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ABSTRACT

A comprehensive review of the general theory of thermal radiation [rom

liquid and solid propellant rocket exhausts is presented. More than 600 refer-

ences are discussed and almost 500 equations describe the details of gaseous

radiation, radiation from carbon particles, and radiation from aluminum oxide

(A1203) particles. The equation of radiation transfer is derived in detail, and

solutions include the effects of scattering (Mie and Rayleigh), as well as emis-

sion and absorption. The analyses of spectral line broadening and band models

are presented for gaseous radiation, and formation and sizes of carbon and

Ai203 particles are discussed for particle radiation. Numerous methods of

predicting gas and particle emissivities and radiative heating are critically

analyzed, and the most accurate methods currently available are discussed in

detail. Although the application of the general theory is directed toward radi-

ation from the exhausts of the Saturn H-t, F-l, J-2 and RL-10 liquid propellant

engines (for base heating) and of the solid propellant ullage and retro motors (for

stage-separation heating}, the basic theory applies to radiation from the exhaust

of any liquid propellant engine or solid propellant motor.
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TECHNICAL MEMORANDUM X-53579

REVIEWOF THERMAL RADIATION FROMLIQUID AND
SOLID PROPELLANTROCKETEXHAUSTS

SUMMARY

A comprehensive review of the genera/ theory of thermal radiation from

liquid and solid propellant rocket exhausts is presented. More than 600 refer-

ences are discussed and almost 500 equations describe the details of gaseous
radiation, radiation from carbon particles, and radiation from aluminum oxide

(A1203) particles. The equation of radiation transfer is derived in detail, and

solutions include the effects of scattering (Mie and Rayleigh), as well as emis-

sion and absorption. The analyses of spectra/ line broadening and band models

are presented for gaseous radiation, and formation and sizes of carbon and

A1203 particles are discussed for particle radiation. Numerous methods of

predicting gas and particle emissivities and radiative heating are critically
analyzed, and the most accurate methods currently available are discussed in

detail. Although the application of the general theory is directed toward radi-

ation from the exhausts of the Saturn H-l, F-l, J-2 and RL-10 liquid propellant

engines (for base heating) and of the solid propellant ullage and retro motors (for
stage-separation heating), the basic theory applies to radiation from the exhaust

of any liquid propellant engine or solid propellant motor.

INTRODUCTION

Among the many problems which designers of mode:n rockets and

missiles face today are the accurate predictions of radiation and convective

heating from the exhausts from the large main-stage engines and the smaller

ullage and retrorockets during stage separation. Excessive heating from the

exhausts of the first-stage engines in the base region destroyed several of the

early Atlas, Jupiter and Titan missiles during lift-off. On the other hand, too

much insulation for the heat shield in the base region is not desirable because

of the weight penalty this imposes. Thus, it would be advantageous to obtain

the best possible means of predicting this base heating.

Heating in the base region from clustered engines is caused mainly by

radiation at the low altitudes; however, at some intermediate altitude (25,000

to 50,000 feet) reverse flow begins to occur, and convective heating becomes

the dominant mode of heating. For the solid propellant ullage and retro motors,

impingement of the exhaust directly on the vehicle causes an additional heating

problem because of the thermal and kinetic energy transfer from the hot parti-

cles to the surface. This report, however, is concerned only with the radiation



heating from these rocket exhausts. This includes the detailed analysis of the

selective emission of the gases {emitting in certain spectral bands only}, the

near blackbody continuum emission of carbon particles found in exhausts of

hydrocarbon-fueled engines, and the graybody continuum emission {plus scatter-

ing} associated with A1203 particles found in the exhausts of solid propellant

motors.

For the past several years the Thermal Environment Branch in the

Aero-Astrodynamics Laboratory at NASA/Marshall Space Flight Center (MSFC)

has been analyzing, both theoretically and experimentally, the effects of heat-

ing to the base of the Saturn booster stages (S-I, S-IB, and S-IC} and upper

stages {S-IV, S-If, and S-IVB} caused by the exhausts of the hydrocarbon-

fueled H-I and F-i engines and the hydrogen-fueled RL-10 and J-2 engines. For

the past two years this branch has been analyzing the effects of heating to various

components and structures exposed to the exhausts of the Saturn solid propellant

ullage (S-II and S-IVB) and retro motors (S-I, S-IB, S-IC, S-If, S-IVB, and

Centaur). In recent months various presentations have been made and publica-

tions written by members of the Thermal Environment Branch and its associated

contractors on the general subject of the thermal environment of the Saturn

vehicles caused by the exhausts of both liquid and solid propellant rockets.

At the American Institute of Aeronautics and Astronautics (AIAA) Second

Propulsion Joint Specialist Conference held at Colorado Springs, Colorado, in

June 1966, Farmer et al. [1], Chu, Neimann, and Powers [2], and D'Attore,

Nowak, and Thommen [3] presented analyses of flow fields from plumes of

liquid propellant engines; Huffaker [ 4] and Carlson [ 5] presented, respectively,

analyses of radiation from liquid and solid propellant exhausts; Rochelle [6]

discussed experimental measurements and the theoretical correlations of heat-

ing (radiative, convective, and particle impingement) in Saturn solid rocket

exhausts; and Hendershot [7] and Hopson and McAnelly [8]* discussed base
\

region thermal environments from the exhausts of clustered nozzles. Earlier

this year, Payne and Jones [9] had an article published in the AIAA Journal
which summarized the Saturn I base thermal environment from the exhausts

of the H-1 engines to the S-I stage base region and from the exhausts of the

RL-10 engines to the S-IV stage base region. Wilson [10, 11] late in 1966

presented applications of the short-duration technique developed at Cornell

Aeronautical Laboratory (CAL), under contract from this branch for predicting

heating to the Saturn vehicles from exhausts of scale models of the Saturn liquid

and solid propellant rockets.

* Propulsion and Vehicle Engineering Laboratory, MSFC.
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This report presents a comprehensive review of the general theory of
radiation from rocket exhausts anddiscusses the most current methods avail-
able for predicting radiation heating as developedby this branch, its associated
contractors, andother agencies. More than600 documentshave beenreviewed,
and nearly 500equations are presented which pertain to the general theories of
gaseous radiation, radiation from carbon particles, andradiation from A1203
particles. This is believed to be the most comprehensive survey presented on
this subject, although Beheshti and Thibbodeaux[12] and Robertson and Usher
[13] have recently published summaries of various methods of predicting radi-
ation from rocket exhausts. Several years agoCarpenter, Foreman, and
Goldstein [ 14] presQnteda detailed review of rocket exhaust radiation andpre-
sented numerous references through the endof 1957.

Many Thermal Environment Branch contractors have contributed to the
radiation programs mentioned in this report. For the gaseousradiation analysis
some of these contractors include General Dynamics/Convair at SanDiego,
California; Rocketdyneat CanogaPark, California; Warner-Swasey at Flushing,
New York; Brown Engineering at Huntsville, Alabama; and Hayes International
at Birmingham, Alabama. RocketdyneandGeneral Dynamics/Convair have
contributed extensively in the analysis of radiation from carbon particles.
Aeronutronic at Newport Beach, California, has beenchiefly responsible for
the A1203particle theoretical radiation programs. Heat Technology Laboratory
at Huntsville, Alabama, andHayes International (using instrumentation from
Hayes and from Block Engineering at Cambridge, Massachusetts) have been
responsible for radiation measurements obtainedfrom exhausts of both solid
and liquid propellant rockets. The stage contractors - Boeing at Huntsville,
Alabama, and New Orleans, Louisiana (S-IC stage) ; Chrysler at New Orleans,
Louisiana (S-IB stage) ; North American at Downey, California (S-II stage) ;
and Douglas at Huntington Beach, California (S-IVB stage), as well at MSFC's
Propulsion and Vehicle Engineering (P&VE) Laboratory (and its contractors,
Rocketdyne, United Technolog_Center at Sunnyvale,California, andthe
University of California at Berkeley, California) - have all madevaluable
contributions to the radiation heating problems associated with the Saturn
vehicles. Lockheed at Huntsville, Alabama, has been responsible for the
development of the flow-field (method-of-characteristics andthermochemical)
programs used by MSFC and many contractors for the radiation analyses.
Aeronutronic has combined the Lockheed single-phase program with its two-
phaseprogram to handle the radiation from the A1203particles.

Experimental programs sponsoredby MSFC involving radiation measure-

ments have been performed in altitude cells at Arnold Engineering Development

Center (AEDC) at Tullahoma, Tennessee, for the S-II and S-IVB ullage and



S-IVB retro motors andJ-2 engines {all full-scale), and scale models of H-1
engines (on the S-I and S-IB stage} with external flow. Experiments on radiant
baseheating from the exhausts of model F-1 engines (on the S-IC stage) have
beenperformed at Lewis ResearchCenter, Cleveland, Ohio, in transonic and
supersonic wind tunnels (at altitude}. Radiation measurementshave also been
made in altitude cells at Cornell Aeronautical Laboratory (CAL} at Buffalo,
New York, which involved scale models of H-l, F-l, J-2, and RL-10 engines
and S-II and S-IVB ullage and S-I, S-IB, _-IC, and S-II retro motors. Measure-
ments of plume radiation have also beenobtained in altitude Cells at the
OrdnanceAerophysics Laboratory (OAL) a_Daingerfield, Texas, for the S-I!
ullage motors and at MSFC's Test Laboratory for the Centaur retro motors.
Sealevel radiation measurementshave been obtained at MSFCVsTest Labora-
tory for the J-2, H-i, and F-1 engines (including a static firing of the S-IC
stage whichhas five F-1 engines), andtotal heating measurements were obtain-
ed at Rocketdyneat McGregor, Texas, on objects placed in an S-II ullage motor
plume 20 inches from the nozzle exit.

This report is primarily concerned with the development of the theoreti-

cal aspects of radiation from rocket exhausts, although in various places experi-

mental data (some of which are compared with the theoretical calculations} are

discussed. In general, the radiation discussed here occurs il_ the i,ff,at'cd

(k > 0.8p) portion of the spectrm_l, although occasionally radiation in the visible

and ultraviolet will be discussed. The details of plume gas dynamics, while

important in the analysis of radiation, are aot discussed except for the effective

particle temperatures (two-phase flow} associated with radiation from solid

propellant rocket exhausts. Also, form factors are not discussed in detail,

although references are included in various sections which describe their

analysis.

The equation of transfer of radiation, including the process of absorption,

emission, local thermodynamic equilibrium, and scattering, is derived first,

and certain solutions to this equation based upon various simplifying assump-

tions are discussed. In the analysis of gaseous radiation, radiation from an

accelerating charge as it relates to the Lorentz line shape (important in the

analysis of band models) is discussed; the shape and broadening of spectral

lines is then considered; various band models (such as single-line, Elsasser,

statistical, random Elsasser, and quasi-random) are described; and, finally,

various method_ of predicting gaseous radiation from rocket exhausts are

presented.
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The next major section considers the analysis of radiation from carbon
particles (such as found in exhausts of H-1 and F-1 engines). In this section,
the formation of carbon particles in luminous flames (including rocket exhausts),
the determination of carbon particle sizes and the carbon dispersion equation
are analyzed; then, the Rayleigh scattering theory as it applies to scattering by
carbon particles is developed. Various methods of predicting carbon absorption
coefficients and em__ssivitiesare then described and finallycalculations of

radiant heating in luminous flames and rocket exhausts are discussed.

Radiation from AI203 particles (such as found in exhausts ofsolidpropellant

motors) is analyzed and a detailed discussion of the Mie theory of scatter-

ing by these particles is given. Alumina (A1203) particle sizes and distributions,

inciudingthe combustion of aluminum powder toA1203 particles, are then consid-

ered, and various methods oi predicting the A1203 particle cloud emissivity are

described. The determination of A1203 particle cloud effective temperature is

discussed briefly. All of these items are then combined to analyze various

methods of calculating radiation from aluminized rocket exhausts.

Since this report has been abstracted from a large number of sources

and references, m_its of measure used by the authors are retained. Conversions

to S.I. units are not made in order that the work of these authors be accurately

presented and remain intact.



EQUATION OF RADIATION TRANSFER

The fundamental equation of radiation transfer as it pertains to radiation

from both gases and solid particles, such as carbon or A1203, is derived in this

section. The spectral intensity is discussed, followed by a discussion of absorp-

tion, emission, local thermodynamic equilibrium, and scattering. The equation

of transfer is derived, and solutions to this equation with certain simplifying

assumptions are given.

This discussion is based upon a number of classic textbooks on radiation

transfer theory and astrophysics, as well as on several recent documents which

derive the equation of transfer and/or give some of its solutions. The textbooks

consulted were Chandrasekhar [15, 16], Busbridge [ 17], Kourganoff [ 18],

Ambartsumyan [19], Hopf [20], Wooly and Stibbs [21], Sobolev [22], Rosseland
[23], Pal [24], and Goody [25]. The documents consulted included Samuelson

[26], Viskanta [27,28], Love [29], Love and Grosh [30], ViskantaandGrosh

[31], Seay [32], Brown [33], Bartkyand Bauer [34], Laiand Purgalis [35],

deSoto [36], Goulard [37], Sampson [38], Tellep and Edwards [39], Hansen

[40], Ueno et al. [41], and Churchill et al. [42]. Most, but not all, of these

authors included the effects of scattering in their derivations of the equation of

transfer. In the analysis to follow, the salient features in each of these deri-

vations are put together to formulate the equation of transfer for use in rocket

exhaust radiation applications.

Spectral Intensity of Radiation

This section discusses the spectral intensity as it relates to the spectral

energy dE x or spectral radiant heat transfer rate qx" The spectral energy
dEN is defined as the radiant energ_y absorbed, emitted, or scattered in the

wavelength interval (X, X + dX), in a time interval (t, t + dt), passing through

the solid angle de0 and the unit area normal to the surface dA. This quantity

is expressed as

dEk = Ix_. _dc0 dt dA dX = Ix cos0 dco dtdA dX (1)

The spectral heat transfer rate qx from a rocket exhaust, which is
analogous to the integral of equation (1), is also related to the spectral inten-

sity Ik and can be written in the form
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qx/A = f Ix cos0 dw (2)
C0

The total radiation heat transfer rate wottld then be the integral of qx/A
over the entire spectrum. The spectral intensity IX, which is sometimes

denoted by I v (frequency dependent), is also called the specific intensity or
monochromatic intensity and is usually written in units of Btu/ft2-sec-micron -

steradian or watts/cm2-micron-steradian. This intensity at point P, in the

direction _, is related to the polar angle 0, azimuthal angle q_, element of

solid angle dw, element of surface area dA, and normM to the surface area
_.x

n, as shown in Figure 1.

I X in direction of _'

dA

0

P \

FIGURE 1. SKETCH OF SPECTRAL INTENSITY OF RADIATION

The spectral intensity is in general a function of wavelength X, of time

t, of solid angle co, (or direction cosines l, m, n), and of position coordinates

x, y, z, and thus can be written as

Ix= Ik (x, y, z;l, m, n; t) . (3)

7



The integrated intensity I
sity IX andcan be written as

is merely the integral of the spectral inten-

f0 °
Ix = ix dk. (4)

Absorption

As a pencil of radiation travels through matter (such as a rocket exhaust)

it is usually weakened by absorption. If the decrease in spectral intensity is

dlk, and the coefficient of absorption is KX, then the following relation (experi-
mentally proven) holds true:

dI X =-K XI k ds , (5)

where s represents the distance traversed along a pencil of radiation as shown

by the vector s in Figure 1. This expression is valid for both line and contin-

uous absorption. The coefficient of absorption can also be expressed in terms

of a mass absorption coefficient n as
m,X

n k = p Km, k , (6)

where p is the density of a rocket exhaust at a particular point in the plume.

Also, the notation _u for the frequency-dependent absorption coefficient is
sometimes used. (See the section entitled "Gaseous Radiation," and subsection

"Band Models. ")

The absorption coefficient is a property of the particular rocket exhaust,

and in general, depends upon temperature, pressure, and exhaust gas compo-

sition, in addition to wavelength and time (for non-steady-state conditions).

The absorption defined in this section is designated as "true absorption," that

is, absorption which may be converted into heat which may be emitted at another

wavelength. Some authors prefer to consider another type of absorption as

scattering, which is merely the redistribution of incident energy into another

direction but at the same wavelength. Scattering is discussed in detail later in
this section.
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An example of "true absorption" is the absorption of radiation of fre-
quency Umn corresponding to a quantum transition from the lower state m to the
higher state n of the atoms comprising the particular medium. This transition

can be represented according to Bohr's Theory as

hv : E - E , (7)
mn m n

where h is Planck's constant, Umn = C/kmn (where c is the velocity of light),

and E and E are energies of the higher and lower states, respectively.
m n

A further coefficient, Bmn , which is associated with absorption, is
known as the Einstein absorption coefficient or the Einstein transition probability

and is defined in the following manner:

B Ikmn
mn

= probability per unit time that an atom in state m

absorbs a photon of energy hu and goes to state
mn

n with intensity Ik
inn

By assuming a purely absorbing medium and integrating equation (5)

with insertion of equation (6), a new quantity called the optical depth _'X may

be defined. The integration of equation (5) is known as Beer's equation and

may be written as

Ik(s ) = Ik (0) exp (-f SpKm, X ds) ,
0

(8)

where Ix(s) is the intensity after the radiation has traveled a path s through
the medium. Equation (5) is usually written in the form

-T k
ix(s) = Ix(o) e ,

(9)

where the optical depth of the medium is

S

= f PKm,k
0

ds . (lO)

A more general relation for optical depth is derived in the subsection

entitled "Scattering," where the effects of scattering are included.



Emission

The process of emission of radiation from a medium such as a rocket

exhaust can be characterized by an emission coefficient ix" This coefficient

is defined as the spectral radiant energy rate dqk, emitted by an element of
mass dm in the solid angle dw during the time interval (t, t + dt), and in the

wavelength interval (k, k + clk), and is given as

dq k

Jk -dm dco clk (11)

The emission coefficient depends on {he wavelength, location of unit

volume, exhaust gas composition, temperature, and time (for non-steady-

state conditions). In general, there are two types of emission processes:

spontaneous emission and stimulated (or induced) emission.

The first type of emission occurs when atoms in a higher state, n,

undergo a quantum transition to a lower state, m, emitting a quantum of energy,

hpnm. For this spontaneous emission, another emission coefficient, Anm , can
be defined. This coefficient is known as the Einstein spontaneous emission co-

efficient or Einstein spontaneous transition probability, and is defined as the

probability per unit time that an atom in state n makes a transition to state m.

Stimulated emission (sometimes referred to as negative absorption)

occurs when the transmitted intensity becomes greater than the incident inten-

sity. This process occurs when a condition is artificially created in which the

number of atoms per unit volume N n in a higher-energy state exceeds the num'-

bet of atoms per unit volume N m in a lower-energy state. This is aCcomplish-
ed by adding energy either by absorption or collision. The stimulated emission

then takes place when the atoms drop to the lower states and emit photons cor-

responding to an energy difference between the two states. When an atom in

the state n has been exposed to radiation of intensity Iknm, it is possible to

define a stimulated emission transition probability per unit time as Bnm, such
that

B Iknm
nm

---probability per unit time that the atom makes the

n--*m transition and emits energy in the direction
of I

nm

i0



Stimulated emission is very important in the new science of lasers,
which are discussed by Garbuny [43], Brown [44] , and Lengyel [45]. Successful
application of a laser requires the utilization of a system of molecules or atoms
in excited states in sucha manner that the stimulated emission processes
(obtained through population inversion) are enhanced_hile the energy losses
are kept low enoughto produce an amplification greater than unity.

Local Thermodynamic Equilibrium

Through the concept of local thermodynamic equilibrium (LTE), estab-

lished by Kirchoff, it is possible to relate the emission coefficient Jk to the

absorption coefficient KX and to the Planck blackbody intensity of radiation

Bk(T ) . This quantity, Bk(T), will be derived in terms of the transition prob-

abilities Anm , Brim , and Bmn , defined above.

Kirchoff stated that, in general, any closed system which is not experi-

encing any change with time is in local thermodynamic equilibrium. That is,

in the system the temperature is everywhere constant, and if the system contains

more than one substance, it must also be in chemical equilibrium such that there

can be no sudden change in internal structure. Furthermore, the system must

be in mechanical equilibrium such that there can be no macroscopic movement

within the system itself and also between the surroundings and the system.

Kirchoff also postulated that, if Ik is the intensity at any point in the

medium whose refractive index is nk, then Ik/n _ is a constant value through-

out an enclosure containing the medium. He also stated that the quantity

Jk/(n_ gm, k), which is constant throughout any one enclosure, is the same for
the other enclosures at the same temperature and is auniversal function of

temperature. This relation is expressed by the Kirchoff Law

Jk n2 B (T) (t2)= _. Km,k k

The Planck blackbody function Bk(T) may be derived in terms of the

Einstein transition probabilities Anm, Bnm, and Bmn in the following manner

as discussed in a previous report [46]. A more detailed treatment of transi-

tion probabilities is found in the classic paper by Milne [47]. The total emis-

sion (sum of spontaneous plus stimulated) may be expressed as
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N
n

- (A + B I ) h u , (13)JX p nm nm X nm
nm nm

where p = density of the medium and Nn = number of atoms per unit volume in
the state n.

The absorption coefficient may be written as

N
m

KX - B h u (14)p mn nm'
nm

where N denotes the number of atoms per unit volume in the state m.m

Since an equilibrium between energy states and radiation exists such

that, per unit time, as many atoms are raised from state m to state n with

the absorption of a photon as undergo transition from state n to state m with

subsequent emission of a photon, it is possible to write

N (A + B I ) = B N I (15)n nm nm X nm m X
nm nnl

This implies that the processes n_m and m--*n occur at equal rates.

The resulting equation for IX is
nm

A
nm 1

T
(167*k - B [(Nnm nm m Bmn/Nn Bnm) -1]

From Maxwell-Boltzmann statistics, the following relation applies:

Nm gm _ _

Nn - gn exp ._- [(En - Em)/(kT)] _ - gn exp (ch/XnmkT) , (17)

where gm and g are the degeneracies (or statistical weights) of the m and nn
states, respecti_/ely, and k is Boltzmannts constant.
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By combining equations (16) and (17), the following equation for the
blackbody radiation intensity is obtained:

A
nm 1

l

- B ( gn ) exp (ch/X kW) -1 = BX
(W)

nm nm Bnm gm/Bnm nm nm (18)

as
Another expression for BXn m(T) can be obtained from quantum statistics

2c2h 1 2 C 1 1

I - X5 [exp (ch/XkT) -1] - X5 [exp(C2/kT) -1] = B (T)
nm Xnm

(19)

Thus, it may be seen that

2c2h Bmn gm
- - i . (20)

Anm/Bnm X5 and Bnm gn

By noting that uX = c and

B (T) du=-B (T) dXor B (T) -
)t u

_2

c2 Bx(T) , (21)

equation (19) can be written in terms of the frequency as

2hu 3

Bu(T) =c[exp (hu/kT) -1] (227

Hence, equation (12) can be written as

i 2c2h 1 t (23)
JX = n_ Kin, x t X5 [exp (ch/X kT) -1] )

or in terms of the frequency, u, as

13



2 1 2hvaJv = r_x Km, v [exp (hv/kT) -1]
(24)

The Planck blackbody function behaves differently at the two extremes

of the spectrum [)t_oo(v-_0) or X---0(v->oo)].

For the first case (Rayleigh-Jeans distribution) :

Bx(T) = 2kTc/k 4 or By(T) = 2kT_2/c 2 .

_.--, _o v-,-0

(25)

For the second case (Wein Distribution) :

Bx(T) = (2hc2/)t 5) e -hc/kkT or B (T) = (2hv3/c 2) e -hv/kT
V

_.--,- 0 v --,-oo

(26)

By integrating equation (19) over wavelength or equation (22) over

frequency, the following equation results for the intensity of blackbody radiation

B(T):

oo (rB

B(T) = B_(T) dk- lr , (27)

where aB is the Stefan-Boltzmann constant and is equal to

2_ 5 k 4

(_B - 15 c2h 3
(28)

Scattering

If there are particles in a medium (having a radius of the order of 100

or so), a pencil of radiation of intensity Ik may be weakened not only by absorp-
tion, but also by scattering. This scattering phenomenon includes the combined

effects of reflection, refraction, diffraction, and transmission of radiation by
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the particles. In the exhaust of hydrocarbon-fueled rockets, scattering of radi-
ation by carbon particles whoseradii are muchless than the wavelengthof radi-
ation is characterized by the Rayleigh theory of scattering. In the exhaust of
aluminized solid propellant rockets, scattering of radiation by A1203particles whose
radii are of the same order of magnitudeas the wavelengthof radiation is char-
acterized by the Mie theory of scattering. These theories are described in
detail in the sections entitled "Radiation from Carbon Particles" and "Radiation
from A1203Particles, " respectively.

The type of :scatteringconsidered in this section is single scattering.
Problems in multiple scattering, briefly discussed in the section entitled "Radia-
tion from A1203Particles," involve the scattering of a diffuse field of radiation
by very large numb_,rsof partich_s which in turn absorb and scatter radiant
energy originating or scattered from other particles. Also, only coherent scat-
tering, i.e. , scattering in which the absorbedquantumis re-emitted in the same
wavelength, the re-emitted and ,absorbed quanta differing only in direction, is

considered in this analysis.

A scattering coefficient a k may be used to characterize a medium if,
from a pencil of radiation incident on an element of volume of height ds and

area dA, the amount of energy scattered from it in all directions is

(5k IXcos0dA dsde) dR dt , (29)

in which a mass scattering coefficient a can be defined as
m, X

(_X= p ¢rm,k . (30)

Since the mass of the element of volume is

din= pcos0dA ds , (31)

expression (29) may be written in the form

I dmdw dkdt.
m,k k

(32)
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Theradiant energy scattered from a pencil of radiation will contribute
to the radiant intensity in another direction. To assess fully the overall effects
of scattering, it is necessary to account for the direction of scattering. In
general, a phasefunction, p(cos ®), may be defined to account for the direc-
tional dependenceof scattering. This function may be called a scattering function
or an amplitude function and may be written differently [such as p(0, qS;0', qS') ]

by various authors. The coordinate system for the phase function used in this

analysis is shown in Figure 2.

Z

PC = Y

X

FIGURE 2.

