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ANALYSIS OF RADIATIVE HEAT TRANSFER FOR
LARGE OBJECTS AT METEORIC SPEEDS
By Kenneth K. Yoshikawa

Ames Research Center

SUMMARY

An explicit closed-form solution has been obtained for radiative heat
transfer to a body in flight in the earth's atmosphere at speeds such that
radiation is the dominant mode of heat transfer. The solution was attained
by assuming a gray-gas radiator and then linearizing the radiative transfer
equation. Approximations to the one-dimensional flow equations are developed
which allow the solution to be applied to the stagnation region of a shock
layer on an axisymmetric body. Because of its characteristics, the linearized
solution is readily applicable to multilayer heat transfer encouantered during
very high speed flights, when the interactions among the cold air ahead of
the shock wave, the heated air behind the shock wave, and the layer of
ablation gases adjacent to the body surface must be considered.

The development of the first-order linearized solution for radiative
heat transfer is described, and some applications are presented and discussed.
The results demonstrate the effects, on radiative and convective heat transfer
to the body surface, of shock-layer energy loss by radiation, absorption of
radiation within the multiple layers, blockage of radiative heating by blowing
of ablative vapors, and the absorption and emission of radiation by the body.

INTRODUCTION

For atmospheric entry at meteor velocities, radiation is the dominant
mode of energy transfer. Many investigators have emphasized the importance of
understanding and predicting the radiant heat transfer to bodies at these
speeds (e.g., refs. 1-3). These investigators have pointed out that energy
loss by radiation from the shock layer and the reabsorption of radiation in
the shock layer itself, in the free stream, and in ablation products will
affect both the radiative and convective heat transfer to the body.

Both simplifying flow assumptions and intricate numerical technigues have
been used to solve the gasdynamic problem. Examples of the flow assumptions
that have been used are: one-dimensional porous flow (ref. 4) and a linear
velocity distribution and constant pressure in the shock layer (ref. 5).
Reference 6 showed that the mass flow distribution on the stagnation stream-
line, rather than the velocity distribution, is relatively insensitive to
radiative heat transfer. Examples of numerical techniques are local
similarity (ref. 7) and the integral method (ref. 8).



Most investigators have emphasized the effects of radiation cooling
rather than self-absorption on shock-layer structure. The inclusion of self-
absorption into the problem introduces additional complexities that require
further simplification of either the equations or the forms of their solu-
tions. These simplifications generally involve the substitution of an expo-
nential function for the exponential integral that appears in the solutions of
the transfer equation, and/or the use of successive approximations employing
combinations of simple functions (refs. 9-13).

Substituting the exponential function is the simplest means of evaluating
reentry radiation, including self-absorption, with reasonable accuracy.

At relatively high free-stream density, where the radiation mean free
path is comparable to or smaller than the body size, one can assume that radi-
ation flux is absorbed by the media just ahead of the shock front (preheating).
The structure of the strong shock front has been investigated (refs. 14-17)
for plane shock flow of a perfect gas. Such analyses explicitly consider
thermal radiation effects on the structure of the shock wave rather than the
influence of preheating energy on radiative heating.

The ablative mass loss from large meteors entering the atmosphere was
considered (ref. 18) assuming a porous-flow analogy and the Rosseland approxi-
mation. The increase in total shock stand-off distance due to a sizable
amount of ablation or injection has been shown, both theoretically and experi-
mentally, to obey a linear correlation formula {refs. 19 and 20); this pro-
vides a basis for calculating radiative interaction between shock and ablation
layers.

Our primary interest here is to obtain the simplest form of an analytical
solution for radiative transfer in the shock layer, especially explicit
expressions for radiative net fluxes at the body and at the shock. This solu-
tion includes the effect of self-absorption in a strong shock layer, the
interaction of thermal radiation with the shock layer, the preheating 2zone,
and the ablated vapor layer. The results will be used to relate the
convective heating rates in adiabatic and nonadiabatic flow.

SYMBOLS
an coefficient of series expansion (egs. (15))
B Stefan-Boltzmann function (eq. (2b)) or blowing parameter
(egs. (101b))
B, Planck's function, 2h Lt

=
c ehv/kT 1

c,(8),c_,(8) indefinite integral of modified Bessel function (egs. 37)

CysC_y definite integral of modified Bessel function (egs. (38b))




Cp specific heat at constant pressure
c1sCo constants associated with equation (26a)
E, exponential integral function of order n (eq. (6))
F thermal function defined by equation (1k4)
F af
doe
£ auxiliary function defined by equations (18c)
Ty blowing rate,-g—-'ZE
PooVoo
g parameter defined by equations (101b)
H altitude
h enthalpy
h enthalpy ratio, ﬁé
I specific intensity (eq. (1))
I, modified Bessel function of first kind (order v)
K1,K2,Ks,
Ke Ko Ke functions defined by equations (32c) and (38a)
Kv modified Bessel function of second kind (order v)
k constant associated with shock stand-off distance (egs. (76)) or
the Boltzmann constant
ky constant associated with blowing thickness (eq. (94))
L,Iy nonadiabatic shock stand-off distance and nonadiabatic blowing
thickness
Loslpo adiabatic shock and blowing thickness
Ly total shock-layer thickness
L, modified Struve function (eq. (Clka))

M molecular weight



M, MMz ,
M81M4)M5

m

n

Lol

Ql;QZ

functions defined by equations (26), (33), and (40)

constant (1/2), mass, or power of pressure ratio
exponential constant

order of

pressure

pressure ratio, %L
s

function defined in equations (55)

net radiative flux

convective heat

convective heat with no radiation loss
adiabatic radiative heat, EDSKSUTS4LO

dimensionless boundary value (inward direction is positive)
(eqs. (8b) and (c)) or body radius

dimensionless boundary value based on Ty, —3
2xB(Tr)

dimensionless boundary value based on Tsp: —93
2nB(Tgp)

reflectivity

temperature

effective surface temperature (eqs. (54a) and (b))

surface temperature ahead of shock

temperature ratio, %L
s

T
temperature ratio, unity or Tg (egs. (68))
s

T
temperature ratio, TE
s

dummy variable

X component of velocity



y

z,(8),7_,(6)

*

Z -V

v1ZysZ

2,2¢

Qi

free-stream velocity

y component of velocity

Wronskian operator

linear solution defined by equation (26a)
distance along body

linear solution defined by equation (26a) or adiabatic dis-
tance (eq. (Tha))

normal distance from shock to wall
Bessel function defined by 6VI,(nf), 6K, (nf)
values of Bessel function defined by equations (38b)

constant defined by equations (F2b)

average value of %g? (eq. (154))

characteristic constants (egs. (28))

dimensionless radiative flux function (eq. (8a)) or gamma
function as designated

radiative flux absorbed by preheating zone (Fsp - Iy)

constant that characterizes flows (zero for plane shock flow,

one for stagnation flow)
determinant (egs. (33) and (40))
boundary-layer thickness (eq. (105))
emissivity of boundary (egs. (67))
heat of vaporization
variable defined by equation (Flc)
quantity defined by equation (F3b)

independent variable
cosine, or apex angle

mass absorption coefficient (eq. (2a))

T, - T (eas. (18c)), angle of directional



=11

TwrTywb

<I)'w’(b'x»fb

N

ratio of radiative heat to total flow energy, 4 (%
(1/2)p, v 3
20Tg*
ratio of black-body radiation loss to total energy, ——
pOOVOOhs

PV olwr
recurrence formula (egs. (Cllc))

ho 4
adiabatic radiation loss parameter, 20gfs0Ts T

anmhs
modified radiation loss parameter, <%$e#) %o
[e0]
direction cosine or viscosity
quantity defined by equation (F3b)
order of Bessel function (eq. (35b)), or frequency
parameter, mnoTy
density
absorption coefficient, cm™*t
Stefan-Boltzmann constant
optical thickness defined by equation (2a)
=L
Tw
optical thickness at interface
optical thickness at wall
radiative blockage function at wall (eq. (107))
radiative legkage function,
sp

thermal function defined in equations (18c)
Euler's constant (0.57721 . . . ) +2 In 2 (eqgs. (55))

)
poovoo]:‘ls



X dimensionless mass flow rate, pv/p V_ (eaqs. (11))

w absorption parameter (eq. (82))
Superscript
+ direction toward free stream or downstream
I,IT reference properties based on region I or region II
* preheating zone, or limiting value of Bessel function
+ modified function of dimensionless quantities (dimensionless function

based on temperature behind shock)

Subscript
b blowing layer
e edge of gas layer
f Just ahead of shock wave, shock front
i interface
[/ local
jo) preheating effect
o) adiabatic, no absorption, no ablation, no preheating effect
r,ref reference condition
s immediately behind the shock wave
sl sea level
sp shock wave due to preheating effect
t total
w wall
WO wall without preheating and injection
wp wall with preheating effect
oo free streanm



ANALYSIS

The equation of radiative transfer will be combined with a simplified
gasdynamic energy equation for one-dimensional flow, and the thermodynamic
properties of air will be introduced in such a way as to make the resulting
equation linear. Solutions for this linear equation will be cobtained for
plane shock flow and stagnation stream-tube flows. The extension of the tech-
nique to multiple gas layers (e.g., a zone of preheating or of injected or
ablated species) will be considered. The calculation of radiative heat-
transfer rates at boundaries will be emphasized. However, auxiliary results,
such as the distribution of enthalpy and temperature in the shock layer and
the reduction of shock-layer thickness as a result of radiative transfer will
be obtained. Details of the analyses are deferred to appendixes wherever
possible. The notation used follows closely that of reference 5 or of
reference 21 with minor differences.

Assumptions and Geometry
The following assumptions are basic to the analysis:
1. One-dimensional flow (plane shock flow and stagnation stream flow)
2. Local thermodynamic equilibrium
3. Gray-gas approximation
L. vViscosity and heat transfer by thermal conduction are neglected. (How-
ever, the effect of radiation on convective heating will be estimated in
a later section.)

5. 1In the solution of the transfer equation, the exponential integrals are
replaced by exponential functions.

6. The term T* is assumed to be locally a linear function of enthalpy, and
a thermal function is defined which incorporates this relation (locally
linear thermal relation).

Figures 1(a) and 1(b) show the geometry used in the analysis.

Basic Radiative Equation
If the absorption coefficient of the gas is assumed to be independent of

frequency (gray gas) and the gas to be in local thermodynamic equilibrium, the
radiative transfer equation for plane parallel flow is

M %% +I1=8 (1)




where I is the specific intensity (rate of radiative energy flow per unit
area and solid angle), and u is the direction cosine relative to the free
stream (upstream direction is positive). The optical thickness T and the

Stefan-Boltzmann function B are defined by

y
b/‘ pr dy
(o]

® g
f BvdV=ET4
e}

where B, 1is Planck's function and «, the mass absorption coefficient.

)
[}

(vo)
Il

The formal solution to equation (1) is

I_(O)e—(T/—u) . U/*T Be—(T—t)/—u &t/

I_(T,H)

I

T
I+(T,u) I+(Tw)e_(TW—T)/u + \/\ v Be (t-m)/u at/p

T

where I+ is the specific intensity in the upstream direction (positive
and I~ in the downstream direction (negative u); Ty 1s the optical
thickness at the downstream boundary.

The rate of radiative energy transport per unit area (fig. 1(b)) is

-1
q7(7) = 2x b/“ I7(7,u)p dp
(o]
+ —
a*(7) = 2x f THr,w)p du
(o]
It follows that
.
q (7) = 2g.Ea(T) + 2x L/ﬁ BEo(T - t)at
O
+ Tw
a*(t) = 29]Ba(T, - T) + 2n BEx(t - T)dt

T

(2a)

(2p)

(32)

(3p)

B)

(ka)

(¥p)

(5a)

(5p)



nI+(TW), and the exponentisl integral function E,

vhere q- = =I~(0), q;
(refs. 9 and 22) is

B = [TeM e [T (6)
o kX

The net flux transferred per unit area q is
+ -
a(t) = g'(71) - q7(7) (7)

1f the dimensionless notations

I =r(7) = q(7)/2xBg (8a)
r = az/27B; = Rg (8b)
r;; = q_“:/EJrBS = Ry, (8¢)

T = T/T, (8a)

are introduced into equation (7), we obtain

T Ty
(1) = 2R Es(7) + 2REa(Ty - 7) - f T*Ex(T - t)dt + f TEx(t - T)at
O T

(9a)

The subscript s refers to position immediately behind shock wave. The first
and second terms in equation (9a) represent the radiative fluxes at T from
the upstream and downstream boundaries, respectively, attenuated by the gas
between T and the boundaries. The third and fourth terms represent the
radiative fluxes at T from the gas between T and the upstream and down-
stream boundaries, respectively, attenuated by self-absorption. At the
upstream and downstream boundaries, equation (9a) reduces to

T

r(0) = —2RgEs(0) + 2R Ea(Ty) + f M T*Eo(t)dt = r; - Ry (9v)
(o]

=1
il

Tw —
r, =I(r,) = -2RgBs(7,) + 2R E3(0) - f ‘I'4E2(Tw—t)dt = Ry-Ty  (9c)
o

vwhere Ez(0) = 1/2.

10



Equation (9a) is applicable to multiple radiating and absorbing layers
as well as single layers (e.g., a preheating zone in front of a shock wave or
a layer of injected or ablated gases from a surface). However, the exact cal-
culation of fluxes is complicated by the interaction between layers. To
simplify the calculation an approximation is introduced whereby the actual
boundary fluxes are replaced by "equivalent wall" fluxes. This approximation
concentrates the effects of other layers at the boundaries of the layer for
which the solution is desired and allows equations (9) to be applied to each
layer of the multilayer separately. The details of the procedure are
presented in appendix A.

