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ION CYCLOTRON WAVE GENERATION IN UNIFORM AND NONUNIFORM 


PLASMA INCLUDING ELECTRON INERTIA EFFECTS 


by Donald R. Sigman and John J. Reinmann 


Lewis Research Center 


SUMMARY 


Theoretical calculations were made for radiofrequency power transfer to  ion cyclo­
tron waves from a Stix coil. The analysis includes electron inertia terms and is applied 
to a cylindrical column of cold, collisionless atomic- hydrogen plasma with and without 
radial density variations. The results showed both an optimum coil wavelength and an 
optimum density for efficient power transfer. For typical plasmas, the optimum density 
is between and 5 ~ 1 0 ~ ~per cubic centimenter. Without a radial density gradient, 
the inclusion of the electron inertia terms reduced the predicted power transfer. Several 
radial density distributions were considered. Power transfer to inhomogeneous plasmas 
is maximum when the volume average density is near the optimum density computed for 
homogeneous plasmas. Curves of power absorption as a function of magnetic field for 
inhomogeneous plasmas were similar to those for constant density. Under some condi­
tions, radiofrequency power is coupled predominantly to a single plasma mode of oscilla­
tion; under other conditions, the power may be distributed among several modes. Thus, 
measurements of plasma wave properties may prove difficult to  interpret. 

INTRODUCTION 

The thermalization of ion cyclotron waves in a plasma column offers a promising 
technique for heating plasma ions to extremely high temperatures. Stix (ref. 1) devised 
a generating structure (radiofrequency coil) to couple radiofrequency power to ion-
cyclotron waves efficiently and has also made a careful theoretical analysis of the power-
coupling process. In his theory, Stix assumed a cold, collisionless magnetoplasma and 
neglected electron inertia te rms  in the equations of motion. In reference 2, Six’s theory 
was employed to determine the effect of various plasma and radiofrequency coil param­
eters on the power transfer to ion cyclotron waves in a homogeneous, atomic-hydrogen 



plasma. In the present report, the parametric analysis is repeated, but electron mass  
is not assumed to be zero. Furthermore, both homogeneous and radially inhomogeneous 
plasmas are considered. The results of this report  were first presented at the 1966 
Summer Meeting of the American Physical Society, Minneapolis, Minnesota. 

As in references 1 and 2, the radiofrequency coil is represented by an azimuthal cur­
rent sheet of finite length wrapped around an infinitely long plasma column that is placed 
in a vacuum. The plasma is immersed in a steady and uniform magnetic field parallel to 
the axis of the column. 

In the region underneath the finite-length current sheet, power is transferred to the 
ion cyclotron wave. This wave propagates unattenuated out both ends of the cylindrical 
current sheet and down the plasma column. Since the plasma model is cold and collision-
less, all energy from the current sheet is converted to  electromagnetic ensrgy in the 
wave. 

The theoretical analysis proceeds as follows: Maxwell's equations are employed with 
the equations of motion for the plasma ions and electrons in order to derive the fourth-
order partial differential equations for the electric and magnetic fields in the plasma. 
Then, expressions are obtained for the fields under infinitely long current sheets with 
wave number k. Following a Fourier integral technique used by Stix (ref. l), one uses  
the fields derived for infinitely long current sheets to obtain the fields produced by a 
finite-length current sheet. For the homogeneous plasma, a dispersion relation is de­
rived. 

The equations derived herein were used to make digital computer calculations to de­
termine the effects of coil wavelength, overall coil length and radius, magnetic field, 
plasma density, and plasma radius on the power transfer to ion cyclotron waves in a 
homogeneous plasma. In addition, sufficient calculations were made for inhomogeneous 
plasmas and for an annular cylinder of plasma of uniform density to determine the major 
effect of radial density variations on power transfer. 

The assumption of zero electron mass  simplifies the problem considerably. Early 
attempts by the authors of this report to extend the analysis of reference 2 to inhomogene­
ous plasmas resulted in the prediction of unrealistically low power-transfer efficiencies 
for slight departures from uniformity. Furthermore, the findings of reference 2 yield 
the unrealistic result that maximum power transfer monotonically increased as the den­
sity decreased. The inclusion of electron mass in the analysis removed both these dif­
f iculties. 

THEORY 

To derive equations for radiofrequency power transfer to a plasma, a geometric con­
figuration similar to  that used by Stix (ref. 1) is assumed. The elements of the config­
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Figure 1. - Plasma column and current sheet. 

uration are shown in figure 1. A cylinder (solid or annular) of cold plasma, infinitely 
long, is assumed to be surrounded by vacuum. A uniform, static magnetic field Bo 
(maintained by external coils) is parallel to the z-axis of the cylinder. The outer radius 
of the plasma is p, and the inner radius is Q. For a solid cylinder of plasma, the inner 
radius Q is zero. At the radius r = s (where s > p), there is an azimuthal current 

i(koz -ot)
sheet of density j*e , where ko is the current-sheet wave number for the z­
direction. Because the current sheet for the case of interest is of finite length, it is nec­
essary to apply a Fourier integral analysis (ref. 1)to express the finite-length sheet as 
an integral over k of a continuous spectrum of azimuthal current-sheet components, 
each of which can be considered to be of infinite length. In this approach, the equations 
are formulated for an infinite-length current sheet and then are combined in the manner 
indicated by the Fourier integral analysis to obtain the results for the finite sheet. 