\
\

\
\

\
\

SKETCH OF COORDINATE SYSTEM FOR RADIATION

SCATTERED BY A PARTICLE

The phase function will be represented in the following manner by observ-

ing Figure 2. The rate at which energy is scattered by the element of mass dm

from a pencil of rays of intensity I. (s,_,_) in the direction (#,_) and having
A.

a solid angle dw with a wavelength mterval (iX into a solid angle d¢_' in the

polar direction 0' and the azimuthal direction q_', is

16



do.) v

(rm,k A--I'(s'#'_) p(cos ®) _ clh do9 dm. (33)

The angle 6 is the scattering angle between the incident intensity IK

(s, #, qS) and the scattered intensity I)_ (s, p', _') whose cosine may be deter-
mined as

(34)
1 1

cos@ =cosO cosO'+ sinO sinO' cos(q)'-qS)= ##' + (l-#2)_(l-#'2)2cos(qS'-gb)

where #= cos0 and #' =cos0'.

do)'

Furthermore, the quantity p(cos 6) 4-7r is a probability function which

expresses the probability that a photon in the wavelength interval dX incident

on the element of mass dm, from a direction within the solid angle do), char-

acterized by angles 0 and _b, will be deflected into a direction within the solid

angle do)' characterized by the angles 0' and _b'

The rate of loss of radiant energy from the pencil of rays caused by

scattering in all directions may now be written as

47r dw___['
_m,k dk dm do)Ix(s,#,gb) fp(cos (35)

0

This formulation agrees with expression (32) ff

f47r do)____'p(cos ®) 47r = 1; (36)
0

that is, if the phase function is normalized to unity. However, it must be

stated that equation (36) applies only for no absorption and for perfect isotropic

scattering; i.e., the magnitude of the radiation intensity is independent of the

scattering angle 6.

In the general case where both true absorption and scattering are present,

equation (36) is less than unity. An albedo for single scattering _o may there-
fore be defined as the fraction of radiation lost from an incident pencil of radi-

ation. Hence, 1-w o would be the remaining radiation transformed into other
forms of energy or of radiation of other wavelengths. The albedo for single

scattering is thus defined as

17



f4_ dw' -- _ < i ,
p(cos@) 4_ =Wo= fim,k -0

(37)

where a mass extinction coefficient flm, k has also been added. This mono-
chromatic mass extinction coefficient is equal to the sum of the monochromatic

mass absorption and scattering coefficients, as

flm,k = K + (_ (38)m,k m,X

For anisotropic scattering the phase function may be written in terms of

the Rayleigh phase function (if the radii of the particles are very small com-

pared to the wavelength) as

p(cos®) =3/4 (1 + cos2®) (39)

It may also be written in terms of the Mie coefficients if the radii of the parti-

cles are of the same order of magnitude as the wavelength (discussed in the

section entitled "Radiation from A1203 Particles"). The phase function may

also be expanded in a Legendre polynomial series as

oo

p(cos ®) = ?, Wn Pn (c°s _) '
n= i

(40)

such as used by Churchill et al. [48], Chu and Churchill [49], and Br.own [33].

Formulation of the Equation of Radiation Transfer

The results of the five previous sections will now be put together to form

the equation of radiation transfer, which describes the radiation field in an

isotropic medium. This medium absorbs, emits and scatters thermal radiation

at a wavelength k. In deriving this equation, it is necessary to consider four

classes of photons, two of which are lost from the radiation field in the direction

(#, q)) by scattering and absorption, and two of which are gained by the radiation

field inthe direction (#',qS')by scattering and emission. Figure 2 should be

used for the following discussion.

18



The first class of photons considered is that made up of photons incident

upon the element of mass dm, in time dt, and in the direction (#,(p) contained

in the solid angle de0 which is singly scattered into the solid angle do)' in the
direction (#', qb') by interactions with particles in the mass element dm. The

loss of radiant energ3z is given as in equation (35) with the change that the phase

function p(cos G) will be written p(#,q_; #',¢'), denoting scattering through the

angle between the directions (#, qb) and (p',qb'). Also, the solid angle dco' is

set equal to sin 0'd0'dqb' Hence, the rate of loss of radiant energy caused by

scattering may be written as

2_
47r dm dX'dw I)t(s,#,q_ ) dO' d(p' (41)

0 0

This relation may be simplified if equation (36) is used to choose a phase
function such that

14Tr f P (p' _;P'
0 0

,0') sin0' dO dqS= 1 . (42)

In this case, equation (41) may be written similarly to equation (32) as

s,p,_5) dm dXd_m,k Ix( (43)

The second class of photons is that incident upon dm in time dt and

direction (p, q_) contained in the solid angle dw and absorbed by the individual

particles in the mass element dm. The rate of loss of energy by absorption

may be expressed similarly to equation (32), with the mass scattering co-

efficient being replaced by the mass absorption coefficient as

Kin, x I)t(s,p,_) dm d_t dco . (44)

The third class of photons considered is that incident on the mass element

dm, in time dt and in the direction (#', qb') contained in the solid angle de0',

which is singly scattered in the direction (#, qb) into the solid angle dco. This

change in energy is actually a gain whose rate of change may be expressed as
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7r_27r
4. dmdkdco f0 f Ik(s'#"q)') P(P'_;#"q_') sin0' dO' dq_'

(45)

The fourth class of photons is that thermally emitted from the particles

contained in the mass element dm, into the solid angle do) in the direction

(p, ¢) during the time dt. This change in energy also represents a gain whose

rate of change is expressed as

Jk dm dw dk. (46)

Calculation of this contribution may be modified by considering the ele-

ment of mass to be located in a perfectly insulated isothermal enclosure which

is maintained at a constant equilibrium temperature, T. Since within the en-

closure the radiation field is isotropic and is in equilibrium with its surrom_dings,

the rate of energy which would be emitted from dm in the wavelength inte_-cal

(k, k + dk) and in the direction (_, qS) contained in de0, upon an instantm_eous

removal of the enclosure walls, is

n_Km, k Bx(T) dm dk dw (47)

where equation (12) has been used.

These four classes of photons or changes in energy may be smnmarized

as follows: (1) scattering of a fraction of incident photons into de0', or redirec-

tion of a fraction of incident energy into d¢o' (loss) ; (2) absorption of a fraction

of incident photons coming from do) or decrease in incident energy (loss) ; (3)

scattering of a fraction of incident photons into d¢o or redirection of a fraction

of incident energy into dw (gain) ; and (4) emission of photons from the mass

element dm into dw or increase in energy (gain).

The sum of the above changes in energsz should be equated to the net

change in radiant energy crossing a cylindrical element of cross-section dA and

height ds. The net change in radiant energy crossing the faces normally in the

wavelength interval (k, k + dk), in time dt, and confined to the element of solid

angle d¢o is given by

dI
k I I'L

ts'#'¢Jdk dw dA dt. (48)
dt
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The total derivative may be written as

dlx(s,#,e)= ....OIx (s,#,_b) + c Ok (s,#,_b) . (49)
dt at 0s

The quantity dm occurring in equations (43), (44), (45), and (47) may

be written as dm = p ds dA, since in this case of radiation normal to the faces

of a cylinder, the factor cos 0, appearing in equation (31), may be equated to

unity. Also, the quantity ds may be written as c dt.

Thus, equation (49) may be set equal to the sam of equations (43),

(45), and (47), with the result as

(44) ,

o 0--s- = -(am, k m,

k Km, X 4:r 0 0d A. )

c d¢o dXdt pdA . (50)

Cancelling out the quantities cdo) d_ dt dA and assmning steady-state

conditions along the pencil of rays in the direction of the vector _, the equation

of trmlsfer may finallybe written as

dl

dsX(S'P'qb) = -(K x+ crx) Ik(s,g, qb) + n_K x Bx IT(s)]

(_X 7r 2n

+--4n f f0 Ix(s'#" ¢p') p(#,qb;#',_') sin0'd0'dqb' ,

(51)

where the substitutions Kx = p nm, X and a x = p am, x have been made.
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Solutions to the Equation of Radiation Transfer

The final form of the equation of radiation transfer, equation (51), is

an integro-differential equation, the solution of which is quite formidable unless

certain simplifying assumptions are made. The following four simplifying
assumptions are briefly discussed in this section: (1) use of monochromatic

effective absorption coefficient, (2) purely absorbing medium, (3) purely
scattering medimn, and (4) plane-parallel ease.

1. Use of Monochromatic Effective Absorption Coefficient. One simpli-
fying assumption which may be helpful in solving equation (51) is to define a

monochromatic effective emission coefficient, Je,x, as the radiant energy
leaving the element of mass dm in the medium per unit solid angle, per unit
wavelength, and per unit of time as

(T_. (S)

_ --17r [_').Tr [.t vJe,2v (s) =JR (s) + 4---7_ Ix(s , ,_b') p(#,qb;#' 0') sin0'd0'dqb
l

_0 _0
(52)

where jx(s) may be defined from equation (12), if the element of mass dm is
in local thermodynamic equilibrimn.

The absorption and scattering coefficients are assumed to depend on

position s only. When the direction of propagation _" is specified such that

there is no dependence of intensity on #' and 9', equation (51) becomes the

following inhomogeneous linear first-order differential equation in the one
variable, s

dI x (s)

ds --fl(s) Ix(s ) +'Je,k (s) (53)

This equation may be readily solved ff both sides are multiplied by the

integrating factor exp[ f/3 x(s) ds]. Hence the equation takes the form

ds(ll ,(Ix(s) exp[fflk(s) ds] I :Je,k" (s) exp[f/3 k(s) ds] • (54)
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Integration of this equation and division by exp[ _ffix(s) ds] results in
the following solution:

Ix(s) =Cexp[-fPx(S) ds]

+ exp[-fp x(s) ds] fJe,x(S'} exp[ ffx (S) ds] ds'

(55)

where s' is a point along the vector _between s = 0 and s= s,

thickness 7x(s) is

S S

_-X(s) = f fix(s) ds = f (Kx+ crk) ds .
0 0

and the optical

(56)

The constant C can be determined from appropriate boundary conditions.

Equation (557 is still not a true solution of equation (53) unless the effective

emission coefficient Je,x is a known function of the intensity Ix(s). Then
equation (557 would be converted into an integral equation for intensity, for

which an approximate solution could be obtained by numerical integration.

2. Purely Absorbing Medium. For a purely absorbing medium with

very small particles (of the order of the size of molecules), the scattering

coefficient _X is approximately zero, and the index of refraction n x of the

medium is approximately unity; hence, fix _ KX and Je,x _ JX" Therefore,
equation (53) reduces to

dl (s7
X
ds - - KX Bx[T(s) ] + Jx (sT (57)

This equation is sometimes written in the form

1 dlx (s)

Kx ds
_ _ Bx[T(s) ] + Jx(s) ,

( 587
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where the function Jk(s)

Jk(s)

J_(s) -
_x(s)

is Chandrasekhar's "source function" defined as

i59)

The solution to equation (57) or (58), obtained by using an integrating

factor similarly to the solution of equation (53), is

Ix(s) = C exp[-fKk(S) ds]

+exp[-/ Xis)ds /Jx/s') expt is) dsl ds'.
(60)

Using the boundary condition, Ix(s) = IX(0) at s = 0, equation (60)
becomes

-rx(s, 0) s
e + _'jk(s') e-TX(s's') ds', (61)Ix(s) ---_ IxiO )

where the optical thickness Tk(s , s')

S

Tx(S,S') = f, Kx(S) ds.

is defined as

(62)

It might be mentioned at this point that another quantity, the emissivity

at the surface of a medium, cX(_), may be expressed as

(63)

where # = cos0. The emissivity is an important factor in the calculation of

heating rates from rocket exhausts. In general, the principle of conservation

of energy holds such that the following relation is true:
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1 = ax(_) + px(_) + tx(_) , (64)

where ak(_) ,pk(/_), and tx(#) are respectively the absorptivity, reflectivity

and transmissivity of a particular medium. If Kirchoff's law holds,

_x(_) = ex(_) . (65)

In the present case [equation (57)], if no scattering is present, px(#)=0,
and the following expression may be written for the emissivity

_X(/_) = 1 - tx(#) = 1 - e -Tx//_ (66)

Hence, equation (63) may be written as

Ix(0,#) = (1 - e -_x/#) Bx(T) , (67)

where this value of IX(0) would be inserted into equation (61) to obtain the

intensity of radiation entering the medium.

3. Purely Scattering Medium. One other simplified solution of equation

(53) may be obtained if the absorption coefficient Kx(S) is set equal to zero.

This may be the case for a purely (isotropically) scattering medium in which

(S) = ax(s), Kx(s ) = jk(s) = 0, and the phase function p(p,_b;p',_') = 1.
nce, equation (53) takes the form

dIx (s) ax(s) s n_27r dO' .
--d-s--- = - _x(s) Ix(s) + 4----_ f f J Ix(s') ds' sin0' d,' (68)

0 0 0

The solution of this equation is
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Ix(s) = c exp[-f_(s) ds l

J-- exp[-fa x(s) as] fa x+ 47r is') Ixts') exp[f_x(s) dsl ds'

(697

Applying the boundary conditions Ix(s) = IX(0) at s = 0, equation (697 becomes

-r x ( s, O)
Ix(s) = Ix(0) e

1 s' 7r_27r (s s') 0' (70)
+ _ f f J crxis') Ix(s') e -Tx ' ds' sin dO' deS' ,

0 0 0

where the optical thickness Tx(s , S')
is defined as

s

rx(s,s') = f, ax(s) ds. (71)
s

4. Plane-Parallel Case. One final solution of the equation may be

described briefly. This is the plane-parMlel case which has certain applica-

tions in determining the thermal radiation from a rocket exhaust (by dividing

the exhaust into various homogeneous isothermal layers).

In this case the element of length ds will be represented by dz/#, where

p = cos O. The equation of transfer, equation (51), may now be written in the
form

dI
x_(z,_,¢)

# dz = - (KX + _rX) Ix(z' #' _) + Jx (z)

_x(z)

47r
n 27r #'

of oliN(z, ,95'7 p(/_,qb;/_',qb') sinO'dO'dqS'

(72)

If the scattering is isotropic, the integral on the right becomes
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7r_2v 1

Of JOIx(z,#',_') sinO'dO'd¢'=2_flx(z,#'¢')du'.
• -1

(73)

If two parallel planes or layers, z = 0 and z =zl, can be drawn close

enough together, as in Figure 3, in a rocket exhaust such that the composition

between the two layers is homogeneous and at some averaged temperature, the
intensities on the boundaries may be specified as

Ix(z,/_,_ ) = Ix(0,/_,(b) at z = 0, /_ < 0

and (74)

Ix(z,#,¢ ) = Ix(z,#,¢) at z =zl, g> 0 .

Z=O

Z=Z

/,I //I/11/11///////11//i/,4,

?

'/ /// / /// /// /// / //////////t

dz =/= ds

Z

Z - Zt,2/ll/lllllill/lllllll//llillllllllllllllll/llillli /

F = COS 8

FIGURE 3. SKETCH OF COORDINATE SYSTEM FOR PLANE-PARALLEL
CASE

Hence, equation (72) may be written as

dIk (z,/% 0 ) fiX(z) Je,x (z)
-- I (z,#) + , , (75)

dz g k #
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where equation (52) has beenused.

exp

By using the integrating factor

Ik(z,/_,¢) = C exp

+ exp . fie,

, the solution of equation (75) may be obtained as

If flk(Z dz I dz'x(z') exp # P

(76)

Applying the boundary conditions of equation (74), the solution is

[z,Zldz1Ik(zl, #, _) exp P " (77)

+fZlzJe'k(z) explfzZ' fix(z) dzl dz'forO<-p<-l#--

E_ dz]Ix(O,_ , _) exp (78)

zl Iz_Z'flk(z) dzl dz' forl<_#_<O+ ;oJe,k(z) exp

Ix(z,_,(p) =

There are many other ways (including numerical approximations) in

which the equation of transfer may be solved. However, it is not the purpose

of this report to go into all the detailed solutions to the equation of transfer by

various authors. Rather, it is to study the theories of absorption and scattering

and attempt to predict emissivities of the rocket exhausts so that thermal radi-

ation from the exhausts may be calculated.

GASEOUSRADIATION

This section presents gaseous radiation, including band models and

absorption coefficients, from liquid propellant rocket exhausts. The principal

gaseous molecular emitters in exhausts of hydrocarbon-fueled engines such as
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the H-1 and F-1 are CO2, CO, and H20 , while only H20 emits appreciably in

the exhausts of hydrogen-fueled engines such as the J-2 and RL-10. Gaseous

HC1 is also an emitter in solid propellant motor exhausts in which NHtC104 is used
as the oxidizer in the propellant. Gaseous radiation from molecules is a result

of electronic energy transitions in the visible and the ultraviolet wavelength

region, vibration-rotation energy transitions in the near infrared region, and

pure rotational energy transitions in the far infrared region. This type of

radiation is emitted in the form of band spectra as opposed to radiation from

hotter solid particles such as carbon or A1203, which is emitted over a con-

tinuous spectra.

The general subject of gaseous radiation has been discussed by hundreds

of authors in the last 50 or so years, and no attempt will be made to give a

comprehensive treatment of it here. Instead, a generalized review of its

important aspects as applied to rocket exhausts (such as determination of

spectral absorption coefficients) will be given. Excellent references which

review problems in this area include Yossa [50], Huifaker [4 and 51], Ferriso

etal. [52], Thompson [53], Simmons [54], andRitland et al. [55]. Inthis

section the radiation from an accelerating charge will first be mentioned; the

shape and broadening of spectral lines will then be discussed; the concept of

band models will then be introduced; and finally solutions to the equation of

transfer as they apply to radiation from liquid propellant engine exhausts will be

treated.

Radiation from an Accelerated Charge

hi this section the radiation from a charged particle which is accelerated

in an external field will be discussed. An expression for the spectral intensity

will be determined consequently as a function of frequency and electronic charge.

This expression, known as the Lorentz line shape, will be further discussed in

the next section on shape and broadening of spectral lines. The analysis in this

section is based upon classical electrodynamical theory, of which excellent

treatments are by Jackson [56], Panofsky mid Phillips [57], Heitler [58],

Reitz and Milford [59], Marion [60], and Sommerfeld [61].

The equation of motion for a charged particle which is being accelerated

in the _" direction by a driving or external force may be written as

mx= FEXTERNAL + FSELF + FELASTI C . (79)
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Theelastic or restoring force on the charge is

FELASTIc = - GK", (80)

where G is the force constant. The self-force on the charge (the force which
the field producedby the charge exerts on the charge itself) is

2 e2 • .---_.
(81)JeSELF- 3 f x ,

where e is the electronic charge on the particle. The external or Lorentzian

force is

FEXTERNAL=eE+--c × B) , (82)

where _ is the velocity of the charged particle, E is the electric field vector,

and B is the magnetic field vector.

The speed of light c has been introduced into the second term on the

right-hand side of equation (82) corresponding to the Gaussian system of units,

to show that this term may be neglected when u < < c.

If the charged particle is moving with simple harmonic motion, the

quantity x in the self-force term [equation (81) ] may be approximated by

differentiating the expression

as

.-+.
x-- x=- ¢o2 x (83)

m o

x = - w2 (84)
O

where c0 is the natural frequency of vibration (equal to 27r u ).
O O

The external force will thus be written in terms of a harmonic function
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-iwt
FEX T = e_o e (85)

By making the above substitutions, the equation of motion for the charged

particle now becomes

--L

eE
°.

X + _yx + c02 _ o -iwt- e , (86)
o in

where

2 e2 o

"Y - 3 C3 ni ' (87)

and the second term on the left-hand side of equation (86) is thus a dissipative

or radiation damping term.

The solution of equation (86) may be written as

_,=_ __e ( 1 ) -iwto m w 2 - w 2 - iwy e (88)
o

The acceleration of the charge is thus

0 m w2 _ w2 _ iw 7 e (89)
O

The acceleration of the charge can be related to the electric field by the

following equation

__ e
c2r3 [Fx (_X x)] , (90)

where ff is the distance from the radiation field to the accelerating charge.

Through the use of vector calc._us, it can be shown that the term in

brackets in equation (90) reduces to x" r 2 such that the above equation becomes
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-_ e x

E- c2 r (91)

With the insertion of equation (89) for x, equation (91) becomes

-_ -i_te2 (_ce2) E e
- c 2 rm (w 2 2o92 _ icey) o

O

(92)

The above case of an electronic charge which vibrates harmonically

because of an external electromagnetic field, i.e., equation (86), is important

in the classical theories of absorption, scattering, and dispersion of radiation,

and consequently is discussed in more detail in the next section. In the case
below, the intensity of radiation corresponding to a bound electronic charge

following a transient disturbing impulse, but not experiencing a forced vibration,

is derived. This case corresponds to the classical theory of spectral emission.

In this manner, the equation of motion, equation (86), may be written as

x'+Tx+ w 2 x= O, (93)
0

where the vector notation has been dropped for convenience.

The solution to this equation yields a harmonic oscillation with amplitude

Xo, decaying in time as e -(7/2) t in the following form:

x = x e -(7/2)t e -iw°t . (94)
0

The acceleration of the charge is thus

x'=x (-_-2 + ice )2 e-(T/2)te-iceot (95)
0 0

Hence, the radiation field is

E- c2er "'x _ c2re Ix ° (-_-2 + iceo)2 e-(7/2)t e-iceot ] , (96)
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which is a function of the natural frequency o_ .
O

The above equation may be written in the same form as equation (947, as

E = E e -(7/27 e -iwot . (977
O

Since the oscillating charge has been radiation damped, the emitted

radiation intensity will not be monochromatic, but will be broadened and com-

posed of an infinite number of harmonic waves. The line width of this intensity

distribution may be obtained by expanding the electric field, equation (977, in

a Fourier series as

where

+oo -iwt
E = f Eco e dco , (987

E
E - o fe-iCoot -(7/27t iwt

co 27r _ e e dt. (997

Integration of the above equation yields the relation

E
E - o 1 (100)

¢0 27r i (¢o - ¢oo) -T/2

The radiation intensity distribution, Iw, may now be written as

i ]2 __y__ 1Iw _ Ew = Io 27r (w - ¢o )2 + 72/4 (101)
O

The exact relationship between the electric field and the radiant intensity is

expressed by means of the Poynting vector, as discussed in the next section,

subtitle "Rayleigh Scattering Theory. "

Equation (101) may be normalized such that

-_oo

I = f I d (102)
O CO CO
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The parameter 7 in equation (i01) represents the frequency width at
half intensity (sometimes called "natural" half-width) and is written as in
equation (87), as

2 e2 _°2
o (i03}7 = Acoh - 3 c3 m

Equation (101) is known as the Lorentz line shape, further discussions

of which are given in the next two sections on shape and broadening of spectral

lines and band models and absorption coefficients.

Shape and Broadening of Spectral Lines

Before a description of the several types of broadening of spectral lines

is given, it is necessary to smnmarize and discuss briefly the monochromatic

energy transitions between discrete energy levels of a molecule. The total

energy, E, of a molecule may be given according to Baker et al. [71] as

E =E T+ E E+ E R+ E V+ EES+ ENS+ EIE , (104)

where E T represents the translational energy; E E is the sum of the orbital

energies of the electrons; E R is the sum of the rotational energies; E V is the

sum of the vibrational energies; EES is the sum of the electron-spin energies;

ENS is the sum of the nuclear-spin energies; and EIE is the sum of the inter-

action energies among these modes.

Since translational energies in equation (104) occur in a continuum, any

value is possible. However, all of the other energies are quantized and must

be specified by quantum numbers. For a polyelectronic atom, these quantum

numbers are usually designated as the principal quantum number, n, (measures

extent of electron "cloud"), azimuthal quantum number, l, (specifies electron

angular momentum), magnetic quantum number, mi, (gives the component of

angular momentum in a given direction), and spin quantum number, ms, (gives
the component of spin, s, in a given direction). For a molecule, at least two

other quantum numbers (J, the rotational quantum number, and v, the vibra-

tional quantum number) must be considered.
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To understand adequately the fine structure of the infrared molecular
spectrum, it is necessary to consider three types of molecular models. The
first of these is the an_harmonicoscillator which is characterized by a parabolic
potential curve. The secondis the nonrigid rotator which represents a rotating

system composed of two mass points connected by a massless spring. The

third model is the vibrating rotator {or rotating oscillator) in which it is assumed

that both rotation and vibration can take place simultaneously. Since the third

model represents a combination of the other two, only the energy level of this

vibrating rotator is given. This is

1 1 2 1 3

(u J) =¢0e.(V+-_-) -w Xe(V+ + + .hc ' e --2-) _e Ye (V + -2-) ""

(105)

i 1 j2(j+ 1)2++ Be J(J+ 1) - O_e(V +-_-) J(J+ 1) -De j2(j+ 1) 2 _fle(V + __) ..

The terms on the right-hand side of the first line represent the energy

caused by the anharmonic oscillators; the Be and D e terms on the second line

represent the energy associated with the nonrigid rotations; and the a e and fie
terms represent coupling energy associated with the vibrating rotations. The

quantities Xe, Ye, Be, De, C_e, and fie are constants defined by Herzberg [62].

The analysis of energy quantization as applied to atoms and molecules,

of course, belongs in the realm of atomic and molecLtlar spectroscopy, the

details of which will not be given here. Excellent references in this area are

the three books by Herzberg [62, 63, 64], and the books by Penner [65],

Griem [66], Bauman [67], Barrow [68], Bondetal. [69], and Harrisonetal.

[701.

As the temperature of a molecule rises, the translational energy is first

increased; then the rotational states, the vibrationM states, and finally the elec-

tronic states become excited. The quantized energy changes correspond to the

theory of Bohr as stated by equation (7) (repeated for convenience) as

E - E =hv (7)
n m nm

Since the rotational energy change, E n - Era, is comparatively small

(of the order of hundredths of an electron volt), the frequency Unto is small;

hence this type of energy transition occurs only in the far infrared. Vibrational
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energy changes (and associated frequencies) are slightly larger (of the order
of tenths of an electron volt) ; therefore, this type of transition occurs at a
slightly shorter wavelength (near infrared). Electronic energy changes (and
frequencies) are the highest; hence, this wavelength is the shortest, and these
changesoccur in the visible and ultraviolet region. These three types of energy
level transitions may be seen in Figure 4, which shows a typical energy level
diagram for upper andlower excited electronic states in a diatomic molecule.
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FIGURE 4. ENERGY LEVEL TRANSITIONS FOR A DIATOMIC MOLECULE

For atoms in a monatomic gas (uncombined atoms), the vibrational and

rotational energ_¢ states are absent, and the spectrum is merely a sharp, dis-
continuous series of individual lines. For molecules in a more dense gas (such

as a rocket exhaust), the spectrum is made up of a nearly infinite number of

very closely spaced lines (or bands). This band emission of polyatomic gases
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is concentrated mostly in the infrared part of the spectrmn, representing vibra-
tional-rotational andpurely rotational transitions. The radiative intensity from
rocket exhausts in the infrared is consequentlymuchhigher than the intensity
observed in the visible and ultraviolet regions.

