  in te r face .  

Twb is the  op t i ca l  thickness of t h e  vapor 

If t h e  emission f romthe  vapor layer  is  assumed t o  be smll compared t o  
t h e  emission f romthe  shock layer ,  it follows t h a t  t he  propert ies  in t h e  shock 
layer  are not changed s ign i f i can t ly  by the  presence of t he  vapor l aye r .  
Therefore, from equations (9), 

Cons e quently , 
( 9 3 )  
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The physical thiclmess of the  vapor layer  depends on the  mass flow r a t e  
of t he  vapors; i n  adiabat ic  flow the thickness of the  vapor layer  is  
correlated by a simple expression ( r e f s .  20 and 31) .  

where 
kb -N 1 for  a spherical  nose ( r e f .  20);  M, and b$, 
of air  and vapor layers; Lo and h0 

$ = Lo +bo.) or  the  t o t a l  distance between shock wave and wall ;  
a r e  the  molecular weights 

a r e  the  thicknesses of air  and vapor 
layers  f o r  adiabatic flow; pb 
and fw is the blowing r a t i o  

The correlat ion l a w  (eq. 
vapor layer  thickness and the 

is the  densi ty  of the  injected gas a t  the  w a l l ;  
( %vb/p,vw) 

(94)) fur ther  provides a simple re la t ion  between 
blowing parameter; thus, 

where ks 0.75 for  spherical  noses (see eqs. (76)) and R i s  the radius of 
the  spherical  body. The nonadiabatic thickness of the vaporization layer  is  
approximated by equations (74b) and (75c) i n  a manner similar t o  the 
calculation of nonadiabatic shock-layer distance.  

For forced inject ion of vapors from the  surface, the blowing r a t e  param- 
e t e r  f w  is  given a p r i o r i  and the solution i s  then straightforward. For 
ablation, however, the  blowing r a t e  parameter depends on the heat reach- 
ing the  w a l l  rwb, and the solution i s  therefore coupled. We assume t h a t  the  
mass loss  rate of ablat ion vapors per u n i t  area i s  given by 

fw 

where ( i s  the  heat capacity of ablat ion products. The net radiant heat 
through the en t i r e  system a t  the wall is  

thus, the blowing parameter, fw  = pbvb/&V,, becomes 
$i 



where A, = ( ~ O - T ~ ~ / ~ V & ~ )  as i n  equation (14). The coef f ic ien t  Ub i n  the  
thermal function f o r  t he  ablat ion layer  is coupled with the  blowing parameter 
fw, since rwb in equation (9) depends on % fo r  given op t i ca l  thiclmess 
and boundary conditions as given below: 

where 

and 

With equations ( 9 5 ) ,  (@), and ( 9 9 )  and the  solutions previously pre- 
7 = 1, including equation (74b),  an i t e r a t i v e  procedure i s  used 

and f w  and t h e  ab la t ion  vapor-layer thickness Lbo (see rwb 

sented f o r  
t o  determine 
appendix H ) .  

A simpler and useful  approximation for Owb may be obtained i f  it i s  
fur ther  assumed t h a t  t h e  absorption coeff ic ient  ( %Kb) in  the  ablat ion layer  
is constant and t h a t  t he  blowing parameter fw i s  very small. 

Then, by the  de f in i t i on  of op t i ca l  depth, 

where Lb 
rewri t ten as 

is  nonadiabatic vapor layer  thickness, equation (100) may be 

where 
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(lOlb ) 

With equation (93), % becomes 

From equations (97) and (98) and by the  def in i t ion  of 
@"b can be wri t ten 

B i n  equations ( lo lb) ,  

'wb - - h, 'B 

Equations (102) and (103) may be combined t o  eliminate 
obtain h b  (or vice versa) fo r  ablat ion.  For B << 1 (small ab la t ion) ,  
equation (102) may be expanded i n  the  first order of power ser ies  and combined 
with equation (103) t o  obtain the  approximate formula 

B and therefore t o  

where n has been s e t  equal t o  2 and = 1. Equation (104) i s  useful 
i n  t h a t  the  absorption coeff ic ients  of the  shock layer  and vapor layer  (which 
a r e  generally unknown) a re  combined in to  a r a t i o .  
s tudies  for  assessing the  e f fec ts  of rad ia t ive  blockage. 

This allows parametric 

RESULTS FOR A SINGLE LAYER 

Calculations of radiat ive f lux  a t  the  boundaries and of prof i les  of 
radiat ive flux, enthalpy, and temperature i n  the  shock layer  have been made 
f o r  selected f l i g h t  conditions. 
these calculations a r e  given i n  appendix I. The r e su l t s  a re  used t o  assess 
the e f fec t  of rad ia t ive  energy loss  on shock standoff distance, the  e f f ec t  of 
preheating and absorption i n  ablat ion layers  on the  radiat ive heat t ransfer  

The equilibrium air  properties used in making 



t o  t he  body, and the  e f f ec t  of rad ia t ive  energy loss  on the  convective heat 
transfer. 
results are considered by making comparisons w i t h  other solut ions.  

Where possible,  t h e  e f f e c t s  of t he  assumptions on the  present 

Comparisons With More Exact Analyses 

Plane shock w a v e l o w  (7 = O ) . -  To evaluate the  e r r o r  intrcduced i n  the  
present solutions by replacing the  exponential in tegra ls  with exponential 
functions, equation (185~) ( the  in tegrodi f fe ren t ia l  equation) was solved 
numericall? and t h i s  solut ion compared with solut ions of equation (23a) ( the  
d i f f e r e n t i a l  equation obtained by using the  exponential approximation). 
Various commonly used values of t he  constants 
calculat ions.  The results are shown in f igure  3(a) f o r  7 = 0, where rw and 
rs, t he  rad ia t ive  heat  t o  the  w a l l  and free stream, respectively,  are p lo t ted  
as functions of T ~ .  This f igure  shows t h a t  t h e  exact and approximate solu- 
t i ons  agree w e l l  f o r  m = 1/2 and n varying from 3/2 t o  2 (but constant fo r  
a given value of 
analysis,  m i s  not a r b i t r a r y  but should be 1/2 as required by the  asymptotic 
values f o r  op t i ca l ly  t h i n  and th ick  layers  and by the equivalent wall approx- 
imation. This becomes pa r t i cu la r ly  apparent ( f i g .  3(a))  f o r  rs as opt ica l  
thickness is  increased since the  r e s u l t s  f o r  values of m d i f f e ren t  from 
1/2 deviate from the  correct  asymptotic f lux.  The other constant n is  less 
r e s t r i c t ed ,  excep t , t ha t  it should take on the  value of 2 as rw approaches 
zero because it m u s t  take 
t i o n  f o r  
t i o n  except, as expected, f o r  s m a l l  op t i ca l  thickness. 

m and n were used in these 

T ~ )  as provided by equation (72) .  A s  mentioned i n  t he  

mn = 1 f o r  Tw + 0 .  Note t h a t  the  approximate solu- 
m = l / 2  and n = 3/2 shows r a the r  good agreement with the  exact solu- 

Stagnation _ ~ _ _ _  flow (7 = 1).- A comparison similar t o  t h a t  of f igure  3(a) 
but  fo r  y = 1 has not been made pr imari ly  because of numerical d i f f i c u l t i e s  
associated with the  s ingu la r i t i e s  i n  equation (18a). 
Viegas' ( r e f .  7) elaborate viscous solut ions a r e  avai lable  f o r  comparison 
with t h e  present solut ion.  They do not assume a l i n e a r  thermal function, a 
l i n e a r  mass flow re la t ion ,  o r  t h e  exponential approximation (as does the  
present work). 
absorption coef f ic ien ts  as used i n  the  present work. Furthermore, t he  solu- 
t i ons  of reference 7 are fo r  r e l a t i v e l y  small values of T~ and thus energy 
lo s s  by radiat ion i s  emphasized ra ther  than energy red is t r ibu t ion  by self- 
absorption. 
agreement between the  two treatments except, of course, near t he  wall where 
viscous e f f ec t s  predominate. The approximate boundary-layer edge, 6 ,  is  
indicated i n  f igure  3(b)  as estimated from the  empirical equation ( re f .  32) as 

However, Howe and 

However, t h e i r  solut ions are f o r  a gray gas, w i t h  t h e  same 

The comparison i s  presented in  f igure  3(b) which shows very good 

./ 2PS(dU/dx)O 
- .- - - - - . . - . - . ____ . . 