Pseudo One-Dimensional Flow Model and Thermal Function

In hypersonic flow, as the gas travels downstream from the shock wave,
its enthalpy decreases as a result of radiative loss to the surroundings.
Since this study is concerned with flight conditions for which radiative heat-
ing is the dominant mode of energy transfer (e.g., for a meteoric object
entering the atmosphere), the energy equation in the shock layer may be
written

ov dh = dq (10)

where heat conduction and changes in the gas kinetic energy have been
neglected. The mass flow along the stagnation streamline is expressed in
terms of optical thickness. First, we introduce the mass flow distribution

X = 0/ ooVoo (11a)

Many authors (e.g., refs. 5, 13, 23) have assumed a linear relation between
mass flow distribution and physical thickness

x = (1 -y/m1)’ (11b)

wvhere 7y 1is a constant (zero or one) that characterizes the flow. Flow with
7 = 0 corresponds to plane shock flow such as in shock tubes, piston problems,
and porous type flows; flow with 7 = 1 corresponds to stagnation streamline
flow. For present purposes, it is convenient to replace physical thickness
in equation (11b) with optical thickness. Thus, we assume in this paper that

() ()

where 7 has the same meaning as before. The validity of this replacement
is discussed in a later section, where it is shown that equation (llc) is as
good an approximation to the actual mass flow distribution as equation (11b)
or better. With the mass flow distribution of equation (llc) the energy
equation becomes



PV (L - 7/7,)7 dh = aq (12)

The thermodynamic variables are now expressed by a dimensionless
function (thermal function) F so that

EM (13)
20Tg*
or
oo (he - b) = = (1 - &) (14)
s 20T %~ ° TN

where Aa is the ratio of the black-body radiation at the shock wave to the
total flow energy.

]

Ag = 218/ 0,V Jg

h

il

h/hg

After integrating this last equation for a constant pressure process (or
constant density), one can readily obtain (ref. &)

N
T = zi an(Fy - )" (15a)
n=o
where 3
aq = 1
a1 = —80Tss/pmecpS P (15b)
etc. J

The variations of h and F with temperature are shown in figure 2 for two
reference conditions.

It can be seen from figure 2 that the temperature variation can be
further simplified for wide ranges of enthalpy as

™ =1 - o(Fg - F) (15¢)

if & 1is taken from the average slope of (OT*/OF) at the designated
reference point. Thus,

12



_ /ot aﬁ‘*)
[e RS (— = 7\a - (l5d)
aF av ah av -

Appendix B gives a more detailed discussion of the thermal function.

From equations (13) and (12) the dimensionless thermal function is thus
related to the radiative function by

aF = & (16)

ar
-y
Tw,

Linearization of Radiative Transfer Equation

The differential form of equations (9) is

- Tw _
% = 2R Eo(T) + 2RyEo(T, - T) - oT* + f T*E1(|t - 7|)dt (a7)
@]

Substituting equations (15c) and (16) into equation (17), we obtain a linear
integrodifferential equation with a singular kernel

7 Tw
0 d — = 1 =
i <T—w a6 * 2% - “j; GE1(|e - 6'])as’ = (o) (18a)

with an initial value of

®(Ty) =0 (18b)
where
p=Fg -F
6 = TW - 7T (180)
£ =(1-2Rg)Ex(Ty, - 6) + (1 - 2Ry)E=2(6)

No attempt is made to find a general solution for equation (18a) except for
7 = 0, for which several numerical calculations have been carried out by a
successive iteration method merely to compare it with the approximate
soiution.

13



Approximate Solutions for a Single Layer

In the present paper an approximate solution to the transfer equation is
given explicitly in analytic and closed form when the exponential integral
function BEz(T) is replaced by an exponential function. We introduce the
commonly used approximation

-nT

(19)

E3(T) ~ me

where choice of m and n will depend on the optical thickness at the wall
(TW) of the plane layer, and will be constant for given Ty. The values of
m and n are discussed later; meanwhile, the solution is carried out without
assigning values to these constants.

It follows from equation (19) and the properties of the exponential
integrals that

Ex(T) = -B3(7) =~ me™" (20)

The integral equation (9a) then becomes

_ -n(Ty-T T _, n(7-t W oy _n(t-
I = 2mRge ™' + 2mRye () m b/\ Te ( )dt + mnb/‘ e 0(t-T) g
o T

(21)
After differentiating the above equation twice, we obtain the following
second-order nonlinear differential equation:
> —
S oy & p2r o (22)

are aT

(Equation (22)is equivalent to the Milne-Eddington approximation except with
different constants.) From equation (16) the derivative of the temperature
becomes

at _ Of*  JdFar _ OT¢  1.4r (23)

ar 3(Fg - F) or ar o(Fg - F) x ar

With the simplified equations (1lc) and (15c) and the transformstion

6 = Tw ~ T (2,4'8')
ar _ _4ar
%" i (2kv)

14



A linearized form of equation (22) is now obtained as

4
acr (TwY ar 2. _
a7l _oma ¥) 4 _pfr =0 2
62 a(e) & " (25a)

with boundary values, from equation (21),

-nt

Tw _
Iy = -2mRg + 2mRye 'V + mn f T'e at (25b)
O

-nT; o, -n(Ty—t)
Iy = -2mRge + 2mR,; ~ mnf T e dat (25¢)
(@]

(For consistency, Bz(0) = m is used instead of 1/2.)

The general solution of equation (25a) has the form

I = clxy(ne) + czYy(ne) (26a)

where c¢j; and ¢z are constants and X and Y are functions to be determined.
In equation (26a) X and Y for 7 = O are the ordinary exponential functions,
and for 7 = 1, the modified Bessel functions. Solutions will be obtained in
explicit and closed form for these two cases.

It will be shown that the solutions of equation (25a) lead to the fol-
lowing important linearl relations between the boundary values Rg and Ry
and the fluxes at the boundaries:

Is

M, + MiRg + MzRy (26b)

Ty

Mz + MgRg + MsRy (26¢c)

Expressions for the M functions will be given in terms of & and optical
thickness Ty.

Plane shock flow (7 = 0).- The differential equation (25a) for 7 = O
becomes

da2r _ ar 2
—— 4+ 2mna — - ' =0 2
ara 2mna dr n (27)

. Imyis is é’cénseduence of chodsing a linear thermal function (eq. (15¢))
and does not require the exponential approximation (ea. (19)).

15



Its solution is

-nf1T -nBz (Ty-T)
I' = cje + cge

o +./(m6;)2 +1
Bo = -mX +./ mi)2 + 1

Fluxes at the boundaries are

where

Ba

1

-nPaTy
I'. = ¢c1 + cze

~nPyT
cie VW 4oy

3
=
It

To evaluate the constants c3 and cz, combine equations (29) with
equations (25b) and (25c)

-nfoT Ty ™V _, -nt
c1 + cze Yoo -2mRg + 2mR e + mnb/\ Te at
o)

-n(Ty-t)

-np 1Ty ~nTy TW -
cie + cg = —2mRge + 2mRy; ~ mn Te
o]

(28a.)

(28p)

(28c)

(29a)

(29b)

(30a)

(30b)

=4
where (T) may be expressed in terms of cj3 and cz by substituting equa-

tions (28) into eguation (16) and integrating between O and T.
equation (15¢),

F, - F =

Q-

Substituting equation (31) into equations (30) gives two simultaneous

algebraic equations for cj and cs of the form

I

Kici + K2C2 Ks

Kscy + Keco = Ks

where

16

(1 -T%) = ca(1 - e_nBlT) + cge_nBZTW(l - enBZT)

Thus, with

(31)

(32a)

(32b)



_ -n(1+8)T
K1=l+m5{l—enTW———l—[l—e ( 1»,1} w
1l + Bl
Ko = e—nBZT“(l + i {1 Pl [1 _ o RlaPe)Ty })
1- B J
Ks = -nfiT, - [l _ e-nTw + (é—nTw —n517w>
1l - Ba J
(32¢c)
Ky = 1 ~ o {% nBsz(l DTy 1 [i e—n(1+B2)TW] }
1+ B
Ks = 2m <52L- - Rs> - 2me—nT"<;2L- - RW)
Ke = —2m.<% - RW) + 2me"nTw<% - R%)
W,
c1 = (-KoKe + KuKs)/(K1Ke - KoKz)
(324)
co = -(-KiKs + KzKs)/(KiKs - KzKg)

With some algebraic manipulation, equations (29) and (32) can be expressed in
the linear form:

g = My + MaRg + MeRy (26b)

-
I

Mz + MyRg + MsRy (26c)

where the M values depend only on m, n, a, and Ty, and are given by

17



=
1}
D=

n <? - e_nT?> [(Ke + Ka) - e-nﬁzTW(Kl + Ks)} w

2m[e—n7w<?é _ e—nBZTWK{> _ (#4 _ e—ﬂBzTWK%> ]
My = __Al o mKKe _ e‘nBzTWm) _ e—nTW<K4 nﬁzTW ) J
Mo = Fm (l - W> [(Kl +Ka) - e (g, 4 m] } (33)
M = i% 2m[e_nTw<#l _ e—nBlTwK%> _ <#s _ e_nBlTWK%> ]
=g ) - )|

A = KK - KoKs J

M_1=

D>l

The terms M, and Mg are fluxes from the shock layer without boundary con-
ditions; M3 and My show the effects of reflection or emission from the shock
wave (at T = 0); similarly, Mp and Ms show the effects of reflection or
emission at T = Ty. For the present case, 7 = 0, it can be shown that

Ml = -Ms.

Stagnation streamline flow (7 = 1).- The differential equation (25a) for

= 1 becomes
42l _ 2mnary 4r 2
—_ — - F:O ).l.
ae® 6 a8 (34)

which can be transformed to the modified Bessel equation of order v (refs. 2L
and 25); its general solution is

I =6Y[cal,(n8) + czKy(no)] (35a)

vhere I, and K, are modified Bessel functions of the first and second kind,
respectively, and

v = mar, + 1/2 (35b)

18




The constants c3 and cp are evaluated by a procedure similar to that for
plane shock flow. (Appendixes C and D give detailed evaluations of properties
of the Bessel functions required for the present analysis.)

i

Since 4F = dr/(8/vy), for Iy, =TI(6), it follows that

ar
ae - ATl (36a)
where
Ty_y =67 Yeal, [(n8) - coK,_,(n8)] (36b)

By integration one obtains

Fg T v
j ar = nwa F'V—l ae = I’lTW[C lCV—l(e) - CZC—-(V—l) (9)]6
F e

Thus,

Fg - F = nTW-{éle_l(Tw) ~ CZC-(V_l)(Tw) - [clcv_l(e) - cgc_(v_l)(e)J }

(37=a)
where
8 o2
c, ,(6) = f £ 1 __(at)as (370)
B & o2 .
C_(yo1)(®) = fo ¢k, (at)as (37¢)

Then K +takes the following forms:
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-— “nTW l l
K; = -matye Cv—l + 5 Zv + 5 TW_ZV_l

_ oty 1 1 1 TV«
K2 = mn&Twe C—(V—l) + E Z—V - —2- TVJZ—(V—l) + é- e Z—V

- 1 _nTW 1 NTy
K = -mat,C,_, +5 e Zy +5 e TwZy_y
> (382)
- 1 v 1 BTy *
Ky = mncxfer_ ve1) +5 e Z_,-5e TWZ—(V—l) 522,

Ks = 2m <% - Rs> - 2me_nT“’<%— - RW)

where

Q
<
1
[N
Hi
Q
<
|
i
—
4
=
S’

C—(v—l) = C—(V—l)(TW)

= Zy(1y) = TwVIv(nTw) > (38b)

N
<
i

lN
<
|

=Z_,(7Ty) = TWVKV(nTW)

z¥ =12_,0) =%<§>vr(v) )

where [I'(v) in equations (38b) is a gamma function. Boundary fluxes are

!
1

s = Ca2, + c2Z_ (392)

I, = caZk, (39)
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The relation between fluxes and boundary values is again

g = M, + MaRg + MRy (26b)
I, = Mg + MaRg + MsR, (26¢)

where M now has the following forms:

¢}

1 -nTy “NTy
My = 3 emKe Ko - K4> z, - <e Ky - K3> z_v]
2l ) () )

Mg = T m <1 - e—mw> (K1 + Ka)Z¥ > (40)

M = %km (} - e V) [(Ke + Ke)Z, - (K1 + Ka)Z_,]

-1 “NTy *
My = N 2m‘<% K; - K3> Z—v

-NnTw %
M5=%2m<Kl—e K<3>Z_v

A =K1Ky - KoKg _

The same physical interpretation can be ascribed to these values of M as to
those in equations (33). From equation (35a) it follows that the flux
gradient at the wall is

r =0 (41)

The enthalpy gradient at the wall from equations (36) depends on v
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o0 for v <1 (k2a)
-(1/2)nB1y /(v - 1) for v>1 (42b)

where

1
&I&

The physical interpretation of this dependence of enthalpy gradient on
v will be considered in a later section.

Approximate Solutions for Optically Thin and Thick Layers

In this section, the solutions to equations (26) are simplified for
optically thin and optically thick shock layers. Only the major results of
these simplifications are presented here. Details are presented in
appendixes.

Plane shock flow (y = 0).- The following are the results for two
limiting cases.