Equations of Motion and Maxwell’s Equations 

For an infinitely long current sheet, the time-varying electric and magnetic fields 
and the currents and particle velocities are Fourier analyzed in space and time according 
to eiorz-wt) and will have the general form 

F(r,z,  t) = f(r)ei k - w t )  

All terms are assumed to have azimuthal symmetry. For a cold, collisionless plasma, 
the appropriate equation of motion for ions is 

and for electrons, 

3 
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(All symbols are defined in appendix A and cgs-Gaussian units are used throughout this 
report.) A Fourier analysis is made in time according to equation (1). No zero-order ve­
locities a r e  assumed and -B E l3, + -B(r). Then the higher order v .  Vv and v x B(r) 
te rms  are dropped, and equations (2a) and (2b) become 

-iwm.v.(r) = eE(r) + e 
k i ( r )  x BJ 

-
1-1 


C 

The plasma is assumed electrically neutral: ne = ni = n(r). The current density in the 
plasma is given in t e rms  of the macroscopic particle velocities as 

Equations (2c), (2d), and (3) are used to eliminate v. and to obtain -j(r) as a function-1 
of -E(r) 

j (r)= -w -K'(r) .-E(r) (4)-
47ri ­

-The tensor K'(r) is given as 

in the coordinate system where the electric field is given as 
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w 

L ' = - -"'(-w ) li'( w ) 
w 2 w - n i  2 w + n e  

S' = -1 (R'+ L')
2 

where IIe and Hi a r e  the electron and ion plasma frequencies, and ne and Qi a r e  
the electron and ion cyclotron frequencies. Maxwell's equations are written as 

477- 1 aE-V X B = - l + - ­-
C - c at 

and are combined to give 

wV X V X E = -477iw J. +-E 
2 

- 2 - c 2 -
C 

where the Fourier analysis is again taken in time. Now, substituting equation (4)into 
equation (6c) yields 

2 
v x v x E = c~(1-1.E- 2 - -

C 
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where ,K = ,K' + 1.- The three components of the vector equation (eq. (7a)) a r e  

(DE, + SEe) = 0 

where the Fourier analysis is now taken in the z-direction; Er, Ee, and EZ are func­
tions of the radius r only; and S = S' + 1, D = D', P = P' + 1, R = R' + 1, L = L' + 1. 

Boundary Conditions 

The boundary conditions that a r e  to be imposed on the solutions to Maxwell's equa­
tions are as follows: 

Plasma-vacuum-interface: The components of the tangential E-fields and B-fields 
must be continuous across  a plasma-vacuum interface (r = p and r = Q):  

plasma Evac 
>,=p,Q = ( e >,=p,Q 

plasma Evac 
)r=p,Q = ( )r=p,Q 

or 
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plasma 
(Bz ).=,,e = ( )r=p,Q 

or 
Bvac i 

Current sheet at r = s: The components of the tangential E-fields and Bo must be 
continuous at/ r = s. .The component B, is discontinuous by an amount (47r/c)j*: 

(B,plasma)r=s - @a') = 
r=s c 

or 

Vacuum Solutions 

The solutions to Maxwell's equations in the vacuum regions (with displacement cur­
rent neglected) a r e  

w w2 
i - B  =-e  1 1I (kr) 

C O kc2 

i -	w B, = kblIo(kr) 
C 



E, = ielKL(kr) Ip 5  r 9 s 

i -w B, = kdlIo(kr) -
C 

i BZ = -kflKo(kr) 
C J 

where bl, cl, dl, d2, el, and f l  are constants of integration. 
For the solid plasma cylinder (Q = 0), the solutions for 0 5 r 5 Q are ignored. 

Homogeneous Plasma (Solid or Annular) 

For constant density (n(r) = Const), equations (7b) to (7d) a r e  combined to give 

(Y2- B Y  + C)Eo = 0 ( 9 4  

8 
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C 

ikPE, = - - 	i a- [r(SEr - iDEQ)l 
r ar 

~ 

where Y is an operator given by 

2 
k2 (P + S) - (PS + RL)

2 
w
R =  k2(P + S) - - P + - w2 (D2 - S2) -- C 

-

S C2 c2 S S 

P w2 2c = - k4 - 2 - k S + - ( S  w 4  2 
S 2 4

C C 

' For constant-density plasmas, B and C a r e  not functions of the position variable r, 

1 and the fourth-order differential equation (Sa) is factored into two second-order Bessel 
differential equations 

I 

(9' + vi)EQ = 0 

(9 -I-vi)EQ = 0 

where 

2 - B +  i 2B -4Cv, = 
I 2 

v22 = - B - ) / B 2 - 4C 
2 

From equations (loa) and (lob) four Bessel function solutions a r e  obtained for Eo: 
J1(vlr) ,  Y1(vlr), J1(v2r), and Y1(v2r). The complete solution for EQ is then 

9 




-- 

- -  

Eo = alJ1(vlr) + a3Y1(vIr) + a2J1(vZr)+ a4Y1(v2r) for 1 5 r 2 p (114 

2where al, a2, a3, a4 are constants of integration. (It is assumed that v12 and v2 a r e  
both positive. When either v: or vi becomes negative, the appropriate Bessel func­
tions should be substituted. See also appendix B.) From equation (9b) 

= (1+ v 1  - ­k :I) S b l J l ( v l r )  + a3Y1(vlr)1 

is obtained, and from equation (Sc), 

ikPE, = 	 i -a [r(SEr - iDEe)l 
r ar 

and 

2
W 

2
C 

1 aB­a r e  obtained. From V x E = ­-
C a t  

i -W B, = -i a- (rEe) = vl[alJo(vlr) + a3Yo(vlr)l + v 2 ~ 2 J 0 ( v 2 r )+ a4Y0(v2r)1 (12a)
C r ar 

and 
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a r e  obtained. Equations ( l la) ,  (llb), (12a), and (12b) a r e  for Q 2 r 5 p, where 

a =  c; 

kD 

P =  C 

kD 

The constants al, a2, a3, a4 must be determined from boundary conditions. For the 
solid cylinder of plasma, 1 = 0, and a3 and a4 = 0 because Eeplasma is finite at r = 0. 

Power Transfer to Homogeneous Plasma 

When the aforementioned boundary conditions a re  applied to the constant-density solu­
tions (solid or  annular), a system of simultaneous equations is obtained for the coeffi­
cients in equations (8), (ll),and (12). These simultaneous equations can be used to solve 
for al, a2, a3, a4, d1, d 2, el, and f l .  Calculation of the power absorbed by the plasma 
requires the value of the azimuthal electric field at r = s (ref. 1). This value can be 
written as 

The electric field is the field at the position of the current sheet for an in­

finitely long current sheet. What is actually needed is an expression for (Ee) for a 
r=s 

finite-length current sheet of length 2a with a current density 

-j *  = j*e (-a 5 z 5 a) 

11 




For a finite-length current sheet, (Eo) is obtained as follows (ref. 1): The 
r=s 

current-sheet density -j* from equations (14)is decomposed into its Fourier integra1 
spectrum, so that 

J-03 

The electric field for the finite-length current sheet can then be represented as the sum 
(integral) of the electric fields of a continuous set of infinitely long current sheets, each 
having the infinitesimal amplitude 

so that 

Equation (16) was integrated by contour integration (as in ref. 1) to give the following re­
sult for a right-running current-sheet wave: 

where 

12 




J 

(It should be noted that the Rn defined in eq. (17b) is not the same as the Rn defined on 
p. 96 of ref. 1.) 