6In t h e  i t e r a t i o n  process f o r  equation (18;) t h e  approx&te solut ion i s  
subst i tuted as an i n i t i a l  input function. This reduces t h e  d i f f i c u l t y  of con- 
vergence associated with t h e  equation and is very e f fec t ive  i n  control l ing 
osc i l l a t ions  of t h e  solut ion.  
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The stagnation streamline mass-flow d is t r ibu t ion  used i n  the  present 
work is  shown i n  f igure 3 ( c ) .  The calculated mass-flow d is t r ibu t ions  f o r  
various opt ica l  thicknesses a r e  plot ted as a function of physical depth 
in to  the  shock layer  and a r e  compared with both a l i n e a r  equation and the 
more r e a l i s t i c  quadratic equation (nonadiabatic compressible flow) presented 
i n  reference 6. This f igure shows t h a t  the present r e s u l t s  agree well with 
the  quadratic equation fo r  most op t ica l  thicknesses but approach the l i nea r  
equation fo r  small op t i ca l  thickness. As a f i r s t  approximation, the present 
mass-flow d is t r ibu t ion  (eq. ( l l c ) )  provides the  advantage of a closed form, 
simple solution f o r  t he  rad ia t ive  heat t ransfer .  

Tw 

Radiative Flux Results 

The pr incipal  r e s u l t s  of t h i s  report  a r e  i l l u s t r a t e d  i n  f igures  4 and 5 .  
The radiat ive fluxes a t  the shock wave 
f romthe  present closed-form solution a r e  plot ted as functions of i n  
figures &(a) and 4(b) f o r  a temperature ps = 1 
and 10 a t m ,  respectively.  Results a r e  presented fo r  both plane shock flow 
and stagnation streamline flow; the  corresponding f l i g h t  conditions a r e  shown 
on the  f igure.  A s  mentioned i n  the  analysis,  rad ia t ive  fluxes fo r  plane 
shock flow and stagnation flow d i f f e r  only t o  second order i n  o p t i c a l t h i c k -  
ness when Tw is small. k t h e r m o r e ,  t he  asymptotic values of rS f o r  
large TW a r e  the same f o r  both flows. The asymptotic absolute values of 
rw f o r  stagnation flow, however, decrease inversely as the square root of 
T ~ ,  whereas rW for  plane shock flow decreases very slowly t o  i t s  f i n i t e  
symptot i c  value. 

rS, and a t  the  w a l l ,  rw, as determined 
T~ 

Ts = 1.5,000° K and pressures 

The r e su l t s  shown i n  f igures  4(a) and 4(b) f o r  stagnation flow a r e  
replot ted i n  f igure 4(c) where the  r a t i o  of nonadiabatic t o  adiabatic radia- 
t i v e  heat t ransfer  rw/r0 
radiat ive heat t ransfer  t o  flow energy (A,). Existing numerical machine solu- 
t ions  a re  a l so  shown on f igure 4 ( c ) .  For ps = 1, where absorption e f fec ts  
a r e  small, the  present method agrees well with the  r e su l t s  of references 7 and 
8 except when A. i s  small. This can be anticipated because fo r  small A, 
and fixed free-stream conditions must be small, which i n  turn corresponds 
t o  small nose radius.  Therefore, the Reynolds numbers f o r  these conditions 
a r e  low and the shock layer  is  primarily viscous. Thus, the temperature pro- 
f i l e  deviates sharply from t h a t  f o r  a radiat ing f i e l d  alone, and the present 
method overestimates radiat ive heating. It i s  probable t h a t  the present 
r e su l t s  f o r  
f l i g h t  conditions as long as 
small. 
absorption becomes pronounced, as is  the case f o r  
from t h i s  correlat ion curve. Thus, the correlat ion curve should not be used 
fo r  la rge  values of A,, since large values of A, eventually correspond t o  
la rge  Tw. 

is  plot ted as a function of the r a t i o  of adiabatic 

ro 

ps = 1 i n  f igure 4(c) represent a correlat ion curve fo r  
Tw i s  small and thus absorption e f f ec t s  a r e  

(This has a l so  been pointed out i n  r e f .  8 .) However, when se l f -  
ps = 10, rw/r0 deviates 

Results similar t o  those presented i n  f igure 4, but for  a much higher 
veloci ty  (30 km/sec) and fo r  stagnation flow only, a r e  presented i n  f igure 5 .  
The r a t i o  of radiat ive heat t o  t o t a l  flow energy is plot ted i n  
f igures  5(a) and 5(b) f o r  

q/(l/2)pwVw3 
ps = 1 and 10 a t m ,  respectively.  The same trends 
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are evident i n  these f igures  as in  figures 4(a) and 4(b) .  
parameters similar t o  those i n  f igure 4(c)  except t ha t  the parameter i s  modi- 
f i e d  by 
d i t ion ,  ps = 1 a t m  and Vref = 15 km/sec. A n  explanation of the correlat ion 
i s  t h a t  the  modified parameter 
since 

Figure 5 (c )  shows 

A: = (vref/V,)Ao, where the reference is chosen f o r  the f l i g h t  con- 

A: depends weakly on the f l i g h t  veloci ty  

o r  

Thus, parameter A t  = (Vref/V,)A becomes r e l a t ive ly  independent of the  
f l i g h t  speed. 
sures, values of A: l e s s  than about 1 correspond t o  small values of -rW. 
Thus, the  r e su l t s  correlate  w e l l  with each other and with the  correlat ion 
curve from f igure 4 ( c ) .  

For the  higher veyocity f l i g h t  condition, and fo r  both pres- 

Shock-Layer Prof i les  

Enthalpy d is t r ibu t ions  i n  the shock layer  fo r  various values of -rW a re  
shown i n  figures 6 (a )  and 6 ( b ) .  For la rge  T~ the  major change in enthalpy 
occurs r e l a t ive ly  near the shock wave; for  s m a l l  TW the  major change i n  
enthalpy occurs near the  w a l l .  Enthalpy, when plot ted i n  terms of op t ica l  
thickness T ( ra ther  than 7 = T/T,), i s  always higher f o r  la rger  Tw. 

Because of the nearly constant enthalpy near the  w a l l  f o r  large Tw, 
radiat ion heat t ransfer  t o  the w a l l  f o r  t h i s  case ( i . e . ,  f o r  la rge  bodies or 
high free-stream dens i t ies )  is  nearly black-body radiat ion oTZ4 where T 2  
is  the loca l  temperature near the wall. Such radiat ion i s  proportional t o  
l o c a l  enthalpy, a s  can be seen from the thermal function, and therefore i s  
proportional t o  a reduced ve loc i ty  vz defined by 

The absorption 
corresponds t o  

e f f ec t  thus reduces radiat ive heat by an amount which 
a veloci ty  change similar f o r  a conical body with apex angle 

e z  = 

An important parameter i n  the  analysis 
modified Bessel function where v = (1/2) + 
solutions depends on whether v is  greater  

for  7 = 1 is v 
m u E ~ ~ )  since the  
or l e s s  than 1. 