Optically thin layers (Tw << 1): If the exponentials are approximated
by Taylor series, the quantities K in equations (32c) become, to order

TW?,

Ky =1 + %— map T, 2 1
Ko =1 - nfer, + % n2Ba(Bp - ma)7 2
Kg =1 - nB]_TW + -Jé'- ngﬁl(Bl - Eﬁ')TWZ
~1 + X maEpsT. 2 (43)
Ky = + 5 mn BZTW 3

Ks = -2m(Rg - Ry) + m(l - 2Ry) Ty,

-2m(Rg - Ry) - m(1l - 2Rg) Ty

&
1]

b
|2

n(By + B2)7,(1 - nBzTW) y

With the relation derived from equations (28)
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Bi - Bz = 2m (k)
The M values then directly follow from equations (33) and are

M, mn‘rw[l -5 (1 + EmE)TW]

|2

-~ _ 2
My = -2m + O(7_%)

Mo = 2m(l - nTy)

(45)
Mz = —mnTw[l - % n(l + 2m5)Tw}
M, = -2m(1 - nT)
Ms = 2m + 0(T 2) )
The fluxes at the boundaries for m = 1/2 and n = 2 are
rg=[1- (1 +a)7, ]ty - By + (1 - 2Tw)Ry (46a)
Iy =-[1 - (1 +a)Tylty - (L - 2Ty)R, + Ry (46b)

Here, we have omitted second order terms from the boundary fluxes because, in
practice, Rg and Ry Wwill usually be small. The choices of m and n will be
justified later.

Optically thick layers (T, >> 1): For large optical thickness, K takes
the following forms (the second and third identities for K; follow from
eas. (28)):

Ki=1 +mify/(1 + B1) = Ko = (1/2)(1 + B1)

-nPaTy

Kz = (1/2)(1 - B2)e ~0

Kz = —md (47)
Ke =1 +m3[1/(1 + B2)]

Ks = m(l - 2Rg)

Kg = -m(l - 2Ry)
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The determinant A becomes

A :,]i (1 + B1)® (48)
Values of M follow directly
M, = 2m/(1 + Ba) )
My = -bm/(1 + Bi)
N ) -nPaTy
Mo = [bm/(1 + B2)1[(By + B2)/(1 + Ba)le ~ 0
> (%9)
Ms = -2mBs/(1 + Ba)
Me = -Um(1 - B2)/(1 + B1)
Ms = bm/(1 + Ba)
/
Net fluxes at both boundaries from equations (26) are
I ~—20 (3 _2R) (50a)
5 1 + Bl s
~ 2m
r.=- B2[1 + 2(B1 - 1)Rg - 2BiRy] (50p)

w 1 + Bl

Flux variation and temperature variation for 1 <K 17 K 7, are

- 2m _ -nPaT
=5 (1 - 2Rg)e (51)
_ -nP,T —
=g+ (1 Bade t +2(l- B)(L-e T )R (52)
The gas temperature at the wall (T = T, >> 1) is
T* = g% + 2B2(1 - B2)Rg + 2(1 - B2)Ry (53)

Effective surface temperatures that emit equivalent radiant fluxes from both
boundaries are

(Tep)s = (20g) */* T (5ha)
(2rw)l/4Ts (54p)

(Tef)w

2k



It is noted from equations (50b) and (53) that radiant flux toward the wall
for an optically thick layer with no boundary effect is always greater than
the local black-body radiation at the edge of the layer. This was also shown
in references 4 and 12.

Stagnation streamline flow (y = 1).- Appendixes E and F give details of
the derivations for Ty << 1 and T >> 1, respectively, since the manipuls-
tion of the Bessel functions becomes complicated. The following are the
results.

Optically thin layers (1, << 1): For v = [(1/2) + mndry] fixed and the
argument of the Bessel functions approaching zero, the values of K in
equations (38a) are

Ki = nTw?[l - mdT,]Q1 )
Kz = [1 - (2mde, + o7, 2"0)7y]qs
7z,
Kg = —n(mn&)TWS[l - <% + 2mn§> Tw}Ql
K, = (1L - 2ma®,my)Qy (55a)
~ z¥
-V
Ks = -2m(Rg - Ry) + mn(l - 2Ry)Ty
Kg = -2m(Rg - Ry) - m(l - 2Rg)Ty
A= nTWZ(l - 2macpoTW)QlQ2 J
where
9, =2 In2 +0.57721 (where second term is Euler's constant)
Vg = md Ty
2\ —2(a-v) (55b)
Ql - - TW
n r(v)
1-v
-1(2 -
Q=3 <n> r(1 - v) J
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I(v) and I'(1 - v) in equations (55b) are gamma functions. The values of M
are

N
M, = mnTW[l - % n(l + 4md)7w:l
M; = -2m[1 - O(Tw?)]
Mz =~ 2m(1 - n7y)
P (56)
Mz = —mnTw[l - % n(l + Mm&)Tw]
Mg = -2m(1 - nT,)
M, =~ 2m[1 - O(Tw?)] -J
The boundary fluxes for m = 1/2 and n = 2 are
o= T,[1 - (1 +23)1,] - Ry + (1 - 27)Ry (57a)
Ly = =Tl - (X +28)1 1 - (1 - 21,)Rg + Ry (57p)

The thermal function is

F, - F = (r/a){1 - [1 - (7/7)127°H1L - nvor, 20 - 1 - vo(n +2%)7,2Y0 IR,

- [1 - wo(n - 2%)7y CIR] (58a)

which, to order Ty, can be further simplified as

Fy - F = (1/8){1 - [1 - (7/7)1° °}(1 - BRs - Ry) (580)

From equation (14), and letting Ry = R, = O in equation (58b) the enthalpy
profile within the layer becomes .

B=l- (\aL - [1 - (1/1)1°%) (59)

which is similar to the expression in equation (15) of reference 23 for
Ty << 1.
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The temperature distribution follows directly from equation (15c)

Vo/2

T = [1- (7/1)] (60)

which is equivalent to that of reference 5 for 7, <<1.

It is interesting that the boundary fluxes for plane shock flow
(eas. (46)) and stagnation flow (egs. (57)) differ only in second order of
Tw .for TW < 1.

Optically thick layers (T >> 1): Asymptotic expressions for K and M
are:

3\

Ky =

Mo

(l + Bl)Zv

g
]
o+

(1 - B2)z_,

&

= (1 + B - B2)2y

(1 +Jmv)zX, (61)

1 N
Ks =~ 2m <-2- - Rs>
1
—-2m <§ - Rw>

T+ B +VTZ2Y,

s
n
rof-

&

>
n

)
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M =

bm By + Bs Z-v
1+ B11 +7v 25y

~

My =~

(62)

5
b

'S
|
|
&
[
|
I-\tJD

Ms =

Thus, the boundary fluxes are

rg = —=_ (1 - 2R) (632)

l+Bl

Iy = -2m ﬁ: [1 + 2(B1 - 1)Ry - 2B1Ry] (63b)

1 +—Jnv

As noted from equations (62) and (49), fluxes with no boundary effects (M,
and Mg) are nearly independent of the constant n (Ms in egs. (62) is very
weakly dependent on n). The major contributing factor to the flux calcula-
tion comes from the constant m. Note that the asymptotic values of Iy for
stagnation flow decrease inversely as the square root of T, whereas [y for
plane shock flow reaches finite asymptotic values.

Asymptotic radiant flux variations for 1 < 7 K Ty are

T

n

M, (1 - 2Rg)Zy(6)/2y

~ rge PIT (64)
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and the thermal function becomes

[}

z,(6)7]
F, - F Mo(l—eRs)[l_Te_W ;i)_l

[H

rg(1 - ¢ ™P1T) (65)

Finally, the temperature distribution is written®

Zv(e)]

Z

H
S
[H

- T
1 - M (1 - 2Rs)on[l - FW y

R

Bo + (1 - Ba)e™@P1T 4 o(1 - po)(1 - e @PaT)Ry (66)

The asymptotic values of the radiant functions above yield identical results
to those for 7 = O which shows that the asymptotic values of radiant
properties are independent of velocity profile for 1 < 7 <K Ty.

5 . - _ ]
For an optically thick layer, the Rosseland approximation of net flux
is

. 2o
D== 3 61‘}

Applying this equation to equation (66), we obtain

2 -nf1T

r=-3 np1aM,(1 - 2Rg)e

which differs from equation (64) when combined with equation (63a) by a factor
(2/3)nBy§. If the Rosseland approximation is to apply, higher derivatives of
temperature distribution must vanish, or nPf; << 1. Since & is a finite
constant, it is required that (2/3)(nf1)d << 1. Now it is obvious that the
coefficient (nBy)3@ cannot be unity, in fact, By > 1; consequently, the
Rosseland approximation for a high enthalpy flow field with radiation, in
general, is not applicable. This also implies that agreement with Rosseland
approximation for an optically thick layer in a flow field is not a property
of the asymptotic solution (this approximation can be commonly used for non-
flow cases) and it may sometimes lead to incorrect solutions if proper care
is not exercised.
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Calculation of Boundary Conditions

Boundary values Rg and Ry may be expressed in terms of emissivity and
reflectivity of boundaries since the boundary values introduced in
equations (8b) and (c) can be written®

q; = esoTo4 + rsq; + (external fluxes from upstream)

flux from | flux reflected
shock waveJ from shock wave

(67a)
q; = eonw4 + rwq; + (external fluxes from the wall)
flux from | flux reflected |
wall J from wall J
(6Tb)

In dimensionless form, equations (67a) and (b) may be written (for no external
fluxes)

€ .
- 8 4 +
RS = —2— TS + rSFS (68&)
R=3@4+rp‘ (68b)
w 2 W oW

where T, = To/Tg and iw = T,/Tg. From equations (9) and (26) it follows
that

r; = My + (1 + M1)R, + MoRy (69a.)
Iy = Mz - MaRg + (1 - M)Ry (69b)

Combining equations (68a) and (b) with equations (69a) and (b) gives

% {[1 - r (2m - Ms) JegTg?* + rgMae, T *} + rg{ll - ry(2m - Ms) 1My - ryMaMs]}
R = — DR, e _
° {[1 - rs(em + M) ][1 - ry(2m - Ms)] + rgoryMoMs)

(702)

SRadiative flux will be reflected back into the shock layer, for example,
Just prior to an impact. Radiative flux from a surface placed just ahead of
the shock can be treated similarly.
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% {[1 - rg(2m + Ml)]ewTw% - er4€SES4} - r {1 - rg(2m + M1) Mg + rgMoMa}

Ry = . A
v {[1 - rg(@m + M1)][1 - ry(2m - Ms) ] + rgr MoMa}

(70b)
Boundary temperatures T, and T, may be taken as effective temperatures so
that they could include fluxes impinging from external sources added
independently from the system.
Selection of Constants m and n
Replacing the exponential integral function by an exponential function is

essential to the present analysis and is commonly used as an analytic
approximation for radiative transfer problems. Here the relation

Ez(T) = me (19)

is introduced where m and n are constants chosen in some plausible fashion.

Although many different values for m and n are found in the literature,
depending on the applications, the first constant, m, is not arbitrary; it
must be 1/2 to satisfy the asymptotic solutions for both optically thin and
thick layers. This is clear for optically thin layers since

E3(0) =m =

=

(71)

For optically thick layers, m must also be 1/2, as will be shown in Results
and Discussion where exact and approximate solutions of the equations are
compared. The exponential constant n is less restricted, and proposed
values of n between 3/2 and 2 are found in the literature. The value 3/2

is associated with Eddington's approximation and has been preferred for astro-
physical problems (ref. 21). In this paper, values of n which depend on
total optical thickness Ty are used to provide correct results for both
optically thin and thick layers. The criterion is chosen to match the area
under Es with the area under the exponential function:

T TW -nT
f Y Ba(T)dT = mf e ar
(o]

o
. m(l - e™1Tw) 4
n = — (12)

—3' - E4(Tw)

“4Quick confergence results if eduation.(72) is reafrahged as
e =e™W _ 1 +2n[(1/3) - E¢(Ty)] and solved for e = O.
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Thus, for Tw = ®, E4(Ty) > 0, and n = 3/2 vhen m = 1/2. For Ty — O,
-E5(0) = E2(0) =m and n =2 when m = 1/2. A set of exponential constants
is tabulated in table I for various values of T, and for m = 1/2.

This completes the solution of the radiative transfer equation in terms
of optical thickness.

Conversion of Optical Thickness to Physical Thickness
To facilitate application of the solution to physical problems the
optical thickness must be converted to physical thickness. Physical distance
into the shock layer is related to optical depth by
dy = dat/px (732)

Integrating equation (73a) between O and Ty 8ives the nonadiabatic standoff
distance L as

.
L =f " ar/pk (73b)

o}

For stagnation flow, Goulard (ref. 5) has shown that the nonadiabatic distance
into the shock layer, y, is related to the adiabatic distance Y by

12 /2
aY = (p/pg) "~ Ay = (p/pg) ™ = at/pk (Tha)
Therefore, the adiabatic standoff distance Lo is

,
Lo = f W(D/os)l/2 ar/pk (Thp)

o

From equations (73a) and (T4a) the ratio of nonadiabatic to adiabatic standoff
distance is

L/L, = fl(ps/p) Ve a(y/L,) (752)
e}

An approximate relation between adiabatic distance and optical thickness
(ref. 5) is

a(y/L,) = a(v/7,) = ar (750)
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Incorporating this approximation into equation (75a) gives the following
simple expression for standoff distance, which is consistent with the present
approximation for mass flow, equation (llc).

1 p\ZI./2
= = Jf <ﬁ§ aT (75¢)
o O

In order to use equations (T4b) and (75c) the demsity ratio (p/pg) and
absorption coefficient (pk) can be expressed in terms of power series of
enthalpy ratio (ref. 26), and the shock-layer thickness readily evaluated by
numerical calculation. Finally, the Hayes-Probstein formula relates Lo to
body radius and density ratio across the normal shock wave (ref. 27) by

Lo _ g P (762)
R Pg
where
k = 1 (76b)
1+ /8% %
3 Pg Ps
and an average value is
8]
kK ~3 for £ =~ 16 (76e)
n e,

(See also ref. 28.)