The values k = kn are the values of k where Evac becomes infinite. They
0 )r=s

correspond to the poles of the integrand in equation (16). The kn's are the wave num­
bers  for the natural modes of the plasma column in a vacuum. This suggests that each 
term in the sum in equation (17a) is the electric field of the nth natural mode. 

The component of the electric field (Ee) , which stems from power absorption in 
r=s 

the plasma, tends to decelerate charge car r ie rs  in the current sheet. Thus, the instan­
taneous power per unit area required to drive the surface current against the electric 
field a t  r = s is - [Ee .  j*] . Therefore, the time-averaged power transfer to the 

r=s 
plasma is obtained by integrating over the total surface of the current sheet as follows: 

Pt = -
2 
1Re La- (Ee) 

r=s 
.j*e 

-ikoz+iwt 
2rls d z  

Integrating equation (18) gives 

co 
pt = (2rlas)(-iaj*2 ) >:RnSrhn) 

n=1 

or 

M 

n=1 

where 

2(1  - cos qn) 
Sr(rln) = 

2 
qn 

13 
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and 

From equations (13) and (17b) and from the fact that the denominator of 
r=s 

(hereinafter denoted as r,(k)) must be zero, Rh can be calculated. 

R;I for Homogeneous Plasma 

For the simpler case of the solid cylinder (a = 0) the expression for R; is 

where 

The functions rl(k) are given in appendix B. The indeterminancy in equation (20) may be 
eliminated by L'Hospital's rule, so that 

For the case of the hollow cylinder of plasma, 

14 




- - -

where I?,@) = det M; and M41, M42, M437 M44 are the minors of the matrix M, which 
is also given in appendix B. Again, the determinant M becomes zero  when k = kn and 
the indeterminancy is eliminated by L'Hospital's rule. The values vln, u2n7 and kn, 
when r2= 0, are the values obtained for the natural modes of oscillation of an infinitely 
long plasma column surrounded by a vacuum. Thus each term in the sum of equation (19b) 
may be throught of as the power transmit&d by a single natural mode of the plasma. 

Inhomogeneous Plasma 

If, as in an inhomogeneous plasma, n(r) does not equal a constant, equations (7b) to  
(7d) combine t6 give a lengthy, unfactorable fourth-order differential equation for Ee, 
which must be solved by numerical means. If the 1 is neglected in the t e rms  R, L, S ,  
and P (which is the same as neglecting displacement current), R, L, S, P, or D can 
be written in the form Q = Qog(r), where Qo is the value of R, L, S, P, D, or n at 
r = 0, and g(r) is the density distribution function so that n(r) = nog(r). Thus, when dis­
placement current is neglected, the differential equations for the electric-field compo­
nents in an inhomogeneous plasma are 

ar ar3 



aEe a2EeL 
-+-

where g' = dg/dr and g" = d2g/dr 2 . These equations must then be solved numerically. 
The electric and magnetic fields in the plasma a r e  denoted as Er(r), Ee(r), and Ez(r), 
and Br(r), Be(r), and Bz(r). Applying boundary conditions gives the following expres­
sion for the 8-component of the electric field of an infinite-length current sheet a t  r = s: 

k r c ( k ]  r=s 
4aiw j *sKl(ks)= ­

2
C 

with the additional constraint that 

This additional constraint comes from the E, and Be boundary conditions. Since EZ(r) 
and Be(') are functions of Ee(r), equation (25) acts  as a boundary condition for Ee(r) 
at r = p. 

Because of the particular numerical technique (see appendix C) used to solve for 
Ee (r), -it is necessary to know the value of Ee(r) and its first three derivatives at r = 0. 

is zero, and Ee(r) is asymmetric about r = 0, be( = 0 and 

pEe(r)/ar2] r=O 
= 0. From equation (24) it  can be seen that only the ratio 

{E,(r)/~E,(r)/ar]) is required to calculate (.ac) . Since only the ratio 
r=p r=s 

(E,(r/[aE,(r)/ar]} r=p  
is needed and the differential equation for Ee is linear, only 

16 



the ratio { ~ E e ( r ) / a ~ / ( a 3 E , / a r 3 ~  needs to be specified. Then, choosing
r = O  

[aE,(r)/aq 
r=O 

= 1 leaves only k3E,(r)/ar3] 
r=O 

to be determined by the following 

iteration process. For r near zero, the t e rms  in equation (23a) that involve the density-
I 

distribution function are small, and the solutions behave like Bessel functions. Hence, 
[a3E,(r)/ar3] 

r = O  
is first computed for the case of a constant-density plasma n = no. 

This value is then used as a first guess for the variable-density value. The values of 
E,(r), Er(r), and E,(r) at p a r e  then computed, and the test of equation (25) is applied. 
If A # 0, a Newton-Raphson formula is used to find a new value for [a3E,(r)/ar3] and 

r=O 
r.. m 1  

A is again computed. This iteration continues until the change in Ee(r)/ar3] 
r = O  

from 

one iteration to the next is must less than E,(r)/ar 3]
r = O  

. 
- - - -

Once the values of pe(r)l and PE,(r)/ar+ have been determined under the 
r=p r=p

constraint A = 0, equation (24) can be used in equations (16). Now the same procedure 
used in deriving equations (17a) to (19c) may be applied to the variable-density case. The 
new expression for RX is 

? 

1 k=kn 
r3=0 

where 

RESULTS AND DISCUSSION 

From the previous section, the independent variables in an ion cyclotron wave ex­
periment included sheet-current radius, wavelength, and overall length; plasma radius, 
density, and radial density profile; steady magnetic field; and generator frequency. 
Also important are other effects, such as axial variations of the magnetic field, ion and 

17 



electron temperature, and damping phenomena. However, these effects have not been 
included because they entail more complex theory, and their effects can be minimized 
through proper design of the experiment. Conditions for which temperature and damping 
effects can be neglected are discussed briefly in this section. The intent here is to pre­
sent resuxts for a theoretical model of ion cyclotron wave generation that can be reason­
ably approached in the laboratory. 