(106b) 

( the order of the  
character of the  
In f igure 7, 
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prof i les  of T, r, and dr/m a r e  presented f o r  v > 1 and v < 1. The 
temperature d i s t r ibu t ion  f o r  
i n  f ac t ,  has i n f i n i t e  slope at  the  w a l l ,  whereas the  temperature d is t r ibu t ion  
for v > 1  has a f i n i t e  slope near the  w a l l  (eqs. (42)).  The temperature 
itself at  the  w a l l  i s  grea te r  f o r  Y > l t h a n  f o r  v <1. The flux d i s t r i -  
bution shows no i n f i n i t e  slope; i n  f a c t ,  the  der ivat ive of the  f lux  i s  zero a t  
the  wall regardless of the  value of v (eq. (41)) .  

v < 1  shows a very sharp drop near the  w a l l  and, 

In f igure 8, the  var ia t ion of the  gas temperature at the  w a l l ,  Te (with 
opt ica l  thickness, T#) , shows considerable differences between stagnation flow 
and plane shock flow. These differences occur because f o r  stagnation flow the 
flow time (and thus the  emission time) near t he  stagnation point is i n f i n i t e .  
For stagnation flow of an opt ica l ly  t h i n  layer  (Tw << 1) the  gas does not 
absorb strongly enough t o  block the radiant energy, and the  edge temperature, 
therefore,  i s  r e l a t ive ly  low. A s  the  opt ica l  thickness increases, as a r e s u l t  
of increasing e i the r  the  absorption coeff ic ient  or the  body radius, Te 
increases w i t h  increasing since now the  gas near the w a l l  absorbs f lux  
from upstream more e f fec t ive ly .  A fur ther  increase of T#, however, causes a 
gradual drop i n  Te, and Te f i n a l l y  vanishes as T~ approaches in f in i ty .  
This occurs because the  gas pa r t i c l e s  then have suf f ic ien t  distance t o  t r ave l ,  
thus time i n  which t o  cool, even in a strongly absorbing layer .  Because the 
veloci ty  approaches zero a t  the w a l l  in stagnation flow, there  is  a coupling 
e f f ec t  between self-absorption and emission time fo r  the gas near the stagna- 
t i o n  point.  Plane shock flow does not show th is  coupling e f f ec t  (as i l l u s -  
t r a t e d  in  the same f igure)  because the veloci ty  behind the shock is  
approximately constant and therefore the emission time i s  very short  compared 
t o  t h a t  f o r  stagnation flow. In ac tua l  f l i g h t ,  the  boundary layer  plays a 
s ignif icant  r o l e  near the  w a l l ,  so the  trend of Te described above ex is t s ,  
but is  interrupted by heat conduction i n  the  boundary layer  before the  Te 
reaches i t s  f i n a l  value by radiat ion alone. 

T~ 

The e f f ec t s  of absorption i n  radiat ing flow discussed above w i l l  a l so  
occur f o r  the case of nongray gas radiat ion where cooler gas near the  stagna- 
t i on  point ( w i t h  or  without boundary layer )  i s  heated by the  absorption of 
U-V radiation from the r e s t  of the shock layer .  In  other words, the  opt ica l  
thickness is  i n  e f f ec t  increased local ly ,  and thus w i l l  a c t  t o  prevent a 
sharp drop of edge temperature. 

Shock Standoff Distance 

Figure 9 presents the  r a t i o  of nonadiabatic t o  adiabatic shock standoff 

The r e s u l t s  of reference 7 a re  included i n  
distance; t h i s  r a t i o  i l l u s t r a t e s  the  e f f ec t  of densi ty  increase due t o  tem- 
perature drop by radiat ion loss .  
t h i s  f igure for  comparison. The curves of L/Lo f l a t t e n  out as the body 
radius increases and absorption e f fec ts  become s igni f icant .  For small bodies, 
the shock standoff distance depends primarily on radiat ion lo s s  and i s  l e s s  
sensi t ive t o  the  e f fec ts  of absorption. 
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APPLICATIONS TO MULTlLAYERS 

Blockage of Radiation by Injected or Ablated Vapors 

The ef fec t  of injected or ablated vapors on the  heat t ha t  reaches the  

The radiat ion 
w a l l  from an intensely radiat ing shock layer  w i l l  be considered; convective 
heat w i l l  be assumed negl igible  compared t o  radiat ive heat .  
blockage parameter Qb (defined in  eq. (91)) is  the r a t i o  of t he  net radia- 
t i o n  f lux  reaching the w a l l  with blockage 
without blockage rw0. 
radiat ion is so high compared t o  t h a t  of the ablat ion layer  t h a t  the  major 
e f f ec t  is  absorption of shock-layer radiat ion and therefore emission from the 
ablat ion vapor i s  negl igible .  The emission term f o r  the injected vapors 
becomes comparable t o  the  absorption term when Twb f o r  the  vapors becomes 
very large; however, t h a t  occurs only when values of %b a re  small  and thus 
radiat ive heating a t  the  w a l l  has already been g rea t ly  reduced. (It should 
be noted t h a t  emission f r o m t h e  ablated vapor increases the  net radiat ive 
heating a t  the w a l l . )  
temperature and consequently the  emission from the ablat ion layer .  

rwb t o  t h a t  reaching the  w a l l  
It is  assumed t h a t  the in t ens i ty  of .  the shock-layer 

Furthermore, convective heating can increase the 

Figure lO(a) presents the  radiat ive blockage function %b fo r  injec- 
t ion ,  which is  similar t o  the  blockage function f o r  convective heat.  The 
so l id  l i n e  on the  f igure was obtained by considering only absorption i n  the  
injected vapor, equation (102), while the dashed l i n e  w a s  obtained by con- 
sidering both absorption and emission with various opt ica l  thicknesses of the 
shock layer ,  ~ ~ 1 .  A ra ther  good correlat ion curve resul ted f o r  these calcu- 
l a t ions .  It can be seen t h a t  the e f f ec t  of emission is  negligible fo r  
Twb <<l. The calculations were obtained with carbon as the injected vapor. 

Figure lO(b) presents the  rad ia t ive  blockage function, Qb, fo r  ablation 
as a function of the r a t i o  of absorption coeff ic ient  i n  the ablation layer  t o  
t h a t  of the a i r  behind the  normal shock wave f o r  body r a d i i  of 1 and 
10 meters. Increasing the  body radius reduces the  radiat ive blockage param- 
e t e r  f o r  a given absorption coeff ic ient .  
a s m a l l  body (1 m) requires higher absorption coeff ic ients  than a large body 
because the s m a l l  body receives l e s s  radiat ive heat; consequently it has a 
r e l a t ive ly  th in  ablat ion layer  t h a t  w i l l  not block as much radiat ive heat .  
Radiative heat i s  sharply reduced as the absorption coeff ic ient  of the abla- 
t i o n  vapor increases because the  opt ica l  thickness i n  the  ablation layer  is  
increased by two factors:  

To block radiat ive heat e f fec t ive ly  

(1) Higher absorption coeff ic ients  

( 2 )  Increased physical thickness due t o  the  absorption e f fec t  ( i . e . ,  
the  ablat ion layer  i s  heated by absorption, and accordingly is 
th icker ) .  