Approximate Solutions for Multilayers

Absorption of radiation by the free-stream (preheating).- If appreciable
amounts of radiation are absorbed by the free-stream media just ahead of the
strong shock front, there is an important effect on the structure of the
shock layer and the radiative heating to the body is changed significantly.
(Emission effect from upstream is somewhat similar to increasing the reflec-
tivity of the shock front.) Following references 16 and 29 the present paper
assumes negligible change in kinetic energy and nearly constant density ahead
of the shock wave5 (as opposed to nearly constant pressure in the shock
layer); the thermal function for air in the preheating zone is therefore
determined by a constant density process. Furthermore, the flow in front of
the shock wave is planar and the analysis previously presented for 7 = O can
be applied to the preheating region. Therefore, with the "equivalent wall"
approximation (appendix A) for the boundary conditions at the shock wave, the
flow can be separated into two regions with variable boundary conditions:

5
These assumptions are considered in more detail in reference 29.
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Region ¥ 1is the preheated free stream with p = p_ (constant) and 7 = O.
Region I is the shock layer with p = p. (constant) and 7 = 1.

In the preheating zone, the energy equation is

PVoo(h* = B ) - (g% - q ) =0 (77)

where q¥* 1is the net radiant heat flux in the preheating zone and q, 1is the
radiant heat flux escaping from the zone (sketch (a)). Physically, this model
is adopted because, in real air, only
the far ultraviolet portion of the

7 9o
{ q E/ flux leaving the shock wave will be
[Rp=o Rt ||Rs Rw —2 absorbed in the free stream near the
~ 1 7 : shock layer. Consequently, in the
VwDI - g:} _.g} f s| S pre§ein? anilys?s the portion of the
| q . . N radla.lon egving the shock front
<+ﬁ§ "'rﬂ} JﬁTW b TN (q,) is allowed to escape from the
| * Wl Jao A | he system. No attempt is made to com~
h Lo ! 14 ™ r W pute q_, but it simply becomes a
Preheating Shock wave Wavlll parameter in the analySiS'

edge
In the shock layer the energy
Sketch (a) Preheating and shock layer. equation may be written from
equation (10) as

ov d(hgp - h) = d(ggp - a) (78)
where dg is the net radiative heating at the shock wave due to preheating.
Equation (78) shows that preheating changes the enthalpy level in the shock

layer. This increase is proportional to (qsp - 4y) Since energy balance at
the shock wave (7 = 0) is

1 2 - 1 2
PV oo (hw 3 V°°> T 9 T PV (hsp *35 Vs ) - dsp
which can be rewritten as

pooVoo(hsp - hs) = Qsp ~ %o (792.)

since

Thus, the increases in enthalpy immediately ahead and behind the shock are
obtained.

From equations (78) and (79a) three types of energy profiles can be
established.
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Case (a) is for no preheating and is the case previously discussed. Case (b)
is for infinite layers that reach adiabatic equilibrium Rankine-Hugoniot
temperature as Ty > ® (for 1 << T << Tw). Case (c) is a general one, and
contains strong absorption, or a preheating effect and will be discussed here.
In dimensionless form equation (79a) becomes

oo

Fgp = Fg = I'gp - L (79p)

where Fsp = qsp/2ﬂBs. From equation (15c), the corresponding temperature
rise behind the shock wave is
—y -
> - T
Tsp 1+ a(Fsp ) (80)

Temperature in the preheating zone is usually relatively small compared

to that in the shock layer; thus emission from this zone may be neglected.

(An extension of this part of the analysis which includes emission from the
preheating zone is given in appendix G.) With this assumption and further
assuming negligible wall emission (RS = Ry = 0), we have, for given Ty and a,
from equation (26b)

Tsp = Ii";pMc: (81a)

where E;p must be inserted to account for the higher temperature behind the
shock wave due to preheating. Similarly, from equation (26c), the flux at the

wall is

Typ = Eszs (81p)

We now define

= (82)

Combining this definition with equations (80) and (81) gives

Mo
2 T 1 amw
L. = Ms ~ (83p)

Pl - aMgw
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_Qa ‘_‘*’)Mo (83c)
1 - aM,w

o

Since emission in the preheating zone has been neglected, the transfer equa-
tion (9a) in this zone takes on the particularly simple form

I* = [g 2B (%) (8k4)
We use equation (84%) to define T, so that T, = T* when I'* = I,. Hence
T = FSPQES(TOO) (85)
and T, 1is fixed by  through the relation

Ea(Te,) = £ (1 - w) (86)

Finally, the enthalpy distribution in the preheating zone (from eq. (77)) is

h* — hy, _ Ay (T¥ - r,) (87a)
hg

which at the shock front becomes

he - hy
_i_ﬁg__ = Na(Tgp ~ Too) (87b)
where he is enthalpy immediately ahead of the shock. Pressure and tempera-
ture in this zone are now obtained directly from the thermodynamic chart for
constant density (p* = pw). The distribution of thermal properties in the
shock layer with preheating may be found by adjusting the thermal function
previously found (egs. (1%) and (15c)) to account for the higher temperature
due to preheating immediately behind the shock wave. If the normalization
temperature for the thermal function F and the function I is changed from
Tg to Tgy,, then the previous analysis of the shock layer, equations (35) and
(37), may be applied directly. Therefore we define a new thermal function in
the shock layer, FT, normalized with respect to Tép by o= F/Tép, or

(Fep - B = (Fgp - F)/Tay (88a)

This new thermal function is related to the original thermal function Fg - F
(without preheating) by

Fg - F = (Fg - Fgp) + (Fgp - F)

~(Tgp = T, + TEP(FSP - m)f (88b)
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The enthalpy and temperature distributions in the shock layer obtained in a
similar manner are

=
1

=1 +hal(fgp - Tw) - Tep(Fsp - )T (89)

1]

T¢I - a(Fsp - BT (90)

Injection and ablation layers.- It is assumed that a secondary layer of
vaporization materials from the wall is separated from the primary shock layer
by an interface. Experimental observations support this assumption (refs. 20
and 30). Figure 1 indicates the geometry with a stagnation point in the flow
at the interface. The analysis of the vaporization layer is similar to the
analysis for a shock layer in that constant pressure with 7 = 1 (stagnation
flow) is assumed. As in the shock layer, it is assumed that the thermal prop-
erties in the vaporization layer can be correlated by a linear equation relat-
ing T* and enthalpy. The reference temperature for this correlation is
taken as the temperature of the vapor at the wall. It is further assumed that
the injected gases are relatively cool compared to the air in the shock layer;
therefore, the emission from the injected vapors may be neglected. An exten-
sion of the analysis in which this last assumption is relaxed is presented in
appendix H.

We define a radiative blockage function as
q)w'b =z F = (91)

where Iy 1s radiative flux penetrating to the wall through the vapor layer
and Iyo 1s the radiative flux for the same flight conditions without a vapor
layer but, for consistency, with the same wall temperature with and without
vaporization.

The optical thickness of the vapor layer is measured from the wall to the
interface and conditions in the vapor layer are denoted by the subscript b.
Thus, Ty = 0O at the wall and Twb is the optical thickness of the vapor
layer at the interface.

If the emission from the vapor layer is assumed to be small compared to
the emission from the shock layer, it follows that the properties in the shock

layer are not changed significantly by the presence of the vapor layer.
Therefore, from equations (9),

“NTywb

Iup = TyolEa(Tyy) = Tyee (92)

Consequently,

O = & WP (93)
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The physical thickness of the vapor layer depends on the mass flow rate
of the vapors; in adiabatic flow the thickness of the vapor layer is
correlated by a simple expression (refs. 20 and 31).

Ly . Ps Mo
L =l+k p—iEfW (9%)

where L. = L, + Ly, Or the total distance between shock wave and wall;

ky © 1 for a spherical nose (ref. 20); M and M, are the molecular weights
of air and vapor layers; L, and Iy, are the thicknesses of air and vapor
layers for adilabatic flow; pp 1is the density of the injected gas at the wall;
and fy is the blowing ratio (pbvb/poovoo).

The correlation law (eq. (94)) further provides a simple relation between
vapor layer thickness and the blowing parameter; thus,

Ipo _ [Ps Moo
K = kb ‘Eo' _M-; Ty (953)

LbO.., pooMuo
< " ks o5 Ty (95b)

vhere kg = 0.75 for spherical noses (see egs. (76)) and R is the radius of
the spherical body. The nonadiabatic thickness of the vaporization layer is
approximated by equations (74b) and (75c) in a manner similar to the
calculation of nonadiabatic shock-layer distance.

For forced injection of wvapors from the surface, the blowing rate param-
eter f, 1is given a priori and the solution is then straightforward. For
ablation, however, the blowing rate parameter f_ depends on the heat reach-
ing the wall UIyp, and the solution is therefore coupled. We assume that the
mass loss rate of ablation vapors per unit area is given by

- =, = (96)

where ¢ is the heat capacity of ablation products. The net radiant heat
through the entire system at the wall is

b 20T54 Ivb = ®b%wo (97)

pbvb/poovoo’ becomes

thus, the blowing parametér, fw
A
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Ty = N <%?> Iy (98)

where A, = (20Tg*/poV,hs) as in equation (14). The coefficient op in the

thermal function for the ablation layer is coupled with the blowing parameter
fy, since Iy dn equation (98) depends on &, for given optical thickness

and boundary conditions as given below:

- (99)
prb
where
4
A = 20Ty
and

(&) -2

With equations (95), (98), and (99) and the solutions previously pre-
sented for 7 = 1, including equation (74b), an iterative procedure is used
to determine I . and f,; and the ablation vapor-layer thickness Iy (see
appendix H). Wb

A simpler and useful approximation for ¢, may be obtained if it is
further assumed that the absorption coefficient (pbe) in the ablation layer
is constant and that the blowing parameter f,, 1is very small.

Then, by the definition of optical depth,
Twb = Ppplp (100)

where 1y 1is nonadiabatic vapor layer thickness, equation (100) may be
rewritten as

Ip
T -3 1a ofwo8 g B (101a)

where
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o > 101b
g = kb( S ( )

PV o T

B PV ostwlls
q-wo
With equation (93), &, becomes
L
- g Nolwos f%; B

B = € (102)

From equations (97) and (98) and by the definition of B in equations (101b),
¢ can be written

O = E?-B (103)

Equations (102) and (103) may be combined to eliminate B and therefore to
obtain & (or vice versa) for ablation. For B << 1 (small ablation),
equation (102) may be expanded in the first order of power series and combined
with equation (103) to obtain the approximate formula

1
Cp = - (104)
1+ Nolvwos 7?

where n has been set equal to 2 and Iy/ILpo = 1. Equation (104) is useful
in that the absorption coefficients of the shock layer and vapor layer (which
are generally unknown) are combined into a ratio. This allows parametric
studies for assessing the effects of radiative blockage.

RESULTS FOR A SINGLE LAYER

Calculations of radiative flux at the boundaries and of profiles of
radiative flux, enthalpy, and temperature in the shock layer have been made
for selected flight conditions. The equilibrium air properties used in making
these calculations are given in appendix I. The results are used to assess
the effect of radiative energy loss on shock standoff distance, the effect of
preheating and absorption in ablation layers on the radiative heat transfer
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to the body, and the effect of radiative energy loss on the convective heat
transfer. Where possible, the effects of the assumptions on the present
results are considered by making comparisons with other solutions.

Comparisons With More Exact Analyses

Plane shock wave flow (7 = 0).- To evaluate the error introduced in the
present solutions by replacing the exponential integrals with exponential
functions, equation (18a) (the integrodifferential equation) was solved
numerically® and this solution compared with solutions of equation (25a) (the
differential equation obtained by using the exponential approximation).
Various commonly used values of the constants m and n were used in these
calculations. The results are shown in figure 3(a) for 7y = 0, where [y and
I'y, the radiative heat to the wall and free stream, respectively, are plotted
as functions of Ty. This figure shows that the exact and approximate solu-
tions agree well for m = 1/2 and n varying from 3/2 to 2 (but constant for
a given value of T.) as provided by equation (72). As mentioned in the
analysis, m is not arbitrary but should be 1/2 as required by the asymptotic
values for optically thin and thick layers and by the equivalent wall approx-
imation. This becomes particularly apparent (fig. 3(a)) for Iy as optical
thickness is increased since the results for values of m different from
1/2 deviate from the correct asymptotic flux. The other constant n is less
restricted, except that it should take on the value of 2 as Ty approaches
zero because it must take mm = 1 for 7, > O. Note that the approximate solu-
tion for m = 1/2 and n = 3/2 shows rather good agreement with the exact solu-
tion except, as expected, for small optical thickness.

Stagnation flow (y = 1).- A comparison similar to that of figure 3(a)
but for 7 = 1 has not been made primarily because of numerical difficulties
associated with the singularities in equation (18a). However, Howe and
Viegas' (ref. 7) elaborate viscous solutions are available for comparison
with the present solution. They do not assume a linear thermal function, a
linear mass flow relation, or the exponential approximation (as does the
present work). However, their solutions are for a gray gas, with the same
absorption coefficlents as used in the present work. Furthermore, the solu-
tions of reference 7 are for relatively small values of Ty and thus energy
loss by radiation is emphasized rather than energy redistribution by self-
absorption. The comparison is presented in figure 3(b) which shows very good
agreement between the two treatments except, of course, near the wall where
viscous effects predominate. The approximate boundary-layer edge, &, is
indicated in figure 3(b) as estimated from the empirical equation (ref. 32) as

o)

—— =
N 2ps(d-u/dx)0

6In the iteration process for equation (18a) the approximate solution is
substituted as an initial input function. This reduces the difficulty of con-
vergence associated with the equation and is very effective in controlling
oscillations of the solution.

~ 3 (105)
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The stagnation streamline mass-flow distribution used in the present
work is shown in figure 3(c). The calculated mass-flow distributions for
various optical thicknesses T are plotted as a function of physical depth
into the shock layer and are compared with both a linear equation and the
more realistic quadratic equation (nonadiabatic compressible flow) presented
in reference 6. This figure shows that the present results agree well with
the quadratic equation for most optical thicknesses but approach the linear
equation for small optical thickness. As a first approximation, the present
mass-flow distribution (eq. (1lc)) provides the advantage of a closed form,
simple solution for the radiative heat transfer.