Since it is knownthat gaseousemission and absorption do not take place
at a single frequency but occur in a broadenedportion of the spectrum, it is
necessary to establish the factors which bring about this broadening phenomenon
and to discuss briefly someof the types of broadening. In general, there are
three major types of broadening of spectral lines: (i) natural-line broadening
(the finite lifetime of initial and final states caused by spontaneousemission),
(2) Doppler broadening (random Doppler shift as a result of the thermal motion
of the nlolecules), and (3) pressure broadening (perturbations or displacement
of energy levels during collisions of the molecules with adjacent molecules).
Each of the aboveprocesses is discussed belowbased uponthe references of
Marganeau [72, 73], Marganeau and Watson[74], Marganeauand Lewis [75],
Ch'enand Takeo [76], Breene [77,78], Aller [79], Thompson [80], Mitchell
and Zemansky [81], Seshadri andJones [82], Garbuny [43], and Benedict et al.
[83].

1. Natural-Line Broadening. A spectral line emitted by an atom is not

illfinitely sharp because of the phenomenon of radiation damping. (See section

entitled "Gaseous Radiation," subsection "Radiation from an Accelerated

Charge. ") By this damping process, an oscillating, and hence radiating, elec-

tronic charge is continuously losing radiant energy, and its amplitude of oscilla-

tion decreases as the charge continues to oscillate about its natural frequency,

Wo" However, the damped oscillation is not monochromatic, as shown by the

Lorentz profile of intensity, equation (101) (repeated here for convenience) as

I = I _ 1 (101)
co o 27r (co- co )2 +72/4

0

The quantity, 7, which equals Ac0 h, the natural half-width, is also
equal to the reciprocal of the time constant, 7. This equality comes from

Heisenberg's uncertainty principle in quantmn theory

h h
AEAt = hAw_ - Awl- -

2n 2u (106)
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as applied to the transition from an excited (upper) level E n to the ground
state E 1. In this manner there is an uncertainty of energy AE (and hence of

frequency A¢o) associated with a finite lifetime T of the upper level. The life-

time r is very large for the ground state of an atom and very small (~10 -8 sec)

for an excited state. The energy level corresponding to the ground state E 1
will be infinitely sharp, but the excited states will have a natural width. The

actual lifetime in the excited state will not be any longer than the natural life-

time, and according to equation (106), the half-width of the observed spectral

line cannot be any less than its natural width Aw.

Itmust also be mentioned that, ifa transition occurs from a higher level

with a lifetime _'3to a lower level not in a ground state, but one with a lifetime

T2, the resulting uncertainties must add up to

AE = AE 3 + AE 2 (107)

In this case E 1 would represent the ground state. Thus, the resulting half-
width is

1 t
A°_32 =_/32 - +-- = A32 + A31 + A21 , (108)

T3 T 2

where the Amn are the Einstein transition probabilities originally discussed in

the section entitled "Equation of Radiation Transfer. " The natural width P32 is
thus affected by the lifetime of the upper state as well as that of the lower state.

2. Doppler Broadening. Doppler broadening is a major cause of broad-

ening in rocket exhaust gases (especially at very low pressures) and is assoei-

ated with the thermal motion of the atoms in the gas. When an oscillating

charge at frequency v o moves with velocity v x in a direction x to the observer,

the emitted wavetrains arrive at a higher frequency _. This frequency, by

• virtue of Doppler's principle, is

V

v = v (I ---Kx) (io9)
0 C
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From equilibrium statistical mechanics, the fractional number of mole-

cules dn/n moving with linear velocities between v x and v× + dv x may be
written in a Maxwell-Boltzmann distribution as

n -\2?:kT/ xp\ _ dv x ,
(llo)

where n is the total number of molecules per volume, and m equals the mass

per molecule. The intensity distribution, Iv, within the spectral line is pro-
portional to the number of molecules radiating at a frequency, v, and can be
written as

Iu d_ = Io exp "2kT Uo ° dv = Ioexp[-_(v-Vo)2] du , (lll)

where
• !

(mc )Io-- 2 (i12)
0

This Doppler broadening of line intensity thus follows a Gaussian distri-

bution of frequencies of the form exp[-¢(v - Vo)2]. The Doppler width is thus

determined as the increment in frequency for which I -- Io/2 and is given by

!

/XVh=2, [(21n2) k---TT]zo mc 2 (113)

It might be mentioned that the Doppler shiftprinciple has been used, together

with a laser beam, to measure velocitiesof particles in wind tunnels. Discuss-

ions of this technique are reported by Robertson et al. [84], Foreman et al.

[85], and James, Seifert and Babcock [86].

3. Pressure Broadening. Pressure broadening includes several types of

broadening which involve interactions between randomly emitting atoms and mole-

cules, the interactions in each type all increasing with increased pressure. The

two main types of pressure broadening discussed in this section are collision

broadening (including resonance broadening) and Stark broadening. Two general

theories, the statistical theory and the impact (or interruption) theory, are

associated with pressure broadening and are briefly discussed in this section.
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a. Collision broadening. Collision broadening represents the
shortening of an oscillator lifetime by a collision between some light emitting
(ex0ited) atom (or molecule) and another atom or "perturber." In considering

• these interactions betweenan excited atom and its neighboring atoms, a dis-
ti-nctionbetweenthe type of neighboring atom (or molecule) must be made. The
surrounding atoms may be either of the samekind as the excited atoms or may
be of a different kind.

If the surrounding atoms are of the samekind, the possibility of reso-
nance (energy of excitation of one being absorbedby the other) may exist. In
this manner, whenan excited atom passes by an unexcited atom of the same
kind, a finite probability exists that the excitation energy will be transferred
from the first to the secondatom, without the intervention of radiation. This
consequentlyresults in a reduction of the excited atom's lifetime and a corres-
pondingbroadening of the line emitted.

•By classical description of this resonance, each atom is usually replaced

by an oscillator with a single natural frequency, Uo, and a coupling force is
then introduced between two dipoles. This coupling force has the form

Const

Fij- r_.. , (114)
D

where rij is the distance between the ith and jth oscillator. Since, .under the

same interaction force Fij , two unlike atoms result in an inverse 6tn power
dependence (instead of an inverse 4 th power dependence for the like atoms) on

the atomic separation, greater broadening will result from interactions with

like atoms (or molecules). However, it is nearly always assumed that the

number of foreign (different) atoms or molecules surrounding an excited atom

is far greater than the number of like atoms surrounding the excited atom, so

that resonance broadening can usually be neglected.

In the rest of this discussion on collision broadening, it will be assumed

that the broadening is caused by unlike atoms (foreign gas) interacting with the

excited atoms. The original analysis of this type of broadening was discussed

by Lorentz [87]. He assumed that, while an atom is being forced to vibrate

by the incident light wave, its vibrations are suddenly stopped as the atom

collides with the other atoms and the energy becomes wholly kinetic. This type

of process will reduce the total intensity of the line in addition to broadening its

shape. The spectrum of the electrical oscillations is given by the same relation

for radiation damping, except for the increased factor, F, as

4O



F 1
i = i (i15)

o 27r (co - co )2 + r2/4
o

The parameter F is defined as

F=TTR+TCOLL , (116)

where TTR is the spontaneous transition probability, and TCOLL is a collision

frequency given by kinetic theory as

i 2 1

TCOL L = 6.8 × i0I0 dId2 1 +-_2 P(T) -_ (i17)

Here, d 1 and d 2 are the optical collision diameters of the molecules in /k; M1

and M 2 are molecular weights in g/mole; P is the partial pressure in atm; and

T is the absolute temperature in degrees K.

For similar intensities and line widths, the collision (Lorentz shape)

intensity curve has higher values of I/Ima x (plotted versus v) in the wings

than the Doppler (Gaussian shape) curve. Also, it is known that at high alti-

tudes (low pressures) and at high temperatures, the Doppler half-width is

considerably higher than the collision half-width. Ritland [55] presents a

table which shows that, for CO 2 in the 4.3-_ band at sea level and at 273 ° K,

the ratio of Doppler half-width to collision half-width is only 1/30, while at

200,000 feet and at 2000 ° K, this ratio increases to 360. For H20 in the 2.7-#

band at sea level and at 273 ° K, the Doppler half-width - collision half-width

ratio is only i Jl9, while at 200,000 feet and at 2000' K this ratio increases to

600. The_se ratios of Doppler half-width to Lorentz half-width are plotted in

Figures 5 and 6 for H20 and CO2, respectively.

b. Stark broadening. Stark broadening is pressure broadening

caused by the electric polarization of radiation by the electric fields of neighbor-

Lug atoms. This type of broadening, which is very important in plasmas and

ionized rocket exhausts, was originally investigated by Stark [86]. Stark deter-

mined experimentally that spectral lines are split in the presence of electric

fields, and that excited atoms and their neighbors exert a distribution of electric

perturbations on each other. He found that, since a uniform electric field with

strength, E, would split a spectral line into its so-called Stark components, a
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non-uniform field would produce a whole series of Stark components, and thus

result in broadening of the line.

Holtzmark [87], on the basis of the Stark effect, developed a theory of

line broadening which assumed that the radiating atoms are in the electric fields

of ions, dipoles, or quadrupoles. On the basis of this theory, when a spectral

line is under the influence of a given field, the line is perturbed in some pre-

dictable manner. That is, it may be split (linear Stark effect) or shifted

(quadratic Stark effect).
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The linear Stark effect vanishes for all atoms except the hydrogen atom.

For the hydrogen atom a line under the effect of an electric field, E, splits

into two components with a frequency interval A_ST of

3h
A_ST - 8_.2me nkE = aE , (118)

43

I m I



where nk is a quantum number and a is the split width per unit strength. When

a large number of atoms which have an average field, ED, from the surrounding

dipoles is involved, the broadened line has a half-width of

Av h = __T___2_r= aED ' (119)

The line shape is similar to that in Lorentz-type broadening:

TI 21o o aE

I = _ )2 - 4( )2 (120)v (co ¢o + 72/4 7r v - v + (aE) 2
O O

The half-width is thus determined as

AVh=aE D=4.54 an# , (121)

where p is the dipole moment and n is the number concentration of the mole-
cules.

For molecules having a quadrupole moment q in a field of strength, E
the Holtsmark theory predicts the half-width to be q'

AVh= 0.67 aE = 5.52 qn4/3a. (122)q

For ions of number density ni, in a field of strength, Ei, the
Holtsmark theory gives for the half-width

2/3
Av h = 1.25 aE.1 = 3.25 en.1 a. (123)

The quadratic Stark effect appears in non-hydrogen-like spectra, and it

involves a shift of the line (rather than a split) which is determined as

5v= v- v =bE 2 . (124)
O
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The quadratic Stark effect may beanalyzedclassically if it is assumed
that the application of the electric field inducesa polarization, P, proportional
to the electrical field. In this case the polarization is

P = f E , (125)

where f is the polarizability of the atom. The work performed in producing an

increment of polarization dP is therefore

E 1
AW= f fiE dP =-_- fiE 2

0
, (126)

which implies a quadratic dependence on the electric field, E.

c. Statistical theory. The statistical theory of broadening is used

to analyze the broadening phenomenon associated with an emitting atom or mole-

cule which is placed in the midst of an aggregation of broadeners under static

conditions. This theory assumes that the atoms or molecules are stationary

and accom_t is taken of only the static distribution of energy levels during en-

co_mters. The broadenh]g by coupling (Stark effect) results from the statistical

distribution of distances which various neighborhlg atoms may assume with re-

spect to the emitting atom during times presumed to be long in comparison with

that of the emission process.

In analyzing the statistical theory, the Franck-Condon potential curves

should be considered. These curves merely represent two electronic energy

states of a radiating atom plotted versus distance r from another atom. Where

the atoms are at large distances from each other, the two energy levels are

tmdisturbed; however, when the atoms are moved closer together, a strong

repelling force is exerted on each atom. In genera/, the energy difference AE

between the two states is not constant so that the emitted frequency depends on

the instantaneous position, r, of the excited atom. If the atom (or molecule)

radiates when the separation is r, the net change in energy, AE, is

AE = hu = E2(r) - El(r) . (127)

This energy differs from that ordinarily radiated since E 2 - E l will

change with r as a result of perturbations caused by other molecales, and the
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position of the spectral line will be shifted. If a statistical theory is used which
involves a van der Waals force interaction, the static frequency shift is

AE -__
Av- h - rG , (128)

where fl is a constant to be determined.

According to Breene [77], m_ expression may be written for the prob-

ability that the broadening atoms (or molecules) will be so distributed in space

as to distort the natural frequency to a particular value. The intensity in the

resulting spectral line will be proportional to the desired frequency and may be
written as

I(Au) = _/(A_,) -3/2 e-W/A_ , (129)

where

2
7 : 3 = t/2N " (130)

Here N is the density of the perturbers and fl is the van der Waals constant

in equation (128).

The half-width may then be written as

Av h = 0.82 7r72 . (131)

The shift of the intensity maximum for van der Waals forces is then determined
as

2 72A =-_- 7r . (132)
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d. Impact theory. The impact (or interruption) theory is used
whenthe velocities of the perturbing atomsor molecules are so large that the
times of interaction are small compared to the duration of the emission process.
This theory leads to the equation for Lorentz or collision broadening. In this
case it is assumedthat an atom or molecule is absorbing or emitting at a sharp
frequency l,o during the time betweencollisions. Then at the momentof colli-
sion the radiation process stops completely, and the energy of vibration is con-
verted purely into kinetic energy.

A detuning of natural frequency c_o is thus experienced as the perturbing
particle approaches the emitting atom with a uniform velocity, v. Resulting is
a net phase shift 6_ which dependson the inverse power of the separation dis-
lance r as

5c0- C (133)
n

r

where C is a constant. The total phase shift, _, is thus found by integrating

over the duration of the encounter as

+co . +oo dt C

__ ___ (p2 + v2t2)n/2 n-i an 'vp

(134)

where a n is a function of gamma functions and p is a "closest approach"

parameter.

The intensitydistributionof a spectral line may be obtained as a function

of the time between encounters, t, and mean time between encounters, to,

according to Aller [79] as

I =a o_ 1 f sinrr(v_- Vo)t I 2 A l (t35),f -- e -t/t° dt-

v t lr(v 27r _ )2 (2_o) 2
0 o Vo) (v v +

O

where A is determined by the condition that

-]-cO

f I(v) dv = I
3 O
--OO

(136)
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According to Wooly and Stibbs [21], the half-width may be obtained from

impact theory as

Yc 1 i P2o_ N (137)AVh- 47r - 2_T - 2

where 3'c is the collision frequency defined by equation (116) ; N is the number
of particles per cm 3 responsible for the broadening; and Po represents the dis-

tance of closest encounter. This distance is given by

( 3j__C_c / 1/5
P°=\ 4v ]

(138)

when C is a constant and v is the mean relative speed of the radiating and per-

turbing particles given by kinetic theory as

Also, Mo is the mass of a particle of unit atomic weight, and A 1 and A 2 are

the atomic weights of the radiating and perturbing atoms.

This concludes the section on the shape and broadening of spectral lines.

Much more information on these phenomena may be obtained by consulting the

works of other authors [21, 43, and 73-89]. In the next section the various

band models are discussed. These models are important in the calculation of

absorption coefficients, which are, in turn, necessary for predicting radiation

heating from rocket exhausts.

Band Models

To predict accurately the gaseous radiation from a rocket exhaust, the

spectral absorption coefficient, Kx (or Kv) , as a function of wavelength (or
frequency) for a particular temperature, pressure, and concentration must be

known. A considerable number of experimental measurements have been made

of absorptance and transmittance of rocket exhaust gases in the last several
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years. However, it is not possible to obtain enoughexperimental data for all
possible variations in temperature, pressure, concentration andfrequency
which might occur across a particular slant path in a rocket exhaust as viewed
by a radiometer or spectrometer.

Becauseof this lack of experimental data, the concept of bandmodels
has beendeveloped to predict the absorption in a particular bandcomposedof
a nearly infinite number of spectral lines. Through the useof bandmodels
(which are assumedto be mathematically correct), the absorption, and con-
sequently the emission of a rocket exhaust may be determined as a function of
path length I andpressure of the gas, P.

According to Jamieson et al. [90], the absorption of a gas represented
by bandmodels dependson the number of lines in the band, on the relative
spacing of the lines with respect to each other, on the number of spectral lines
with a given value of the intensity, on the half-width of the spectral lines, and
on the line shape (particularly in the wings of the lines). Theoretically, the
bandmodel is considered to have an infinite number of absorption lines of
uniform statistical properties. An interval of this particular theoretical type
containing many lines is assumedto have properties similar to those of an actu-
al interval of the bandbeing analyzed. In the band model, each interval will be
flanked by statistically similar intervals; however, in a real bandthis is not
necessarily the case.

In this section, five particular bandmodels (including the single-line
model) are discussed: (1) single-line model (exact method for absorption by
isolated lines), (2) Elsasser model (band composedof identical, uniformly
spacedlines), (3) statistical model (bandcomposedof spectral lines with
arbitrary intensity distribution andwith random spacing betweenlines), (4)
random Elsasser model (bandcomposedof several groups of lines, each of
which forms an Elsasser band, but the groups are superposedwith random
spacing), and (5} quasi-random model (bandcomposedof spectral lines whose
intensities and variation of spacing from line to line are accurately simulated).

There have beennumerous references on the general subject of band
models in the last 25 years. The references most referred to in this section
include the articles by Plass [91-96], Openheim and Ben-Aryeh [97-98],

Kaplan [99,100], Simmons [101], Penzias and Maclay [102], Maclay and

Brabov [103], Green and Wyatt [104], Wyatt, Stull, and Plass [105,106],

Elsasser [107], Godson [108], Greif [109], Goody [25], and Yossa [50].
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1. Single-Line Model. The simplest band model to be discussed is the

single-line model of Lorentz shape in which the lines are so narrow that there

is essentially no overlapping of lines. The overlapping or nonoverlapping refers

to the extent to which absorption in some small spectral interval is caused by

contributions from a number of lines as opposed to absorption by a particular

well-isolated line. When the lines do overlap, each line absorbs a smaller

percentage of the radiation than it does when it is isolated from the other lines.

A fundamental quantity to be used in band model theory is known as the

spectral absorptance, Av, equal to the spectral emissivity, ¢v, when LTE is
assumed, and defined as

A v 1 e -Kvi
= - = ev, (140)

where I is the path length through the absorbing gas. An analogous expression

for A v was originally introduced in the section entitled "Equation of Radiation

Transfer" as _X, the spectral absorptivity. In band model theory this is usually
written in terms of frequency v and termed absorptance; therefore, the notation

of equation (140) will be used throughout the rest of this section.

The spectral absorption coefficient, Kv, may be written for a Lorentz

line shape (the most common shape occurring in actual practice) as

S y
K - (141)

v r (v- vo) 2+72 ,

where S is known as the line strength and is defined by

oo

S= fgv
o

dr. (142)

The half-width 7 is defined in a manner similar to equation (116) as

0p + 0PbT = Ta a Yb (143)
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where yo represents the half-width at unit pressure for self-broadening (colli-

sions between the absorbing molecules), and Pa is the pressure of the absorb-

ing gas. The quantity _ represents the half-width at unit pressure for foreign

gas broadening (collision between absorbing molecules and other molecules in

the exhaust gas which are not absorbing radiation at a frequency v). The

quantity Pb represents the pressure of the nonabsorbing line-broadening gas.

The line strength S is also related to the pressure of the absorbing gas,

expressed as

S = S° P , (144)
a

where So is the strength at unit pressure.

The total or integrated absorptance, W, (also known as equivalent

width) of a single line may be specified at a particular temperature by means

of the line strength, S,. the line half-width, 3/, and the path length, ;. This

integrated absorptance (or equivalent width} may be written as

f oo f oo _gpiW= A dr= (1 - e ) dr. (145)
P

O O

If equation (141) is inserted into equation (145) and the result integrated

from zero to infinity, it can be shown, as it is by Ladenberg and Reiche [ll0],
that

W=27rTf(x ) , (146)

where

S_
x - (147)

2_r7 '

and f(x) may be expressed in terms of Bessel functions as
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-X

f(x) = xe [Jo(iX) - iJl(ix) ] . (148)

Two useful asymptotic forms occur for equation (148). When the param-

eter x is very small (linear approxianation), f(x) --x, and the integrated ab-

sorptance can be written as

W=27rTx=Sl = So P I , (149)
a

which represents a linear variation of W as a function of P .
a

Another important parameter, fl, in band model theory is defined as

27rT
fl - d ' (150)

where d represents the average spacing between the spectral lines.

The integrated absorptance may thus be written as

W
W=flxd or d -fix . (151)

For large values of x (square root approximation),
1

f(x) --_(2x/n) 2 and

1 !

W = 27(2_x) 2 = 2(Sl 7) 2 (152)

The integrated absorptance may also be written in terms of fl as

1

W = d(2fl2x/Tr) _ (153)

and ff it is assumed that T = T°Pa and S = S°Pa, equation (153) may be written
as
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woW=2(_°S°P 2 £) ½ or =2(_ °S°l) , (154)
a

which is known as the square root approximation for the integrated absorptance.

This square root approximation, together with the linear approximation, is

shown in Figure 7 in comparison with the Ladenberg and Reiche equation (148).

The quantities _/o and S° may be determined theoretically as by Howard

et al. [111,112] or experimentally as by Benedict et al. [83]. Since the above

theoretical method can predict integrated absorptance readily, provided suffi-

cient spectroscopic data are available, it is called the exact theoretical method.

The above equations are valid for absorption by a band of spectral lines, pro-

vided the lines do not overlap. This assumption holds true when both the pres-

sure and path length are small. At high altitudes (or low pressures), the

Doppler contribution to the line shape can be important (as seen in Figures 5

and 6). Plass and Fivel [113] and Struve and Elvey [114] discuss this contri-

bution and suggest various logaritbm_ic expressions for the integrated absorp-

tance (or equivalent width). In the next four sections on band models, various

approximate methods of determining absorptance which may involve overlapping
of the spectral lines are discussed.

2. Elsasser Model. The Elsasser band model, which was the earliest

band model investigated [115], assumes an infinite array of spectral lines of

equal intensity which are regularly spaced a distance d apart. This configu-

ration is represented by the sketch in Figure 8.

FIGURE 8. ELSASSER MODEL

Figure 8, compared with Figure 9, shows that there isgreater absorp-

tion in this model in which the spectral lines are evenly spaced than when the

line spacing is nearly random. Some portions of the CO 2 spectrum may be
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represented with a fair amount of accuracy with the Elsasser model; however, in
the actual COa spectrum there are always weaker lines betweenthe strong,
regular-spaced lines in the Elsasser model.

The Elsasser model uses the Lorentz line shape, equations (101) and
(141), with a slight modification. The absorption coefficient, up, is summed
over all the spectral lines in the band, and thus represents the total contribution
to Kv from all the lines as

n = fzo

S Y
K = _'

v -- rr (v- nd) 2+2/2 (155)
n:- -oo

It was shown by Elsasser (115) that this summation may be written in a simpli-
fied form as

S sinh/3
K - (156)p d coshfl- cos

where

= 2rrv/d . (157)

With the insertion of equation (156) into the equation for the absorptance,

equation (140), and using Elsasser's expression for average absorptance at the
band center,

q-oo -Foo

A, =fA d,/fd,
--o0 --00

, (158)

where

d_ = (d/2u) d_ , (159)
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the average absorptance may be written as

X [s exp - sinhfl ]
v 27r d coshfl - cos

-_l

(16o)

Two approximations of equation (160) exist: the so-called "strong-line"

approximation and the "weak-line" approximation. The strong-line approxima-

tionis valid when the spectral lines are far apart compared to their half-width

(d >> 7, or fl--*0). In this case the absorption is practically complete near the

centers of the strongest lines in the band. The expression for the absorptance

thus becomes

where

1 Z _Z2

A =err(z) =2/(7r) 2 f e
V

0

1 2

z = (½fl2x)_= \ d2 ]

dz, (161)

(162)

The weak-line approximation is valid when the spectral lines are close

together (d--0, or fl_-.o_). In this case the absorption is small at all frequencies

in the band even including those near the center of the strong absorption lines.

The expression for the absorptance then becomes

- _fA =1 - 1 +r -_S/d -fix
v 2_ e d_ = 1 - e =-ev (163)

This expression is analogous to equation (140) and is known as the Beer-Lambert

equation.

3. Statistical Model. The statistical or random band model, originally

developed by Mayer [116] and Goody [117], assumes a band in which there is

no correlation between line intensities and frequencies, and in which there is a

random spacing of lines. The intensity of the spectral lines may vary in any

manner as long as it can be represented by a particular distribution function.

Also, as a result of different quantum transitions, series of spectral lines may
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overlap in several bands. It is knownthat the absorption of H20 may be repre-
sented by the statistical bandmodel over a moderate range of pressures and
path lengths. Figure 9 shows a sketch of the statistical bandmodel showing
regions of overlapping lines.