In  connection with the  flow f i e l d ,  temperature near the interface 
changes sharply; but it i s  continuous f o r  stagnation type flow (7 = 1) since 
ne t  f l ux  and veloci ty  a t  the  interface a r e  continuous. The theore t ica l  
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interface temperature f o r  a similar s i tua t ion  in plane shock flows (7  = 0) is  
discontinuous because the  veloci ty  p ro f i l e  is discontinuous. 

Preheating Zone 

As the  f l i g h t  ve loc i ty  approaches meteoric speed, most of the  radiat ion 
f r o m t h e  strong shock layer is i n  the  U-V region and can be strongly absorbed 
by free-stream air  ahead of the  shock. 
creates  a preheating zone which r a i se s  the temperature both ahead of and 
behind the shock wave, thus increasihg the rad ia t ive  heat t o  the  w a l l .  
represent the ac tua l  (wavelength se lec t ive)  absorption by the f ree  stream 
with a gray-gas analysis,  a portion (roo) of the  f lux  entering the  preheating 
zone from the  shock layer  (rsp) i s  allowed t o  escape from the  system (as 
described in the ana lys i s ) .  The escaping f rac t ion  is  then Ow = roo/rsp which 
can be considered a radiat ive leakage function a t  the  edge of the preheating 
zone. The f rac t ion  absorbed by the preheating zone i s  1 - Om. The increase 
in heating t o  the  w a l l  is given by % where = rwp/rwo, the r a t i o  of 
radiat ive heating t o  the  w a l l  with and without preheating. 

The absorption of the u l t rav io le t  

To 

Figure 11 is  a p lo t  of % versus body radius R, with (9, as a 
parameter. 
For Om = 1 there i s  no preheating e f f ec t  and 0, = 1. For QW = 0 a l l  
radiat ive f lux  i s  trapped i n  the  preheating zone, and there  is  a sizable 
increase in rad ia t ive  heat with increasing body radius.  This increase is  
primarily due t o  the  increase of temperature behind the  shock wave. For a 
given 
increase i n  radiat ive heat a t  the w a l l  because the  preheating zone can absorb 
more from the la rger  radiat ion associated with the  thicker  shock layers  of the  
la rge  bodies. Figure ll a lso  suggests t h a t  i n  ac tua l  f l i g h t  a body can 
receive more than half  the  energy radiated from the system (9, + 9,). 
ever, as the  temperature ahead of the shock becomes comparable t o  t h a t  behind 
the shock, emission and other neglected e f f ec t s  ( i . e . ,  k inet ic  energy changes 
and heat conduction) may become important. 

(Emission from the  preheating zone was neglected i n  f igure ll.) 

Ow (escaping radiat ion f rac t ion) ,  the  l a rge r  bodies undergo a greater  

How- 

The approximate combined e f f ec t s  of both preheating and ablat ion on heat 
t ransfer  t o  the  body can be given as 

% "  % %b 

1 ablat ion vapor e f f ec t  
without preheating 

preheating e f f ec t  c on nonablat ing body 

i f  absorption is  the  major mode of energy t r ans fe r  i n  the ablat ion layers .  

Effect of  Nonadiabatic Flow on Convective Heating 

While it i s  beyond the scope of t h i s  paper t o  analyze i n  d e t a i l  the  
changes in convective heating t h a t  occur as a result of nonadiabatic radiat ive 
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flow, it i s  pogsible t o  make a simple estimate of t he  e f f ec t  by modifying 
somewhat the c r i t e r i o n  (first introduced by Goulard, ref .  33) of taking the  
enthalpy a t  t he  edge of t he  viscous boundary layer  as the driving enthalpy fo r  
convective heating. ' (Later ,  Thomas ( ref .  13)  suggested taking the  enthalpy a t  
t he  edge of the  gas layer ,  he ( the  enthalpy corresponding t o  
driving enthalpy.) It is  reasonable t o  assume t h a t  convection becomes impor- 
t a n t  i n  energy t r ans fe r  a t  the  boundary-layer edge and f i n a l l y  becomes com- 
p l e t e l y  dominant i n  changing the  f lu id  enthalpy a t  a ce r t a in  distance in to  the  
boundary layer .  The assumed distance a t  which convection becomes dominant7 is  
6/2, where 6 i s  the  boundary-layer thickness given by equation (103). How- 
ever,  t he  addi t ional  l o s s  of enthalpy by radiat ion i n  the  t r ans i t i on  layer  
should be considered where rad ia t ion  and conduction are both important. To 
approximately account f o r  t h i s  addi t ional  loss of enthalpy by radiat ion we 
w i l l  use the  enthalpy a t  
ing enthalpy by convective heating. Thus, the convective heating qc is  
reduced by 

T e ) ,  as the  

6/2 computed f o r  radiat ion alone, hg/2, as the  driv- 

where g,, i s  convective heat without radiat ion e f f ec t .  Figure 12 shows the  
r a t i o  qc/qco as a function of -rw. The r e s u l t s  agree w e l l  with the  results 
from reference 7.8 

CONCLUDING FtENARKS 

The gray-gas approximation was used and the  radiant  heat-transfer equa- 
t i o n  w a s  l inear ized  t o  obtain ana ly t i ca l  closed-form solutions f o r  the  radia- 
t i v e  heating of a body f o r  op t i ca l  thicknesses from zero t o  i n f i n i t y .  It w a s  
shown t h a t  e f f ec t s  of absorption and energy loss a r e  important. By v i r tue  of 
t he  l inear ized  solution, rad ia t ive  heat t r ans fe r  i n  multiple layers  with 
various boundary conditions is  simplified considerably. Some important char- 
a c t e r i s t i c s  of nonadiabatic flow were computed simply from adiabat ic  re la-  
t ions ,  f o r  example, shock standoff distance i n  terms of densi ty  r a t i o  and 
convective heating i n  terms of enthalpy r a t i o .  A rad ia t ive  blockage function 
fo r  gas inject ion,  similar t o  t h e  convective blockage function, w a s  introduced 
and computed f o r  high-speed flows over ablat ing bodies i n  which radiant  heat 
predominates over convective heat.  
e f f e c t  i n  high-speed f l i g h t  may contribute subs tan t ia l ly  t o  the  heat t r ans fe r  
t o  a body. 

It was a l so  shown t h a t  t he  preheating 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, C a l i f . ,  94035, March 20, 1967 
729-01-08-11-00-21 

7The precise  value w a s  discussed i n  reference 29. 
'The asymptotic value of qc/qco approaches zero slowly s ince Te 

approaches zero. 
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APPENDIX A 

RADIATIVE TRANSPORT EQUATION I N  DOUBLE OR MULTILAYERS 

A preheating layer  with a shock layer  and a shock layer  with ablat ion or 
vapor in jec t ion  from t h e  body surface separated by an interface represent a 
typ ica l  two-gas layer  problem. The rad ia t ive  equation within the  shock layer  
f o r  t h i s  case becomes (from eq. ( g a ) ) ,  f o r  T < T i  

which, i n  terms of each layer  thickness,  becomes 

J 
7 Ti 

J 

Equivalent Wall Approximation 

It is useful here t o  introduce the  concept of an equivalent wall approxi- 
mation, t h a t  i s ,  t he  assumption of a t h i n  w a l l  t h a t  intercepts  a l l  incoming 
fluxes on t h i s  boundary, and reemits the  same number of photons i n  the  same 
d i rec t ion  across the  w a l l .  
change form s l i g h t l y  and become, f o r  