Radiative Flux Results

The principal results of this report are illustrated in figures 4 and 5.
The radiative fluxes at the shock wave I'g, and at the wall, I, as determined
from the present closed-form solution are plotted as functions of 7Ty in
figures U(a) and 4(b) for a temperature Tg = 15,000° K and pressures p, =1
and 10 atm, respectively. Results are presented for both plane shock flow
and stagnation streamline flow; the corresponding flight conditions are shown
on the figure. As mentioned in the analysis, radiative fluxes for plane
shock flow and stagnation flow differ only to second order in optical thick-
ness when T is small. Furthermore, the asymptotic values of Ig for
large Ty are the same for both flows. The asymptotic absolute values of
Iyw for stagnation flow, however, decrease inversely as the square root of
Tws whereas Iy for plane shock flow decreases very slowly to its finite
symptotic value.

The results shown in figures 4(a) and 4(b) for stagnation flow are
replotted in figure 4(c) where the ratio of nonadiabatic to adiabatic radia-—
tive heat transfer Iy/T; 1is plotted as a function of the ratio of adiabatic
radiative heat transfer to flow energy CKO). Existing numerical machine solu-
tions are also shown on figure %(c). For pg = 1, where absorption effects
are small, the present method agrees well with the results of references T and
8 except when 2\, is small. This can be anticipated because for small A,
and fixed free-stream conditions [I'y must be small, which in turn corresponds
to small nose radius. Therefore, the Reynolds numbers for these conditions
are low and the shock layer is primarily viscous. Thus, the temperature pro-
file deviates sharply from that for a radiating field alone, and the present
method overestimates radiative heating. It is probable that the present
results for pg = 1 in figure 4(c) represent a correlation curve for all
flight conditions as long as Ty 1is small and thus absorption effects are
small. (This has also been pointed out in ref. 8.) However, when self-
absorption becomes pronounced, as is the case for pg = 10, PW/FO deviates
from this correlation curve. Thus, the correlation curve should not be used
for large values of Ay, since large values of A, eventually correspond to
large Ty.

Results similar to those presented in figure 4, but for a much higher
velocity (30 km/sec) and for stagnation flow only, are presented in figure 5.
The ratio of radiative heat to total flow emergy a/(1/2)p V> is plotted in
figures 5(a) and 5(b) for Pg = 1 and 10 atm, respectlvely The same trends
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are evident in these figures as in figures 4(a) and 4(b). Figure 5(c) shows
parameters similar to those in figure 4(c) except that the parameter is modi-
fied by A¥ = (Vper/Vo)Ay, Where the reference is chosen for the flight con-
dition, pg = 1 atm and Vyer = 15 km/sec. An explanation of the correlation
is that the modified parameter Ag depends weakly on the flight velocity
since

4
Py = Pg » TS o hs2 and QQths e pSJE;

or

Ko“Jh_Szvoo

Thus, parameter A: = (vper/Vo)\. becomes relatively independent of the
flight speed. For the higher veiocity flight condition, and for both pres-
sures, values of A* less than about 1 correspond to small values of Ty.
Thus, the results correlate well with each other and with the correlation
curve from figure 4(c).

Shock-Layer Profiles

Enthalpy distributions in the shock layer for various values of T, are
shown in figures 6(a) and 6(b). For large T, the major change in enthalpy
occurs relatively near the shock wave; for small Ty the major change in
enthalpy occurs near the wall. Enthalpy, when plotted in terms of optical
thickness T (rather than T = 7/71y), is always higher for larger Tyre

Because of the nearly constant enthalpy near the wall for large Ty,
radiation heat transfer to the wall for this case (i.e., for large bodies or
high free-stream densities) is nearly black-body radiation UTZ4 where T,
is the local temperature near the wall. Such radiation is proportional to
local enthalpy, as can be seen from the thermal function, and therefore is
proportional to a reduced velocity v; defined by

h, =

vl o

via (106a)

The absorption effect thus reduces radiative heat by an amount which
corresponds to a velocity change similar for a conical body with apex angle

6, = smG—D (106b)

An Iimportant parameter in the analysis for 7 =1 is v (the order of the
modified Bessel function where v = (1/2) + mn@Tty) since the character of the
solutions depends on whether v 1is greater or less than 1. In figure T,
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profiles of T, I', and dI'/dT are presented for v > 1 and v < 1. The
temperature distribution for v < 1 shows a very sharp drop near the wall and,
in fact, has infinite slope at the wall, vhereas the temperature distribution
for v > 1 has a finite slope near the wall (egs. (42)). The temperature
itself at the wall is greater for v > 1 than for v <1l. The flux distri-
bution shows no infinite slope; in fact, the derivative of the flux is zero at
the wall regardless of the value of v (eq. (41)).

In figure 8, the variation of the gas temperature at the wall, T, (with
optical thickness, Tw), shows considerable differences between stagnation flow
and plane shock flow. These differences occur because for stagnation flow the
flow time (and thus the emission time) near the stagnation point is infinite.
For stagnation flow of an optically thin layer (TW << 1) the gas does not
absorb strongly enough to block the radiant energy, and the edge temperature,
therefore, is relatively low. As the optical thickness increases, as a result
of increasing either the absorption coefficient or the body radius, T
increases with increasing T, sSince now the gas near the wall absorbs flux
from upstream more effectively. A further increase of Ty, however, causes a
gradual drop in Te, and T, finally vanishes as T, approaches infinity.
This occurs because the gas particles then have sufficient distance to travel,
thus time in which to cool, even in a strongly absorbing layer. Because the
velocity approaches zero at the wall in stagnation flow, there 1s a coupling
effect between self-absorption and emission time for the gas near the stagna-
tion point. Plane shock flow does not show this coupling effect (as illus-
trated in the same figure) because the velocity behind the shock is
approximately constant and therefore the emission time is very short compared
to that for stagnation flow. In actual flight, the boundary layer plays a
significant role near the wall, so the trend of T, described above exists,
but is interrupted by heat conduction in the boundary layer before the T,
reaches its final value by radiation alone.

The effects of absorption in radiating flow discussed above will also
occur for the case of nongray gas radiation where cooler gas near the stagna-
tion point (with or without boundary layer) is heated by the absorption of
U-V radiation from the rest of the shock layer. 1In other words, the optical
thickness is in effect increased locally, and thus will act to prevent a
sharp drop of edge temperature.

Shock Standoff Distance

Figure 9 presents the ratio of nonadiabatic to adiabatic shock standoff
distance; this ratio illustrates the effect of density increase due to tem-
perature drop by radiation loss. The results of reference T are included in
this figure for comparison. The curves of L/L, flatten out as the body
radius increases and absorption effects become significant. For small bodies,
the shock standoff distance depends primarily on radiation loss and is less
sensitive to the effects of absorption.
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APPL.ICATIONS TO MULTILAYERS

Blockage of Radiation by Injected or Ablated Vapors

The effect of injected or ablated vapors on the heat that reaches the
wall from an intensely radiating shock layer will be considered; convective
heat will be assumed negligible compared to radiative heat. The radiation
blockage parameter &, (defined in eq. (91)) is the ratio of the net radia-
tion flux reaching the wall with blockage Iy} to that reaching the wall
without blockage Iyg. It is assumed that the intensity of. the shock-layer
radiation is so high compared to that of the ablation layer that the major
effect is absorption of shock-layer radiation and therefore emission from the
ablation vapor is negligible. The emission term for the injected vapors
becomes comparable to the absorption term when Ty for the vapors becomes
very large; however, that occurs only when values of &g are small and thus
radiative heating at the wall has already been greatly reduced. (It should
be noted that emission from the ablated vapor increases the net radiative
heating at the wall.) Furthermore, convective heating can increase the
temperature and consequently the emission from the ablation layer.

Figure 10(a) presents the radiative blockage function &p for injec-
tion, which is similar to the blockage function for convective heat. The
s0lid line on the figure was obtained by considering only absorption in the
injected vapor, equation (102), while the dashed line was obtained by con-
sidering both absorption and emission with various optical thicknesses of the
shock layer, TWI. A rather good correlation curve resulted for these calcu-
lations. It can be seen that the effect of emission is negligible for
Twb << 1. The calculations were obtained with carbon as the injected wvapor.

Figure 10(b) presents the radiative blockage function, &4g,, for ablation
as a function of the ratio of absorption coefficient in the ablation layer to
that of the air behind the normal shock wave for body radii of 1 and
10 meters. Increasing the body radius reduces the radiative blockage param-
eter for a given absorption coefficient. To block radiative heat effectively
a small body (1 m) requires higher absorption coefficients than a large body
because the small body receives less radiative heat; consequently it has a
relatively thin ablation layer that will not block as much radiative heat.
Radiative heat is sharply reduced as the absorption coefficient of the abla-
tion vapor increases because the optical thickness in the ablation layer is
increased by two factors:

(1) Higher absorption coefficients

(2) Increased physical thickness due to the absorption effect (i.e.,
the ablation layer is heated by absorption, and accordingly is
thicker).

In connection with the flow field, temperature near the interface

changes sharply; but it is continuous for stagnation type flow (7 = 1) since
net flux and velocity at the interface are continuous. The theoretical
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interface temperature for a similar situation in plane shock flows (y = 0) is
discontinuous because the velocity profile is discontinuous. h

Preheating Zone

As the flight velocity approaches meteoric speed, most of the radiation
from the strong shock layer is in the U-V region and can be strongly absorbed
by free-stream air ahead of the shock. The absorption of the ultraviolet
creates a preheating zone which raises the temperature both ahead of and
behind the shock wave, thus increasing the radiative heat to the wall. To
represent the actual (wavelength selective) absorption by the free stream
with a gray-gas analysis, a portion (Fy) of the flux entering the preheating
zone from the shock layer (Igp) is allowed to escape from the system (as
described in the analysis). The escaping fraction is then & = R”/Fsp which
can be considered a radiative leakage function at the edge of the preheating
zone. The fraction absorbed by the preheating zone is 1 - @,. The increase
in heating to the wall is given by ¢hp where QWP = pr/rwo: the ratio of
radiative heating to the wall with and without preheating.

Figure 11 is a plot of &yp vVversus body radius R, with & as a
parameter. (Emission from the preheating zone was neglected in figure 11.)
For @, = 1 there is no preheating effect and pr =1l. For ¢ =0 all
radiative flux is trapped in the preheating zone, and there is a sizable
increase in radiative heat with increasing body radius. This increase is
primarily due to the increase of temperature behind the shock wave. For a
given @ (escaping radiation fraction), the larger bodies undergo a greater
increase in radiative heat at the wall because the preheating zone can absorb
more from the larger radiation associated with the thicker shock layers of the
large bodies. Figure 11 also suggests that in actual flight a body can
receive more than half the energy radiated from the system (q, + Qwp). How-
ever, as the temperature ahead of the shock becomes comparable to that behind
the shock, emission and other neglected effects (i.e., kinetic energy changes
and heat conduction) may become important.

The approximate combined effects of both preheating and ablation on heat
transfer to the body can be given as

Q= S %ip (107)

preheating effect ablation vapor effect
on nonablating body without preheating

if absorption is the major mode of energy transfer in the ablation layers.

Effect of Nonadiabatic Flow on Convective Heating

While it is beyond the scope of this paper to analyze in detail the
changes in convective heating that occur as a result of nonadiabatic radiative
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flow, it is possible to make a simple estimate of the effect by modifying
somewhat the criterion (first introduced by Goulard, ref. 33) of taking the
enthalpy at the edge of the viscous boundary layer as the driving enthalpy for
convective heating. '(Later, Thomas (ref. 13) suggested taking the enthalpy at
the edge of the gas layer, hg (the enthalpy corresponding to Te), as the
driving enthalpy.) It is reasonable to assume that convection becomes impor-
tant in energy transfer at the boundary-layer edge and finally becomes com-
pletely dominant in changing the fluid enthalpy at a certain distance into the
boundary layer. The assumed distance at which convection becomes dominant” is
5/2, where © is the boundary-layer thickness given by equation (105). How-
ever, the additional loss of enthalpy by radiation in the transition layer
should be considered where radiation and conduction are both important. To
approximately account for this additional loss of enthalpy by radiation we
will use the enthalpy at /2 computed for radiation alone, hg/2, as the driv-
ing enthalpy by convective heating. Thus, the convective heating q. is
reduced by

de h6/2
— (108)
o hg

where d., 1s convective heat without radiation effect. Figure 12 shows the
ratio qc/qco as a function of 7y. The results agree well with the results
from reference 7.

CONCLUDING REMARKS

The gray-gas approximation was used and the radiant heat-transfer equa-
tion was linearized to obtain analytical clesed-form solutions for the radia-
tive heating of a body for optical thicknesses from zero to infinity. It was
shown that effects of absorption and energy loss are important. By virtue of
the linearized solution, radiative heat transfer in multiple layers with
various boundary conditions 1s simplified considerably. Some important char-
acteristics of nonadiabatic flow were computed simply from adiabatic rela-
tions, for example, shock standoff distance in terms of density ratio and
convective heating in terms of enthalpy ratio. A radiative blockage function
for gas injection, similar to the convective blockage function, was introduced
and computed for high-speed flows over ablating bodies in which radiant heat
predominates over convective heat. It was also shown that the preheating
effect in high-speed flight may contribute substantially to the heat transfer
to a body.