12

FIGURE 9. STATISTICAL MODEL

The basis of the statistical band model is the determination of the most

probable average transmittance at the center of a frequency interval as a result

of the absorption by n lines of intensity Si (i = 1, 2, 3, .... n). In this theory

various probability distributions are introduced in the following manner. If

N(v) is the probability that a spectral line lies between v and v + dv, and

N(Pl, p 2) dvl, dv 2 is the probability that one line lies between vt and vl + dr1

and that a second line lies between v2 and v2 + dr2, then the probability of find-

ing n lines in some frequency interval D is unity, or

fD N(Vl,V2,. . . ,v n) dvl,dv2,. ..dv = 1 .n
(164)

Also, on the same basis, the probability that a given spectral line has

an intensity between Si and Si + dS i is P(Si). This probability function may
usually be expressed in terms of the Dirac delta function, 6(S - S), or an

exponential function, (1/S) exp(-S/S), where S is some mean line intensity,

described by Malkmus [118]. Normalizing this probability results in the
relation

oo

fP(S i) d(S i) = 1 . (165)

The weighted average of the transmittance, t-v, over the frequency
interval, D, may now be written in terms of the above probability functions as
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i-

"''- DN(vl'v2"'" 'vn) dvldv2"'dvllf'"O fO i=lIIP(S.)l exp[-Si(vi)g] dS.1

_D co oo

N(vi,v2,.. vn) dvidv2...dvnf, f n P(S i) dS.
i=l 10 0

(166)

The random distribution hypothesis is now introduced to simplify the

above equation. This hypothesis assumes that it is equally probable that each

spectral line has its center at a given frequency v in the frequency interval D

of n lines, regardless of the position of the other lines. In this manner the

expression N(vl, v_, .... vn) equals a constant; i. e., it is independent of fre-

quency, and may be written as

-n

N(vl,v2,...,v ) =D (167)n

Since the integral over each line is equal to the integral over any other

line, equation (166) reduces to

[ _ _nt- =D -n /½_vf P(S) exp(Sl) d (168)

v -½D 0

Since the average absorptance, Av, in the case of a nonscattering g_as

(reflectance equals zero) is equal to 1 - l-v, the following expression for Av,
following the mathematical procedure of Plass [ 91], may be written as

=1_[1o-1v _ 1- .; WS.L.(S) P(S) dS (169)
0

If the average value of the equivalent width of a single line is given as

WS.L. = f WS.L.(S) P(S) dS, (170)
0
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the expression for the average absorptancefinally reduces to

Au = 1 - exp[-(Ws. L./d) ] . (171)

i

Since WS. L. is the same as W in equation (146) a strong-line approxi-1

mation results in which f(x) ---(2x/Tr) 2, and the average absorptance may be
written as

A = 1 -expv [ - (2fl2 x/Tr) ½] (172)

A weak-line approximation results when f(x) ---x as

-fix= 1 - e , (173)
P

which has the same form as the weak-line approximation in the Elsasser band

model, equation (163).

The regions of validity for the statistical model, as well as the Elsasser

model, for various band absorption approximations such as strong-line, weak-

line, and non-overlapping line approxinlations are given by Plass [94, 95].

4. Random Elsasser Model. The random Elsasser model, in general,

provides a more accurate representation of spectral bands than either the
Elsasser or statistical model. The random E1sasser band model assumes that

the absorption may be characterized by the random superposition of Elsasser

bands, each of which may have a different line intensity and spacing between

the lines. Through the use of this model, the absorption of HC1 has been pre-

dieted quite accurately by Stall and Plass [119] and MaIkmus et al. [120].

Figure 10 shows a sketch of a random Elsasser model. Four different

Elsasser bands, each with a different intensity and line spacing, are super-

imposed on the figure. In this manner, as many of the weak spectral lines may

be used as desired to make a satisfactory prediction of absorption for the par-

ticular pressures and path length considered in the rocket exhaust.
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FIGURE 10. RANDOM ELSASSER blODEL

For this model it is assumed that d i represents the spectral line spacing
of the ith Elsasser band and n is the number of superhnposed Elsasser bands.

The average spacing 6 between the spectral lines is thus

5 = 1 (173)

i=l

An equivalent width for the ith Elsasser band may be written as

where fl is the parameter defined by equation (150), x is defined by equation

(147), and tEi and _E,i are the average transmittance m_d absorptance, re-
spectively, of'the ith Elsasser band. By a procedure similar to that in the

preceding section, the average absorptance from a random superposition of n
Elsasser bands can be written as

_ n f_o_ d_ 1 ]Au = 1 - i=ln J0 L1 - 1 WE, i(xi,fli ) PE(Si) dS i , (175)

where PE(Si) dSi represents the probability of the i th Elsasser band having

an intensity in the range dS i.
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An average equivalent width WE, i may be defined in the samemanner
as equation (170). The average absorptancefrom a random superposition of
n Elsasser bands, each of which may havea different intensity, half-width, and
line spacing, can be written as

A -- 1 - II - (176)
v i=l d i /

If the line spacings and half-widths are all assumed equal (d = n 5), the

average absorptance may be written as

%--1- L
(177)

In terms of the quantities fl and x (or of S and P), the strong-line

approximation for the Elsasser model is

"t E 11A =l- II 1-erf (21 2 2
u i=l fli xi) " (178)

and the weak-line approximation is

= t - e-flixi (179)
I]

5. Quasi-Random Model. The quasi-random band model is possibly the

most accurate model of the five mentioned in this report. In an actual band the

spectral lines are not as regularly arranged hl frequency or intensityas in the

Elsasser or random Elsasser models, nor are they arranged in as random a

rammer as in the statisticalmodel. The quasi-randoln model is thus better

able to simulate the actual intensitydistribution (including many weak lines)

and the relative spach]g of all the spectral lhms. Furthermore, this model is

able to take into account the effectof the absorptances of the adjacent frequency

intervals on the particular frequency interval being analyzed. However, because

of certain complexities in its usage, this model has not yet been programmed

for rocket exhaust radiation calculations.
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Using the quasi-random model, the absorptance is first calculated over

frequency intervals 5 which are smaller than the particular intervat size of

interest. These intervals are assumed so small that the spectral lines lying

in mW one of them may be considered to lie at random positions, without any

appreciable errors being introduced. This confines the stronger lines to a

narrow interval around their actual position and prevents overlapping. Theoret-

ically, if the interval spacing were decreased to zero, this band model would

locate each line exactly, with no approximat'lons needed at all. However, a

large enough spacing is, of course, taken to simplify calculations. Also, the

lines in each frequency interval 6 are divided into intensity subgroups according

to the respective mag_aitudes of their line strengths, S i.

The average absorptance at the frequency u resulting from n lines in

the intervals 5k with line centers at the frequencies ui(i = 1,2,... ,nk) may be

calculated similarly to the statistical model as

nk

-- - 1 f e-Si_ak. = 1 - t kv = 1 - 5-nk H1 du i .

k

(18o)

According to Wyatt et al. [105], it has been determined that only the

first five intensity decades for each frequency contributes appreciably to the

absorptance (or transmittance). Hence, equation (180) may be written as

e -gi£ dell

n°

1
, (lSl)

where Si is the average value of the line intensity, and the total number of lines

n k in the frequency interval can be written as

_=; n i . (182)
i=l

To calculate the absorptmme at a frequency u which is influenced by the

wings whose centers are outside of the interval which contains the frequency v,
the following equation is used:

__ oo

A = 1 - II t. , (t83)
v j=l ju
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where tju is the transmittance at _ as a result of nj lines in the frequency
interval 5j. It may be restated that equation (181) represents the total absorp-
tancc at v for both direct and wing contributions.

According to Jamieson et al. [90], the strong-line approximation for the
absorptance using the quasi-random modelcan be written as

- n I 2 l IA ::: 1 - 11 c-_i- vz _i [1 - erf(_i)] )_ , (184}i=l

where

2 = 8 2 2 (185)_i 7i xi/Sk

Equation (184) represents only the absorptance from the spectral lines

whose centers lie within the small interval 5k. The concentration from the
wings of the lines in adjacent intervals must be added by using equation (183).

Several other band models and approximations have appeared in the

literature. One of the approximations, the Curtis-Godson approximation, is

discussed in the next section, as well as certain apparent emissivity relations.

Also, various programs for predicting gaseous radiant heating to the base of

Saturn space vehicles caused by the exhaust of H-i, F-I, and J-2 engines are

described. Some of these programs are based on the above applications of band

models.

Methods of Predicting Gaseous Radiation from Rocket Exhausts

In this section various methods of predicting the radiation heating to the

base of large rocket vehicles (of the Saturn class) are described. Three gen-

eral methods are discussed, each of which was either generated under NASA/

Marshall Space Flight Center (MSFC) contract or was an MSFC in-house effort.

The first method, an MSFC in-house effort described by Heatherly et al.

[121] and [122], used the total emissivity method of Hottel [123]. The second

method was a University of California method which involved apparent emissivity

and mean path length relations and was developed under contract to MSFC's
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P&VE Laboratory. This method is summarized by Tien and Abu-Romia [124-
126] and by Giedt et al. [127]. The third general method was originally pro-
grammed for rocket exhaust applications at Rocketdyneunder P&VE contract
and is described by deSoto [128-130]. This method, which uses spectral
absorption coefficient data, was modified to include the Curtis-Godson approxi-
mation by Warner-Swasey Companyand Genera/ Dynamics/Convair and further
documentedby Brown Engineering Company--all under MSFC Aero-Astrodyna-
mics Laboratory contract. A detailed review of the third method is given by
Huffaker [4, 51].

1. Total Emissivity Method. The total emissivity method of Hottel was

used to predict the radiation heating from the five J-2 engines of the Saturn V,

S-II stage to the S-II stage thrust structure and heat shield as reported by

Heatherly and Dash [121]. The complete gas dynamic and radiation computer

program using this method for the intersection regions of hydrogen-oxygen

plumes for a multi-engine space vehicle is given by Heatherly et al. [122].

By the total emissivity method, the radiation heating from a non-isother-

ma/, isobaric gas can be written as

__1
q/A = ?r f f %T(d6/dX)cos0 dco dX,

co X

(186)

where the parameter X is the optical beam length which is defined as

x = p i (187)
W

Pw is the partial pressure of the water vapor in the exhaust (H20 assumed to
be the only emitter in the LH2-1ox system), and I is the path length through

the gas. The quantity a B 24 is the Planck blackbody function, Bk(T).

A solid angle shape factor, F, may be defined as

1 f cosodco, (188)F=-)-
co

64

| I



where 0 is the angle which the line of sight to the rocket exhaust makes with

the normal to the area where the radiation heating is to be determined.

as

Equation (186) may now be written, with the insertion of equation (188),

q/A = For B fT 4 dc d(P £)£ d(Pwi) w
W

(189)

In this program, total emissivity, e, versus optical beam length, Pw l,
for various values of temperature, T, was obtained by curve fitting with

polynomials, the curves as presented by Hottel [123]. This total emissivity

program, while simple in scope, is limited to systems of one molecular emitter

(i. e., H20 in LH2-1ox systems). The program does have its advantages in

that integration over all wavelengths (use of total emissivity rather than spec-

tral emissivity) is avoided.

2. Apparent Emissivity and Mean Path Length Method. The apparent

emissivity method of predicting gaseous radiation is based upon the following

equation from Eckert and Drake [131] for apparent spectral emissivity, cA, of
a semi-infinite cylindrical gaseous body.

1
ff (1 - e -K_s) sinfl cosÊ dfl d_ (190)Ek- 7r

ha this equation, fl represents the polar angle and _ the azimuthal angle

as seen in Figure 11. The quantity s is the path length (analogous to I in

equation (187). Equation (190) may be nondimensionalized by using the follow-

ing parameters:

h r s

H- , R- , K = Kk r e and S- , (19i)r r _ ' r
e e e

where r e is the radius of the rocket nozzle exit, h is the Leight of the nozzle
exit as measured from the base plane, r is the radial distance in the base plane,

and Kk is the spectral absorption coefficient.
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FIGURE ii. SKETCH OF SEMI-INFINITE CYLINDRICAL GAS BODY

USED IN APPARENT EMISSIVITY AND MEAN PATH

LENGTH METHOD

Equation (190) may now be written in nondimensional form as

e X -

i f f (1 - e -KXS) sinfl cosfi dfl dq5 (192)

This may be further arranged in the form

6 =F-6
X Xe '

(193)

where
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F = 1 1 e-KxS

--__ffq5 sin flcosfl dfld¢ and _kc- r flffq5 sinfl cosfldfid_b.

(194)

The quantity F is the configuration factor or the blackbody apparent

emissivity (analogous to equation (188)), and 6kc is the contribution to the

emissivity caused by the finiteabsorption coefficientof the gaseous body. Equa-

tions (192) and (193) may be further modified by making the substitution:

tanfl= sec q5tanfl' (see Figure ii). In thismanner the quantities F and 6
become kc

F= i f f c°s2_b tan/_'sec2_ '-_ , (cos2_b + tan2fl,)2 dfl'dq5 and

i _ e-KxS cos 2_ tan/_'sec2/3'
£_C - 7r _, f (COS2 _ + tan2fl,)2 dfl'dq5

(195)

Using these relations, curves for the apparent spectral emissivity as a

function of R for various values of H and Kk have been given by Tien and
Abu-Romia [ 132] and [ 133] for both semi-infinite cylindrical and conical bodies.

Figure 12 shows the curves for H = 1 as taken from these references. It may

be seen that the apparent spectral emissivity for a conical body of 10-deg cone

angle is much higher than that for a cylindrical body for the same value of R.

The above expressions apply only for a gray-gas assumption. In this

manner the totalnondimensionalized absorption coefficient, K, equals the

spectral nondimensionalized absorption coefficient, KX, and the totalemissiv-

ity, _, equals the spectral emissivity, 6k. However, by making use of the

mean path length, L, (defined as the path length averaged over allpath lengths

viewed at differentangles from a certain location in the base plane), an expres-

sion for totalemissivity may be obtained without making the gray-gas assump-

tion. This dimensionless mean path length is a function of H and R and may

be defined in the expression

-KxL)
_X - F(I - e (196)
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The total emissivity may now be written, with the insertion of equation

_(H, R) =

(196), as

C1F _ [1 - exp(-KkL) ] d)_

_B T4 Of kS[exp(C2/kT) -1]
, (197)

where

C 1 = c2h and
ch

C2- k ( i 98)
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In these equations, h is Planck's constantand k is Boltzmann's constant.

If the infrared spectrum is known (experimentally or theoretically)

narrow band width, equation (197) may be approximated by the relation

in a

E(H,R) = F T [i - exp(-KkL) ] (D2i- Dii) , (199)
i

where the quantities Dni(Xni , T) are known as the relative cumulative spectral
radiance, tabulated by Pivonsky [134], and are defined as

Dni(Xni , T) _ _BT41 of Xni

7rCldX

X5[ exp (C2/XT) -1 ]
(200)

For a cylindrical semi-infinite body with shielding (H ¢ 0), Giedt et al.

[127] and Tien m_d Abu-Romia [133] suggest the following semi-empirical

equation for L(H, R) :

4 sinp'° [ 1 1 1

, (2ol)

where E 1 and E 2 are the elliptic integrals of the first and second kind, respec-

tively.

Other expressions for tim mean path length based on the experimental

data of Howard, Butch, and Williams [135] have been given by Tien and Wang

[136]. For conditions in which a power law type of correlation of integrated

absorptance can be used, such as

W=fA dv=cwap b , (0.5<_a<_ i, 0<_b<_0.5) , (202)
12 e

12
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where w is the absorber concentration and Pe is an equivMent pressure defined
by Burch, Singleton, and Williams [i37], the mean path length may be repre-
sentedas

1 a

L=---ff f r cosqb de) , (203)
03

where r is the distance between the differential area on the confining surface

and the differential gas volume.

For large values of w in which the following logarithmic form of inte-

grated absorptance may be used:

w = ; a d,= E + r In (wP--)"l, m -<1 , (204)
J

P

where E and F are constants defined by Howard et al. [135], the mean path

length may be expressed as

L=exp [_ f (lnr)eos_ dwI (2O5)
c0

Tien and Wang [136] and Rolfe [138] present ratios of mean path length

of a non-transparent gas to that of a transparent gas for spherical enclosures,

for an enclosure composed of two infinite parallel planes, for an infinite circu-

lar cylindrical enclosure, and for radiation to the center of the base of a finite

circular eylh_der.

In summary, the general method of apparent emissivity and mean path

length, while yielding more accurate values of radiative heath_g than the total

emissivity method of Hottel, is felt to be fl_erior to the method described

below in which band models and/or spectral absorption coefficients are used.

3. Spectral Absorption Coefficient Methods. The following three meth-

ods (two of which use band models) of predicting radiation heating from liquid

propellant rocket exhausts are based upon the use of spectral absorption co-

efficients. These methods will be termed (a) "weak-line or exact absorption
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coefficient method," (b) "statistical bandmodel method with Curtis-Godson
approximation, " and (c) "generalized method with modified Curtis-Godson
approximation. "

a. Weak-line or exact absorption coefficient method. The weak-
line or exact absorption coefficient methoddoes not make useof bandmodels,
since for this method the absorption is assumednot to dependon the spectral
arrangement of lines in the band. This method sometimes provides more
conservative values of radiation heating than methods (b) or (c) described
below. However, one objection to the method is that to obtain a sufficiently
accurate numerical calculation in certain regions, the wavenumber (l/X)
interval must bemade extremely small (~0.01 cm-1) .

The basic equation to be solved with the weak-line method is equation
(57), given in the section entitled "Equation of Radiation Transfer. " The
integrated form of this equation is equation (61) with IX(0), the incident inten-
sity uponthe plume assumedequal to zero. Equation (617 can thus bewritten
in the form

Is0s 1Iv(s) = f0 ju(s7 exp Ku(Sl) ds' ds, (2067

where the s and s w notation has been reversed from that used in equation (617

and the subscript u has been used instead of X.

Assuming that KirchoffVs Law holds, the emission coefficient Ju can be

written as in equation (12) with the refractive index of the medium n u assumed

equal to unity. The mass absorption coefficient Km, u will be used instead of
Ku. Equation (206) now becomes

I (s) = _" pK B (T) exp - g ds' ds , (2077
v _) m, v v m, v

where Sm is the upper limit of the variable s in the plume along all lines of

sight beyond which there is zero contribution to the radiation.

The radiative heat transfer per unit area may now be obtained by inte-

grating equation (207} over all fre_luencies u and solid angles dw = sin0 dO dq$

as
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[I0" tq./A : f f f f pKm, v Bv(T) exp pKm, v ds sin0 cos0 dO de ds dv.
vs¢O

(208)

The absorption coefficients in equation (208) may be obtained experimen-

tally or from band model calculations such as tabulated by Ferriso et al. [52].

Dash [139] describes calculations of radiative heating from the Saturn S-IVB

stage J-2 engine to the S-IVB thrust structure using equation (208). The

numerical solution of equation (208) was discussed by deSoto [128-130], but

this program was limited to a single rocket plume with aMsymmetric geometry.

However, Tarbell and Alligood [140] and Alligood [141], using local partial

pressures and spectral coefficients evaluated at standard conditions in equation

(208), described a numerical solution to equation (208) which could be used

for any number of rocket plumes.

The numerical integration of equation (208), as discussed by Tarbell

and Alligood [140], is performed in the following manner. The integral of the

absorption coefficient is first treated as

n

A(sj,v,0,q)) =_, OK AS. ;
i=l m,v 1

(209)

the integral over the line of sight is next evaluated as

n

B(v,0,qS) =_ exp[-A(si, v,0,¢)] pK B (T) As i ;
i=l m,v u

(210)

the integral over frequency u is next obtained as

n

c(o,_) = _ B(v,o,_) :_v i ;
i=1

(211)

the integral over gb is next evaluated as

n

D(gb) =_, C(0,q)) sin0 cos0A0. •
l'

i=1

(212)
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and the final integral over 0 is obtained as

n

clJA = E = _ D(qS) Aq_ i .
i=l

(213)

b. Statistical band model method with Curtis-Godson approxima-

tion. The statistical band model method with the Curtis-Godson approximation

has been described in detail by Krakow et al. [142] and by Huffaker [4, 51].

This method is felt to be superior to the weak-line or exact absorption coeffici-

ent method described above in that it does not depend upon such a small wave

number (or frequency) interval for integration. Also, it has its advantages in

that the band model data such as line strength, S, line spacing, d, and line

half-width, 7, can be obtained from homogeneous samples of gas and then

applied to an inhomogeneous gas such as a rocket exhaust.

The equation for spectral intensity used in this method is actually the

same as deSotoVs equation (206), but has been modified as described by

Krakow et al. [142], Krakow [143] and Tourin and Krakow [144] in the follow-

ing finite-sum approximation:

n

I(u.,Auj)] =_ B(uj,T i)
i=l

[t--i_1 (uj,Apj) - ti(uj,Auj)] ,
(214)

where t = exp(-pKm,uS) is the transmittance of the section of sample in zone
i. The quantity u now represents the wave number (1/cm) instead of the fre-

quency as originally defined.

The heat flux equation, (208), now becomes

m

q/A= f 5) A,. coso (215)
coj=l J

In this method of predicting radiation heating, the statistical band model

(See this section, subsection entitled "Band Models," part 3. ) with equal line

strengths and equal line widths was used. Equation (171) was then used for

the average integrated absorptance. This equation now takes the form
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where %-vdenotesthe average transmittance in the wave number interval A_,
and f(x) is the Ladenberg-Reiche function in equation (1487.

m

If t v in equation (216) represents the transmittance of an inhomogeneous

gas, such as a rocket exhaust, then it is possible that some hypothetical homo-

geneous sample, such as obtained in a laboratory burner, would have the same

Tv if it had certain values of T/d and x. The Curtis-Godson approximation

[142] as given in equations (217) and (218) is thus used to obtain the band

model parameters of the hypothetical homogeneous gas sample:

s. -l_i-.
1 1

s _= F -a-_d i :_xi
i i f'xi"_ _

(2177

and

S S. Yi 1 F-In t-i] 2

--d l-_=_i -_£i -d -2_ Z.xiLm_j (218)

By dividing equation (2187 by equation (2177 the following value of

(7/d) i, which is the value of 7/d for the hypothetical homogeneous gas sample,
is obtained:

i

(_) _-_--_
d i

a i [(7:/d ) a o b]Ph (S°/d)h h h Ph + (Tb/d)h Ph

i

Z (S°/d)hP_*h
h=l

(219)

By dividing equation (2177 by 27rT/d ,

the value of x for the hypothetical homogeneous gas sample, is obtained:

i 2

Ih_l aeh](S°/d) h Ph

the following value of Ki, which is

m

X. _-_

1 i
a b

h h + ]
(220)
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In the above two equations the subscript a stands for absorbing gas and

the subscript b stands for broadening gas (such as N2) . The quantities 1_

and _h are the pressure of the absorbing gas and the path length of zone h,

respectively. Ferriso et al. [ 52 ] give details in the determination of the band

model parameters S°/d and 7°/d for HzO , CO2, and CO.

The transmittance in equation (214) may now be obtained as follows:

- in t-i(uj,Au.)j = 2u(7/d) i f(xi)- , (221)

where (7/d) i and x., are evaluated from equations (219) and (220).

Two other expressions for W/d may be used instead of the one in

equation (216), which involves Bessel functions. One of these expressions is

the exponential probability distribution described by Ferriso et al. [52]:

(
d - d \1+  -op/ , (222)

which has a more gradual transition region between the two asymptotic regions

(weak- and strong-line regions) as a result of intensity distribution among the

spectral lines.

The other expression for W/d is the effective absorption coefficient

expression of Ferriso, Ludwig, and Abeyta [ 145] :

W I Keff (_') Pai ]d - neff(v) Pa £ 1 + 4(-y-/d) ' (223)

where

S° 27r _7__

Keff- d - P _ d
a

(224)

Plass [91] shows that equation (223) and the W/d expression in equation

(216) agree to within 10 percent.
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c. Generalized method with modified Curtis-Godson approximation.
The generalized method uses an integrated form of the Curtis-Godson equations,
(217} and (218), to obtain radiation from inhomogeneousgases in which the
Beer-Lambert equations, equations (140) and (163), are not applicable. This
method, which has beenproven to be accurate for strong concentration and
temperature gradients, also takes into account the Doppler broadening effects
which are important at low pressures (~0.1 atm). Ferriso et al. [52] and
Huffaker [4, 51] describe this method in detail, and Alligo0d [146] andConway,
Yossa, andAlligood [147] describe a computer program involving this method.

The equation for heat transfer rate per unit area in the generalized pro-
gram, which is similar to equation (208) except for the transmittance factor,
tv, is

dt

P

The transmittance t_ is equal to IIt (i), a product over the various
i v

radiating species in the rocket exhaust. The quantity tv(i) may be calculated
by two methods. The first method, described by Alligood [146], based on the

investigation of Ferriso et al. [52 ], considers only the larger of collision and

Doppler broadening (but not both as does the second method). For the first

case, the transmittance may be written in terms of the statistical band models
as

t v (i) = exp

m(W/d)D(i) j

(226)

where the notation in braces implies the larger of Dc(i) and DD(i) and the

subscripts c and D stand for collision and Doppler broadening, respectively.

The quantity Dc(i) may be written similarly to eq.uation (223) as

D (i) =F(i) I + I [F(i)]2 -2

e -4 Ac(i) I ' (227)
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and the quantity DD(i) may be written as

I'7AD(i){ [DD(i) - F (i) in i + 0. 589 [F (i)]2)21½aD(i)
(228)

The quantity F(i) is defined as

fs fs s_s ds
F(i) = p(i) _ ds = d(i) '

0 m, v 0
(229)

where S(i) is the line intensity originally defined in equation (142).

The parameters Ac(i) and AD(i) represent the modified Curtis-Godson
approximation and are equal to

s _/c (i) dF(i)

Ac(i) = f d(i) ds
0

ds (230)

and

where

s TD(i) dF(i)

AD(i) = f d(i) ds
0

ds , (231)

dF(i) = p(i) i)
ds '_v ( (232)

The fine structure parameters (Doppler half-width, 7D, collision

half-width 7c, and lhm density, i/d) are given by Alligood [146] for H20 (all

bands), CO 2 (4.3 pand2.7_bands), and CO (5gbands). The tables of Ku
as a fmlction of wave number and temperature (300 ° K, 600 ° K, 1200 ° K,

1500 ° K, 1800 ° K, 2400 ° K, and 3000 ° K) are found in Ferriso et al. [52]. A

more accurate listing of absorption coefficients and fine structure parameters

for H20 has been tabulated by Ludwig et al. [148] for temperatures between
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1200° K and3000° K andfor path lengths of 2, 5 and i0 feet. Herget, Muirhead
and Golden[149] present revised tables of bandmodel parameters for H20 for
temperatures between300° K and 1400° K and for pressures from 0. t to 2.0
atm.