Thus, mathematically, equations ( A l )  and (A2) 
T < T ~ ,  
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f o r  7 > T i ,  

7 

r ( T )  = -2R2E3(7 - T i )  + 2RwE3(TW -T) - 'ii"E2(T - t ) d t  + s,'" T4E2(t  - T)dt 

(A4) 

where 

Quant i t ies  R 1  and R2 represent equivalent boundary conditions which include 
the  e f f ec t  of rad ia t ive  f lux  from other gas s labs  on the  assumed t h i n  w a l l .  
Consequently, i f  equivalent w a l l  conditions a r e  assumed, rad ia t ive  t ransport  
of  double layers  i s  separable and can be considered as t w o  independent single- 
layer  problems with var iable  boundary conditions.  The physical interpreta-  
t i o n  given by equations (A3) t o  (A6) can be j u s t i f i e d  mathematically as w e l l .  
By Taylor's expansion, fo r  T - > T ~ ,  

and 

f o r  t he  moderate range o f  -ri (exact a t  T = T i ) .  Since the  major contribu- 
t i o n  of the  exponential in tegra l  function E 3 ( T )  comes when T Ti,  and the  
magnitude of t h e  difference of t he  above two functions becomes s m a l l  f o r  
l a rge r  T 

IE3(T)  - E3(7i)2E3(7 - T i l l  << E 3 ( 7 i )  

f o r  the  e n t i r e  range of T. Thus, t he  above subs t i tu t ion  of E ~ ( T )  by 
E ~ ( T ~ ) ~ E z ( T  - Ti) w i l l  provide a good approximation f o r  a l l  values of 
In  f a c t ,  when the  in t eg ra l  exponential function is  replaced by the  exponential 

T i .  
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function of constant 
modified equations (A3) and (Ah) become identical;  thus,  from subs t i tu t ion  of 

m and n, t he  o r ig ina l  t ransport  equations (9) and 

and i ts  der ivat ive ( ~ ~ ( 7 )  = - E ~ ( T ) )  

-n-r 
= me 

it follows f o r  T 1~~ t h a t  

- n ( ~ - ~ i )  e -nTi 
E 3 ( 7 )  = me 

-n ( T -T i ) 
E3(Ti)2E3(7 - T ~ )  = 2m2e-nTie 

when m = 1/2. Similarly,  f o r  T _< T i ,  

With the  exponential approximation subst i tuted i n  the  in tegra l  pa r t  of 
equation ( K i )  

d t  
= 2.1 7 W pmne -n( t  - T )  

Ti 

r'" -4 7 W -n( t  - T )  
T E z ( t  - T)dt = / F4me d t  ( T  - < T i )  

- n ( ~ i - - r )  T~ 
T )  JTw -4 T E 2 ( t  - Ti)dt = 2me J T4mne-n(t - T i )  d t  

Ti Ti 



One can readi ly  see t h a t  these in tegra ls  are ident ica l  i f  
discussed previously i n  the  approximate solution, the  constant m i s  found 
t o  be 1/2 from other c r i t e r i a .  

m = 1/2. As 

Equivalent Boundary Values 

Since the  t ransport  equation i n  double o r  multiple gas layers  can be 
divided into two or several  separate layers ,  corresponding boundary conditions 
on the  equivalent w a l l  can be t rea ted ,  from equations (261, i f  regions I and 
I1 are considered separately.  
separate from region I so t h a t  i t s  flow f ie ld  and notation become consis tent  
with t h a t  of t h e  first layer  (see sketch ( b ) ) .  
denote propert ies  i n  the respective regions. 

Thus, region I1 can be considered en t i r e ly  

The superscr ipts  I and 11 

The ne t  f lux I'l f romlayer  I a t  
T = - r i ,  and r2 from layer  P I  a r e  

vb 

( U O )  
"a Q 

0 T. 

Sketch (b) Separation of shock 
layer  (I)  and inject ion 
layer  (11) . 

Dimensionless quant i t ies  i n  region I1 are based on w a l l  ( in jec t ion)  tempera- 
ture  T,, and boundary values Rwl and RW1' are t o  be determined for  given 

Rsl and R,". With new def in i t ions  of 

I 
R 1  = Rw 

I1 R2 = Tw4R, 

and energy balance a t  boundary 
T i ,  

rl = r2 = R~ - R~ (A13 

it follows t h a t ,  from equations (AlO) , ( A l l ) ,  and (Al3), equivalent boundary 
values a re  



, - .  

- (M5' + ME,") 

With these boundary conditions, flux toward the  free stream, Ts, and f l u x  
toward the  surface,  rw, from the  whole system are calculated by 

rs = (Mo + M i R s  + I%%)' ( f i 6  1 

(AJ-7) I1 rwb = -Fw4rs 'I = -qw4(MO + M I R s  + M2Rw) 

The rad ia t ive  blockage function Gb i s  then 

where r 
ab la t ionyand is  wri t ten 

i s  the  rad ia t ive  function a t  t he  w a l l  without inject ion (or  

I - ( M ~  i- &Rs i- MsRW) 
rwo - 



APPENDIX B 

THERMAL FUNCTION 

F'rom thermodynamic char t s  or  t ab le s  ( r e f s .  34 and 35), temperature var ia-  
t i o n  with enthalpy for  constant pressure (or constant densi ty)  can be 
expressed around reference temperature Tr as 

For the present work, only a f e w  terms i n  equation (B1) a r e  s u f f i c i e n t t o  
cover the  range of temperature of in te res t ;  however, average slope (&?/ah) i s  
e f fec t ive  and simple f o r  general appl icat ions.  Thus, with temperature behind 
the  shock, Ts, as reference,  

This equation, normalized by dividing by Ts4 becomes 

!t4 = 1 - E ( F s  - F) (B3)  

where 

This equation can be ca l led  the  idea l  or l i n e a r  thermal re la t ion  since the 
t r ans fe r  equation i s  l inear ized  ( i n  contrast  t o  t he  l i n e a r  r e l a t ion  between 
enthalpy and temperature fo r  an idea l  gas ) .  

The temperature r e l a t ion  f o r  constant dens i ty  i n  the  preheating zone can 
be wri t ten as 

where Tf 
mined; Tf is  selected as reference temperature ra ther  than free-stream 
temperature T, since t ransport  properties depend s t rongly on temperature 
near T f .  I n  normalized form, with Tf as reference temperature, 
equation (B5)  becomes 

is  the  temperature j u s t  ahead of shock f ron t  and is  t o  be deter-  
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Temperature 
ence gas temperature, T,, as follows: 

Tf can be calculated from the  r e l a t i o n  derived f o r  other refer-  
from equation (8713) and f o r  hf = hr 

where 

Equation ( B 8 ) ,  which takes  only absorption e f f e c t s  i n to  account and thus 
neglects gas emission i n  the  preheating layer ,  i s  calculated from equa- 
t i ons  (83) and (86) f o r  given E& and T ~ .  The value of temperature T r ,  which 
corresponds t o  enthalpy hr, can be obtained from the  r& gas chart f o r  COLL- 

s t an t  densi ty  (p* 2 p,). Since Tf Tr, one can use (&?/ah), fo r  any 
temperature near T s Tf so  t h a t  i n  the  preheating zone 

After equation (B7) is  subst i tuted in to  (B9) and divided by T 
s ’  

- 4 Tr4 + &[(rSp - Tf r,) - ( r sp  - 

where 
emission, a r e  now calculated fo r  the  same 
t i o n  (€38). 
preheating and i s  presented i n  appendix G .  

rSp and r,, including the  e f f ec t s  of both self-absorption and gas 
?& and 7, as used in  equa- 

The thermal function i s  used t o  calculate  the radiat ive f lux  with 

With t h i s  temperature Tf and = Ef, the  temperature re la t ion  given i n  
equation (€6) can be used t o  evaluate rad ia t ive  t r ans fe r  i n  the  preheating 
zone by a procedure similar t o  t h a t  given fo r  t h e  shock-layer analysis .  