Ames Research Center
National Aeronautics and Space Adwministration
Moffett Field, Calif., 94035, March 20, 1967
129-01-08-11-00-21

"The precise value was discussed in reference 29.
8The asymptotic value of qc/qco approaches zero slowly since Tg
approaches zero.
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APPENDIX A
RADIATIVE TRANSPORT EQUATION IN DOUBLE OR MULTILAYERS

A preheating layer with a shock layer and a shock layer with ablation or
vapor injection from the body surface separated by an interface represent a

typical two-gas layer problem. The radiative equation within the shock layer
for this case becomes (from eq. (9a)), for T < T4

r(7) = -2RgEs(T) + 2R Ea(Ty - T) _fT T*E- (7 - t)dt +fTW T*Es(t ~ T)dt
(o]

T
(9a)
which, in terms of each layer thickness, becomes
T _
r(r) = _QRSEs(T) + 2RWE3(TW.— Ty o+ Ty - T) —U/‘ T*Eo(T ~ t)dt
o]
e Ty,
+f T"Es(t - T)dt +f TEx(t - 7)dt (A1)
T T1
For 7> T4 ,
Ir(tr) = 2RgBa(1 - 74 + Ti) + 2R Bz (T, - T)
Ti _ T _ TW _
_f T¢E-(T - t)dt —/ TEs (T - t)dt +f T™Es(t - T)dt
© i T (a2)

Equivalent Wall Approximation

It is useful here to introduce the concept of an equivalent wall approxi-
mation, that is, the assumption of a thin wall that intercepts all incoming
fluxes on this boundary, and reemits the same number of photons in the same
direction across the wall. Thus, mathematically, equations (Al) and (A2)

change form slightly and become, for T < T,

r(t) = -2R Eg(7) + 2RiBs(T; - T) _f

_ Ti_
T*Ex (T - t)dt +f T*Ex(t - T)dt
(o] T

(A3)




for 17> 174,

[(7) = -2R,Ea(T - 74) + 2RyEa(Ty -T) _‘/F T*Es (T - t)dt +L/ﬁ T*Es(t - 7)dt
o T
(Ak)
where
Tw
R1 = 2R Ea(Ty - T1) +f TEx(t - 74)dt (A5)
Ti
Ti
Rz = 2RgE3(73) +f T*Ep(Ty - t)dt (A6)
(o]

Quantities Ry and Rs represent equivalent boundary conditions which include
the effect of radiative flux from other gas slabs on the assumed thin wall.
Consequently, if equivalent wall conditions are assumed, radiative transport
of double layers is separable and can be considered as two independent single-
layer problems with variable boundary conditions. The physical interpreta-
tion given by equations (A3) to (86) can be justified mathematically as well.
By Taylor's expansion, for T > T;,

Ea(T) = Ea(T4 + T - 74)

)

E3(Ti) - (T - Ti)EZ(Ti) + .

and
Eg(T;)2Es(T - T;) = Ea(71) - (7 - 71)2Ea(T4) + .
~ Eg(ty) - (7 - Ti)Ez(Ti) + .
for the moderate range of T4 (exact at T = 7y). Since the major contribu-

tion of the exponential integral function Es(T) comes when T = T;, and the
magnitude of the difference of the above two functions becomes small for

larger T

IEs(T) - Ez(75)2Es(T - Ti)l << Ez(71)

for the entire range of 7. Thus, the above substitution of Es(T) by
Eg(T1)2Es(T - T3) will provide a good approximation for all values of Tj.
In fact, when the integral exponential function is replaced by the exponential
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function of constant m and n, the original transport equations (9) and
modified equations (A3) and (A4) become identical; thus, from substitution of

Es(T) = me "
1
and its derivative (Ex(T) = -Ea(T))
Eo(T) = mne™"

it follows for T >Ty that

-n(T-T4) -nT4
en( l)e 1

Ea(T) =
> ~NTi -n(1-74)
Ez(7;)2E3(T - ;) = 2me "~ ‘e
Thus,
E3(T) = Eg(71)2Ea(T - 74) (A7)
when m = 1/2. Similarly, for T < Ty,
Es(Ty - T) = Ba(7y - T1)2Ba(Ty - T) (A8)

With the exponential approximation substituted in the integral part of
equation (AL)

TW —4 Tw —4 —n(t - T)
Jf T Ex(t - T)dt =k/f T mne dt (r <73)

Ti 'Ti
and
TW —4 —n(Ti—T) Tw 4 —n(t _ Ti)
2Bz(T4 - T)b/\ T Ex(t - Ti)dt = 2me JF T mne dt

T4 Ti

Tw
= 2mb/‘ T*mne n(t T)dt (A9)

i
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One can readily see that these integrals are identical if m = 1/2. As
discussed previously in the approximate solution, the constant m is found
to be 1/2 from other criteria.

Equivalent Boundary Values

Since the transport equation in double or multiple gas layers can be
divided into two or several separate layers, corresponding boundary conditions
on the equivalent wall can be treated, from egquations (26), if regions I and
11 are considered separately. Thus, region II can be considered entirely
separate from region I so that its flow field and notation become consistent
with that of the first layer (see sketch (b)). The superscripts I and II
denote properties in the respective regions.

Rs Ri|[R2  Rw RL  RY The net flux I'1 from layer I at
T T =Ts, and T from layer II are
I Ty W et R}‘{ (Region 1) 7 = v
V(DD | Vb Va)D I I
T AU S Ty = Iy" = (Mo+ MaRg +Msfer) (a20)
(Region ) (Region D) ~ 4R RE
E lﬂ {Region II) T .
G B rp = T 2ar, = T, (Mg + MaRg + MsRy) IT
Sketch (b) Separation of shock (A11)
layer (I) and injection
layer (II).

Dimensionless quantities in region II are based on wall (injection) tempera-
ture Ty, and boundary values RWI and RWII are to be determined for given

Rgl and R,'T. With new definitions of
I
(A12)
— I1r
Re = T *Ry
and energy balance at boundary T4,
Iy =Is =Ry - Ro (A13)

it follows that, from equations (A10), (All), and (Al3), egquivalent boundary
values are

I _ IT
I _ (Ms +MaR) (1 - Ms™) + T %My + MaRg)

Ri =R, (A1k)

MsIMgIT - (MSI + Ms1T)
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I/g 2 I II
Ms + MyRg)Y/T 1 - M1) (s + MR
R, T - (M + MeRg)7/Ty# + (1 - Mg™) (Mo + MaRg) ™" (415)

MSIMSII - (MSI + MSII)

=1l
K
IS
il

With these boundary conditions, flux toward the free stream, I'g, and flux

toward the surface, [, from the whole system are calculated by

P, = (M, +MiRg + MpR,)T (816)

It

Typ = -Ty*lg = —TW4(MO + MiRs + MzRy) = (A17)

The radiative blockage function &g dis then

I
G = Flb (91)

WO

where [y, 1s the radiative function at the wall without injection (or
ablation) and is written

o = (Mg + MaRg + MsRy)T (A18)
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APPENDIX B
THERMAL, FUNCTION

From thermodynamic charts or tables (refs. 3% and 35), temperature varia-
tion with enthalpy for constant pressure (or constant density) can be

expressed around reference temperature T, as

- oT 1 /27t
-1 <g>r(h - hp) +2 <6h2

For the present work, only a few terms in equation (Bl) are sufficient to
cover the range of temperature of interest; however, average slope (OT%*/3h) is
effective and simple for general applications. Thus, with temperature behind
the shock, Ty, as reference,

(B1)

T =~ p_* +a§4 (h - hg) (B2)
This equation, normalized by dividing by TS4 becomes

T =1 - &(Fg - F) (B3)

- 20 T4 _ T
< 2 (%), 0B

This equation can be called the ideal or linear thermal relation since the
transfer equation is linearized (in contrast to the linear relation between
enthalpy and temperature for an ideal gas).

where

The temperature relation for constant density in the preheating zone can
be written as

Tt = Tf4 + G%‘l f(h - hy) (B5)

vhere Tg is the temperature just ahead of shock front and is to be deter-
mined; Tf 1is selected as reference temperature rather than free-stream
temperature T, since transport properties depend strongly on temperature
near T¢. In normalized form, with T¢ as reference temperature,

equation (BS5) becomes
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(T/Te)* = 1 - &p(Fp - F) (B6)

Temperature T can be calculated from the relation derived for other refer-
ence gas temperature, T., as follows: from equation (87b) and for hg = hy,

L ®x 3 (T

allsp — Lol (@D

where
MO (l - 2E3T00)

1 - aM(1 - 2EaT,)

Equation (B8), which takes only absorption effects into account and thus
neglects gas emission in the preheating layer, is calculated from equa-

tions (83) and (86) for given &, and T,. The value of temperature Ty, which
corresponds to enthalpy hy, can be obtained from the real gas chart for cou-
stant density (p* = o ). Since Tp = Tp, one can use (oT%/0h),. for any
temperature near T = Ty so that in the preheating zone

Tt = T4+ (é%i r(hf - hy) (B9)

After equation (B7) is substituted into (B9) and divided by Ts4,
T* = T% + & [(Tgp - Too) = (Tgp - Ty (B10)

where TIgp and I' , including the effects of both self-absorption and gas
emission, are now calculated for the same a, and T, as used in equa-
tion (B8). The thermal function is used to calculate the radiative flux with

preheating and is presented in appendix G.

With this temperature Tg¢ and dp = ap, the temperature relation given in
equation (B6) can be used to evaluate radiative transfer in the preheating
zone by a procedure similar to that given for the shock-layer analysis.

Similar thermal relations can be used for the injection layer except now
constant pressure over the layer is assumed; thus,

(T/Tw)4 =1 - (F; - F) (B11)

where &b is defined by equation (99), and wall temperature, Ty, is the
reference temperature for normalizing the thermal function.
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Note that the linear thermal relation may not apply in some gases; but it
can be used to predict the importance of emission effects (from the preheating
and the vapor layers) on radiative heat at the wall.

Temperature-Pressure Relation

The temperature variation for other pressures (fig. 2) can be written
empirically as

T* = T*(Pg,h) + [1 - T*(Pg,n)1[1 - (B/Pg) "] (12)

where P, 1is reference pressure near p, and m is constant; for example,
m > 0.69 for Tg = 15,000° K and for pressure ranges of P, = 1071 to
10% atm.

25



APPENDIX C
MODIFIED BESSEL FUNCTIONS OF THE FIRST AND SECOND KIND (I,K)

The differential equation of radiative transfer for stagnation flow

(y = 1) is (eq. (3%))

d2r 2mndty 4r n2T

a2 -~ "6 a =0 (c1)

which can be reduced to the modified Bessel equation. The general solution is

[ =6"[cily(n6) + coKy(nd)] (c2)

Definitions and properties for these functions are presented in many textbooks
(refs. 24 and 25). The detailed calculation scheme involved in the present
application is given in this appendix. Bessel functions in ascending series
are (refs. 24 and 25) ok

ne‘v.EL <%?
) - () ) st (c3)
k=0

where I(v + & + 1) is the gamma function.

Ky(n6) = Z E{lTJ [I_,(n8) - I,(n0)] (ck)
Properties of the [I'y(6) Function

Differentiation formula.- Let the flux function FV(G) and Fpil(e) be
defined by

r,(6) =ciz,(6) + czz_v(e)
(C5a)

rvil(e) =c1Z,,(0) - cZZ—(vil)(e) (vl#v)

where
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z,(08) =0"1,(n0) (c5b)
z_,(8) =6"K,(no) (c5¢c)

Since derivatives of Z,, functions are

5% [2,(8)] = n6z,_,(6) (c6a)
.a% [2_4(8)] = n0Z_(,_,(6) (Céb)
it follows that
g% ry(6) = nolcaZy_1(6) = caZ_(y_1)(8)]
or
= T,(0) = nor,_(6) (c7)

Recurrence relation.- The recurrence formulas of I, and K, are

2vI,(no)

i

nQIv_l(nG) - n91v+l(n6) (c8a)

21K, (n8)

1

-n6K,_,(n6) + nbK,4,(no) (c8b)

With slight modification of the last two equations it follows that

2vl,(6) = nGZFV_l(e) - nl',.,(0) (c9)

From equation (C7) and (C9), one obtains

5
— I (6
9 56 Do)

2vr (e) +ar . (6) (c10)

But

g% [ery(8)] = I (8) +6 g% ry(e)
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therefore with equation (ClO) it becomes

(6) (c11)

% [er,(6)]1 = (2v + 1)r (6) +nl

Integrals involving I',(6) functions.~ The integration involving the I
function, which appeared in the evaluation of boundary conditions (egs. (25b

and (c)), is
u/‘ e r _(6)ae
(o]

Integrating by part, one obtains

W ing +n6
JF e I, ,(8)d6 = [Ge rv_l(e)]
(o]

¥ +ng !
e [#n6l',_,(6) +6r,_,(8)]as

W fW
(0]

O

where

t - 4
r, ,(e) ==55'Fv-1(9)

From equations (C7) and (C10) it follows that

.
w4
Jf e—ne[inefv_l(e) + erL_l(e)]de

(e}
T *né w tno
w 4 I
= - + —

o}

or

.
Voo +né T ’
JF e™r, (0)as = L _ e [erv_l(e) T rv(e)J (%v >»%>

o 2v - 1 o

Finally, it becomes

Tw +né
Jf e I, ,(6)de = 5—3;-— {%inTw[TWFv_l(Tw) - Fs} + r%} (cl2a)
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Then integration associated with FS in equation (25b) is

T

; .
f e_nTl"v_l(Tw - T)art = S { [TWPV—I(TW) - I‘s} + e—nTWFW} (c12p)
O

2v - 1

and that of I, in equation (25c) is

o} 2v - 1

Tw
JF e—n(Tw—T)rv_l(TW - T7)dT = 1 {%_nTW{TwFV_l(Tw) + Fs} - Fw}' (C12c)

Integral of the ZV(G) function.- By definition, cv(e) is expressed as

c,(e) sze z.(6)ae EJ[G 6'1,(n6)ds
o

(o]

Similarly,

8
awmez/\eﬁmeM
o]

C_(6) zfe

o}

The term C,_,(n6) in equations (37) are calculated by

V-1
c,..(0) = % <§> F<%>.F<v - %) e[lv_l(ne)Lv_a(nO) - Lv_l(ne)lv_z(ne)]