C urrent-S heet Representation 

Figure 2(a) shows a Stix-type (ref. 1) radiofrequency coil that may be xsed to pro­
i(k,z-ut)

' Uduce a current sheet that varies approximately as j*e .,where ko = 2n/h. If N 
is the number of turns in each of the four sections of the coil, I is the peak radiofre­
quency current flowing through the coil, and ho/M is the length of each section, the 
equivalent rectangular current sheet can be represented as shown in figure 2(b). The 
rectangular current sheet can be represented by a Fourier se r ies  with coefficients given 
as I A J  =-4NM1 sin E,where m = 1, 3, 5, etc. Since power transfer is proportional

mnXO M 
to /Am 12,  the fundamental (m = 1) is usually sufficient for power calculations. Thus, 
the rectangular current sheet is represented as 

j* =-4NMI sin -n 
M 

I 

.Infinite plasma column 

(a) Radiofrequency coil. 

Surface 
cur ren t ,  j* 

-

(b) Current-sheet representation. 

Figure 2. - Radiofrequency-coil conf igurat ion and equivalent c u r r e n t  sheet. 
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Substituting this last expression into equation (19b) yields the power transfer from the 
fundamental component of the Stix coil: 

Equation (29) can be used to compute power transfer for either the constant- or variable-
density case, and for any value of N, M, A,, I, a, p, s, ne, w ,  and ai. Aside from 
some practical electric circuit problems that are discussed briefly in this section, it is 
obvious from equation (29) and from the expressions for R;1 (eqs. (20), (22), and (26)) 
how the values of N, M, a, and w will affect power transfer. Hence, typical values of 
N = M = 4, a = 45 centimeters, and w/2n = 6 .5  megahertz a r e  used for all calculations. 
The coil is 2 wavelengths long. Although the effects of coil wavelength and radius a r e  ex­
amined in this section, for illustrative purposes most of the results are presented for 
s = 10 centimeters and Xo = 45 centimeters. The aforementioned values of the parame­
t e r s  N, M, a, and w a r e  used in equation (29) to obtain 

Wave number for nth plasma 
mode, kn, c m - l  

Figure 3. - Radiofrequency-coil­
radius correct ion factor as 
funct ion of wave number for 
nth plasma mode. 

r 1 


The effects of each independent variable on power transfer 
a r e  discussed in the following paragraphs. 

Coil Radius 

The effect of coil radius s on Pt is given entirely 
by the term 

which appears in Rh (eqs. (20), (22), and (26)). This fac­
tor F(kns), is presented in figure 3 as a function of k ,  
with s as a parameter. The term Rh (for s = 10.0 centi­

19 
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I 

meters) may be corrected to any value of the coil radius by multiplying Rh (for s = 

10.0 cm) by the ratio F(kns)/F(lOkn). However, approximate corrections to Pt can be 
made simply by multiplying Pt (for s = 10.0) by F(kos)/F(lOko). It may be seen from 
F(kns) that, for a given coil wavelength, it is desirable to make s as small as possible 
but subject to the restriction s 1 p. 

Frequency 

The function R; is also directly proportional to w (see eqs. (20), (22), and (26)). 
However, to increase the power transfer to the plasma merely by increasing the fre­

c 

L 
 (a) Plasma radius, 2.5 centimeters.1
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(b) Plasma radius, 5.0 centimeters. 
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~ 
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(c) Plasma radius, 7.5 centimeters. (d) Plasma radius, 10 centimeters. 

Figure 4. - Relative power transfer as funct ion of frequency ratio. 
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quency requires redesign of the coil system, since the radiofrequency coil impedance in­
creases and causes high electrostatic voltages. Experimentally, the coil is operated so 
close to its natural frequency that further increases in w would introduce severe 
impedance-matching problems. In addition, larger, steady B-fields are required since 
peak power occurs at a given value of st = w/Qi. 

Sol id Cyl inder  of Constant-Density Plasma 

Figure 4 presents plots of relative power 

as a function of 52 for all combinations of the following plasma radii and densities: 
p = 2.  5, 5.0, 7. 5, and 10.0 centimeters, and ne = 5X1Ol1, 5x1Ol2, and 5 ~ 1 0 ~ ~per cubic 
centimeter. An interpretation of these results and a discussion of significant trends fol­
low. All the curves of P* as a function of 52 exhibit a peak (resonance). The value 
of 52 at the peak, as well as at the half power points, depends primarily on electron den­

52sity. For higher densities (no = ~ m - ~ ) ,  at the peak is lower, and vice versa. 
Smaller dependencies on plasma radius and on current-sheet wavelength a r e  discussed in 
more detail later. 

In general, the shape factor Sr(qn) for the n = 1 mode controls the shape of these 
curves. The shape factor is given as a function of 7, in figure 5. 

/ 

I 
I 

~ 

\
\ 
1 14n 

-n n 
q, = 2(ko - kn)a 

Figure 5. - Shape factor Sr(qn1 as function of on. 
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Plasma density. - An examination of figure 4 reveals that the optimum density for 
power transfer to the plasma wave is about 5 ~ 1 0 ~ ~per cubic centimeter or slightly less. 
This optimum density does not seem to depend strongly on plasma radius. In the section 
Variable Density and Annular Plasmas, it will be shown that power transfer is substan­
tially lower than the maximum for ne < 10l1 per cubic centimeter or ne > 1014 per 
cubic centimeter. 

Current-sheet wavelength. - The 45-centimeter wavelength chosen for most of the 
calculations does not necessarily represent the optimum wavelength for efficient power 
transfer. As a result, some calculations were made for current sheets 2 wavelengths 
long with wavelengths of 25, 35, and 55 centimeters. If it is assumed that I, N, and M 
are held constant, maximum power occurs when P* is a maximum. Tables I and I1 sum­
marize the results of these calculations by presenting p&= and the corresponding 
value of 52 for all coil wavelengths, plasma radii, and densities for which constant-
density calculations were made. 

Several features of table I should be explained, the first of which is that the optimum 
wavelength for any given combination of plasma radius and density depends on the actual 

TABLE I. - DEPENDENCE OF MAXIMUM RELATIVE POWER 

TRANSFER ON PLASMA RADIUS, ELECTRON DENSITY, 

AND CURRENT-SHEE T WAVELENGTH 

[Surface current-sheet radius, 10.0 cm. ] 

-
Plasma E lectror 
column density, 

25 35 45 I 55outer 
“e 9

radius, 
cm-3

P, 
cm 

~~ . 