Similar thermal r e l a t ions  can be used f o r  t h e  inject ion layer  except now 
constant pressure over the layer  is assumed; thus,  

4 
(T/T,) = 1 - % ( F ~  - 

where zb 
reference temperature f o r  normalizing the  thermal function. 

i s  defined by equation (99),  and w a l l  temperature, T,, i s  the  

34 
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Note t h a t  t he  l i n e a r  thermal r e l a t ion  may not apply i n  some gases; but it 
can be used t o ' p r e d i c t  t he  importance of emission e f f e c t s  (from the  preheating 
and the  vapor layers )  on rad ia t ive  heat a t  the  w a l l .  

Temperature-Pressure Relation 

The temperature var ia t ion  f o r  other pressures ( f i g .  2 )  can be wri t ten 
empirically as 

r4 -" p ( P s , h )  + [l - ?(Ps,h)][ l  - (P/Ps)-m] 0312 1 

where Ps i s  reference pressure near p, and m is constant; f o r  example, 
m -" 0.69 
102 a t m .  

f o r  T s  2 15,000° K and f o r  pressure ranges of P, = 1 0 - l t o  
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APPENDIX c 

MODIFLED BESSEL FUNCTIONS OF THE FIRST AND SECOND KI.ND ( 1 , K )  

The d i f f e r e n t i a l  equation of rad ia t ive  t ransfer  f o r  stagnation flow 
(7 = 1) i s  (eq. (34)) 

which can be reduced t o  t he  modified Bessel equation. The general solution i s  

Definitions and properties f o r  these functions a r e  presented i n  many textbooks 
( r e f s .  24 and 25)  . 
application is  given i n  t h i s  appendix. 
are ( r e f s .  24 and 25) 

The de ta i led  calculation scheme involved i n  the present 
Bessel functions i n  ascending se r i e s  

v, 00 ($ 
(c3) , 

w ( V  + K + 1) I,(ne) = (9) 
K =0 

where r (  v + K + 1) is  the  gamma function. 

Properties of t he  I?,(@) Function 

Different ia t ion formula.- Let the flux function r,(@) and r,,(e) - be 
defined by 

1 r,(e> clzV(e) + c2z - ,,(e) 

where 
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Since der ivat ives  of Z, functions are 

W i t h  s l i g h t  modification of the  l as t  two equations it follows t h a t  

2 ~ r , ( e )  = ne2r,-,(e) - nr,+,(e) 

From equation ( C 7 )  and (Cg),  one obtains 

e - a r Je )  = 2 ~ r , ( e )  + nr,+,(e) 
he 

But 



therefore  with equation (C10) it becomes 

In tegra ls  involving r,,(j) f-gnctions .- The integrat ion involving the  I' 
function, which appeared i n  t h e  evaluation of boundary conditions (eqs. (23by 
and (c ) ) ,  i s  

+ne 
e r v- 1 (0)d-e 

Integrating by pa r t ,  one obtains 

where 

d r;-,w = -  de r,-,(e> 

F r o m  equations ( C 7 )  and (C10) it follows t h a t  

Final ly ,  it becomes 

s,'" e r,-,(e)de = 2v - 1 T rs I >  + rw (~12a) 



Then integrat ion associated with rS i n  equation (23b) is 

( c u b  1 
-n-r e rv-l(-rw - 7)dT = s'" 0 2v - 1 

and t h a t  of rw i n  equation ( 2 5 ~ )  is  

In tegra l  of t he  Z,,(e) function.- By def in i t ion ,  C v ( e )  is  expressed as 

Similarly , 

The term Cv-l(ne) i n  equations (37) are calculated by 

a l so ,  

(C13b 

where 
expansion can be wri t ten as 

Lv(ne) is t h e  modified Struve function (ref.  25) f o r  which a series 
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where 

A, = 1 
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APPENDIX D 

EVALUATION OF BOUNDAFtY CONDITIONS 

The equations required f o r  calculat ing the  boundary conditions are 

and the  boundary conditions are 

J O  

The general  solut ion f o r  t he  f lux  function can be expressed as 

The thermal function F i s  r e l a t ed  t o  the  f lux function by 

and t o  the  temperature by 
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The boundary condition can 
equations (25) as follows: 

now be evaluated, say for 7 = 1, from 

EFs)dt + --s,’” e -nt F dt  - 2mRs + 2mF$p-nTw 

The second t e r m  on t h e  r i g h t  s ide  of t he  equation becomes 

e F d t = e  -n-r “s,” enOF(0)dO s,’” -nt 

- -  - e-nTw(enOFTw - -  n e-nTw LTw enOF’ (0)d0 
0 

n 

By equations (36) and (Cl2) it follows t h a t  

But from equations ( l5c)  and 

a f t e r  the  terms a r e  rearranged it follows t h a t  

Similarly, t he  boundary conditions f o r  
( ~ 1 2 ~ )  can be wri t ten as 

rw, with use of equation (C12a) o r  

-nTW -nT W 1 -nT rw = me - m[l- G ( F ~  - F,)] - 2 a s e  + 2 n i ~ ~  - {e  “ [ T p V - , ( T W )  + r,] - rw] 
(E) 

Since equations (37),  ( C 7 ) ,  and (39) provide t h a t  
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two simultaneous equations, with c 1  and c2 as unknowns, are obtained from 
equations (D1) and (D2) as wr i t ten  i n  equations (32d) and (38a). Similar 
procedures were applied for evaluating boundary conditions for 7 = 0, and 
these results w e r e  given i n  equations ( 3 2 ~ )  and (32d). 



APPENDIX E 

ASCENDING EXPANSION O F  Z FUNCTION (Tw << 1) 

For Y = , when v is fixed and the  argument approaches zero, le 
following ascending s e r i e s  of t he  modified Bessel functions a re  useful  f o r  
evaluating fluxes fo r  Tw << 1. From equations (C3)  and (C4)  

. . .] ( v  # -1, -2, . . .) 
( W n e  

v + l  
e2v + C$ r ( v  + 1) zv(e> eVIv(ne) = 

With these supplementary forms, the  quant i t ies  in equations (38b) a re  
expressed by the  notations: 

-2( 1-v) 1- v 

Ql = (:) T(v) 
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Replacing 8 by T~ i n  equations ( E l a )  and (E3a),  one obtains 

1- v 2 v - 1  

From equation (Elb) one can write 

Z- V 

by  using 

and 

the  following 

r ( v  + 

propert ies  of t he  gamma function (refs. 24 and 25)  

\ 

- 
where vo = m n u ~ ~  and 'po = 2 2n 2 - k ~  ( E u l e r ' s  constant) .  Consider t h e  first 
bracketed term i n  equation (E8); one obtains 
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Consider t he  leading pa r t  of t he  second term i n  equation (E8) .  One obtains 

* (1 - 2vo)nQ, 

Finally,  by combining equations (E8) ,  (Eg) ,  and ( E l O ) ,  one obtains 

Similarly, 'hhe Z- ( v- 1) function follows 

-2( L-v) 
Q2 

1-2 vo 
-U (1 - nTw )TW 

From equation (E3b), one could d i r e c t l y  obtain 

Q2 

Through equations (E5)  t o  (E13) ,  K and M 
equations ( 3 5 )  and (56) a f t e r  several  s implif icat ions.  

a r e  reduced as given i n  
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APPENDIX F 
I 

ASYMPTOTIC EXPANSION OF THE Z FUNCTION (TW >> 1) 

Uniform asymptotic expansions of the modified Bessel function f o r  large 
arguments ( r e f s .  24 and 23)  a r e  

where 

Evaluation of Iv-k(nTw) and Kv-k(n~,) 

Since v i s  

1 
2 

- 
V = IUIICLTw + - 

nTw -" ( v  - k)  -$ m b +-] V - k  

l e t  

then 

Similarly, 
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and 

From equation (Flc) it follows t h a t  

(v - k)q -" (v - k) 

where 

Therefore 

Now, P 1  and P2 from equations (28) can be a l so  expressed 

1 + Po -1 + Po 
P1 = , P2 = 

ZO zO 

Using equations (F4), (F l a ) ,  and the  def in i t ion  i n  (F3b), 
following asymptotic recurrence formula: 
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Asymptotic Expansion of Cv-,(0) 

A s  given i n  equation (Cl3a) . 