The other method of evaluating the transmission tv is given by Ferriso
et al. [52] which combines both the Doppler and collision broadening in the
expression

_1
1 2

tv(i ) =F(i} (i - y-a} , (233)

where

-2 -2

It is felt that the generalized method (including the modified Curtis-

Godson approximation} of predicting radiation heat transfer from rocket ex-
hausts is the best of all of the methods described in this section. Huffaker

[51] states that the difference between the measured inhomogeneous gas trans-

mittance and that calculated by the modified Curtis-Godson approximation is

within experimental error and not greater than 2 percent.

Using the generalized method with the modified Curtis-Godson approxi-

mation, calculations of spectral intensity have been made for the J-2 engine

exhaust, as described by Huffaker [51]. Figure 13, taken from Huffaker, shows

a comparison between calculations and measured values of spectral intensity

from a J-2 engine exhaust during a sea level static firing. Figure 14 shows

theoretical radiation calculations compared with experimental data obtained

from the exhaust of a 1/45-scale F-t engine fired at Cornell Aeronautical Lab-

oratory which used 02 and C2H 4 as propellants. The radiation calculations for

this engine show better agreement with the data than for the J-2 engine (Fig. 13} ;

however, it is known that the spectrometer used for the J-2 test was not cali-

brated properly after the firing. Additional calculations will be made by Ther-

mal Environment Branch to compare with spectral intensity measurements

taken during altitude firings (in which there is no atmospheric absorption} of

the J-2 engine. These measurements will be performed in the AEDC J-4 test

cell at Tullahoma, Tennessee, in the spring of 1967.
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This concludes the section on gaseous radiation. It is felt that the basic

points of the theory such as radiation from accelerated charges, shape and

broadening of spectral lines, band models, and methods of predicting gaseous

radiation from rocket exhausts have been covered sufficiently. For additional

detail on gaseous radiation the more than 90 references mentioned in this

section should be consulted. For details on the rocket exhaust plume programs

which must be generated before the radiation heating can be predicted, it is

suggested that references such as Farmer, Prozan, Ratliff, and McGimsey [t],

Prozan [150], and Ratliff [151] be consulted.

RADIATION FROM CARBON PARTICLES

Thermal radiation from carbon particles is the dominant means of radi-

ant heating from exhausts of hydrocarbon-fueled rocket engines such as the H-1

and F-i, which power the first stages of the Saturn I and Saturn V vehicles,
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respectively. These engines burn RP-1 (kerosene) as the fuel as opposed to

other hydrocarbon-fueled engines which burn ethyl alcohol (ethanol) or aerozine-

50, and consequently produce little or no carbon in their exhausts.

The carbon emission spectrum from H-1 and F-1 engines is practically

continuous (follows a graybody or blackbody distribution, depending on optical

depth) near the exit plane in the 1-_ to 4-# wavelength region. This is in con-

trast to the emission spectrums of the H20 , CO 2 and CO gaseous molecules

which are frequency dependent (emit in certain bands only) in the infrared

wavelength region (as shown in the previous section). At distances far down-

stream of the exit (at altitudes less than about 100,000 feet) when aiterburning

is still present, the carbon spectrum is no longer continuous. Also, if a spec-

trometer which views the plume is mounted a considerable distance from the

exit, atmospheric absorption bands can absorb the carbon continuum as seen by
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the spectrometer in the 1.4-p, 1.9-p, 2.7-pand 6.3-p H20 bands and 2.7-p and

4.3-p CO 2 bands. This carbon continuum spectrum can be seen in such reports

as Simmons [152] , de Bell, Simmons, and Levin [ 153] , Levin, Wagner, and

Thomson [154], an Aerojet-General report [155], Wagner [156], and in Figure

15 of this report. Figure 16, presented for comparison with Figure 15, shows

the spectrum of an exhaust from an N204/UDMH propellant engine. The lack of
carbon continuum for the exhaust of this non-kerosene liquid-fueled engine is

easily seen. In Levin, Wagner, and Thompson [154] evidences of chemilumi-

nescence can be seen by noting the peaks of C2, CN, and CH emission above the

carbon continuum.
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CARBON CONTINUUM

Accurate predictions of radiant heating from carbon particles is difficult

for a number of reasons. In the gas generator, carbon is a nonequilibrium

product of combustion because of the rather low temperatures (~900 ° K) involved;

hence, its concentration in this region must be calculated with finite reaction-

rate chemical kinetics. It is possible, however, that carbon is in equilibrium

in the combustion chamber, nozzle, and near-field of the exhaust because of the

higher temperatures in these regions. The concentration of carbon in these

regions should be calculated by present equilibrium thermochemical programs;

however, this has not yet been accomplished satisfactorily because of the un-

certainties in the O/F distribution in these regions. A plot of carbon concen-

tration versus O/F ratio for various temperatures shows that, for a small
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increment in O/F ratio (for a given temperature), a very large increment in

carbon concentration will result. To treat radiation from carbon particles

adequately, therefore, the mechanism of carbon formation must be fully under-

stood, the size distribution of carbon particles must be known, the optical

properties of carbon (dispersion theory, scattering phenomena, etc. ) must be

analyzed, and the emissivity of carbon particles must be calculated (or meas-
ured).

Scattering of radiation by carbon particles is frequently assumed negligible,

although this phenomenon may not be legitimately neglected if the size of the
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particles is large and the wavelengthunder consideration is small. Scattering
by carbon particles may thus becalculated by Rayleigh scattering theory in which

<< 1, where _ =2_r_/k (rp is the radius of the particle), emdbyMie
scattering theory in whibh c_ ~ 1. Since carbon particles usually fall in the

realm of Rayleigh scattering, this theory is discussed in this section; the Mie

theory is discussed in the following section since it applies mainly to larger
(A1203) particles. This section discusses in succession the formation of car-

bon particles in luminous flames, the determination of carbon particle sizes,

the dispersion equation for carbon, the Rayleigh scattering theory, and methods

of predicting absorption coefficients and emissivities for carbon particles.

Formation of Carbon Particles in Luminous Flames

In recent years there has been a tremendous amount of literature written

regarding the mechanism of carbon formation in luminous flames (including

rocket and turbojet combustion chambers and exhausts). Some of the more

detailed reviews pertaining to carbon formation include the books by Gaydon

[157], Gaydon and Wolfhard [158] and Palmer and Cullis [159], and the articles

by Parker and Wolfhard [160], Porter [161] and [162], Thomas [163], Street

and Thomas [164], Daniels [165], Singer and Grttmer [166], Tesner [167],

and van der Held [168]. Other less detailed articles regarding carbon formation

which also contain much experimental data were written by Gaydon and Fairbairn

[169], Arthur and Napier [170], Scully and Davies [171], Fenimore, Jones,

and Moore [172], Ferguson [173], Lee, Thring, and Beer [174], and Stehling,

Frazee, and Anderson [175]. Some of the many books and articles which dis-

cuss combustion in luminous flames and combustion chambers (some of which

also contain descriptions of carbon formation) were written by Godsave [ 176],

Khitrin [177], Wicke [178], Yagi and Kunii [179], Behrens [180], Paushkin

[181], Minkoff and Tipper [182], Fristrom [183], Penner [ 184] , McCafferty

and Hibbard [185], Penner and Datner [ 186], Wise and Agoston [187], Spalding

[188], Williams [189], Fristrom and Westenberg [190], and Bahn [191].

In a rocket combustion chamber such as that of the H-1 or F-1 engine, the

fuel (RP-1) and the oxidizer (liquid oxygen) are pumped into the chamber by

a turbopump, which is driven by a gas turbine. The gas turbine is, in turn,

driven by the exhaust of a gas generator. Inside the combustion chamber,

combustion takes place at a relatively high O/F ratio (,-_2.5) and at a high

temperature (~3000 ° K). However, in the gas generator, combustion takes

place at a low O/F ratio (~0.4) and at a low temperature (~900 ° K). Before

83



the RP-1 fuel is injected into the combustion chamber, however, it is routed
around the chamber and nozzle to cool these componentsregeneratively. Carbon
may thus be formed in the relatively high O/F ratio, high temperature region of
the combustionchamber or in the relatively low O/F ratio and temperature
regions of the gas generator and the walls of the combustion chamber and nozzle.
It is expectedthat more carbon will be formed in the latter regions becauseof
the excess fuel andlower temperature experienced in these regions.

Paushkin [181] states that the formation of carbon in combustion cham-
bers dependsupona number of factors such as degree of atomization and tem-
perature of the fuel and oxidizer, design of the combustion chamber (including
its chamber pressure), and surface tension, viscosity, midcomposition of fuel
(aromatic hydrocarbon content). Since RP-1 fuel (kerosene) contains a large
amountof aromatic (cyclic) components (N2O percent) compared to aliphatic

(straight-chained) components, it is usually assumed that the majority of the

carbon formed comes from this aromatic portion of the fuel.

In a given combustion chamber, Penner and Datner [186] state that the

amount of carbon deposited, for a wide variety of hydrocarbon fuels, can be

correlated by an empirical equation of the form

T b
in (K 1 R- K 2)+- - K 5 , (235)

C = K3 K4

where C is the rate of carbon deposition, R is the carbon-to-hydrogen ratio,

T b is the boiling temperature of the fuel, and K 1 to K 5 are empirically deter-
mined constants such as found in the article by Starkman, Catteneo, and

McAllister [192]. The rate of combustion of a cloud of carbon particles in

luminous flames, according to Lee, Thring, and Beer [174] may be determined

from the following equation based upon experimental data:

P

Pc d 02o dm __ 39,300.

6 m 1/3 m2/3 dt - 1.085x 1O4 T1/2 exp(- RT ) ' (236)
O

where Pc is the density of carbon particles (soot), d o is the initial dim_eter

of the particles, m o is the initial mass flow, m is the mass flow after thne,

t, Po2 is the partial pressure of oxygen, T is the particle (or flml_e) temper-

ature, and R is the gas constant. According to Howard and Essenhigh [ 193],
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the complete sequenceof events for carbonparticle combustion takes place in
four steps: heating, ignition, pyrolysis, andheterogeneouscombustion. Gas-
phase combustion will occur simultaneously with heterogeneouscombustion on
the surface of the particle if the surface flux of volatile pyrolysis is small;
however, if the surface flux is large, the reaction zone will be forced away
from the solid surface, thereby screening the carbon particle from oxygen
attack.

Flames occurring in combustionchambers of liquid-fueled rocket en-
gines are neither diffusive nor completely premixed; hence, the general theories
of carbon formation in bothdiffusion and premixed flames must be considered.
According to Gaydonand Wolfhard [158], in a pure diffusion flame, the com-
bustion processes are assumedto take a fairly long time for their completion;
however, there is little or no contact betweenthe oxidizer andfuel. For purely
premixed flames, the oxidizer and fuel are in direct contact, but the combustion
processes are limited by the very short time of passagethrough the reaction
zone. Carbon formation theories differ, dependingon what type of flame
(diffusion or premixed) occurs, but also these theories differ from author to
author, so that there is no one general theory available which will adequately
describe carbon formation. In the remainder of this section some of these
various carbon particle (and ion) formation theories are briefly analyzed.

i. The C_., Atomic Carbon, and C,_ Condensation Theories. The C2

condensation theory was originally developed by Smith 1194], and has been

discussed by Gaydon and Wolfhard 1158] and Parker and Wolfhard [ 160].

Smith, after performing a spectroscopic study of ethylene burning in air, sur-

mised that carbon was produced by a polymerization of C2 molecules. He also

discussed the experiments of Klemenc, Wechsberg, and Wagner [195], who

investigated the decomposition of carbon suboxide, C30_ , mid fotmd C2 bands in

absorption. After passing through a reddish stage in color, the C2 rapidly

polymerized to normal solid carbon. Gaydon and Wolfhard [158] and Parker

and Wolfhard [160], however, believed that this C2 condensation theory is not

valid in practice because of the low times of reaction and concentration usually

involved. Gaydon [156] states that semi-quantitative estimates of the amount

of C 2 in flames, studies of flash photolysis, and the relative positions of C 2 and

carbon in flmnes also tend to make this theory unbelievable.

Gaydon and Wolfhard [158] state that it is possible that free carbon

atoms may be condensed directly from flames since, in equilibrium with gxaphite,

the concentration of C atoms is several orders of magnitude greater than that of

C 2. Cabannes [196] believes that solid carbon in flames could be formed by the

condensation of carbon vapor whose main constituent is assm_ed to be C 3.
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2. The Hydrocarbon Polymerization-Condensation Theory. This theory

involves the general pyrolysis (or decomposition) of pure hydrocarbons as dis-

cussed by Gaydon and Wolfhard [158], Porter [161,162], Palmer and Cullis

[159], Thomas [163], Street and Thomas [164], Gordon [197], and many

others. According to Gaydon and Wolfhard [158], during the pyrolysis of

hydrocarbons, a nm_lber of processes are found to occur, such as hydrogenation,

dehydrogenation, cracking to simple hydrocarbons, polymerization, and some-

times condensation to aromatics. The particular type of pyrolysis depends

upon the temperature and the presence of catalysis. The basis of all the hydro-

carbon polymerization theories is that polymerization of the fuel occurs first,

aided sometimes by oxidation, followed by dehydrogeneration (in which oxidation

may be a factor), finally resulting in carbon being the end product. Street and

Thomas [164] present an elaborate diagram which shows probable interrelation-

ships among the possible routes to the formation of carbon involving polymeri-
zation.

Thomas [163] gives a description of "soot" formation from hydrocarbon

fuels using the polymerization-condensation theory, and states that "soot" is

not carbon, but has a polybenzenoid hydrocarbon structure. Rummel and

Veh [198] were the first to suggest that aromatics and polycyclic hydrocarbons

preceded the formation of carbon (or soot). A current investigation at Rocket-

dyne [199], performed under Thermal Environment Branch contract, is under

way to attempt to determine the chemical formulation of the soot molecule.

3. The Acetylene Theory. Porter [161,162] and Anderson [200] state

that, while low temperature (< 1000 ° C) pyrolysis of hydrocarbons tends to

produce higher polymers, at high temperatures (> 1000 ° C) decomposition of

hydrocarbons predominates over polymerization. Because of these high tem-

peratures, Porter [161] concludes that, when the time for half reactions is of

the order of one second or less, the pyrolysis of hydrocarbons does not result

in polymerization, but in decomposition to smaller molecules. Porter [161]

further concludes that the thermal decomposition of hydrocarbons results in

dehydrogenation and cracking to smaller molecules, and the last stable hydro-

carbon to be observed before carbon formation is acetylene. It is known that

acetylene, which is a very endothermic substance, is then very easily decom-

posed to carbon and hydrogen. Discussions of experimental investigations of

carbon formation from acetylene have been reported by Stehling, Frazee, and

Anderson [175] and by Westbrook, Hellwig, and Anderson [201].

4. The Surface Decomposition Theory. This theory, which was dis-

cussed by Tesner [167], involves the formation of carbon through decomposition

of hydrocarbons on the particle surface. Tesner studied the formation of
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carbon black in an externally heated reaction tube andconcluded that the process
took place in two stages: (1) nuclei formation and (2) particle growth. He
found that whena hydrocarbon is thermally decomposedin a flow system, the
spontaneousformation of nuclei of carbon black particles in the main part of the
gas is accompaniedby the simultaneous surface formation of a solid carbon
layer on the reaction chamber wails.

5. The BoudouardReaction Theory. It has been proposed by Behrens

[180] and van der Held [168] that the Boudouard reaction, which is the reaction

predicted in an equilibrium chemistry analysis,

2CO_ CO 2 + CSOLI D , (237)

may contribute to carbon formation in premixed flames. This reaction, which,

in the presence of hydrogen, proceeds through the stages

CO+ OH _-- CO 2+ H and CO+H_-- CSOLI D+ OH , (238)

is usually so slow, however, that in typical reaction times in combustion cham-

bers (~ 5 x 10 -3 sec), the Boudouard reaction would be far from complete.

Foster [202] states that carbon (soot) is not likely to appear in equilibrium

in the products of fuel-rich premixed combustion because the decomposition of

hydrocarbons to carbon proceeds more rapidly than oxidation reactions of hydro-

carbon or soot with CO 2 or H20. These latter reactions would cause the system

to be in equilibrium ff it were allowed to proceed for a sufficient length of time.

Carpenter, Foreman, and Goldstein [14] state that to determine the

amount of free carbon with considerable accuracy, it would be necessary to

consider the dissociation of each constituent in the exhaust gas and to match

the dissociation of each constituent subject to the constraint that the total num-

ber of atoms remain constant in the resulting mixture. Such calculations are

given by Gaydon and Wolfhard [158], Huff, Gordon, and Morrell [203], Penner

[204], and Dodge [205] who states that carbon deposition for the Boudouard

reaction is possible only if n_o/nco 2 is equal to or greater than Kp/P, where

Kp is the equilibrium constant for the process, P is the total pressure of the

mixture, and nco and nCO 2 are the number of moles of CO and CO2, respec-
tively.
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6. "Vapor Pocket" Theory. Boynton [206] relates a possible theory for

carbon formation in rocket combustion chambers using the "vapor pocket"

theory. He believes that the individual drops of fuel and oxidizer in the chamber

evaporate soon after injection to form small vapor "pockets r' whose size depends

upon the characteristics of the particular injector. These vapor pockets Would

thus interact with each other, burn at the edges, and then break up, coalesce,

and circulate very rapidly. The reaction zone would transfer heat by conduction

into the fuel vapor pocket interior, breaking the vapor into fragments which

react to form carbon particles. The carbon would be more apt to form from

the larger vapor pockets in which the fuel vapor volume-burning surface ratio

is larger, and would also be more apt to form (Boynton and Neu [201]) when

less efficient injectors are used. This theory is compatible with the combustion

inefficiency calculations of Farmer et al. [1].

7. New Carbon Formation Theories. Several new theories on carbon

particle formation were discussed at the Eleventh Symposium (International) on

Combustion held at Berkley, California, August 14-20, 1966. Homann and

Wagner [208] discussed experiments of acetylene and benzene premixed flames

and stated that for acetylene flames, the polycyclic aromatic hydrocarbons

form some distance behind the oxidation zone and are similar to those evaporat-

ing from soot samples when heated in a mass spectrometer under reduced

pressure. Their concentration profiles in acetylene flames showed that they

were by products instead of intermediates for carbon. For benzene flames,

however, it was found that these polycyclic aromates appeared during fuel

oxidation such that their concentration was much larger in the region where

solid carbon formed. Echigo, Nishiwaki, and Hirata [209] disucssed spectro-

scopic analyses of ten hydrocarbon flames and proposed a new theory that the

combustion process results in dehydrogenation and polymerization reactions in

the fluid phase. They found the resulting, unsaturated hydrocarbons ("pre-soot

substances") emitted band spectra rather than a continuum and that eventually

soot particles were agglomerated after dehydrogenation and polymeration were
complete.

Also in the Eleventh Symposium, Tesner, Snegyreva, and Soorovikin

[210] discussed formation of carbon by thermal decomposition and incomplete

hydrocarbon combustion, describing a two-step process: the generation of

carbon nuclei and the growth of the carbon particles. They measured rates

of carbon particle formation during thermal decomposition of acetylene in

laminar diffusion flames and decomposition of aromatic hydrocarbons when

mixed with a turbulent flow of hot combustion products. They found that, be-

cause of chain branching, soot particle formation occurred with a tremendous
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speed, but becauseof quadratic terminations, was rapidly suppressed;hence
the curve of rate of particle formation acquired a sharp peak. Cullis, Read,
and Trimm [211] discussed another theory at this symposium and stated that it
is unlikely that carbon formation always involves the intermediate production
of acetylene. They conductedexperiments on the pyrolysis of acetylene and
vinylacetylene (a polyunsaturated compound)at 500° C and 700° C andfound,
in contrast to a wide variety of acetylenic products formed during acetylene
pyrolysis, vinylacetylene was converted directly to solid carbon products.

8. Carbon Ionization Theories. Certain investigators such as Singer

and Grumer [166], Carpenter, Foreman, and Goldstein [14], Einbinder [212],

Shuler and Weber [213], Smith [214], and Sugden and Thrush [215] have shown

that carbon particles can be responsible for ions observed in flames and rocket

exhausts. Singer and Grumer [166] believe that the ionization in hydrocarbon-

fueled flames must be caused by accumulating species which are either carbon

nuclei or carbon precursors of low ionization potential. This ionization poten-

tial (or work function) for carbon particles has a low value (between 4.35 eV

for solid carbon and 13.3 eV for gaseous carbon) compared to the reaction

intermediates and products of flames (H20 , CO, CO2, OH, O, and H) which

have ionization potentials of between 12 and 16 eV.

Shuler and Weber [213] studied the ionization of carbon particles in

acetylene-oxygen flames burning in air and proposed that the free electron

concentration be given by the Saha [216] or equilibrium thermionic emission

equation

2 (27r m kT) 3/2
e -_b/kW

N = K = h3 e , (239)e

where ¢ is the carbon particle work function, m e is the mass of the electron,
T is the temperature in degrees K, and k and h are the Boltzmann and Planck

constants, respectively. Sugden and Thrush [2i5] also studied carbon particle

ionization in acetylene flames and proposed the following modified equation:

3/2
2(2rm kT)

e

Ne - h 3 exp[- (_ + Ne e2/rp Np)/kT] , (240)

where rp and Np are the radius and concentration, respectively, of the carbon
particles and e is the electronic charge. Einbinder [212] presents a further
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modification to equation (239) by writing the ratio of the electron concentration
to the carbon particle concentration as

Ne/Np (rp __1 for (Ne/Np >-3) , (241)= kT/e 2) in (K/Ne)+ 2 '

where K is determined from equation (239).

Pergament [217] and Pergament and Calcote [218], Kurzias [219] and
other workers at AeroChem have investigated chemi-ionization effects in rocket
combustionchambers andexhausts whensolid carbon ispresent. They state
that the electrons and chemi-ions suchas CHO+ and H30_ may be formed if

carbon gas is in equilibrium with hydrogen atoms in the process

CGA S + H _ CH . (242)

the CH combines with free oxygen to produce CHO + ions and electrons in the

process

CH+ O--*CHO + e (243)

The CHO + ions are then combined with water to produce hydronium ions, H30 +,

in the process

CHO + + H20 H30 + + CO (244)

The Thermal Environment Branch at MSFC is sponsoring an experimen-

tal program at altitude at Cornell Aeronautical Laboratory involving the use of

resonant cavity probes to determine electron concentrations in an ethylene-

oxygen plume (scale model of the F-1 engine). Later, it is planned to make

the same type measurements in the plumes of model solid propellant ullage and

retro motors of the Saturn vehicle. The theoretical programs at AeroChem

and at Boeing [220,221] will be used to check the experimental data.
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In summary, the problem of determining a suitable theory for formation
of carbon particles and ions in flames androcket exhausts is very difficult. The
Thermal Environment Branch, with assistancefrom one of its contractors,
plans to initiate a program soonto determine carbon particle formation and
concentration associatedwith H-I andF-I engineexhausts. This program
would involve basically the study of the mixing processes of RP-1 and liquid

oxygen, the study of the chemical composition of RP-1 and its pyrolysis products,

and the chemical reactions leading to soot formation. Another program spon-

sored by this branch which is being performed at General Applied Science

Laboratories by Edelman [222] involves the analytical investigation of plume

afterburning associated with H-1 and F-1 engines. In this analysis the diffusion

equations are combined with the finite-rate chemical kinetic equations to handle

the mixing and combustion along the plume boundary. The radiation to the

vehicle base from carbon particles present in the mixing layer is then analyzed

in the program. A preliminary report has been completed on this subject [223].

Carbon Particle Size Determination

Accurate knowledge of carbon particle sizes in flames and rocket exhausts

is an important factor in determining the scattering and emission processes and

consequently the thermal radiation from these flames and exhausts. Measure-

ments of the size of carbon particles in luminous flames and rocket exhausts

vary, depending upon the various methods used to obtain the particular samples.

In general, however, most investigators have found that the radius, r_, of
carbon particles lies between 50 A to 1000/_. Wolfhard and Parker [2_24] have

obtained electron micrographs for carbon particles in hydrocarbon flames

showing this 50 _ to 1000 _ range for particle radius. Parker and Wolfhard

[160] found that in non-smoky acetylene flames all particles were of about the

same size (rp N 50 A) ; however, in a smoky flame large particles of approxi-
mately 250 A were also found. Lee, Thring, and Beer [174], using a gaseous

hydrocarbon mixture of 70 percent C3H8, 10 percent C2H 4, and 20 percent C3I_

found an initial average particle radius of 200 A, but found that the size of the

particle decreased as the particle underwent combustion. Scully and Davis

[171] experimenting with various aromatic hydrocarbons, found that the average

particle radii ranged from 100/k to 400 A.

Erickson, Williams, and Hottel [225] performed light-scattering meas-
urements on soot in a benzene-air flame and also obtained electron micrographs

of samples on a probe showing an average soot particle radius of 125/k. Meas-

urements of particle radius obtained by light-scattering measurements were
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considerably higher (rp ~ 700 ,_) than the electron micrographs; however, it
was determined that the soot in the flame was partially agglomerated such that

the experimental data were strongly affected. Kunugi and Jinno [226] also

used light-scattering techniques to obtain sizes and concentrations of soot

particles in diffusion flames. These investigators calculated particle size by

comparing the measured ratio of the two light-scattering intensities for perpen-

dicular and parallel polarizations, with the intensities calculated by Mie Scatter-

ing theory, and obtained a value of rp of between 600 A and 1000 _. These
values were 3 to 5 times higher than those obtained for soot particles collected

on a solid surface inserted into a flame; however, these authors state that the

light-scattering method used tended to measure only the larger particles which

scatter the light more effectively than the smaller ones. Singer and Grumer

[166] obtained particle samples on stainless steel screens in rich, flat flames

of propane-air and ethylene-air. These investigators also obtained evidence of

agglomeration in the shape of long filaments with opaque granules at the tips or

bends of the filaments. Particle radii as large as 2500 A were observed on the

filaments. Millikan [227,228] attempted to circumvent the agglomeration

problem by sucking the particle-containing gas through a small orifice into a

quartz tube, expanding it to a low pressure and catching the particles upon a

cold target. The carbon particles obtained in this manner were about 50/_ in

radii 6 mm from the burner exit and grew to about 200 A in radii at 12 mm
above the burner exit.