0.65X10-lf  
1 .97 1 .98  1.50 1.05 
1.35 1.03 .612 .385 

5 . 0  3. O ~ X ~ O - ~ ~  2 . 1 0 ~ 1 0 - ~ ~  

2.5 0. 87X1O-l6 0.97X10-l6 0 . 8 4 ~ 1 0 - ~ ~  

3 . 2 4 ~ 1 0 - l ~2 . 6 4 ~ 1 0 ~ ~ ~  
5 .03  4.70 3.50 2.44 
3.08 2.16 1.24 .726 

7.5 2. 5 8 x d 4  2 . 4 4 ~ 1 0 - l ~1 . 9 5 ~ 1 0 - ~ ~1. 48x10-14 
3.57 3.09 2 .21  1.49 
2 .41  1.45 .79  .45  

10.0 1. 3%10-13 1 . 0 8 x 1 0 - ~ ~0. 80X10-13 0 . 5 9 x 1 0 - ~ ~1 1.67 1.27 .85 .56  
1.17 .68  .32 .17 
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TABLE II. - RGTIO OF WAVE FREQUENCY TO 

ION CYCLOTRON FREQUENCY AT MAXIMUM 

RELATIVE POWER TRANSFER AS FUNCTION 

OF PLASMA RADIUS, ELECTRON DENSITY, 

AND CURRENT-SHEET WAVELENGTH 

Plasma Zlectron Wavelength of surface-current 
:olumn density, sheet, ho, cm 
outer "e3 25 1 35radius, cm-3 
PY Frequency ratio, 52 = w/ai  

cm 

2.5 	 5X1Ol1 0.980 0.969 0.950 0.930 
5X1Ol2 .91 .86 .80  .75 
5 x d 3  .62 .50 .43  .36 

5.0 	 5X1Ol1 0.987 0.978 0.967 0.953 
5x10 l2  . 9 1  .86 . 8 1  .76 
5 x 1 0 ~ ~  .62 . 5 1  .43  .37 

~ 

7.5 	 5X1Ol1 0.988 0.980 0.969 0.958 
5x10 l2  .91  .86 . 8 1  .76 
5 x 1 0 ~ ~  .62 . 5 1  . 4 3  .37 

10.0 	 5X1Ol1 0.988 0.980 0.970 0.958 
5x10 l2  .91 .86 . 8 1  .76  
5 x d 3  .62 . 5 1  .43  .37 

values of p and ne. The optimum wave­
length is shorter for high densities and large 
plasma radii. The optimum value of Pha 
as a function of A, is not always evident 
from the table, since finding this optimum 
would require calculations for  A, less  than 
25 centimeters. For such short wavelengths 
and for a given density, the value of S2 at 

P&aX is closer to 1 so that it becomes in­
creasingly difficult to satisfy the conditions 
for which cold-plasma theory applies. How­
ever, in determining the proper wavelength 
for the current sheet, other factors must be 
taken into account. One of these is ohmic 
losses in the current sheet (coil). For ex­
ample, increasing the wavelength, and there­
by increasing ohmic losses to get an in­
crease in power transfer for a given current, 
makes little sense if the change in ohmic 
loss exceeds the increase in power transfer. 
Second, ion cyclotron wave experiments 
have been plagued by an  undesired coupling 
of power to the plasma. This coupling was 
a result of high E, fields in the plasma, 
which a r e  produced by the voltages across  

the coi (ref. 3). This undesired coupling has been greatly reduced by the use of a prop­
erly grounded electrostatic Faraday shield between the current sheet and the plasma. 
Since the voltage across  the current sheet for a given current is determined primarily by 
the inductance of the current sheet, it may not always be desriable to change the wave­
length (if it should increase inductance) to  get increased power transfer. Furthermore, 
higher coil voltages can cause arcing problems between the coil and the ground points. 

Plasma radius. - Figure 6(a) shows the maximum value of P* as a function of 
plasma radius for several  densities (Ao = 45 cm, s = 10.0 cm). This power transfer 
PLa increases approximately as the 4.5 power of the plasma radius. Examination of 
table I shows that this radius effect changes slightly with A,. Figure 6(b) shows Pkax 
as a function of plasma radius for the case where s equals p (Ao = 45 em). In this case 

pLax increases as the 3. 5 power of the plasma radius. These curves reveal that the 
plasma radius has an extremely large effect on power transfer. 

Dispersion relation for finite electron mass. - For experimentalists, it is useful to  
have a simple expression relating the wavelength of the plasma wave to S2. Using basi­
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(b) Surface current-sheet radius and plasma column outer radius are of 
equal value. 

Figure 6. - Relative power transfer as funct ion of plasma radius. Surface 
current-sheet wavelength, 45 centimeters. 
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cally the same model for the plasma as described in this report, but making the additional 
assumption that the mass  of the electron was zero, Stix (ref. 1) derived the following dis­
persion law that holds, approximately, for all plasma modes: 

2 1n =  

1+<(;)4n2 

For densities less than 1013 per cubic centimeter and for plasma radii  l ess  than 5.0 cen­
timeters, equation (lOc) may be simplified. Let v1 for the nth mode be denoted as vln. 
If B2>> 4C, then 

and for me f 0, 

When boundary conditions were applied to the plasma model, the computer solutions 
showed that J1(vlp) = 0 when I7 = 0. If the arguments of J1(vlp) a r e  denoted as Xn 

2when I'= 0, vln = (Xn/p) 2 . Thus, the relation obtained for the condition I'= 0 is 

1 - (33) 

2
C 

where Xn = 3.83, 7.00, 10. 15, 13.3, 16. 5, etc. ,  for n = 1, 2, 3, 4, 5, etc. 
The finite-electron-mass dispersion equation (eq. (33)) differs from the zero­

electron-mass dispersion equation (eq. (31)) for small values of p, but the two equations
2are identical in the limit of large plasma radius or high density (Le., n e / c  2 >> (Xn/p) 2) 

Equations (31) and (33) a r e  plotted in figure 7. 
A s  noted before, the values of vln and An(kn) when r = 0 a r e  the values obtained 
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Figure 7. - Frequency rat io  as funct ion of electron density for t h e  na tura l  mode w i th  n = 1. 
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Figure 7. - Concluded. 

for the natural modes of a plasma column surrounded by a vacuum. 
The computer calculations of Pt showed that, for some values of p, ne, and Q, 

only the n = 1 mode makes a significant contribution to power transfer. However, for 
other values of p, ne, and 51, and especially for large values of p, several modes make 
a contribution. When several modes a r e  excited in the plasma at one time, it may be dif­
ficult for the experimentalist to make fundamental wavelength measurements to verify the 
existence of ion cyclotron waves. 