(F9) 

c v - i  (0) = 2 1 2  (Z)”-’<i) (v - +) e[I,,(ns)~,,(ne) - Lv-,(n0)Iv-2 

The modified Struve function L, ( r e f .  25) f o r  0 >> 1 is  

Let 

- - - -  (-l)k+lr[k + (1/2)] 
7k, v 2k- v+1 r [ v  + (1/2) - k](n0/2) 

then 

(FlOa) 

( FlOb ) 

A s  v and 8 + my 7kYv << 7k-1, 
leading term i n  equation (noaY as 

; therefore,  i-t is suf f ic ien t  t o  take on ly  t he  

With equation (F l l a )  the  bracketed quant i t ies  i n  equation (Fg) can be 
expressed ( for  simplicity,  argument ne is  omitted) as 

- [7OyV-l1Iy-2 - 7oyV-2 



Since Wronskians (ref. 25) vanishes as 8 + 

-$Iv-2,1-( ,,)I = [Iv-lI-( v-2) - I-( v-1) I 1  v-2 

It follows t h a t  

If 8 = T~ and T~ + 00, then, from equation (F6), 

Finally, equation (Fg), with equations (Fl ld)  and ( F l l e ) ,  becomes 

(F l l e )  

From equation (E3a) t he  same r e s u l t  i s  obtained f o r  T~ << 1 and v >> 1 since 

A n  evaluation s i m i l a r  t o  the above procedure can be applied for 
except t h a t  one subs t i tu tes  K, instead of I,; the  r e su l t s  a re  

C-(,,-=)(8) 

and 

which' lead t o  

- 1 2  (')"r(V - i) r (i) 
C-(, l ) (TW) 4 

.. ..-- - .. . . . . . .. . . . . 



- This approximation can a l s o  be compared with the exact form of 
in tegra l  t ab les  ( r e f .  25).  

T~ - in 

Note t h a t  subst i tut ing 
formula found i n  equation ( F W ) .  v >> 1, but 
the  following r e su l t  i s  obtained a f t e r  integrating equation (Elb) 

p = v i n  equation (F13b) gives the approximate 
Note a l so  t h a t  i f  -rW << 1, 

Further asymptotic expansion of the following functions a re  necessary 
t o  simplify the asymptotic evaluation o f  the flux function. Thus, as v -+ 03, 

the  gamma function can be expressed a s  

- V  v-k-(1/2) 
r ( v  - k )  = & e  v 

and 

It follows t h a t  

V =E {% Tw) 
Equation (F13) then becomes 

- - (1/"/2) z* 
- V  f i  C-(V-l) 

From equation (Fla) 



Also from equation (F6) it i s  shown t h a t  

From equation (Flb) one obtains 

and from equation (F8), 
P2Z- v z- 

-( v-1) T W  
Z 

With the  asymptotic values derived above, the following 

Since 

one obtains 

Then 

-nTw 
e = e  

re la t ions  hold: 

since po - 1 > 0. Also one f inds 
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since 1 + zo - po > 0 .  And 

From equation ( ~ 2 8 )  it i s  obvious now t h a t  

>> 1 mnETWc- ( v- 1) 

e z-, w -nT 

The values 
asymptotic values presented above. 

Kn and Mn (eqs . (61) and (62) ) are readi ly  evaluated from t h e  

Calculation of Radiative Flux Function r 

Coefficients c 1  and c2 of the  rad ia t ive  flux function, r, can be 
evaluated from the  previous results; thus,  

Similarly,  constant cp i s  evaluated as 
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klks - k3k5 
cg = 

n 

Since t h e  f lux function i s  given as 

it i s  necessary t o  examine t h e  asymptotic behavior of t he  functions 

for 1 << T << Tw. 

f o r  obtaining t h e  asymptotic form of Iv (n6) .  Thus, 
Similar evaluation made f o r  equation (F4) may be applied 

L e t  z* = z o ( l  - 7) and replace zo i n  equation (F4) (with k = 0) by z* So 
t h a t  

where quant i t ies  pertaining t o  
t h a t  f o r  equations (F2c) and ( E d ) .  

z* a r e  evaluated i n  a manner analogous t o  
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then 

Thus, from equation (Fla)  it i s  shown for 1 << T << rw t h a t  

Similarly,  K,,(ne) can be wr i t ten  as 

and so 

Therefore, from equation (~ ;16) ,  it becomes 
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For s u f f i c i e n t l y l a r g e  
t o  t h a t  of equation (F35), for example, 

-rW t h e  value of equation ( ~ 3 8 )  is  negl igible  compared 

Thus, t he  asymptotic radiant flux function becomes 

r,(d * C l Z , ( @ >  

- 2m (1 - 2R,)e 
1 + P1 



APPENDIX G 

CALCULATION OF RADIATIVE FLUX WITH PREWEATING INTERACTION 

The energy equation i n  the preheating zone is, from equation (771, 

It follows t h a t  

where 

Defining 
and hf a s  enthalpy j u s t  ahead of the shock f ront ,  one gets  the r e l a t i o n  rSp as  the  rad ia t ive  f lux  of the  preheating zone a t  the  shock wave 

Preheating increases the  temperature behind the  shock by the  amount 

- 
Ts?? = 1 + a(rsp - r,) (80) 

Flux (coming from the  hot shock layer) a t  the shock f r o n t  i s  

- 
rsp = Tsp 4(M, + M,Q + M&+) (G3)  

where Rst = R s p s p 4  and Qt = qpSp4. With equation (80) it follows t h a t  

rsp = [1 + d r S p  - r,) 1% + MIRs + ~ ~ q ,  (G4) 

The continuity of t he  f lux  function requires  t h a t  (see sketch ( a ) ,  main t e x t )  

rsp = Rf - Rs 

The temperature ahead of the  shock Tf i s  determined by 
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where Fr i s  the reference temperature derived from the assumption tha t  only 
absodption by media i s  a major f ac to r  i n  the  preheating zone (see appendix €3, 
eqs. (E8) and (B10)). 
equations (26) a re  

Thus, boundary f luxes of the  preheating zone from 

where superscript  * designates quant i t ies  i n  the preheating zone, and 

Rf* = Rfpf4 

%* = %Pf4 
It follows t h a t  

Now, one can solve the simultaneous equations given i n  equations (G3)  
through (a) f o r  = 0, R, M 0 
the preheating zone and shock layer,  respectively,  a s  

and for given o p t i c a l  depths (7, and T ~ )  of 

MO 
1 +  M i  

+ M4*) - M 3 * ( 1  + MI*) - (&- + M3)*] + (MI - M4)* 
_ _ _ _ _  - .  _ _  ~~ - .- 

n rsp - r, = 

( G 9 )  
where 

and 

M, 
%*- %*] - aL(M1- M4)*  1 + M I  A = l + M l * -  -+E&[&*(l+M,*) 1 - M s * ( l + M l * )  - l+M1 1 + M i  

Then FSp4 and Ff4 
t ive ly .  Thus, Fm 

will be obtained from equations (80) and (BlO) ,  respec- 
may be wr i t ten  i n  terms of known quant i t ies  a s  



M4*) - M3*(1+ Mi*) - 1+ ( l + M 1 * )  - - 
.. 