Tesner [167] also obtained carbon particle size distributions in various

hydrocarbon flames and found virtually no particles at all below a radius of

50 ,_, and an average particle radius of about 200/k. He also fotmd carbon

concentrations ranging from 2 x 1010 to 2 x 1012 particles per cm 3. Jotmson

and Anderson [229] recently investigated carbon particles formed by pyrolysis

at 500 ° C to 1000 ° C for a large number of hydrocarbon fuels. They fom_d that

the various types of solid carbon particles formed varied from small, isolated

specks of material, about 50 A in radius up to large dense particles about

2500 A in radius, which were approximately spherical in shape and which were

hooked together into networks of chain-like structures. It was found that, by

varying the pyrolysis temperature, contact time, and hydrocarbon concentration,

there appeared to be a gradual transition between one type of particle to another

with no sharp dividing line between particular types at any stage.

Boynton [206] obtained carbon particle samples on flat plates from the

exhaust of small rocket engines (Pc = 500 psia, nozzle exit diameter = 1.5

inches, Ae/A t = 8) using RP-I as the fuel and liquid oxygen as the oxidizer.
The flat plates were mounted on a water-cooled pendulum which was moved
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rapidly through the plume. The pendulum w a s  swung through the plume at various 
distances downstream of the exit, with the amount of deposited carbon determined 
by weighing the disks on an analytical balance. It w a s  found that the amount of 
carbon on the flat plates decreased with increasing distance downstream and that 
the average radius of the particle was  approximately 175 A,  the size distribution 
being Gaussian. 

In a recent investigation performed at Rocketdyne [ 1991 under a Thermal 
Environment Branch contract, carbon particle s izes  were determined from f u l l -  
scale F-1 engine exhausts. The particles were pumped through a water-cooled 
probe shown in Figure 17 which w a s  immersed 1. 12 inches and 4.1.2 inches into 
the plume for  two engine fir ings.  It w a s  shown that the average particle radius 
ranged from 100 A to 300 A ,  a range which agreed wel l  with previous samplings 
taken from model F-1 engine exhausts. 

I 

I 

FIGURE 17. ROCKETDYNE F-1 HOT GAS SAMPLER SHOWING 
4.12-INCH PROBE IMMERSION 

Ferris0 e t  al. [230] and Boynton et  al. [231] also report  on measure- 
ments of carbon particle size in rocket exhausts. They, as did Boynton [206] ,  
collected the particles on small water-cooled plates which were  rapidly passed 
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through the plume at four inches downstream of the nozzle exit. The samples

of carbon particles were taken at various oxidizer-fuel ratios for three engines

of area ratio, Ae/At, of 5.25, 3.0 and i. 5 (See this section, subtitle "Methods

of Predicting Carbon Absorption Coefficients and Emissivities, " part 4. ). How

ever, itwas found that at oxidizer-fuel ratios smaller than i. 6 the carbon

deposits were too heavy and the particles agglomerated considerably during the

collecting process such that itwas impossible to distinguish individual particles.

Using stereographic photomicrographs with shadow casting, it was found that at

O/F ratios greater than i.6 the mean value for rp was approximately 200 A,

a value which is representative of all the mean particle radii mentioned in this

section.

Disoersion Equation for Carbon

In this section thc dispersion equation for carbon is discussed and the

relations for conductivity, (r, polarization, P, dielectric constant, c, and index

of refraction n = n I - in 2 are determined. The Rayleigh theory of scattering by

carbon particles is dependent upon this dispersion theory, as will be seen in
the next section.

The classical theories of dispersion in gases, liquids and solids, and

metals (conducting materials) are described by Straiten [232], Slater and Frank

[233,234], Born and Wolfe [235], Panofsky and Phillips [57], Sommerfeld [236],

Bgttcher [237], Fleagle and Businger [238], and Wood [239]. A dispersive

medimn is defined as one in which the index of refraction of the medium varies

with frequency of propagation. Another definition sometimes used is that a dis-

persive medium is one in which the phase velocity v of a superposition of

harmonic wave trains of infinite length and duration varies with the frequency

of propagation. In a nonconducting (dielectric), nonmagnetic medium, a wave

is propagated with a phase velocity v = c/n, where c is the velocity of light in
1 l

empty space and n is the index of refraction equal to (c#)2 _ e '_, since the

permeability # is usually assumed close to unity (except for ferro-mag_etic

materials).

For gases, the dispersion theory was actually discussed in the previous

section, subtitle "Radiating from an Accelerated Charge, " to predict the radi-

ation (absorption) by a classic dipole. In this manner, an electron of charge

e was acted on by a force eE of an external electric field E = Eoe-k°t and

received a linear restoring (elastic) force, -Gx = -row 2 x, proportional to the
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displacement x of the electron, and also a damping or dissipative force, -mTx ,

proportional to the velocity of the electon. This equation, (86), will now be
rewritten in the form

mx+ mw x + m'),x = eE , (245)O

which has the solution

nl w 2 - w 2 - icoy (246)
O

It may be noted that in the remainder of thissection (and the following section)

the quantities, E, J, P, D, x, x, and x" are all vector quantities.

The polarization, P, will now be defined as

N k e2/m

p =e _ Nk : E _ _2 __2 • , (247)
k Xk k o - lWTk

where N k is the number of electrons per unitvolume characterized by the con-

stants w k and "Yk"

The dielectric constant ( will now be written as

6:l+N -fi--
c ' (248)

O

where fi is the polarizability and is equal to the dipole moment ex divided by
the electric field E.

Hence, equation (248) may be written as

N k e2/mc °

¢ = 1 + _k w_--- [ w_ --iw_/. = (nl - in2)2
ok k

(249)
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For an absorbing gas the dielectric constant is a complex quantity and

may be written in terms of its real and imaginary components, n 1 and n2.

Furthermore, the second term in equation (249) is usually small in gases with

respect to unity so that the square root of equation (249) can be written as

1 1 Nk e2/mE

o£_=n 1- in 2 = 1 +-_- 0)2 _ 0)2 • ,

Ok - lo.ryk

(250)

in which the real part n 1 and imaginary part n 2 are, respectively,

1 (Nk e2/mE ) (0)2°k - ¢°2)

_k o (251)
nl= t + -_- (w2Ok - 0)2)2 ÷ 0)2 _/k2 ,

and

1 (Nk e2/m_°) ¢°_'k (252)

n2=l+--_-_k --_0 k c02)2+0) 2 2- _k

As the frequency increases, the index of refraction n experiences the

phenomenon of "anomalous dispersion" in the vicinity of each of the resonant

frequencies, coOk. This phenomenon can be seen in Figure 18 as at 0)o the

quantity n1 - 1 changes sign while the quantity n 2 (and hence the absorption)
is a maximum.

W
0),

Showing Reol (n,) and Imoqinory (n e ) Patti of Index of Refraction n • n,- irt z in Neighborhood
of Resonont Frequ*ncy, _o

FIGURE 18. ANOMALOUS DISPERSION
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For solids andliquids it cannot be assumedthat the force acting on an
electron is merely equal to the electric vector of the electromagnetic wave in
free space. Instead, the addedforce on the electron caused by the polarization
of the body must be considered. According to Slater and Frank [234], a small
sphere with its center at the position of the electron in question may be consid-
ered to have beencut out of the medium. Chargesare then induced on the sur-
face of the sphere producing a force at the center of the sphere which now has
a total electric field at the center of the sphere of

P
E' =E+ 3c (253)

O

This contribution to the field because of polarization of the body is also

known as the Lorentz field. The polarization, P, as given in equation (247)
now becomes

+ )P
3_ o w 2 _w 2 _ i50Tk '

o k

(254)

and an expression for the dielectric constant may be written as

£ 1 _ _1_1 ÷ in2)2 1 1 Nk e2/mc

- - _k oc + 2 - (n 1 + in2) 2 + 2 - 3 502 _ a_2 _ iwTk (255)
o k

For conducting materials such as metallic or carbon particles, a slightly
different approach to the dispersion theory is developed. It is assumed that not

all of the electrons are bound to the atoms (i. e., bound electrons, N k) , but
some are free to move about within the material (i. e., conduction electrons).

Both the bound and conduction electrons of the material are forced to oscillate

by the incident, periodic electromagnetic wave. The total number of electrons

per unit volume, N, may be thus written as

N=_ Nk+N Zdc - m ' (256)
k a
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where Z is the atomic number, ma, the mass in grams of one atom of the con-
ducting material, and d is the density of the conducting material.

It is usually assumedthat the fixed, positive ions of the conductor com-
prise a region of constant electrostatic potential. Within this region a cloud

of free or conduction electrons wanders about and thus carries the current in

the direction of an applied electric field, E. The motion of free electrons is

opposed by collisions at the lattice points which are occupied by the heavy ions.

The momentum transfer from the drifting electrons to the lattice points results

in thermal vibrations of the ions and a damping of the electron motion. The

resulting equation of motion is thus similar to equation (245) except that there

is no restoring force; hence, w is zero. This equation takes the form
O

mx+ mTcX=eE , (257)

whose steady-state solution may be written as

i leE
x - (258)

.vc - iw m

Since N c represents the number of conduction or free electrons per

unit volume, the current density J may be written in the form

N e2/111
c

J = N ex - E
c _c - iw

(259)

However, since the static conductivity _'

conductivity _ may thus be defined as

O- --

N e2/m i(e2/m) N
C C

7c iw a_ + '- _7c

may be defined as J = _'E, a complex

(260)

The dielectric constant may now be written as

D P
6-- -- 6 -I---

E o E
(261)
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where E is now E = E' - P/3c .
O

Hence, the dielectric constant may be written as

£=£ +
0

e 2 N k

_-_ _, 2 C02 •
k (coOk - - 15oYk)

e 2 x-_ Nk

i -3e-----m ._ (_2 _5o2 •
o k o k -lWYk)

(262)

But the Lorentz field may be assumed negligible in the visible and infrared

compared with E; then E' = E, and equation (262) becomes

N k

c = E + (e2/m) _ (5o2 _ 0.)2 _ ico.yk)
o k o k

(263)

The complex propagation constants of a particular conducting sphere

(carbon particle) and the surrounding medium (k 1 and k2, respectively) can be
written in the form

k 1 k2 =k 2 = #eso 2+ igp_ , (264)

where # is the magnetic permeability of the medium and n equals kl/k2,

according to Stull and Plass [240]. If equations (260), (263), and (264) are

solved simultaneously, the following equations for the real and imaginary parts
of the index of refraction result:

e2 Nk(so2 k _ 5o2) e 2 Nc

n_ - n_ = 1 + _ _ _ C02)2 2 2 + 5O2 y2 (265)me k (5O2 + 5O yk mc +
o o k o c

and

e2 v_ Nk C°7k e 2 Nc

2 n i n 2 - 'k'7' _ ¢02)2 0.)2 2 + 5o2 2mE (0) 2 + mc +
o o k 7k o Yc

(266)

99



Stull and Plass [240] obtained values for the constants in equations (265)
and (266) from Halpern and Hall [241], who investigated fast-charged particles
in carbon, andfrom Senftlebenand Benedict [242], who measured n1 and n2
for amorphouscarbon at 2250° K in the visible part of the spectrum and the

reflection coefficient Ph (or reflectivity) in the infrared. This reflection co-

efficient is defined by FresnePs equation as

_ (nl- 1)2*
P)_- (n 1+ 1)2+ n_

(267)

Stull and Plass [240] then solved equations (256), (265), (266), and

(267) for the four unknowns 7c, 74, Nc and N4 and obtained for a temperature
of 2250 ° K the dispersion equations for amorphous carbon to be

6. 448 x 10 32 3. 224 x 10 32 3. 224 x 10 32

n2 - n_ = 1 + 4. 062 x 1035 - 022 ÷ 9. 549 x 1033 - 032 ÷ 5. 217 x 1033 - 022

6. 348 x 1032 (1. 966 x 1032 - 022) 3.05 x 1031

+ (1. 956 x 10 32 - 022)2 + 1. 369 x 1033 092 - 2. 323 x 1031 + 022 (268)

and

2 nln 2 =
6.347 x 10 32 X 3.70 x 1016 02

(1. 956 x 1032 - 032) + 1. 369 x 1033 022

3.05x 1031x4.82 x 1015

(2. 323 x 1031 + 022) 02

(269)

These two equations have been used by several investigators to obtain

emissivities of carbon, as will be discussed later h_ this section.

Rayleigh Scattering Method

This section describes the general theory of scattering by small particles

such as carbon particles (in which a << 1) known as Rayleigh scattering. This

type of scattering involves the radiation from an oscillating dipole as described
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in the previous section. Among the many references which discuss Rayleigh

scattering are Oster [243], Cadle [244], Green and Lane [245], van de Hulst

[246], Sinclair [247], Sinclair and La Mer [248], Dallavalle [249], Orr and

Dallavalle [250], Sommerfeld [236], Humphries [251], Tverskoi [252], and

Bullrich [253].

According to the basic theory of Rayleigh [254-256], the oscillating

electric field of the radiation incident upon a transparent optically isotropic

particle in which a equals (2_ rp/k) << 1 induces an electric moment in the

particle. The statement that the particle is optically isotropic implies that

the polarizability and index of refraction are independent of direction in the

particle. Since the particle acts like a linear electric oscillator, it does not

radiate light along other directions, however, and the scattered light is plane-

polarized if seen at 90 ° to the incident ray, whether the incident ray is polar-

ized or tmpolarized. This polarization of radiation scattered by a particle cloud

(such as the exhaust of a hydrocarbon-fueled rocket engine) is seen in Figure 19.

Cloud

Eo, Electric Field
\

\

I 0 , incident

intensity

Field

_Y

of Emltling
and Scattering Particles

_--Sphericol Scattering Particle

t18/ ., Unpolarized

i- ,- Emission

Scattered Intensity at 0<90"

"_ (Elliptically Polarized for
I"k Anisotropi¢ Particle)

(Eli = O)
I," Scottered Intensity at 8-90 °
(Verticolly Plone Polorized for

Isotropic Particle)

FIGURE 19. POLARIZATION OF RADIATION SCATTERED BY

A PARTICLE CLOUD

If the particles were anisotropic, the direction of the incident radiation's

electric field E might not coincide with the direction of the induced dipole

moment po hi this case the radiation scattered at right angles would not be

completely plane-polarized with vertical vibrations (as for an isotrpic particle),
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but would have a weak horizontal component. This Jsotropic versus anisotropic

scattering phenomenon is also shown in Figure 19.

When the incident radiation is plane-polarized on an isotropic particle,

the intensity scattered at an angle ¢ can be written according to Sinclair [247]
as

n2_l

n2+2

2

sin2¢
, (270)

where R is the distance from the sphere (carbon particle) to the point of obser-

vation, ¢ is the angle between the propagation direction of the scattered radiation

and the electric vector in the direction of incident radiation, and V is the volume

of the sphere equal to 4/37r r_. The scattered radiation is thus plane-polarized
and has its electric vector lying in the plane formed by the electric vector in the

direction of incident radiation and the direction of propagation of the scattered
radiation.

When the incident ray is m_polarized, the intensity of radiation scattered

in the direction 0, according to Sinclair [247], is

2

I0= I0 _ n2 + i -TU (t + cos 20) = i 1+ i2 , (271)

where 0 is the angle between the direction of propagation of the incident and

scattered radiation. This equation shows that the radiation scattered by the

particle consists of two incoherent, plane-polarized components whose planes

of polarization are mutually perpendicalar. The component i 1 (the quantity in

parentheses multiplied by unity) has its vibrations (electric vector} at right

angles to the plane of observation. The component i 2 (the quantity in paren-

theses multiplied by cos 2 0) has its vibrations parallel to the plane of observation.

Figure 20 shows the angular distribution of intensity and polarization of

the radiation scattered from a small isotropic scattering particle if the incident

radiation is unpolarized. The solid line represents the total intensity according

to equation (271), and the dotted iines the intensities of the polarized components.

Curve 2, which represents the cos20 term in equation (271), is the component

which is horizontally polarized, and curve l, which represents the m_ity term in
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equation (271) is the term which is vertically polarized. From this figure it

is thus seen that light scattered at 90 ° is vertically plane-polarized.

To obtain the scattering cross-section as, which is necessary in pre-

dicting emissivities of carbon particles, the methods of Stratton [232],

Sommerfeld [236], Born [257], Slater and Frank [234], or van de Hulst [246]

should be consulted. The electric field of a scattered wave may be written

according to van de Hulst in terms of the distance R from a dipole (R assumed

much greater than X) as

k 2 p sin Y -ik_R
E -- e (272)

0 R

where 7 is the angle the scattered ray makes with the induced dipole moment

p = fi E o (where fl is the polarizability which is equal to ex/E) and k is the
wave number which is equal to 2u/k. The intensities of the incident and scatter-

ed radiation, Io and I, respectively, may be taken from the time average of

the Poynting vector, S", of the plane wave

_:: = __12Re (E0 H_) ' (273)
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where H(p is the average magnetic field corresponding to the current element
in the dipole. These intensities, using Gaussian units, reduce to

i OfEol2 o j2- and I = _ E (274)o 87r

If the scattered intensity I is integrated over a sphere, the total energy

scattered in all directions, according to van de Hulst, is

1 j2W=_- ktclp (275)

The scattering cross-section as may now be defined according to Slater

and Frank [234] as the area on which enough energy falls from the plane wave

to equal the scattered intensity. Hence, by dividing equation (275) by Io, the
scattering cross-section is obtained as

87r ] 12 1287T5 fl 2-- k 4 fl - (276)
s 3 3 k 4

For spherical particles small with respect to the wavelength (c_ << 1),

the polarizability fl may be written according to the Lorentz-Lorenz equation
as

3 lJv=ln llr3oxfl:-_ n2+2 n2+-----2 p- E '

where x is given by equation (246).

Hence, the scattering cross-section may be written as

128 _5

(r - X4s 3

2

, (278)

showing an inverse wavelength to the fourth power dependence.
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The fractional decrease of the incident radiation scattered in all direc-
tions may now be written in the following form:

-Np sI [ 128 11N/] (279)I=I e =I e =I exp - rp-V-:_. _1o o o 3 '

where N is the concentration of scattering particles per unit volume and I is

the path Plength through the medium.

Another method for obtaining the scattering cross-section for Rayleigh

scattering is sometimes used [79,105]. In this manner a solution to the macro-

scopic wave equation,

02E 1 O2E

0X 2 - V2 O? ' (280)

where the phase velocity v equals c/n, may be found as

(281)

Since the intensity varies as the square of E, the intensity becomes

v q
I=I exp [-47rvnzx/c| =I exp(-N a x) , (282)

o k J o p s

where x is the same quantity as 2 in equation (279).

With the introduction of equation (252) for n2 (put in terms of frequency

v) and the insertion of equation (87) for 7, it is shown by these authors that

for (_ - _o ) >> y the scattering cross-section becomes

8_e 4 1

s 3m2c 4 2
(283)
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Whenu >> v the cross-section becomes
o

87re 4 _4 87r e4 X4o 1

o- - i)4 - _.4s 3m204 3m204
O

(284)

This is the Rayleigh scattering equation which implies that the scattering

varies as the inverse of the wavelength to the fourth power (see equation (278)).

It might be mentioned that for uo << u the scattering cross-section reduces to

87Te 4

- (285)
S 3m2c 4 '

which is the Thompson scattering cross-section for free electrons, and shows

no dependence upon waveleng'lh.

Equations (283) and (284) are actually the same form as equation (276)

if it is remembered that the polarizability in equation (276) can be written as

ex/E and equation (246) is used for x. in the next section these expressions

for scattering cross-section are used to predict emissivities from carbon

particles.

Methods of Predicting Carbon Absorption Coefficients
and Emissivities

This section discusses several methods which have been used to predict

absorption coefficients and emissivities of carbon particles in luminous flames,

in certain types of carbon suspensions, and in exhausts of hydrocarbon-fueled

rocket engines. The first general method to be discussed involves the theory

of Rayleigh scattering discussed in the last section; the next method involves

calculations made using Mie theory (which is discussed more thoroughly in

the next section for A1203 particles) ; the third method is concerned with the

inverse wavelength method; and the final method involves various experimental

measurements.

I. Rayleigh Theory Method. Using the Rayleigh theory of predicting

scattering and absorption cross-sections, Main and Bauer [258] have calculated

absorption coefficientsfor particulate carbon in carbon-air mixtures. These
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calculations were performed for particle radii of 50A to 1600/_ andfor wave-
lengths of 2000/_, 4000/_, and 8000A.

Using the Rayleigh (or Mie) theories, the absorption coefficient for a
particle cloud may be written in the form of the total or extinction cross-section

at as

gk=atNp , (286)

where at equals as + aa and aa is the absorption cross-section. The cross-
sections as, aa, andat are related to the efficiency factors Qs, Qa, and Qt'
respectively, in the following manner:

@ a (Y
s a t

r 2 - Qs' u r 2 - Qa' and 7rr 2 - Qt
p p p

(287)

By using equation (276) for the scattering cross-section, the following

relation for the scattering efficiency factor is obtained:

8 n2 _112t

Qs=3- °_4 n 2 + 2] '
(288)

where a = krp = (2_/_) rp. The absorption efficiency factor, Qa, derived in
the next section, may be written as

n - I ) (289)Qa=-4c_Im n 2+2

The concentration, Np, of carbon particles of mean radius rp, which
makes up a dispersion of mass density p can be written according to Main and

Bauer [258] as

N = p� [(-_-43) _r3 5 J (290)P P '
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where 5 is the density of solid graphite.
be written in the form

The absorption coefficient may thus

Kk=_tNp=_ r - 4r
P P

n2+ 2

(291)

However, for particle radii of 200 A or smaller (close to the median

size of carbon particles in flames or rocket exhausts as discussed in the second

part of this section) and for wavelengths greater than about 2 _, Main and Bauer

found that the scattering cross-sections were several orders of mag]litude

smaller than the absorption cross-sections. Hence, the absorption coefficient

KX reduces to

K_.=_ N = _ (-_-5) -4hna p 4
(292)

This relation for absorption coefficient thus depends only upon the hldex

of refraction n (and hence the wavelength of radiation, _) and is thus hldepend-

ent of radii of the particles. Using values of n 1 and n2 of graphite at 2250 ° K

based upon the calculations of Stull and Plass [240] and the measurements of

Senftleben and Benedict [242], Main and Bauer [258] calculated values of Kk
for a carbon-air suspension in which the m_ount of carbon was varied from 0

to 100 percent by weight. These calculations were made for temperatures of

3000 ° K to 10,000 ° K and for pressures of 0. 0316 arm and t atm.

2. Mie Theory Method. The detailed derivations of the equations involved

in the Mie scattering theory are discussed in the section entitled "Radiation from

A1203 Particles," where it is shown that the Rayleigh theory is merely a limiting

case of the Mie theory. Although the Mie theory has usually been used for

larger particles of 1 to 5 # in radius and in which the parameter c_ is approxi-

mately 1, various investigators such as Stall and Plass [240], Krascella [259],

Beheshti [260], Foster [261], Erickson, Williams, and Hottel [225], Howarth,

Foster, and Thring [262], and Yagi [263] and Ruedy [264] (in two very early

analyses) have used Mie theory for carbon particles in which c_ is generally

assumed to be less than unity.
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In Stull and Plass's [240] investigation, carbon particle emissivities

were obtained for a range of particle radii from 0. 005 _ to 0.1 _t and a wave-

length range of 0.4 # to 20 #. Krascella [259] considered particle radii ranging

from 0.05#to 1.0#and a wavelength range of 0.25 #to4.0 #. Beheshti [260]

investigated particle radii from 0. 005 _ to 1.0 _ and wavelengths varying from

0.2 #to40 #. Foster [261] treated particle radii from0.05 #to0.4 #and a

wavelength range of 0.5 # to 6.0 #.

Erickson, Williams, and Hottel [225] made both theoretical calculations

and experimental measurements to determine intensity of radiation scattered

from a premixed laminar benzene-air flame. In the experimental investigation,

relative intensities for both the parallel and perpendicular components were

measured at a nmnber of angular positions in the range of scattering angle

0 = 30 to 150 deg. For the theoretical investigation using Mie theory, values of

intensity were calculated for refractive indices n = 1.71 - 0.76i and n = 1.40 -

1.00i for values of a of 0.8 to l. 30 and for wavelengths of 4358 ,_ and 5461 A.

Howarth, Foster, and Thring [262] evaluated the extinction coefficient
Qt for carbon particles less than 600 A in diameter in the 1-# to 4-# wavelength

range and over a temperature range of 1000 ° K to 2000 ° K. These authors

calculated the damping constmlts 71, T2, 73, and Tc appearing in equations (265)

and (266) as a function of temperature and found that in the I-# to 4-p wave-

leng"thrange and i000 ° K - 2000 ° K temperature range the value of Qt varied

from 0 to 30 percent. Itwas fom]d that the mean value of extinction coefficients

measured over a non-isothermal opticalpath varied less than i0 percent.

M all of the above investigations mentioned, the carbon particles were

assumed to be spherical and embedded in an infinite, homogeneous, non-

conducting medium. The general equations for the Mie total and scattering

cross-sections are given by Mie [265], Stratton 1232], van de Hulst [246],

Born and Wolfe [235], and are derived in the section entitled "Radiation from

AI203 Particles, " of this report as

27; r 2 _o
P

a t- c_2 Re_ (2m+ 1) (a +b ) (293)11! ill
ill = 1

and

27rr 2

---Pa2 ,a m 12+] bm [2) (294)cr - _ (2m+ I) (I
S

ill = i
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where the am and b m are the Mie coefficients which may be expressed in terms

of spherical Bessel and Hankel functions, Jm and H_ ), respectively.

The equations for a m and b m may be simplified if the carbon sphere

and the external medium are assumed to have the same magnetic permeability

(Pl = P2), if the recursion relation is used for Jm and its derivatives, and if

the Neumann ftmction Ym = i (Jm - H_)) is used. The discussion of the above

method to obtain Mie coefficients, together with another method, the logarithmic

derivative method, is given in the following section.

The eight groups of investigators mentioned [225, 240, and 259-264]

found, as Main and Bauer [258], using the Rayleigh theory, that the absorption

cross-sections _a (and hence Qa) were much larger than the scattering cross-

sections _s (and hence Qs) for low values of c_. Figure 21 (taken from Foster

[261]) shows this phenomenon at a wavelength of 1.8 #. It will be shown in

the following section that with further increase in _ the total or extinction

efficiency factor will oscillate about the value 2.0.