Variable Density and A n n u l a r  Plasmas 

The solution for the variable-density cases required a greatly increased amount of 
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computer time; consequently, a more limited 
range of plasma parameters was studied. 
However, enough calculations were made to 
show the effects of radial density distributions. 
Figure 8 shows two density-distribution func­
tions that were chosen to illustrate the effects 
of variable density: the bell-shaped and the 
parabolic. In addition annular plasmas of con­
stant density whose inner radius, P, was one-
half the outer radius, p, were studied. Distri­
butions similar to all three of these have been 
observed in ion cyclotron wave experiments to 
date. 

Table III gives Pt at maximum for a 
plasma radius p of 5.0 centimeters, a 
current-sheet radius s of 10.0 centimeters, 
and a current I of 92 amperes (Irms = 65  A) 
for several peak density values. The results 
a r e  for the three density distributions and for 
constant density. Results for constant density 
from reference 2, where me was assumed 
to be zero, are also presented in table III. 

The effects of including electron inertia-

TABLE III. - POWER TRANSFER AT MAXIMUM AS FUNCTION O F  

PEAK DENSITY FOR SEVERAL DENSITY DISTRIBUTIONS 

[Plasma radius, 5.0 cm; current-sheet radius, 10.0 cm; current-
sheet wavelength, 45 cm; current, 92 A.] 

Peak density, Density distribution 

Constant, Constant, Bell Parabolic, Annular,
cm-3 me = 0 m e # O  	 shaped, m e # O  me#O,  

me $0 J1=2.5 cn  

Power transfer, Pt, kW 

5x10 57.8 26.6 23.2 21.8 
5x10 42.4 31.6 

13.0 17.8 
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t e rms  may be seen by examining table III at high densities (ne = W103 cme3) where the 
dispersion relations (eqs. (31) and (33)) are essentially identical. Hereze ro  electron 
mass and finite mass  give essentially the same value for Pt, max for constant density. 
At lower densities, however, the zero-mass results are too high (by an order of magni­
tude or more for ne < lolo ~ m - ~ ) .  

For the coil configuration of figure 2(a) (p. 18), there are two current branches. If 
the current I in each branch is 92 amperes, as was  assumed for the calculations in 
table III, the total current is 184 amperes. Swett (ref. 3) measured the total resistance 
of a coil of this type and found it to be about 0.3 ohm. Thus, the ohmic loss for 92 am­
peres is approximately 5 kilowatts. This analysis would then predict that power-transfer 
efficiencies for the best cases (me f 0) in table III could be as high as 87 percent. 

In table 111, the use of peak density as a parameter for comparing the different radial 
density distributions was  arbitrary. A more significant parameter might be the volume 
average density given by 

where no is the maximum density in the plasma. For the bell-shaped distribution, 
-
ne = 0.312 no; for the parabolic distribution, Tie = 0.653 no; and for the annular distribu­
tion, ne = 0.750 no. 

In figure 9 Pkax is shown as a function of this  volume average density for the 
constant-density case and for the three variable-density distributions. The points for the 
variable-density plasma a r e  in good agreement with the curve for constant density when 
plotted in this manner. A s  expected from the strong dependence on plasma radius, 
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0 c
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Figure 9. - Relative p e r  t ransfer as funct ion of volume average electron density. 
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power transfer to the hollow plasma is almost as great as that to a constant-density 
plasma with the same outer radius and the same peak density. Apparently, the plasma 
nearest to the coil carries most of the wave energy. 

The importance of the low-density plasma in the tail of the bell-shaped distribution 
is seen by comparing Pt, max for this distribution with that for the parabolic distribu­
tion (in table III) for the same peak density. When the peak density is too high, 
(no = 5x1013 ~ m - ~ )the bell shape is better; but when the peak density is too low 
(no = 5x1011cm-'), the parabolic shape is better. When the peak density is about opti­
mum with respect to  relative power transfer, Pt, max is the same for the two distribu­
tions. The Pt," for a constant density plasma whose radius is 2. 5 centimeters (in­
stead of the 5. 0 cm assumed in fig. 9) is less than that of the bell-shaped distribution at 
all peak densities. Thus, the tail of the bell-shaped distribution is important at all peak 
densities, but more so at high densities. 

The shapes of the curves of Pt as a function of 52 were the same for variable den­
sity as those for constant density if the peaks occurred at the same value of 52 in both 
cases. The widths of the curves are only slightly dependent on the number of modes for 
which there is significant power input; thus, the widths of the absorption maximums de­
pend primarily on the value of 52 at which peak power transfer occurs. 

Different PIasma Modes 

Each term in the sum in equation (19b) is regarded as the amount of power put into 
one of the natural modes of the plasma wave. If the plasma radius is small  (<5.0 cm) 
and the density low (<10l2 ~ m - ~ ) ,the values of k for the natural modes a r e  widely 
spaced; s o  that if kl = ko, the majority of the power goes into the first mode because the 
shape factor Sr(qn) (fig. 5, p. 21) is small  for all kn's with n > 1. When the plasma 
radius is large and the density is high, the kn's are closely grouped, and there can be 
significant contributions to power for several modes. 

It might be expected that, at small plasma radius and low density (where khs are 
widely spaced), a curve of Pt as a function of 52 might show a maximum each time the 
k for one of the modes equaled ko. This would be t rue if Rn were the sdme order of 
magnitude for several modes. However, the calculations showed that Rn increases or  
decreases with n in such a way that only a single significant peak results. This single 
significant peak was found for all constant-density calculations as well as for the variable-
density calculations. Thus, if this is the only manner in which power is transferred to 
the plasma, an experimentalist should see only a single resonance peak in Pt as he 
varies the magnetic field. Of interest with respect to the results is that for large plasma 
radii and high density, Rn is a complicated function of 52 with many maximums and min­
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imums. Because of the complexity in Rn, the modes that absorb most of the power are 
continually changing as the magnetic field is varied. For some instances, it was neces­
sary to calculate contributions from as many as 20 modes to  determine the total power 
absorbed by the plasma. When the power is distributed among many modes, the struc­
ture of the radial variation of the electric and magnetic fields can be quite complicated. 