A 
- 
Tsp4 = 

Boundary values a re  given by 

(rsp - r,) + T ~ * ( M ~ *  - M~*) 
Rf = - 

Mi* - M4* 

The terms rSp and I?, 
simply 

can be obtained from equations (6) and (G7)  or are  

From equat,Jns ( G l 5 )  an1 
includes emission e f f e c t  , becomes 

( ~ 1 6 ) ,  the rad ia t ive  leakage parameter, whic,, now 

Note t h a t  i f  the  temperature jump due t o  preheating i s  not negligible 
(rSp - rs # 0) , the following mdi f i ca t ions  a re  made to calculate  the enthalpy 
and temperature d i s t r ibu t ion  through the shock layer.  Quantities K5 and K6 
i n  equation (38a) a re  replaced by 

where 
see d i r ec t ly  from the  last  equation, if the boundary values R, and R, are  
divided by Fsp4. Thus, from equation ( G 3 ) ,  we define, 

AI?, = rsp - I?,. However, the same r e s u l t  w i l l  be obtained, as one can 
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and the thermal function (Fsp - F)' The enthalpy 
and temperature d i s t r ibu t ion  given as equations (89) and (90) will y ie ld  
r e s u l t s  i den t i ca l  t o  those derived from equations (~18) and (Glg) since a l l  
other  K i n  equation (38) a re  constants for given Z (constant) and T ~ .  

as  given by equation (88a). 
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APPENDIX H 

CALCULATION OF RADIATIVE FLUX I N  I N J E C T I O N  AND ABLATION LAYERS 

The general  solut ion of rad ia t ive  heat t r ans fe r  f o r  the two-layer problem, 
shock and in jec t ion  layers,  f o r  example, has been presented i n  appendix A. 
The d e t a i l s  of the  analysis  f o r  both absorption and emission of injected gases 
on rad ia t ive  heat t o  the w a l l  i s  considered here. Since the  charac te r i s t ics  
of absorption coef f ic ien ts  f o r  in jec ted  or ablated gases a re  not ye t  w e l l  
known, the absorption coef f ic ien ts  simply appear i n  t h i s  analysis as a 
parameter, (PK)b, which i s  independent of temperature. 

In jec t ion  Layer 

For rad ia t ive  t r ans fe r  with gas in jec t ion  from the  body surface, in jec-  
t i o n  ra te ,  f,, i s  an a r b i t r a r y  parameter and i s  thus independent of the heat-  
ing r a t e  a t  the w a l l .  For t h i s  case, the  analysis  of radiat ive heat t r ans fe r  
i s  straightforward. 

Lei; f l i g h t  conditions be f ixed and assume the  o p t i c a l  thickness 
I-,') i n  the shock layer  t o  remain unchanged during in jec t ion  since the  

T~ 
(or 
shock-layer s t ruc ture  i s  r e l a t ive ly  insens i t ive  t o  the presence of an in j ec -  
t i o n  layer. Note t h a t  assuming a given value of T~ i s  equivalent t o  assign- 
ing a given body radius (see eqs. (74b) and (76a)) .  
i l l u s t r a t e s  t he  calculat ion procedure: 

The following out l ine  

( a )  Assign (-rW and E) i n  both regions: 
given body radius (and f l i g h t  condition) one can f ind  
( in jec t ion  layer) ; op t i ca l  thickness, Twb, i s  assumed. 
fw, i s  also assumed, and one f inds  zb 

Region I (shock layer ) ;  f o r  a 
Region I1 

The inject ion ra te ,  
T~ and Z. 

from equation (99).  

(b) Calculate Q1 and RW1' from equations (A14) and (Al.3). 

( c )  Calculate the  absorption coeff ic ient ,  which corresponds t o  
quant i t ies  ( T ~ ,  E, R,, RW)I1, by equations (74b) and ( 9 % ) :  

where 

(d) Calculate I'Tjb and Q ~ j b  from equations (Al.7) and (91). 
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W' 
By repeating procedures (a) through (d) f o r  other  values of ~~b and f 

we can obtain rad ia t ive  blockage f'unction avb 
rate with the  absorption coeff ic ient  r a t i o  ( P K ) ~ / ( ~ K ) ~  

as a function of t he  in jec t ion  
as the parameter f o r  a 

' given body radius.  

It i s  in te res t ing  t o  note t h a t  aW has near ly  a s ingle  correlat ion curve 
as presented i n  f igure  l O ( a ) .  

Ablation Layer 

For an ablating surface, the ablat ion rate ,  f,, is  coupled with rad ia t ive  
heat a t  the w a l l  rWb. Thus, some simple algebraic i t e r a t i o n  i s  required t o  
solve equation (98). 
calculate  on i n i t i a l  input value of 

Using the  approximation given by equation (92), one can 
Eb, from equations (989 and (99), by 

f o r  given Twb. 

t i o n  rate, f,, and thus, previous calculations a re  repeated u n t i l  the  value of 
fw converges. 
gence. 
show suf f ic ien t  accuracy, With t h i s  ablat ion rate one can compute the  absorp- 
t i o n  coeff ic ient  r a t i o  from equation (Hl) . Thermodynamic properties of carbon 
are obtained from reference 36. 

Similar procedures (as  out l ined i n  the  previous section) a re  
then used t o  calculate  Rw I , RW1', and rWb. This rwb provides a new abla- 

Only two or three i t e r a t ions  a re  necessary f o r  good conver- 
Even the  r e s u l t s  obtained by using equation (H2) as  an i n i t i a l  input 
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EQUILLCBRIUM A I R  PROPEZTIElj 

Thermodynamic charts  a r e  presented f o r  f l i g h t  speeds t o  30 km/sec i n  
f igure  13. These char t s  give the pressure and temperature behind and the 
density r a t i o  across the normal shock wave, and can be used t o  obtain r e f e r -  
ence propert ies  f o r  the present solutions.  These propert ies  were computed 
from the thermodynamic char t s  of references 34 and 35. 

Radiative propert ies  f o r  equilibrium a i r  a re  presented i n  f igure  14. 
Figure 14(a) presents 
op t i ca l ly  t h i n  air .  This char t  w a s  prepared by conibining the calculat ions of 
reference 37 f o r  low temperature and reference 38 f o r  higher temperatures. 
Figure 14(b) presents Planck mean absorption coef f ic ien ts  from the same re fe r -  
ences used i n  the present analysis .  The r e l a t ion  between emission r a t e  and 
absorption coef f ic ien ts  i s  Et = 4pstcsaTs4. The absorption coef f ic ien ts  
for equilibrium a i r  a re  not well  es tabl ished over the whole temperature range. 

Et/2, one-half the emission r a t e  per u n i t  volume, f o r  
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TABLE I. - EXPONENTIAL CONSTANTS, n 
- - .  -~ .- . 
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. .  
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