(C13a)
also,
V-1
C_(y-1)(6) = % <§> r(%) F<v - %) G[Kv_l(ne)Lv_z(nG) + Lv_l(nG)Kv_z(nG)]
(c13b)

where Lv(ne) is the modified Struve function (ref. 25) for which a series
expansion can be written as

%

| (a0 (no/2)™" .
blae) - <—2— mZo Flm + (3/2)Ir[v + (3/2) +m] (Crhe)
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In the recurrence formula
1

v+ 0
Ble0) - @_9) F(3/2>r[vl+ (3/2)] <l i Z Am)

m=1

where

} mo)®
(cmn +1)(2v +2m + 1)

1
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APPENDIX D

EVALUATION OF BOUNDARY CONDITIONS

The equations required for calculating the boundary conditions are

Y
ar - (Tw) ar 2
—_— - 2ma | — ] = - '=0 25a
i (3) & (252)
and the boundary conditions are
T
-nT W _, -nt
g = -2mRg + 2mR,e  + m \/P Tfe  at (25b)
o
Ty )
T, = -2mRge ¥ + 2mR,, - mn\/“ e (Tt gy (25¢)
o

The general solution for the flux function can be expressed as

r(e) = ch7(n9) + czYy(nG) (26a.)
where
-nB1(1,~0) -npz0
Xo(ne) = g “FIVIWT and Yo(no) = e (y = 0)
X1(ne) = "I, (n6) and  Yi(n6) = 6'K (n8) (7 = 1)
The thermal function F is related to the flux function by
4dF = ___92_7 (16)
(8/7)
and to the temperature by
T =1 - a(Fg - F) (15¢)
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The boundary condition can now be evaluated, say for 7 = 1, from
equations (25) as follows:

W _nt - - PV g -nT
I‘S=mnf e (1 - aFg)dt +nmoof e Fdt - 2mR; + 2mRye ¥
o (o]

The second term on the right side of the equation becomes

Tw -nt -nT Tw ne
f"’e Fdt = e Wf e F(0)as

o o

T 2} Tw nT Tw

—n p—

L. W(en F> _Le Wf ™95 (9)as
n o n o

By equations (36) and (Cl2) it follows that

- - — -nT
Py=m(l - aF)(L - e V) +ma(Fg - e “Fy) - 2uRg

N7y

-nT maT
+omRe - —— M [ r (Ty) - Tg +e Tyl
2v - 1
But from equations (15c¢) and
_ - 1
Vv = moaTy + 5 (35b)

after the terms are rearranged it follows that

-nT = -nT
Iy =m-me V[l - &Fg-Fy)] - 2mRg + 20Re ™7V - % [Tyl (Ty) -Tg+e  'Tyl

(D1)

Similarly, the boundary conditions for Iy, with use of equation (Cl2a) or
(Ci2c), can be written as

|
_nTw_ _ -~I1
r, = me -m[1-a(Fg - F,;)]-2mR e

Tw 1 -nT
t2mR - = (e VT I 1(7y) +T5] - Tyl

(D2)

Since equations (37), (CT7), and (39) provide that
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=]

Tg = caZy, + caZ_y, , I, = czz¥)]
Fpoa(Tw) = eaZy ) = caZ (4,) > (D3)
Fg -~ Py = nTw[CJ_CV_l - CgC_(v_l)] J

two simultaneous equations, with c¢j; and cz as unknowns, are obtained from
equations (D1) and (D2) as written in equations (32d) and (38a). Similar
procedures were applied for evaluating boundary conditions for 7y = 0, and
these results were given in equations (32c) and (324).
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APPENDIX E
ASCENDING EXPANSION OF Z FUNCTION (TW << 1)

For 7 =1, wvhen v is fixed and the argument approaches zero, the
following ascending series of the modified Bessel functions are useful for
evaluating fluxes for 7Ty << 1. From equations (C3) and (Ck)

Voo g7V (1/2)n6
_aV ~(n , -1, -
7Z,(8) =6"1,(n8) <§> T [1+ — - - ] (v#-1,-2,...)
(E1a)
z_,(0) =6, (o) = gé’ﬁ [le_v(ne) - zv(ne)J
()F( )l+[(l/2 ne] . }
v
- % @) i(_l__v‘__vl 92"{1 +_[_(.l_{§%:rﬁv]f . } (E1b)
1%
2%, =200 = £ (2) 1) (52)
N g2(v=1) [ e
P 0 ny ..
Cv_l(e) <é> r(v) [QV -1 * <é> v(2v + 1) J (B32)
1-v
AL —2(1—v)[ 0 2 63 J
C_(v-1)(®) (—2-> <E> r1 - v)e v -1 +<§> vev 1)
1-V 2
1 r(v) s
2@ 25 E) (s3]
With these supplementary forms, the quantities in equations (38b) are
expressed by the notations:
1-v
_ (2 1 ~2(1-v) )
<H> r(v) W (Bha)
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%@ =z <%>l—vf‘(l - ) (BhD)

Replacing 6 by Ty in equations (Ela) and (E3a), one obtains

1~V
y <§> %5- E -];' TWZV + O(TWS):I

N
R

= nT2(1 - 2mdr)Qa (E5)
1=v -2(1-v) 2 2v
O L R O AT ]
=~ <1 + % nZTW2> Q1 (E6)
1-v _
Cyoq = <§> I‘(lv) [21/ ]_‘ T TWZV * + O(Twz):l
- [ 1y o 3)}% (7)
2mnd w

From equation (Elb) one can write

2V

Z_, = [:_EL. <§>VF(V)][:L + 0(T )] - [g. E—fﬁlm <.r2£>v l“(v—]-l-l)'}w (1 + O(Twz)] (=6)

by using the following properties of the gamma function (refs. 24 and 25)

1  sin nv

) 1 - v)

(v +1) = v(v) ,

and
1‘(%‘- * Vo> = (1 F cpovo) for vy <1

where v = mat,, and @y = 2 In 2+7y (Buler's constant). Consider the first
bracketed term in equation (E8); one obtains
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K >2V_ r(i(j)v)]Qg

(T - 29,10)Q,

1 <§>vr(v) = 2_,(0)

R

(E9)

Consider the leading part of the second term in equation (E8). One obtains

1) 2 (3.

(1 - 2v5)nQ,

[H

Finally, by combining equations (E8), (E9), and (E10), one obtains

[1 - (2maq + n7,2"0)7y ],

Similarly, “the Z_(y~1) Tunction follows

[}

12\ ¢ v) . 1{2 o 2(v-1)
SOt topT

Z_(v-1) 1 - v

lZVo) Z(JFV)

4

(1 - a7y

where

R

V-1
1l /2 I'(v
2 <ﬁ> I(:l n[1l - 2(%, - 1)volQ,
From equation (E3b), one could directly obtain
- —2(1-v
2( Vo)]T ( )Q

- 1
C—(v—l) - [2mn& - DTy W o

Through equations (E5) to (E13), K and M are reduced as given in
equations (55) and (56) after several simplifications.
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APPEND

IXF

o

ASYMPTOTIC EXPANSION OF THE 2 FUNCTION (7, >> 1)

Uniform asymptotic expansions of the modified Bessel function for large

arguments (refs. 24 and 25) are

v
EEPILI
Y 2rv (1 + 92) O( >
L. E__ e
KV(VQ) - oy (l + 92)1/4 l: O<>:I
where
=J1+62+m— &
! W

Evaluation of I, ,(nTy) and X, (aTy)

Since v is

Vv = marT

nt, = (v - k)

let

Z, = é% and z
then

1+ 22 wJ1+z02[1
Similarly,

1 +J1 + 22 = 1+J1+z02>

L
W + P

-

i_[l+k- 12)}
m v -k

iz

v - k

1 Zo
v-k1+z2

(Fla)

(F1p)

(Fle)

(F2a)

(F2b)

(F2c)

. k - (1/2) f1 + ZOZ[ZOZ/(l + Zoz)]

v -k

1 +4J1 + 22
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and
z - z z
n A —~lm o +k (1/2) 1 - o o
1 +41 + 2% 1 +1 + 202 v-k 1+ 1 +2.241 +26°
(Feq)
From equation (Fle) it follows that
z
(v - k) ‘—”(v—k)~/l+z02+2n 2 :
1 +~/l + 2,2
2 2
+<_l>1_ 1 %o, __fo
2 JI #2281+ 1 +252 1+ 322
= (v - kK)n, +< - %) Ho (F3a)
where
no=,/l+zo‘2+ln Zo = Py - In Pa
/ E)
1+J1 + 24 (F3b)
Ho =A/1 + %02
Therefore
[k-(1/2) luo
I,k(n7y) = e I, (v -k)zg (Fk4)
Now, By and Bs from equations (28) can be also expressed as
1 +p -1 +p
Bp=—2, Bp = — 2 (F5)
Zo ZO

Using equations (F4), (Fla), and the definition in (F3b), one can obtain the
following asymptotic recurrence formula:

I, i (o7y) = BlkIv(n'rw) (76)

Similarly, for Kv_k(n'rw) as T, = ®, one obtains

—[k-
(1/2)]uoKv_k(v - k)zg (F7)
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The recurrence formula thus becomes

K, (n7y) = By K (nTy) (¥8)

Asymptotic Expansion of Cy_,(6)

As given in equation (Cl3a)

c, () =% (%)v_;r(%> r<} - %) G[Iv_l(nG)Lv_z(nG) - Lv_l(nB)Iv_z(nG)]

(F9)
The modified Struve fumection L, (ref. 25) for 6 > 1 is
1
N -1+ (1/2)]
- +
Ly(n8) - I_,(n6) =% ZZ — (F10a)
= F[v + (1/2) - k](n6/2)
(|arg 6] < n/2)
Let Kl
+
b = () Tk + (1/2)]
k,v — 1+
’ Flv + (1/2) - k](n/2)35v*2
then
-k -(1/2)1v + (1/2) - x]
Tk,y T Tk-1,v (F100)
(no/2)® ’
As vand 6 @ «, 7k KL Yg-2 ;5 therefore, it is sufficient to take only the
leading term in equatlon (FlOa as
V-1
1 (n8/2)
L,(ne) - I_,(n6) = 7 = - (F11a)
v v o,V r(1/2) rlv + (1/2)1]
With equation (Flla) the bracketed quantities in equation (F9) can be
expressed (for simplicity, argument né is omitted) as
[Iv—lLv—z - LV—lIv—z] = [IV—II—(V—Z) - I—(V—l)IV—2]
- [7o,v—11v—2 - 7o,v-21v_¥] (F11b)
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Since Wronskians (ref. 25) vanishes as 0 —> o

-‘{IV-Z’I-(V—Z):\ - [Iv—ll—(V—2) - I—(v—l)IV—Z:I

il
aflro

Elé sin (v - 2) <1 (Fiic)

It follows that

. (no/2) "= v - (3/2)
[Iv—lLv—z - Lv—llv—z:\ = I‘(l]/-2) v~ (1/2)] I, 5 _[—"—_—_]IV—J.

ne/2
(F124)
If 6 = Ty and T, = ®, then, from equation (F6),
v - (3/2) ]
I, -~ ——— I =1 Flle)
l: V-2 nTy/2 v-1 v (
Finally, equation (F9), with equations (F11d) and (Flle), becomes
-1 . V-1 Ziy
Cpnlmy) = o w Iy(nTy) = p— (F12)
N7y

From equation (E3a) the same result is obtained for T, << 1 and v >> 1 since

7 Z
Cypo1(Ty) = Y ¥y 2
v - (1/2) 0Ty nTy

An evaluation similar to the above procedure can be applied for C_(y_;) (6)
except that one substitutes K, instead of 1.5 the results are

- - 1
W[K'V—l’l—(v—l)j] =L (v-1)Ky o + I (v2)K1 T 5

and

1 (e/2)"? {Kv_z . [_Q/_E_)}K} <l (6w

T(1/2) Tlv - (1/2) o /2 6

C_(yn) (T) = % @)vr(v - %)r(-é—) (F13a)

which-lead to
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This approximation can also be compared with the exact form of Ty =@ in
integral tables (ref. 25).

foot“Kv(t)dt = 2“'11“(“ +; * l>r(“ - 2v i l> R(p +v) >-1 (F13b)

o

Note that substituting p = v in equation (Fl3b) gives the approximate
formula found in equatlon (Fl3a) Note also that if v >> 1, but Ty << 1,

the following result is obtained after integrating equation (Elb)

~_ BTy | "
av-l)LV (F14)

C_( V—l) (Tw)

Further asymptotic expansion of the following functions are necessary
to simplify the asymptotic evaluation of the flux function. Thus, as v —> o,
the gamma function can be expressed as

—v p=k-
(v -k) = 2ne % (3/2) (F152)
and
v
1im <1 + ’-5) - e* (F15b)
P00

It follows that

ﬂv=%6§?u)
- E 2__?@_ TW>V (F16)

_(1/2)r(1/2) o

Equation (F13) then becomes

) T 5 (F17)
From equation (Fla)
—Ho/2
2, = > E!_""f)“"‘(eno'rw)v
2nVv Jﬁg
1 Ho v
= (Bze °Ty) (F18)
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Also from equation (F6) it is shown that

From equation (Flb) one obtains

and from equation (F8),

With the asymptotic values derived above, the following relations hold:

Since

one obtains

Then

since

T2

Mo — 1>0.

e

—n’rw

Blzv
Zy_y = T
= e
_v 2v (Bl
BzZ B2Z_y

bo(v-1) T

mn&Tva_ 1
—————=——— 1+
7 ” ( B1)
maotwC_

-nT
e

*
-V

Wmna,TWC_ ( V— l)

-(v2)l/ma  2o/2
e x> e

-V

[H]

TW)V

(1 - Bz)