Effect of Temperature and Coll isions 

Since one of the reasons for the interest in the production of ion cyclotron waves is 
their potential for heating the ions of a plasma, a cold plasma model may seem inappro­
priate. Even when the heating is supposedly localized at a magnetic beach removed from 
the wave-driving portion, some wave damping may occur throughout the plasma. The 
applicability of cold plasma results to a hot, collisionless plasma must, therefore, be 
examined. Stix showed that the dispersion relation for a hot, collisionless plasma re­
duces to that of a cold plasma when 

mi(w - ai)2 
>> 1 

2 ~ T ~ k2 

For a plasma with density ne = 5x1011 per cubic centimeter, peak power transfer 
occurs at S2 M 0.95 and 

22 ~ T ~ k  2 ~ T ~ k  Ti(electron volts) 

Thus, for Ti < 10 electron volts, the cold-plasma dispersion relation is good at low den­
sities, ne = 5x1Ol1 per cubic centimeter. At higher densities, 1 - S2 is larger at reso­
nance, and the cold-plasma dispersion relation may be used at even higher temperatures. 

Under certain conditions, a low-density plasma with a neutral background gas or a 
high-density plasma may become collision dominated. The following expressions for ion-
electron and ion-neutral momentum transfer collision frequencies are given in refer­
ences 4 and 5, respectively: 
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vin = lXl05 p' 

where p' is the neutral gas pressure in microns. For an electron temperature of 1elec­
tron volt, ne = 5x1012 per cubic centimeter, and p' = 2 microns, the ion-electron colli­
sion frequency is 

"ie = 8x10~sec-l 

the ion-neutral collision frequency is 

"in = 2x105 sec-1 

and the ion collision frequency is 

v.
1 

= vie + vin = 2. & l o  5 sec-1 

For an electron temperature of 10 electron volts, vie is even less than 8x104 per second. 
It is probably sufficient to  say that the plasma is collisionless when vi << w/277 s o  

that each ion makes many orbits between collisions. The value chosen for w/2a for the 
calculations in this report was 6. 5x106 per second. Since many other ion cyclotron wave 
experiments in the future may be run at even higher frequencies, the plasma does not be­
come collision dominated unless the density is high and electron- ion collisions predomi­
nate. In fact, at the densities of 5X10l2 per cubic centimeter obtained in this study for  
optimum power transfer (see tables I and n), the plasma may be considered collisionless. 

Wave Reflections 

The calculations in this report were made by assuming the presence of an infinitely 
long plasma column immersed in a uniform magnetic field. Actual laboratory plasmas, 
however, do not satisfy this assumption, in that, at some distance from the wave-
generating current sheets, there may be magnetic mirrors ,  magnetic beaches (regions 
where 0 l), conducting or  nonconducting end walls on the plasma test section, and/or 
other nonuniformities. It is more than likely that some of these nonuniformities will be 
the cause of wave reflections from the region of nonuniformity back in the direction of the 
generating structure. If the ion cyclotron wave is sufficiently damped in these regions, 
the reflected wave is small  and its effect on power transfer is negligible. However, a 
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large reflected wave will pass back under the wave-generating current sheet and may 
cause constructive or destructive interference there, thus altering the power transfer. 
To compare this theory with experiment, reflections should be eliminated. It is expected 
that the most serious wave reflections come from magnetic beach regions, where for low 
ion temperatures the index of refraction knc/w changes most rapidly for only small  
changes in magnetic field. To study these reflections, it is necessary to take into ac­
count the effects of nonuniform magnetic fields; near 51 = 1, hot plasma theory must be 
used. 

CONCLUSIONS 

Calculations of the power transferred to ion cyclotron waves in both homogeneous 
and inhomogeneous plasmas by a Stix coil have been made. These calculations show 
that, for a fixed current-sheet geometry and a constant-density plasma, the power trans­
fer  is roughly proportional to the 4. 5 power of the plasma radius. For equal plasma 
current-sheet surface and column outer radii, the power varies as the 3. 5 power of 
plasma radius (or coil radius). If the total current in the current sheet is assumed con­
stant, there is an optimum wavelength that depends on plasma density and radius. The 
optimum volume average electron density for power transfer is about 5X1Ol2 per cubic 
centimeter . 

For electron densities less than 10l2 per cubic centimeter and for plasma radii  less 
than 5 . 0  centimeters, most of the power is absorbed by the lowest natural radial mode 
of the plasma. For electron densities greater than 1013 per cubic centimeter and for 
plasma radii greater than 7 .  5 centimeter, the power is distributed between several  nat­
ural  modes with the lowest mode not necessarily absorbing the most power. For all 
cases in which calculations were made, a plot of power transfer as a function of magnetic 
field gave only one significant resonance peak, regardless of how many modes were ab­
sorbing a significant amount of power. 

Comparison of the calculations of this report with those of a previous report (NASA 
T N  D-3361), in which a zero-electron-mass dispersion law was used, shows that the 
zero-electron-mass assumption is valid for a particular mode when the plasma electron 
density is high. For an electron density less than per cubic centimeter, the 
zero-electron-mass calculations give significantly greater power transfer than that cal­
culated in this report. 

Calculations for four different radial density profiles show that power transfer to in-
homogeneous plasma columns is high when the volume average density of the plasma is 
near that density for which power transfer is optimum for constant-density plasmas. 