?o

o

o

3,0

2,_

0
0

//

0,2 0.4 0.6 O.n

a - ZTrrp / k

FIGURE 21. EXTINCTION AND SCATTERING EFFICIENCY FACTORS

FOR CARBON PARTICLES AS A FUNCTION OF o_ FOR k = 1.8p

After the scattering and absorption cross-sections have been obtained,

the emissivity of a cloud of particles may be obtained as

c = 1 - e -Np(as + aa)i = 1 - e-Np _t_ (295)
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Both Stall and Plass [240] and Beheshti [260] present curves of emissiv-

ity for carbon particle clouds as a ftmction of wavelength for various values of

L = N_l and particle radii Stull and Plass also present curves of intensityp
(discussed in the following subsection) and emissivity for two distributions of

particle sizes. One of these was a symmetrical distribution of particle radii
about 200 _ and was calculated as

N(rp) drp = (Np/159.52) exp - (rp - 200)//90 drp , (296)

where rp was in angstroms. Another distribution, which was asymmetrical,
was calculated as

N(rp) dr =4.75x 105N r -3e-640/rp / dr (297)
P PP P

for 50/_ < r < 1000 _ and was assumed to be zero outside of this range.
P

Figure 22, taken from Stall and Plass [240], shows emissivity as a

function of wavelength using Mie theory and equation (297) as the particle

distribution. It is apparent from this figure that scattering is important only

for the small wavelengths (k < 2 #). For L = 1013 particles/cm 2, it can be

seen that emissivity is that of a blackbody over practically all of the infrared

wavelength region. Thompson [266], who made radiation measurements in the

exhaust of an F-1 turbine, showed that, for a value of L of 2.72 x 1013 (cor-

responding to a path length of 4 3/4 in.), using equation (297), an 800 ° K

blackbody curve resulted for the emissivity. Figure 23 (taken from Beheshti

[260]) shows emissivity as a function of wavelength for various particle radii

and values of L. These values of rp and L are felt to be representative of
exhausts of RP-1 fueled rocket engines.

3. Inverse Wavelength Method. In addition to the Rayleigh and Mie

theories of predicting emissivities of carbon particles, numerous investigators

have used approximate relations based on an inverse wavelength dependence

which is derived from experimental data. Some of these investigators include

Becker [267], Rossler and Behrens [268], Pepperhoff [269], Naeser and

Pepperhoff [270], Pepperhoff and Bahr [271], Plyler and Hamphreys [272],

Rossler [273], Heidman and Priem [274], Yagi and Lino [275], Hottel and

Broughton [276], Millikan [227,228], Schack [277], and Siddall and McGrath

[278].
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These empirical expressions for mass absorption coefficient Kin, x and
spectral emissivity cx have usually been expressed in the following form:

m A

xpi j" = _ k-Api .Km,x = CX and _X= 1 - exp(K l exp(C )
nl,

(298)

In these equations C is a constant independent of wavelength, but A is not

necessarily independent of wavelength. The total emissivity is usually found

from equation (298) by integrating over all wavelengths as

oo

f i1 - exp(cx-Ap£) ] Bk
0

dX

z , (299)
oo

f BX d k
0

where Bx is the Planck blackbody intensity function defined in equation (19).

Hottel and Broughton [276], who analyzed various experimental data

of soot deposited on glass, concluded that the exponent A could be represented

by a value of 0.95 in the infrared down to 0.8 #. In the visible part of the

spectrum they recommended an average exponent of 1.39 for various amyl

acetate, acetylene, and city-gas soots. Pepperhoff [269] and Rossler [273]

state that values of A higher than unity may be attributed to the effect of par-

ticle size. Millikan [228], however, states that for the particle diameter

range 600 to 800 _ the exponent A is independent of particle size, state of

aggregation, or temperature. He comments that the exponent A is determined

mainly by the hydrogen content of the sample, since he found that A increased

from 0.9 to 1.9 as the hydrogen content varied from 0.8 to 4.1 percent by
weight.

Siddall and McGrath [278] summarize results of various experimental

investigations involving determination of the exponent A. They state that, in

the visible part of the spectrum, A can be assumed independent of wavelength,

but in the infrared, it should be written in the form A = a - b In X. They also

comment that the parameter A is independent of soot layer thickness but is
dependent upon the fuel from which the soot is formed.
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Satoand Matsumoto [279] calculate (and measure) radiation from a
carbon particle cloud using equation (2987for spectral emissivity as

C
X

P

= 1- exp(-Cp._/xA) = 1 - exp[-(C2/TxAT(CIpT/C27 ] = 1 - e -_x

(3007

where C2 is given in equation (198) as ch/k.

The total emissivity from a carbon particle cloud is then fom_d as

= 1- 15 ¢,,
P -_- '(×+ 1) , (301)

where the quantity %'"(X + 1) is defined in terms of the gamma function

F(X + 1) as

d4 = _"'e -x_ d_ -dx 4 in F(X+ l) (X + l)
of e _ 1

(302)

The exponent A was considered to be unity, and the mass absorption coefficient

K was taken from Schack [277] to be
nl, X

K
1TI,X

=Ck -A = 5.7x 105/k , (3037

where X is measured in microns and Kx is in m -1. The expression for total

emissivity, ¢p, [equation (301)1 was then used to predict radiation from a cloud
of carbon particles, as will be discussed in the following section.

Siddall and McGrath [278] and Thring et al. [280] discuss another

expression for mass absorption coefficient Km X = C X-A which is based upon
the Mie theory calculations of Hawksley [281 ] [o obtain the total or extinction

efficiency factor Qt" In this manner the absorption coefficient Kk may be
expressed as
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KX= PKm,x=QtN A (304)p

where A is the projected area of a particle (equal to ndp/4), and the total
or extinction efficiency factor may be written as

24_d n_ n 2 24_d
P ____]2 F(X) (305)

Qt- X [(n2+n2n_)2+4(n2- n2n'_+ i)] - X

where the index of refraction n is now written as n = nt( 1 - in2).

The absorption coefficient may now be written as

36 n V' F (X)

_X - X ' (306)

where V' is the average volume of particles per unit volume of the cloud and

may be defined as

V' = N _d3/6 (307)
P P

where N is the average number of particles per unit volmne.
P

Ferriso et al. [230] used equation (306) in the following form

KX = 36 _pF(X)/po x , (30S)

where p is the carbon particle mas's density (g/clll 3 Of cloud) and Po is the

density of carbon in bull; form, to plot the parameter Kx X/p for values of
temperature from 150 to 3000 ° K and values of wavelength from 1 to 10 #.

This curve is reproduced as Figure 24 of this report.
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To evaluate the parameters n 1 and n 1 n2 (originally given h_ equation

(268) and (269)), Ferriso et al. [230] made the following approximations for

wavelengths greater than about 1 #.

n_ - n_n__ 4.36 - 1.31 _-Z (309)

and

0.58 +-1"675X
n2 n2 _ 6 fl (310)

where

/3 = (_(2250 ° K)/(y(T)

6 = N (2250 ° K)/Nc(T)C

a(T) = e 2 Nc/m¢oWY c

(311)
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where h is the wavelength in microns, a is the dc conductivity [ equation (260) ]
evaluated according to Stull and Plass [240] based upon measurements of

Senftleben and Benedict [242], and N c is the number of conduction electrons
per cm 3.

4. Experimental Methods. Various experimental methods of obtaining
absorption coefficients, emissivities, reflectivities or transmissivities of

carbon samples or carbon particle clouds are discussed in this section. This

discussion is in addition to the brief one in the last section in which experimental

data were mentioned in connection with the inverse wavelength calculation of

absorption coefficients and absorptivities [equations (298) and (299)]. In the

last 50 years or so, there have been numerous experimental programs per-

formed to determine the emissivity of carbon or graphite samples placed in

furnaces or other devices, carbon particles placed in various suspensions such

as H20 , He, or N2, and of carbon particles in luminous flames. Only in the

last few years, l_owever, has there been an attempt to determine experimentally

carbon emissivities and absorption coefficients from rocket exhaust gases.

Plunkett and Kingery [282], Rutgers [283], and MacPherson [284]

review the literature for emissive and reflective properties of carbon or

graphite samples (polished or unpolished) placed in such devices as carbon

tube furnaces and heated by electrical current or electrical resistance heaters.

These investigators state that spectral emissivity generally decreases with

increasing wavelength above 1 #; however, in the visible region the spectral

emissivity closely approaches that of a graybody (i. e., ch is essentially con-
stant for all visible wavelengths). These authors also comment that there

appears to be no temperature dependence on the spectral emissivity, while the

total or integrated emissivity appears to have a positive temperature dependence.

Lanzo [285] and Lanzo and Ragsdale [286] discuss transmissivity

measurements made on four carbon powders of particle diameters 0.08 #,

0.15 t_, 0.45 #, and 1.40 # suspended in water for the wavelength range 0.2 #

to 1.0 #. Spectral transmissivity measurements were obtained with a spectro-

photometer, and total transmissivity measurements were obtained with a

xenon-arc source and a radiation detector. It was found that transmissivity

(and hence emissivity) was essentially independent of wavelength in the visible

range, thus agreeing with Plunkett and Kengery [282], Rutgers [283], and
MacPherson [284].

Marteney [287] measured extinction (absorption plus scattering) of

carbon particles of size rp = 0. 0045 # suspended in He and N_ carrier gases
in the wavelength range 0. 255 # - 0. 545 #. Extinction coefficients were again
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found to be essentially constant with wavelength in the visible range. It was
foundthat the application of de-agglomeration aerodynamic shear forces in a
nozzle through which the carrier gas-particle mixture was passed causedan
increase by a factor of nearly six in the extinction coefficient for the carbon
particles.

Numerous investigators suchas Millikan [227, 228], Plyler and
Humphries [272], Silverman [288], Tourin [289], and Satoand Matsumoto
[279] have made experimental measurements of emissivity in luminous flames.
In the last several years there has beena considerable amount of literature
involving the experimental determination of emissivities, spectral radiance,
and temperatures in luminous rocket exhausts. Someof the unclassified refer-
ences in this area include Rossler [273], Simmons and de Bell [290-292],
Herget et al. [293], Boyntonet al. [231], Ferriso et al. [230], and Hendershot
and McCaa [294, 295]. Someof the classified references in this area (per-
taining mainly to H t and F-1 engines) include Thompson [296], Simmons [152,
297], de Bell andSpeiser [298], de Bell and Simmons [299], Herget,
Schamacher, and Enloe [300], Wagner [156], Levin, Wagner, and Thompson
[154], and Tourin [301].

The measurement of emissivity for both flames and rocket exhaust gases
dependsuponthe principles of monochromatic gas pyrometry as discussed by
Silverman [288], Hecht [302], Hill [303], Hornbeck [304], Brenden [305],
Branstetter [306], Tourin [307, 308], Brewer and McGregor [309], Harrison
[310], and de Bell et al. [153]. In this manner the intensity IFx, as seen by

the radiometer or spectrometer viewing the flame or rocket exhaust may be
written in the Planekian form as

2CI. 1 = c F B (312)
IF -- <F k [exp(C2/kT F) - 1] k 'k k k

and the intensity IGk of the continuous source (graybody) also seen by the

radiometer or spectrometer is

2C1 1

IG = _G k 5 [exp(C2/kT G) - i] = EG BXk k k

(313)
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However, when a monochromatic beam of radiation of known intensity

IGk passes through a gas, part of it is absorbed by the gas such that only a

fraction, ITk, is transmitted through the gas and received by the detector.

The fraction lost is thus the spectral absorptivity of the flame, a Fk, which,

by Kirchoff's law, must equal the spectral emissivity,

are expressed as

IG -IT_ IT

_F - = i- - EF

k IGk IGk k

eFk. These quantities

(314)

This spectral emissivity may thus be measured as a function of wave-

length for a known value of eG_ for the graybody source. In determining the

flame temperature, T F, as seen by the detector, equation (312) is divided by
equation (313), and the following equation results:

C2

TF= X ln{I+(IG}/EGkITx ) (1-IT_/IG) [exp(CJ},TG)-I ]}

(315)

Ferriso et al. [230] and Boynton et al. [231] used this equation to

determine the gas temperatures of a small RP-1/gaseous oxygen engine ex-

haust at 4.4 #, the CO 2 and CO vibration-rotation bands, and at 2.2 p (region

of no molecular emission) to obtain the carbon temperature.

Simmons and de Bell [290,291] discuss the use of two path pyrometry

to determine simultaneously the spectral emissivity and temperature of a
luminous rocket exhaust. The main advantage to this method is that a com-

parison source behind the rocket exhaust is not needed. Instead, a corner-

cube reflector (glass prism) is placed behind the exhaust in effect to double

the apparent depth of the plume. The radiant intensity thus obtained when a

reflector is placed behind the plume can be written as

IF I +pk(l -_Fk k
X
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where px is the reflectivity corresponding to the wavelength of the reflector.

Assuming thermal equilibrium, eFx B_. = IFx, and the absorptivity OZFx equals

the emissivity, which is then written as

eFk = - - i (317)

Assuming that the Wien law for blackbody radiation is sufficiently

accurate, the temperature at the nozzle exit may be calculated as

T--1F -1 + X In 1 FX

= TBR C-_ - IF) _ - 'e

(318)

where TBR is the single-path brightness temperature at the nozzle exit and

I_k/IFk is thus the ratio of the double-path spectral intensity to the single-

path spectral intensity.

Most of the spectral and total emissivity data from the exhausts of the

1,500,000-1b thrust F-1 engine and the 200,000-1b thrust H-1 engine are

classified. However, most engineers who have calculated radiative heating

to the base of the Saturn vehicles are inclined to use a value close to unity

for the emissivity in the infrared wavelength region. Simmons [297] devel-

oped an empirical relation (which is classified) for spectral emissivity in the

visible spectrum for an RP-1/lox rocket exhaust. This empirical relation

was a function of wavelength, mixture ratio, chamber pressure, and thrust
chamber size.

Perhaps the most extensive experimental analysis of enlissivity from

carbon particles has been determined by Ferriso et al. [230] and Boynton

et al. [231] at General Dynamics/Convair under NASA/MSFC contract. In

this investigation, the dependence of the carbon spectral absorption coefficient

on wavelength in the 0.7-p to 5-p range and on temperature from 1045 ° K to
2600 ° K was determined. Three small contoured-nozzle rocket motors of

nozzle area ratio 5.25, 3.0, and 1.5 were used in the investigation. The

motors used the Foelsch [311] nozzle to produce a constant temperature near

the exit. By varying the chamber pressure and, hence, O/F ratio, various
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values of constant temperature were obtained for each motor. These tempera-

tures were 1045 ° K, 1290 ° K, 1415 ° K, and 1680 ° K for the 5.25 area ratio

motor; 1230 ° K, 1470 ° K, and 1760 ° K for the 3.0 area ratio motor; and

1700 ° K, 1900 ° K, 2370 ° K, and 2600 ° K for the 1.5 area ratio motor.

All of the above temperatures were calculated from a relation such as

equation (315). The emissivity of the entire plume, _k, was obtained from

experimental measurements as shown in equation (314). This emissivity can

be expressed in terms of carbon, H20 , and CO 2 absorption coefficients as

= 1 - exp -
{ [(Km,)_P7 _ + (_- -c m,)_ u7 H2O+ (KI,)U7 CO-, ]} '

(3197

where u represents the quantity p_ taken at standard temperature and pressure.

The contribution to the emissivity of CO and other molecular emitters is

neglected.

The equation for the quantity (_-m, _ u)H20 using the statistical band

model, was given by Ferriso et al. [230] (see equation (22777 as

1

- - -2 (3207
(Km,xUTH2 O= UKm,X(1 + UKm,x/4a7 ,

where _ represents a fine structure term represented by

a=
d PT { CH20 [ -- + (1 - CH207 ax}

(3217

In this equation, a is the ratio of half-widths due to self-broadening, a x is the

ratio of foreign gas half-width to H20 half-width, and CH20 is the concentration

of water vapor. For CO2, the average absorption coefficient can be determined

by the Beer-Lambert equation. In this case, k-k equals S/d, where S/d was

given as a function of temperature and wavelength by Malkmus [312].
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Figure 25, taken from Ferriso et al. [230], shows the quantity (_-m, kP)c
for the 5.25 area ratio motor. The calculated curves are based upon bulk

carbon properties as determined by equations (308-311). Good agreement with

experimental data was obtained up to 1700 ° K, after which the experimental

data were practically independent of wavelength. At temperatures below 1200 ° K

and at wavelengths less than 0.8 #, the observed emitted intensity was greater

than the blackbody intensity. However, it was felt that the effects of scattering

or a non-equilibrium distribution of non-emitting states in the rocket exhaust

could have contributed to this phenomenon.

Radiant Heating Calculations for Luminous Flames
and Rocket Exhausts

This section discusses various methods of predicting radiant heating

based upon the emissivity relations of the preceding section. The general

methods are applicable to both luminous flames or rocket exhausts in which

carbon is the principal emitter. The problem of thermal equilibrium between

carbon particles and the gas is also described. The base radiant thermal

environment used as design criteria for the Saturn I, S-I stage, and Saturn IB

(now Uprated Saturn I), S-IB stage caused by H-I rocket exhausts and for the

Saturn V, S-IC stage caused by F-I rocket exhausts is also discussed.

Stull and Plass [240] present an equation for the radiant intensity from

a distribution of carbon particles which absorb, scatter, and emit radiation

isotropically and which are at a constant temperature equal to that of the gas.

Integration of this equation over wavelength dk and solid angle dw would thus

yield the radiant heating rate per area. This equation, which includes higher-

order scattering terms, is

z

I 'Oo, dPo) = B (T) N (_ f maXexp(-N _tzseC0o )
X _ )_ p a 0 P

+ -Ea
\ 4= ] _¢,

I 11 \ 4= / ,2

exp ( -Np(_ t R')

exp(-Np(_ tR'') {1 + ...} dV"f

(322)

dz ,

122



_.,,¢)

,,<

I. : I : !

0.1 " "" "'..

L T _ 1290°K-

o.o,F -
1415°K -

- _1680o K -

• Experimental Values Measured in Emission

0.001

A Experimental Values Measured in Absorption
-- Theoretical Calculations Based on Eqs.(508-511)

O.O00t _ I _ I t I
1.0 2.0 3.0 4.0

Wavelength, X, microns

FIGURE 25. VALUES OF (_-m,kP)c FOR CARBON PARTICLES

DETERMINED FROM MEASUREMENTS ON THE

GD/C 5.25:1 AREA RATIO MOTOR

123



where 0 o and ¢o are the polar and azimuthal angles, respectively, from the
element of area being heated to the emitting carbon particles in the volume

element dV, and R is the path length from the element of area to the volume

dV. The element of volume dV is R2dwdR, where R = z sec0 o and dw is the

element of solid angle. The dV' terms involve the amount of radiation emitted

in the voltaire dV' scattered within a volume dV which is separated from the

volume dV' by the path length R'. In this case the element of volume dV is

dR' dA, where A = R '2 dw. Also in this equation, tile quantity a aNp is equiva-

lent to the quantity KX = PKm,X in equation (207), and asN p is the scattering

coefficient a X = pam, X defined in equation (29).

For the case in which scattering by file carbon particles may be neg-

lected (i. e., for rp < 300 A and X > 2 _), the emitted intensity may be written
by taking only the first term in equation (322) (a s = 0 in the other terms) as

a

-- cos0 ( 1 - exp[atL(0o¢o)] _ (323)I.(O ) = Bx(T) a
o a t o J '

where

LIOo,. r-(bo) =N z see 0 (324)p ill iX 0

The quantity Zma x represents the total path length projected in the

direction z, where z is measured in a direction at right angles to the front

surface of the flame or rocket exhaust.

Stull and Plass [240] calculated spectral intensities for carbon particles

with radii equal to 200 A, and for the two distributions, equations (296) and

(297). They found that the maximum intensity for these carbon particles

occurred at smaller wavelengths than the corresponding maximtan of the black-

body intensity curve. The intensity was found to increase as the nmnber of

particles increased until the limiting blackbody intensity was reached. For

particle radii of 200 A, about the average size reported by most investigators

(See this section, subsection entitled "Carbon Size Particle Determination. "),

the intensity was practically negligible when there were less than iO n particles/

cm 2, and closely approached that of a blackbody when there were more than

1014 particles/cm 2. This characteristic can also be seen in the emissivity

curve (Figure 19) for the particle distribution of equation (297).
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Sato and Matsumoto [279] present another radiant heating equation
which is based uponthe inverse wavelengthdependenceof the carbon coefficient.
This equation holds for luminous particles imbeddedin a gas; however, the
effects of scattering are neglected. It is assumedthat the nonluminous gases,
such as H20 andCO2, are uniformly distributed in the flame. Furthermore, it
is assumed that the gas temperature equals the temperature of the carbon
particles. The expression for the spectral emissivity may thus be written as

E) : I -exp { -[(Km,)_p)c+ (Km,kP)g]_ } , (325)

where the subscript c stands for carbon and the subscript g stands for non-

luminous gas.

ing as

The radiant intensity may be written as in equation (63) for no scatter-

(C1 h 1 - exp
Ix = ek Bk(T) = exp(C2/k T7 - 1 {-[(Km, hPTc+(gm, kPTg]'f}) •

(326)

By integrating over wavelength dA and solid angle dw, the expression

for radiant heating rate per unit area becomes

C1)-5 (1 -exp {ff exp(Ci/)tT) - 1 -[(Km,)_q/A=
k¢o

dw dX .

(327)

By using the variables _ = C2/},AT and × = cl p T/C 2 as defined in

equation (3007 and using the symbol _ for (K),pk)gl, equation (3277 becomes

f [ 15 _ _ e-(X_+_7 d_]q/A=c_ 2 T4 1---_[-_ 0f e__l
do) (328)

-7e

By making the substitution of equation (3027 and using the approximation

1 - Eg, equation (3287 now becomes
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I 15 ¢' 1 "q/A = cC-_24f T 4 I - 7r4 (i - _g) " (X+ I) d_o (329)
03

Tuttle [313] presents another method of calculating radiant heating from

carbon particles in a luminous gas. This particular calculation was for the

exit plane of an H-I engine on the Atlas vehicle. A form of equation (207) was

used to obtain the spectral radiance, Ix, as

S T

m [s 10S = ds' T) e -TX dT}_ .IX f0 (Pgm'k)c Bx(T) exp -fo (Pgm'k)e = BX(

(330)

The dimensionless optical depth may thus be written as

S m S m

= ds = f (Np(_a) c ds (331)T f (pKm, X) c
0 0

For the temperature range considered in this analysis, Tuttle states

that Kin, _ is independent of temperature, and hence is not a function of path

leng-_h in the gas. Therefore, the optical depth may be written as

sm Pc (s)

= ds , (332)
_X (PmKm'X)c f0 Pm

C

where pm c is the mean particle density or the average number of carbon

particles/cm 3.

if the carbon is assumed to be amorphous with a specific gravity of 1.8,
a radius of 500 A, and a ratio of the mass of carbon to the total mass flow of

0.005, the mean particle density may be calculated to be 5.0 x 108 particles/cm 3.

Tuttle presents a temperature distribution curve based upon Simmons' [297]
data as
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and

B x (73.') :: a x + bx e-CXT'X for 0-< T'X -<-re (333)
X

-CA(2TcA - r_)

i) _ + bA e for T _ T' _<2T (334)B A (T aA c X c '
X X

where ax, bx, and cA are constants tabulated by Tuttle [313] and TeA repre-

sents, the optical depth at the center of the plume. Inserting these values of

BA(T A) into equation (330) results in the following equation:

b

[Ix ax(1 - e-2rcx) _ c_ - 1 (c A - i) -2c A e (cA + l) TcA
X

+ (c A + 1) c-2rcA] (335)

This equation was compared with the spectral data of deBell and Speiser

[298] in the 0.5-g to 3-# wavelength range. Very good agreement with the

experimental data was obtained except at low wavelengths where scattering
effects should be included and in the 1.4-#, t. 9-p, and 2.7-p bands in which

atmospheric absorption was present. Tuttle [313] also included expressions

for upper and lower limits of radiation from the cone of the H-1 engine. The

upper limit took into account the contribution of the H20 emission, and the
lower limit neglected this emission.

Several new investigations of radiation from luminous flames and rocket

exhausts have appeared in the literature recently. Thring, Beer, and Foster

1314] discussed calculations of carbon emissivities based on Mie theory and
also measurements of soot concentration from hydrocarbon-air turbulent

diffusion flames. These authors found that in certain cases the measured

emissivity was 2 to 3 times larger than the calculated value; however, they

believed this to be because the refractive index of soot containing hydrogen was

possibly very different from that of pure carbon. Wolfhard and Hinck [315]
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discussed the excitation (non-equilibrium radiation) of OH molecules and alkali

metals inluminous flames and rocket exhausts. Zirkind [316] presented a

general review of radiation processes in rocket exhausts, discussing band

models, scattering processes, and spectral profiles.

In all of the radiation analyses mentioned in this section, ithas been

assumed that the carbon particles were in thermal equilibrium with the gas

(i.e., Tp = Tg). Simmons and Spadaro [317, 318] have investigated this

thermal equilibrium assumption by determining the amount of thermal lag of

carbon particles in rocket nozzle flow. These authors set up a heat balance

equation for a single carbon particle consisting of (I) the rate of heat transfer

by collisionwith the gas molecules, (2) the rate of radiant heat transfer to the

external surroundings, and (37 the rate of change of the heat content of the

particle.

Based upon the kinetic theory of gases and the thermal accommodation

coefficient, c_, as discussed by Wiedmann and Trumpler [319], the heat trans-

fer in time dt between the carbon particle and the gas, dQ 1 may be written

according to Dillon and Line [320] as

]

dQ1 = c_ (4_ r2)p Cv [ (MW) ]227r R (Tg)P iiT2 p -T)dtg , (336)

where (4_ _._.) is the surface area of the spherical carbon particle; Cv, MW,

R, P, and Tg are the specific heat at constant volume, molecular weight, gas

constant, pressure, and temperature, respectively, of the gas; and Tp is the
temperature of the carbon particle.

The radiant heating emitted per time from a single carbon particle may

be expressed in the form

dQ 2 = (4_r2p) _B <p (l -ag) T4pdt , (337)

where crB is the Stefan-Boltzmann constant, _p the total hemispherical

emissivity of the particle, and C_g is the average total absorptivity of the gas
stream which is defined in terms of the Beer-Lambert equation as
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c_ = i - e-gk_ = i - e-(nd_/4) Npl (338}
g

In this equation the quantity I represents the average path length (radius of
the stream), and Np is the concentration of the particles in the gas.