(e %)Y

fl—+zc>< 2y >

v
M -1
© <; 2 epo :> > 1
eho™t LS

Also one finds

Z

-V

mna”wc—(v—l) 21 / 14201,

(F19)

(F20)

(F21)

(F22)

(F23)

(Fak)

(F25)

(F26)

(F27)



since 1 + 25 - py > 0. And

— v
mnaTC_ (1 o Ho—-1T
oo(v-1) L1 Ho 2 e >> 1 (F28)
Z_y 2 eI-LO‘l 1+ pg

From equation (F28) it is obvious now that

mNTC_ (-
(v=2) oy

— (F29)
e WZ_V
The values K, and M, (egs. (61) and (62)) are readily evaluated from the
asymptotic values presented above.
Calculation of Radiative Flux Function T
Coefficients c¢j; and cz of the radiative flux function, I', can be
evaluated from the previous results; thus,
_ —kgke + k4k5
c1 =
A
*
(- ge)[(2/2) - RylZ_y + dm(7v + 1)[(1/2) - R12.,
(1 + B Wmv + 1)z,2%,
km{(1/2) - R

(l + Bl)zv

Similarly, constant c¢p 1s evaluated as
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_ kiks - ksks

Cz

-hm(L + B1)[(1/2) - Bylz, + (8/zQ)m[(1/2) - RglZ,
(1 + Bl WT + 1)2,2%,

—2n[ (1 + B2)/(1 + Ba) - 2(1 - P2)Rs + 2Ryl

o - (F30b)
(Wav + 1)z
Since the flux function is given as
ry(8) = c1z,(8) + caZ_,(6) (F31)

it is necessary to examine the asymptotic behavior of the functions

z,(6) Z_(6)
and -
Zy 22y,

for 1 <7 << Ty. Similar evaluation made for equation (F4) may be applied
for obtaining the asymptotic form of Iv(ne). Thus,

ne = nTu(l - ) = vz (1 ~ 7) < - ét (F32)

Let z* = zo(1 - T) and replace 2z, in equation (F4) (with k = 0) by z* so
that

-(1/2)u*
e I, (vz*) (F33a)

R

Iv(ne)

where quantities pertaining to 2z* are evaluated in a manner analogous to

that for equations (F2c) and (F2d).
2 22
* = J1 + (2%)° = < -2 ?> F33b
K ( By 1Tz (F33b)
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then
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Mg - BT (F334)

Thus, from equation (Fla) it is shown for 1 << T << T, that

z 2 —(1/2)(1/uo)? —pImaT
I,(ng) = (1 + % # ?> e e °  Ifar,)
O
~ Mo MET
=e 0 I[(ary) (F34)
Zv(e) = (1 ?)V —MomndT - ( 2Hio ) mndr
z, - e = e .
"‘nBlT
=e (F35)

Similarly, K,(nf) can be written as

p,omna,T
KV(nG) ~ e K, (aTy) (F36)
and so
z_.(8) _ mnaT npsT
L AMGAPYIVC I R = P2 (F37)
Z_y
Therefore, from equation (F26), it becomes
z-v(8) 2_.,(8)/Z_ - 1+ pg)’ —nBz2(Ty-T)
:( - :( /Z_y - 1/2( 2u0> o TP2 Ty (F38)
Z—V Z—V/Z—V
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For sufficiently large Ty the value of equation (F38) is negligible compared
to that of equation (¥F35), for example,

2
- 1 ZO
< = | —— F
T < >\ z02> (¥39)

Thus, the asymptotic radiant flux function becomes

r(6) = caz,(6)

-~ _2m -npar
s (1 - 2Rg)e (FLo)
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APPENDIX G
CALCULATTON OF RADIATIVE FLUX WITH PREHEATING INTERACTION

The energy equation in the preheating zone is, from equation (77),

poovoth h* - hoo 1
* -
20.Ts4 hS ~ 20.T84 (q. qoo) (Gl)
It follows that
h* - h,
o= e - ) (c2)
where
r* = g*/2xB (8a)

Defining TI'g as the radiative flux of the preheating zone at the shock wave
and hy as enthalpy Jjust ahead of the shock front, one gets the relation

by - By

- = NaTep - Top) (87b)

s

Preheating increases the temperature behind the shock by the amount

Tep™ = 1+ &(Tgp = Ty) (80)

Flux (coming from the hot shock layer) at the shock front is

Fap = Top (Mo + Mt o+ Mor T (@3)

where Rg' = Rg/T  * ana R, = R,/Tgp*. With equation (80) it follows that
Tgp = [1 + a(rsp - o) My + MaRg + MoR, (aL)
The continuity of the flux function requires that (see sketch (a), main text)
Fep = Rp - Ry (@5)

The temperature ahead of the shock Ty is determined by

T



4 —_ o —
Te* = T, + c(.r[Fsp -I_ - (FSP - Te)y) (B10)
where T. is the reference temperature derived from the assumption that only
absorption by media is a major factor in the preheating zone (see appendix B,
egs. (B8) and (B10)). Thus, boundary fluxes of the preheating zone from
equations (26) are

1]

Tgp = Tp*[M, + MiRp + MoR,]¥ (6)

oo Tf4[Ma + MgRp + MgRol* (a7)

where superscript * designates quantities in the preheating zone, and

Re* = Rp/Tp*
Ro* = Reo/Tg"
It follows that
Pap = Too = Tp%(My - M)* - (My - M)¥Rp - (Mp - Mg)*R,, (c8)

Now, one can solve the simltaneous equations given in egquations (@3)
through (G8) for R, = 0, R,~ 0 and for given optical depths (7, and T,) of
the preheating zone and shock layer, respectively, as

— - Mo )¥* M
B 4[M°*(l M) - MgX(1 o+ M) - ﬁM_o____zz)___] + (My - Mg)¥ T+O—Ml

g 1 4+ M;

Tep ™ Too = R . i
(69)

where

To* = Tp* - TM[1 - 2Ba(7,)1/{1 - @M [1 - 2B3(7e) 1} (¢10)
and

1 _ * - * _
D=1+ Mp* - po +GT[MO*(1+ M%) - Mg*(1+ M¥) - M%EMs—:l - (Mg - My)* ﬂMO—MI

(G11)

Then Tgp4 and Te* will be obtained from equations (80) and (B10), respec-
tively. Thus, Tép4 may be written in terms of known quantities as
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1 M, -M)*7
(L+My¥) - 73 T [Mo*(l+ Mg*) - Mg*(1+ Mp¥) - I (@ - aTg*)

= 4 S
Top = A
(G12)
Boundary values are given by
— 4
(... -r)) + T, (M * - Mg¥)
Bp = - —2 £ _0 (613)
My% - Mg¥*
Rp - [1 + &(Tep - )]
Ry = — sp = T o (G1k)

1.+Ml

The terms Iy, and I, can be obtained from equations (66) and (G7) or are
simply

Il

Fsp Rr - Rg (Gl5)

T = Tgp - (1"31O -T.) (g16)

From equations (G15) and (Gl6), the radiative leakage parameter, which now
includes emission effect, becomes

8, = To/Tsp (G17)

Note that if the temperature Jump due to preheating is not negligible
(l"SP - I'g 75 0), the following modifications are made to calculate the enthalpy
and temperature distribution through the shock layer. Quantities Ks and Kg
in equation (38a) are replaced by

Ks

]

2m B— (1 + @ary) - RS] - 2me T [% (1 + aary) - Rw} (G18)

Ke = -2m [% (1 + @ary) - Rw:] + 2me W [% (1 + aarg) - Rs] (G19)

where Al = l"SP - '« However, the same result will be obtained, as one can
see directly from the last equation, if the boundary values Rg and R, are

divided by Tsp4‘ Thus, from equation (G3), we define,

Ry = 2= (G20)

19



P S (c21)
Ry 5% 27 1Trar,
sP
and the thermal function (Fsp - F)'f as given by equation (88a). The enthalpy
and temperature distribution given as equations (89) and (90) will yield
results identical to those derived from equations (G18) and (G19) since all
other K in equation (38) are constants for given & (constant)and T_.
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APPENDTX H
CALCULATION OF RADIATIVE FLUX IN INJECTION AND ABLATION LAYERS

The general solution of radiative heat transfer for the two-layer problem,
shock and injection layers, for example, has been presented in appendix A.
The details of the analysis for both absorption and emission of injected gases
on radiative heat to the wall is considered here. Since the characteristics
of absorption coefficients for injected or ablated gases are not yet well
known, the absorption coefficients simply appear in this analysis as a
Pparameter, (pn)b, which is independent of temperature.

Injection Layer

For radiative transfer with gas injection from the body surface, injec-
tion rate, f, is an arbitrary parameter and is thus independent of the heat-
ing rate at the wall. For this case, the analysis of radiative heat transfer

is straightforward.

Let flight conditions be fixed and assume the optical thickness Ty
(or Tw-) in the shock layer to remain unchanged during injection since the
shock-layer structure is relatively insensitive to the presence of an injec-
tion layer. Note that assuming a given value of Ty 1is equivalent to assign-
ing a given body radius (see egs.(7lb) and (76a)). The following outline
illustrates the calculation procedure:

(a) Assign (TW and &) in both regions: Region I (shock layer); for a
given body radius (and flight condition) one can find Ty @nd a. Region IT
(injection layer); optical thickness, Twbs 18 assumed. The injection rate,
fy, 1s also assumed, and one finds &, from equation (99).

IT

(b) Calculate RWI and Ry, from equations (AlL) and (A15).

(c) Calculate the absorption coefficient, which corresponds to
quantities (Ty, &, Rg, RW)II, by equations (7ib) and (95b):

(p8)y, (P ) L,
= = (H1)
(oK) [o M
s (k) kg gﬁ'_bwa
where
(6Nt = Ty [ (o/m) ™" a7 (740)
O

(d) Calculate Iy and &4 from equations (Al7) and (91).
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By repeating procedures (a) through (d) for other values of Twp and £
we can obtain radiative blockage function @&, as a function of the 1nJect10n
rate with the absorption coefficient ratio (pK)b/(pK) as the parameter for a
given body radius.

It is interesting to note that &, has nearly a single correlation curve
as presented in figure 10(a).

Ablation layer

For an ablating surface, the ablation rate, fy, is coupled with radiative
heat at the wall TI'y. Thus, some simple algebraic iteration is required to
solve equation (98). Using the approximation given by equation (92), one can
calculate on initial input value of &, from equations (98) and (99), by

(H2)

for given Tg,. Similar procedures (as outlined in the previous section) are
then used to calculate RWI, RWII, and I'yyp. This Iz Dprovides a new abla-
tion rate, fy, and thus, previous calculations are repeated until the value of
f,, converges. Only two or three iterations are necessary for good conver-
gence. Bven the results obtained by using equation (H2) as an initial input
show sufficient accuracy. With this ablation rate one can compute the absorp-
tion coefficient ratio from equation (H1). Thermodynamic properties of carbon

are obtained from reference 36.
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APPENDIX T
EQUILIBRIUM AIR PROPERTIES

Thermodynamic charts are presented for flight speeds to 30 km/sec in
figure 13. These charts give the pressure and temperature behind and the
density ratio across the normal shock wave, and can be used to obtain refer-
ence properties for the present solutions. These properties were computed
from the thermodynamic charts of references 34 and 35.

Radiative properties for equilibrium air are presented in figure 1k.
Figure 1li(a) presents Ey/2, one-half the emission rate per unit volume, for
optically thin air. This chart was prepared by combining the calculations of
reference 37 for low temperature and reference 38 for higher temperatures.
Figure 14k(b) presents Planck mean absorption coefficients from the same refer-
ences used in the present analysis. The relation between emission rate and
absorption coefficients is E; = 4pSRSGTS4. The absorption coefficients

for equilibrium air are not well established over the whole temperature range.
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TABLE I.- EXPONENTTAL CONSTANTS ,

1.970
1.966
1.963
1.959
1.956
1.929
1.907
1.889
1.873
1.812

1.769

Tw- n
i) 1.736
.50 1.709
.60 1.686
.70 1.667
.80 1.651
.90 1.636
1.00 1.623
2,00 1.548
3.00 1.519
4.00 1.507
5.00 1.503
6.00 1.501
7.00 1.500
8.00 1.500
9.00 1.500
10.00 1.500
1.500
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(a) Geometry of flow.

Figure 1.- Nonadiabatic flow model.
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(b) Nomenclature.

Figure 1.- Concluded.




a4

1.0 —
.8
.6}
_4
T
q © ps =107! atm
O ps =!atm
& ps =10 atm
2 A pg =102 atm
O ps =103 atm
V-t I |
0 .2 .4 .6 .8 1.0
h
L1 l l ]
O 10 I5 20 30
Vo, km/sec
(a) Reference speed, Vo = 30 km/sec.
l.
_a
T

(b) Reference speed, V,, = 15 km/sec.

Figure 2.- Relationship between T* and enthalpy.



g6

Tg =15,000° K
— —— Linear approximation

(c) Reference Ty = 15,000° K.

Figure 2.- Concluded.




S
Ts
2
ps = 10 atm
T, = 15,000° K
Plane shock flow (y =0)
® Exact value
m n
A A 172 372
S W3 S3
o 2/3 3/2
Present method (m=1/2)
oL | | | | |

| | I I |
o) ! 2 3 4 5

Tw
(a) Radiative heat fluxes for plane shock flow.
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Figure 4.- Radiative heat fluxes at the shock and at the wall.
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Figure 13.- Continued.
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Figure 13.- Concluded.



TTT

120 -

100

80

)]
o

Altitude, H, km

40

20

E;/2=10"®keal/sec m>

Ve

| kcal/secm® = 4,18 X10™3W/em3

3
L ! ] l %

5 10 i5 20 25
Velocity, Vg, km/sec

(a) Radiative intensity.

Figure 14.- Radiative properties behind shock for equilibrium air.
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