33 




Finally, the applicability of the results presented in  this report  depends on the degree to 
which a laboratory plasma is represented by the model used herein. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 2, 1966, 
129-01-05-09-22. 
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APPENDIX A 

SYMBOLS 

a one-half current-sheet length 

B k2(P + S) - u2- P + - u2 (D2- S2) 
S C2 c2 S 

-B magnetic field vector (time-varying part) 

-B(r) radial dependence of -B 

BO magnihde of Bo 
B superimposed static magnetic field parallel to z-axis-0 

Br radial component of -B in plasma (vacuum) 

Bz axial component of B in plasma (vacuum) 

Be azimuthal component of in plasma (vacuum) 

C 
S 

C 

C velocity of light 

D D' 

D' eq. (5g) 

DO D at peak density 

-E electric field vector 

Er radial component of -E in plasma (vacuum) 

plasma(vac) axial component of -E in plasma (vacuum) 

Eo 	 azimuthal component of -E in plasma (vacuum) 

azimuthal component of finite-coil electric field(EJr,s 
e electronic charge 


Wkn4 radiofr equency- coil- radius correction factor 


g(r) radial density distribution function 


I peak radiofrequency current in current sheet 
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modified Bessel function of first kind (zero order) 


modified Bessel function of first kind (first order) 


Bessel function of first kind (zero order) 


Bessel function of first kind (first order) 


magnitude of -j* 


surface current density vector 


plasma current density vector 


plasma dielectric tensor 


-K - l  

modified Bessel function of second kind (zero order) 

modified Bessel function of second kind (first order) 

plasma wave number 

kn wave number for nth plasma mode 

kO current-sheet wave number 

L L' + 1 

L' eq- (54  

Y linear differential operator, 

plasma column inner radius 


fraction of wavelength covered by one section of Stix coil (see fig. 2) 


tensor, I?@) = det M for annular plasma column 


elements of n/r­

electron mass 


hydrogen ion mass (proton mass) 


number of turns in one section of Stix coil 


electron (ion) density 


"e electron density 
-
ne volume average electron density 


ni ion density 


n 
0 

peak electron density 
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P P' + 1 

P at peak density 

Pt power transfer (see eq. (19a) 

P' eq. ( 5 4  


P* relative power transfer, pt/27ra2j *2 


Pkax maximum value of P* on plot of 

P plasma column outer radius 

P' background neutral gas pressure 

R R' + 1 

R' eq. (54 

Rn eq. (17b) 

Rh eq. (19e) 

r radial cylindrical coordinate 

S S' + 1 

S' eq. (5f) 

S at peak density 

shape factor (see eq. ( 1 9 ~ ) )  

surface current- sheet radius 

Te electron temperature 

ion temperature 

time 

electron vector velocity 

ion vector velocity 

P* against 52 

Bessel function of second kind (zero order) 

Bessel function of second kind (first order) 

axial cylindrical coordinate 

P 
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r 1 , 2 , 3  (k) denominator of eqs. (20), (22), or (26) 

1 KI(kP)
Y 

A 

qn 
B 

ê  
K 

xn 

Vi 
V ie 

’in 

V 2 
1 

2 
v 2  

‘e 

‘i 
52 

‘e 

‘i 
w 

1
-

kP K()(kP) 


boundary condition (see eq. .(25)) 


2(ko - kn)a (es. (194) 


azimuthal cylindrical coordinate 


azimuthal unit vector 


Boltzmann constant 


wavelength of nth plasma mode 


wavelength of surface current sheet 


ion collision frequency 


ion- electron collision frequency 


ion- neutral collision frequency 


-B + 
2 

-B - dB2 - 4C 
2 

electron plasma frequency, (4nneeYme)’/” 

ion plasma frequency, (4mieYmiY2 
u/ai 

electron cyclotron frequency, eBo /mec 


ion cyclotron frequency, eBo/mic 


angular frequency of plasma wave 


unit matrix 
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APPENDIX B 

FUNCTIONS r (k)  AND MATRIX M 

The functions rl(k) (eq. (20)) and the matrix M used for computing r2(k)are given 
as follows: 

For the solid cylinder (Q = 0): 

For the annular cylinder (Qf 0): 

M = (M..) i , j  = 1,2,3,41J 


r2= det M 
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In the preceding expressions for rl and Mij, v1 and v i  were assumed to be positive. 

When v t  or "22 is negative, v 
1,2 is replaced by im,Jo(x) by Io(x), J1(x) by'-

I1(x), Yo(x) by -Ko(x) and Y1(x) by K1(x), where x = i l v f ,  I .y, and y is either p 
or Q .  However, Q and P are not changed. 
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APPENDIX C 

SOLVING FOR NATURAL MODES 

For the constant-density plasma where the electric fields of an infinitely long plasma 
column are known analytic functions of k, the condition r = 0 for natural modes results 
in one equation with k as the only variable. Then, k is varied until this equation is sat­
isf ied. 

For the inhomogeneous plasma, the boundary conditions can be combined so that 
there a r e  two conditions, r = 0 and A = 0, for natural modes, and also two unknowns, k 
and [a3Es(r@1 = E"'. Thus,

r=O 

r = ro+- dk+- dE?l? 
ak aE"' 

A = A o  +-aAO dk+- aAo dEIff 
ak aE"' 

where 

A = A(kb, E;') A. = A(ka, E:') 

The values of r0 and A. are the values of I? and A for a set of trial values of k 
and E"', to  be designated ka and E;'. Setting r = 0 and A = 0 in equations (Cl) 
and (C2) yields two equations and two unknowns, dk and dE"' that may be determined 
by Cramer's  rule: 
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- -  

- -  

arO ar, 

-ro aE"' ak - rO 


aAO 
-Ao aE"'

d k =  
arO arO 

ilk aE"' 

aAO aAO 

ak aE"' 

The value of k is then changed by dk and the value of E;' is changed by dE"'; and 
A. and ro are computed again. This Newton-Raphson procedure is repeated until A. 
and r0 converge sufficiently close to zero. 

Two problems arise when the previous procedure is used: first, because of the na­
ture of and A ,  it is possible that there will be no convergence at all; second, there 
may be convergence, but to the wrong mode. These problems can be overcome by plot­
ting as a function of k, under the single constraint A = 0 for a single set of the 

2values, 51 and He. The I7 = 0 points then give the values of k for the natural mode. 
Since this latter technique takes considerabe computer time, the following procedure was 
adopted:

(1)For a given density distribution g(r), values for 51 and ne2 were chosen and 

the procedure described in the previous paragraph was  followed to find the values of k 
and E"' for the natural modes. 

(2) Tr ia l  values of ka for other values of Qa and IIe2 were obtained from the 
a 

cold-plasma zero-electron-mass dispersion law and from the values computed in item (1): 

(3) These trial values of ka obtained in item (2) and E;' from item (1) could then 
be used in the Newton-Raphson method to find natural modes. 
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