The heat content of the particle may be written as

dT
4

dQ 3 = (_-nr 3) ppC dtp dt '
(339)

where pp and C are the density and specific heat, respectively, of the particle.

Combining these heat inputs (dQl, dQ2, and dQ 3) the following equation

is obtained:

1

otC [ (MW)] 2 p _ -(nd_/4) Np£1 p
v k2nR (Tg) 2 (Tp Tg) + _B Epe T4

r (340)

+_ ppCdTp = 0

Simmons and Spadero [317] solved this equation numerically for Tp
as a function of axial distance x down the nozzle for three different rocket

nozzles. This was done for accommodation coefficients, a, of 0.5, 0.75,

and 1.0, particle diameters 10 -3, 10 -4, 10 -5 cm, and for total gas emissivity

of zero and unity. Figure 26, taken from Simmons and Spadero, shows that

the higher the accommodation coefficient, the closer the particle temperature
was to the gas temperature, and that for carbon particles of 500 A or less in

radius the particle and gas temperatures were practically the same.

A recent investigation at Rocketdyne [199] using the Abel inversion/

zone radiometry technique as discussed by Herget et al. [293] has shown that

it is possible for the temperature of the carbon particles in the region between

the plume core and the afterburning mantle to be actually several hundred

degrees Kelvin cooler than the gas temperature. When the carbon particles

pass into the afterburning region, however, the temperature was found to be
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equal to or slightly greater than the gas temperature. From the same investi-

gation it was speculated that carbon particles may be formed just downstream

of the first normal shock (in a fuel-rich region) in the plume, where the

particles are again hotter than the gas.

In the last several years there have been numerous NASA/MSFC,

Chrysler, and Boeing reports published that describe the thermal environment

to the base of the S-I, S-IB, and S-IC stages, respectively. Because of the

uncertainties in obtaining accurate spectral absorption coefficients for carbon

particles, the emissivities of the H-1 and F-1 plumes have usually been

assumed to be those of a blackbody (i. e., equal to unity), and scattering effects

have usually been neglected. Plume shapes and properties have been calculated

by the methods described by Farmer et al. [1], Prozan [150], and Ratliff [151].
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The results of scale model data (from both short- and long-duration tests) and

of all the in-flight radiation measurements on the unmanned Saturn flights have

been extrapolated to the case of the manned and unmanned Saturn IB and V

flights. It has been shown that radiation to the base of these vehicles is a

maximum at sea level and drops off considerably at altitude because of the

expansion of the plumes.

For the Saturn I vehicle, a summary of the base thermal environment

caused by heating from the H-1 rocket engine exhausts has been presented by

Payne and Jones [9], Jones [321], and by Hartley and Fricken [322]. The

Saturn IB base thermal environment caused by heating from the H-1 engine

exhausts is discussed by Francis [323], Fricken [324], Hartley [325-327],

Fricken [328], and by Hartley and Fricken [322]. Most of these analyses

assumed that the carbon density was five percent of the gas density (a value

representing an up]_er limit as obtained from Rocketdyne data). Geraghty

[329] presented a computer program for obtaining the form factors for the

S-I and S-IB plumes. Figure 27, taken from Hartley and Fricken [322], shows

the design criteria for incident radiation, total heating, recovery temperature,

and wall temperature for the S-IB flame shield, the hottest part of the base of

this stage for all vehicles up to vehicle AS-202. All vehicles after AS-202 had

the inboard engine turbine exhaust dtmlped in this region, thus cooling the flame

shield considerably. The general configuration of the base region of the Saturn

Ib vehicle S-IB stage is shown in Figure 28.

Mullen [330] and McEntire et al. [331] presented an analysis of the

Saturn V S-IC stage base heating environment based upon plmne temperature

models obtained from radiant heating measurements taken during F-1 engine

static firings. Hughes and Reid [332] presented a discussion of the radiation

data obtained from these F-1 full scMe static (sea level) firings. Jacobs [333]

and Wasko [334] discussed the heating data (convection as well as radiation)

obtained from S-IC scale model altitude tests with external flow using the

Cornell short-duration shock tube technique. Patrick [335] discussed the

radiation and total heating data obtained from exhausts of 1/20th scale F-1

engine firings at MSFC's Test Lab. Figure 29, taken from Mullen [330]

shows the theoretical axial distribution of the sea level radiation heating on

the base of the S-IC for various radial positions. Figure 30 shows the overall

configuration of the base region of the S-IC stage.

The Thermal Environment Branch is continuing to improve its base

heating analyses of radiant heating from H-1 and F-1 rocket engine exhausts.

Radiation heating rates are currently being calculated for the launch umbilical
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tower and various components near the launch deflector at Pad 39 at Cape

Kennedy which will be exposed to heating during lift-off of the first Saturn V
vehicle. Radiometer and radiation calorimeter measurements were made in

November 1966 near the flame bucket for one of the static firings of the

S-IC stage at the MSFC Test Laboratory. Figure 31 shows the 200- to 300-foot

luminous plumes of the S-IC stage during an MSFC static firing. Finally, more

accurate predictions of radiant heating from carbon particles are currently

being obtained with the incorporation of the General Dynamics/Convair

[230, 231] carbon absorption coefficient program. This program is

currently being used at Chrysler in an attempt to match the onboard spec-

trometer data obtained in the base region of the S-IB stage for the AS-203

flight. The description of the radiation computer program which describes

the use of the combined carbon, H20 , CO2, and CO absorption coefficients for

a single, axisymmetric plume has been written recently by Dash '_:.

M. J. Dash, NASA/MSFC Memorandum to be published, 1967.
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This concludes the section on radiant heating from carbon particles.

The general theory of carbon particle radiation, including formation, size,

scattering, and emissive properties of carbon particles and discussions of

radiation calculations have been presented. Although there is considerable

room for improvement in the general theory, it is felt that the present state

of the art has enabled MSFC and its associated contractors to predict

satisfactorily radiation thermal environments caused by carbon emission

from the Saturn I, S-IB, and S-IC stage engine exhausts.
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RADIATION FROMAI203 PARTICLES

Thermal radiation from the exhausts of aluminized solid propellant rocket

motors is characterized by graybody (continuum) emission from the A1203

particles and by A1203 particle temperatures which are larger than the gaseous

temperatures at the same point in the plume. The metallic particles in the

propellant, which may be magnesium, beryllium, or iron, as well as aluminum,

are added to the propellant to increase its specific impulse and consequently

its performance. However, the corresponding thermal radiation from the
metallic oxides in the exhaust may be several times higher than the correspond-

ing gaseous radiation emitted in the various molecular bands. Excessive

radiative heating from exhausts of solid propellant motors may thus damage por-

tions of the base region if the motor (s) are used as the main source of pro-

pulsion, or may damage certain adjacent components and structures if the

motor is used as an ullage or retro motor for stage separation purposes (such

as for the Saturn vehicles). The problem of microwave attenuation through

the exhaust of a solid propellant motor is also more criticalthan through the

exhaust of a liquidpropellant engine of comparable size and performance. How-

ever, this problem is not treated in this report.

In this section the radiative properties of A1203 particles are surveyed

and analyzed in detail. It may be mentioned that MgO (magnesia), BeO

(beryllia), and Fe203 (ferric oxide) also act as emitters in exhausts of certain

types of solid propellant engines. However, A1203 (alumina) is fom_d in the

exhausts of the majority of metallized propellants in existence at the present

time, and since the radiative properties of A1203 are more fully understood

than those of the other oxides, this section is devoted almost exclusively to

radiation from A1203 particles.

It has been shown by many investigators such as Talbert et al. [336],

Dimmock and Courtney [337], Wagner, Cramer, and Borough [338], Briscoe,

Bullara, and Bressler [339], Sutton [340], Schindler and Penzias [341],

Miller [342], Baker and Allport [343], Carlson [344], Carlson and Du Puis

[ 345], Launstein et al. [ 346] , two Aerojet-General reports [ 155, 347] , Miller

and Sternchak [ 348], Lai and Purgalis [ 35], a Bamirac report [ 349] , and

Condron [350] that the spectrum of the exhausts of solid-fueled engines follows

a graybody continuum from about 1 # to around 3 #. It is known that the
exhausts of double-base propellants of the nitroglycerine-nitrocellulose type,

such as the Minuteman third stage, are similar to the carbon spectrums as

discussed in the previous section. The double-base propellants generally
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produce more carbon in the exhaustthan do the composite solid propellants
which are composedof a fuel, binder, anda finely ground oxidizer such as
NH4C104.

The composite propellants such as those in the Minuteman first and
secondstages, Polaris, UTC-120 in. solids, and Saturn ullage and retro motors
produce a continuous spectrum (on which gaseousbandemission is superimposed)
with a lower emissivity but with a higher particle temperature than do the double-

base propellants. The composite propellants also produce an emission band of

low intensity for the HC1 molecule around 3.5 #. It is believed that the con-

tinuum in composite propellant exhausts is caused manfly by A1203 emission,

although it is possible that carbon could also be emitting in the 1 - 3-# region.

Upon analysis of some of the references mentioned in the above paragraph, it

was found by Carlson et al. [351] that when the A1203 mass fraction was approxi-

mately doubled, the ratio of continuum to gas emission was approximately

doubled, even though 'the carbon _aass fraction was the same. This implies

that the A1203 was the major contributor to the continumll rather than the carbon.

Also, spectrometer measurements at Aeronutronic [344] of the plume of an

H2-O2-A1203 water slurry motor confirm the presence of an A1203 continuum

for 1-3 #.

This A1203 continuum emission in the 1.9-# to 2.6-_ region (where

there are no molecular emitters) may be seen in Figure 32, which shows the

spectrm_ of the exhausts of scale models of the S-II ullage and S-IC retro motors

fired at Cornell at 100,000 feet. This continuum would have existed down to

1 # or shorter, but the filter on the spcctrometer cut off around 1.7 #. The

higher temperature of the A1203 particles (higher than that of the carbon for

the same gas temperature) produces a very lmninous core of particles, the

larger particles of the order of 3 to 5 # tending to hug the plume axis and the

smaller particles of the order of 1 # or less tending to flare out beyond the gas

plume. Some of these luminous solid propellant plumes are shown in Figures

33, 34, and 35, which are respectively, the plume of the Minuteman first stage

motor fired at sea level, the plume of the S-II ullage rocket fired at 121,000

feet in the AEDC J-4 test cell, and the plume (Fe203 instead of A1203) of a

scale model of the S-IB retrorocket fired at 200,000 feet in an altitude cell at

Cornell.

It is possible that another type of radiation from solid propellant motors,

the so-called "searchlight" radiation, may occur. This type of radiation involves

liquid particles radiating at very high temperatures in the combustion chamber

through the nozzle into the particle plume where the radiation is then scattered
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FIGURE 32. RADIATIVE INTENSITY FROM EXHAUSTS OF S-II ULLAGE

AND S-IC RETRO MOTORS FIRED AT CAL

out of the plume. The radiation takes place in the visible or ultraviolet region

(k < 0.8 /_) because of the high temperatures, resulting in a blackbody curve

which has its maximum in the visible or ultraviolet. The maximum radiation

emitted would thus be equal to crBT4cAt, where T c is the combustion chamber

temperature and A t is the throat area. This searchlight effect has been shown

by Carlson et al. [352] to be an important factor with small nozzles or light

aluminum loadings. Recent investigations at Rocketdyne [199] have indicated

that this searchlight effect can also occur in hydrocarbon-fueled engines in the

ultraviolet and visible regions.

Calculations of thermal radiation from particle plumes (such as AI203

plumes) are difficult because the particles can scatter radiation considerably

as well as emit radiation. The Mie theory of scattering for these large Al203

particles, in which the parameter c_ = 2 Tr rp/k is of the order of unity, must
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FIGURE 33.  FIRST STAGE MINUTEMAN PLUME A T  SEA L E V E L  

be used to  obtain scattering and absorption cross-sections,  us and ua, 
respectively 
the optical thickness, T, of the particle plume may be obtained. The c ross -  
sections depend on the scattering angle, 8 ,  on the complex index of refraction 
of Al,O,, n = ni - in2 (which depends on teniperature of the particles and wave- 
length of radiation) , and on the A1203 particle s ize  distribution. 
of the particle cloud is then obtained from the ratio of absorption to extinction 
efficiency factors,  Qa/Qt, and the optical tliicliness, which is a function of 
particle concentration, Np, and path lcngth, 1 , as wel l  as of the extinction 

( o r  efficiency factors Qs and Qa, respectively) from which 

The emissivity 

139 



FIGURE 34. S-I1 ULLAGE ROCKET PLUME AT N 121,000 FEET 
IN AEDC 5-4 TEST CELL 

cross-section or  efficiemy factor. A two-phase plume program is used to 
compute the particle concentration, Np, for use in the optical thickness ex- 
pression and also the particle temperature, Tp. In this manner, the radiation 
from an Al,03 particle cloud may be determined with a reasonable degree of 
accuracy, depending upon various assumptions made, such as particle s ize  and 
distribution. 

This section discusses the Mie theory of scattering, the determination 
(both experimentally and theoretically) of Al,03 particle s izes  and distributions 
and the determination of A1203 particle cloud emisssivit ies (including effects of 
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FIGURE 35. S-IB RETROROCKET PLUME AT - 200,000 FEET 
IN CAL ALTITUDE CHAMBER 

anisotropic and multiple scattering) . 
temperatures (two-phase flow phenomena) is then briefly treated, and finally 
various procedures for  calculating radiation from aluminized rocket exhausts 
are analyzed. 

The determination of A1,03 particle 

Mie Theory of Scattering 

The lVIie theory of scattering of plane, iiionochroliiatic electromagnetic 
waves by spherical homogeneous conducting particles ( in  this case  Alz03 
particles) in which CY N 1 is described in this section. The end result  of this 
theory is that expressions for  extinction ( or  total) and scattering cross-sections 
at and as, respectively (o r  efficiency factors Qt and QS) , are obtained as a 
function of c y .  These quantities a r e  then used in the emissivity expressions as 
discussed in the third par t  of this section. This section shows that one of the 
limiting cases  of the Mie theory in which Q << 1 resul ts  in the Rayleigh theory 
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of scattering as discussed in the following part. The other limit in which a >> 1

belongs to the realm of geometrical optics and will not be analyzed here.

The Mie theory has been used by hundreds of authors since Mie [265]
first developed it in 1908. Perhaps the most extensive lists of references on

the general subject of Mie theory and light-scattering calculations and experi-

ments are given in the bibliography compiled by Boudreau and Stone [353] (494

references), and in the reports and articles by Oster [243] (227 references),

Hawksley [281] (227 references), Love andWheasler [354] (167 references),

and Pendorff [355] (117 references). The general derivations of the equations,

starting from the Maxwell equations, are perhaps developed best by Stratton

[232], Van de Hulst [246], Born and Wolfe [235], Havard [356], Svaton and

Winer [357], Wyatt [358], Panofsky and Phillips [57], Goody [25], Morse

and Feshbach [359], LaMer [360], Bromwich [361], Nawrockiand Papa [362],
and Newton [363]. In this section the principal parts of the derivations as

discussed by the above authors are given to determine the extinction and scatter-

ing cross-sections for use in emissivity predictions. This section covers the

following areas: (1) determination of Mie coefficients, a m and Dm; (2) deter-

ruination of extinction and scattering cross-sections, a t and as, and efficiency
factors, Qt and Qs; (3) limiting case of Rayleigh scattering; and (4) discussion

of the Mie theory calculations.

1. Determination of Mie Coefficients, a m and bm. In analyzing the

problem of scattering of plane waves by homogeneous spherical particles, it is

usually assumed that the incident radiation is linearly polarized and that the

particles are randomly distributed and separated from each other by distances

that are large compared to the wavelength of incident radiation. The Mie co-

efficients, a m and bm, (and consequently the cross-sections and efficiency

factors) may then be obtained by solving Maxwell's equations and applying

appropriate boundary conditions. Maxwell's equations in Gaussian units are

vxff- y+ 1
c c Ot (341)

and

Vx_" 1 DH
c Ot (342)
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as

A third equation, the equation of conservation of charge, will be given

dp
v. J_+ e - 0 (343)dt

where Pe is the charge density and _ is the current density. If the time

dependence of the steady-state fields may be described by the factor e it°t,

equations (341) and (342) reduce to the form

V x H = ikn 2 E (344)

and

_Tx E =- ikH , (345)

where the quantity kn is the propagation constant in a medimn of complex
refractive index n (the quantity k represents the propagation constant in a

vacuum). The quantities k and n may be defined as

4;r ia
k- co _ 27r and n2 = E --- (346)

c k w

This notation differs slightly from that used by Stull and Plass [240] in
equation (264).

For a homogeneous medium, it can be shown that the electric and

magnetic field vectors, _ and I_, respectively, satisfy the vector wave equation

V 2._+k 2n_= 0 , (347)

where the vector A may be either E or H. This equation may be solved

(Havard [356]) by solving the following scalar wave equation:
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V2_+ k2n¢= 0 (348)

If ¢ is the solution of equation (348), then the vectors M_ and N¢,
van de Hulst [246] as

defined by

-" (_'_) -" (349)
M b=Vx and nkN_=VxM ,

will satisfy the vector wave equation (347). These vector quantities are related

by the equation

-_ _ (350)nkMb = V x

According to van de Hulst, if u and v are two solutions of the scalar

wave equation (348), and' if Mu, l_u' M-_v' and l_V are the derived vector fields,

the equations (344) and (345) may be satisfied by the equations

_._ --Jb

ff=n(-M + iN ) (351)
U V

and

E = M + iI_ (352)
V U

By constructing three vector solutions _ = V¢, l_, and I_ for

equation(347), it may be shown by Stratton [232] that the full components of

M_ and N¢ in polar coordinates may be written as

a 2 (re) n2 k2 re (353)M = 0, nkN = +r r Or 2

1 _ r(__ 1 _2(r_)
M0 - r sin0 aq_ nk N o - (354)' r 0ra0
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and

1 _ nkN - 1 _2 r{r____
Me r a0 ' q5 rsin0 Ora0 (355)

Stratton and van de Hulst show that the magnetic and electric fields,
and E" respectively, may be completely described by choosing solutions

u and v to the scalar wave equation (348), for the incident wave outside the

spherical particle, the scattered wave outside the spherical particle, and the

field inside the spherical particle. For the outside, incident wave, the solutions
are

u=A_ K J (kr) , v=B_ K J (kr) (3567
-- Ill Ill ill ill

m=l m-- t

For the outside scattered wave, Lhe solutions are

OO

-a K H (2)(kr7 , v = B_ -b K H (D(kr)AU

ill Ill Ill Ill Ill m
111: i Ill: i

(357)

For the inside wave, the solutions are

u=A _ nC K J (nkr7 , v = B_ nd K J (nkr7
Ill Ill 111 ill m m

lll=i m=l

(3587

In these equations the quantities A, B, and K are
m

iwt iwt
A =e cos¢, B=e sin (359)

and

2 m + 1

K = (-iTm P' (cos0)
nl in(m + i) m

(360)
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f

The quantities Pm are the associated Legendre polynomials with i = 1.

The a m and b.._ are the Mie coefficients to be determined subsequently, and
the c m and d m are related to the a m an bm. The quantities H_ ) are the

Hankel functions related to the spherical Bessel functions Jm(z) and Nm(z)

as given by Morse and Feshbach [359] as

o

H (2)(z) = J (z) - iN (z) (361)
111 1TI n]

By using the Riccati-Bessel functions,

_m(Z) =zJ (z) z) -zN (z) and _ (z) zH(Z)(z) (362)nl _ Xll1 ( = 111 _ Ill Ill

and equation (361), the following relation may oe written:

_m(Z) = era(z) + iXm(Z) . (3637

The components of the electric field vector in equation (3517, E 0 and E(p,
1 a

both contain the quantities v and (ru) which are different inside andn ar

outside the spherical particle. The components of the magl]etic field vector in

equation (351), H 0 and H<b, both contain the quantities nu and _r (rv) which

are also different inside and outside the spherical particle. All of these quan

tities must be equal on the boundary of the spherical particle. Van de Hulst

[246] presents boundary conditions which equate the quantity in brackets on

either side of the boundary of the spherical particle.

[nu]: _m((_) -a _ (a) = nc Cm(fl) (364)m m m

I1 a(ruT_ , _, ,n 3r J: Cm(C_) -am m(a) = c m Cm (/3) (3657

[v]: _m(OZ) -bm_m (a) = dm_m (fl) (366)
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ar A: m m

where the primes denote derivatives and /3 = na = n --

27rr

_12_
X

If c m is eliminated from the first pair of equations and d m from the

second pair, the Mie coefficients a m and bin, the electric and magnetic

wave coefficients, respectively, may be obtained as

¢in(#7 Cm(_) -n_m(#) _in(_7
a

m ¢'rn(/3) _m(OZ) - n_m(/3) _in(ol)
(368)

and

n¢'m(/_) *m(CO - Cm(/_) ¢'m(c_)
b = , (3697

m nero(t0 Cm (aT - Cm (/_) ¢'m(C_) '

where equation (3627 would then be used. The Mie coefficients are sometimes

expressed in other ways, such as with Ncmnann functions,

Ym(z) =:i [Jm(Z)- H (17m(z)] , (3707

as written by Stull and Plass [240] as

[
a == -- |

L111

-1

nYm(°_) Jm+l (/9 - Jm(/d) Ym+l(a) ]

i + i-- J (37i7nJm(C_) Jm+t (fi) - Jm(/_) Jm+l((X)

and

b
m I (m+ l)(n 2 - i) Ym((_) Jm(_) +]3Ym(a) Jm+l(fl) - n2aJm(fl) Ym+l(___)_=- i +i G+]-)_2_I)jm_(C0Jm(fi)+_m(_) Jm+l(/3) _Jm+l(cO A

(372)
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or in terms of the logarithmic derivative functions as used by Infield [364],

Aden [365], Krascella [259], Beheshti [260], Tibbodeaux and Beheshti [12],

and Smith [366]. These logarithmic derivative functions simplify the calcu-

lations when the index of refraction is complex and when the Bessel and Hankel

functions are small and complex. In this manner the two functions _m (z) and

_m(Z) may be defined as

H (27 1 (z)

d In [zH (27(z7] - - m (3737
rim(Z) = d--z m H (27 (z) - z

m

and

J(m2} 1 (z)[ ,] md In ZJm(Z _ - -- (3747
_m (z7 = dz j(2)(z) z

m

and

Using these quantities, the Mie coefficients may be written as

m H (2) (a) _m (a) nNm(
m

(3757

b : - Jm (a) _m(/37 - n_m(_) ].
m H (2)(a) L_ n _m(C_) (3'767

m

2. Determination of Scattering and Extinction Cross-Sections, crs and at,

and Efficiency Factors, Qs and Qt" The scattering and extinction cross-sections

may be obtained by either of two methods. The first method involves the use of

the following scattering matrix as discussed by van de Hulst [246] :

_E"_=( $2 S3)exp(-ikr+ikz)(E°l_ikr
s, s,

, (377)
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where the parallel and perpendicular components of the electric field of the

incident wave, Eo[ [ and Eol. , respectively, are

Eol ]=cosq5 and Eol. = sin_ , (378)

and the parallel and perpendicular components of the scattered wave are

Ell = E 0 and El. =- E<p (379)

In the matrix, equation (377), the quantity S3 = S4 = 0 for spherical

particles, and the quantities S1 and S2 depend only on 0. Substituting the

asymptotic form (in+l/kr) e-ikz for H(m22)(kr ) for large distances r from

the particles in equation (357), for the scattered wave, the resulting field
components may be written as

i

E[ = E =H =--- exp(-ikr+ icot) cosq5 $2(0) (380)I 0 q_ kr

and

i

EL - - E(p = H 0 -- kr exp(-ikr+iwt) sinq_ Sl(0 ) , (3817

where the functions $1(0 ) and $2(0) are, thus,

oo

; 2,.+1[S1(0) = m(m + 1) a 111
Ill = l

lrm(cos O) + b m T m ( COS 0 )] (382)

and

$2(0) = . m(m+ ) Um (c°sO) + amrm(COsO)
in 1

(383)
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The quantities nm(COS0) and Tnl(COS0) are defined as

dPm(COS0)1
(cos0)- pl (cos0)=

m sin 0 m d cos 0
(384)

• °

and

dn ( cos 0)

T (COS0)- d p1 (cos0):cos0 In (cos0)] -sin0 ram dO m m d cos 0

(385)

The total or extinction cross-section a t is related to the total or

extinction efficiency factor, Qt, as a t = Qt n rp. The efficiency factor Qt may
be obtained from equations (382) and (383) by setting 0 = 0 so that $1(0) =

$2(0) = S(0) for 0 = 0. The total efficiency factor is then found, as described

by van de Hulst [246], as

oo

4 2
Qt- _2 Re[S(0)] - a2 _ (2m+ i) Re (am+ bm) ' (386)

m=l

where the expression Re (a m + b m) denotes the real part of a m + b m.

The scattering efficiency factor, Qs = as/_ r2p, may be written in
terms of the intensity functions i1 and i 2 which are defined as

J 12 L L2ii = Si(0) and i2 : 82(0) (387)

The quantity i1 is proportional to the intensity whose electric oscillations
are perpendicular to the plane of scattering (polarized light in the horizontal

plane). The quantity i 2 is proportional to the intensity whose electric oscilla-

tions are in the plane of scattering (polarized light in the vertical plane). The

polarization, P, is then related to these intensity functions by the following

equation:

P = il(O) - i2(0) (388)
il(O) + i2(0)

150



According to Churchill et al. [42], the quantities il(0) and i2(0) can

be related to i(0, (p), which represents the power scattered by a spherical

particle from a linearly polarized beam of unit intensity into a unit solid angle

in the direction (0,_b). This quantity i(0,q)7 is written as

_ )_2
i(e,q5) 4 _2 Ill(O) COS2_)+ i2(O) sin2_b] (3897

For a randomly polarized beam of unit intensity, the power scattered

into a unit solid angle may be obtained by averaging i(0,_) over 9, as

_ X2
i(O) 8_.2 [il(O 7 + i2(O) j (390)

The scattering cross-section may now be defined according to Churchill

et al. [42] as the total power scattered by a particle from a beam of unit

intensity as

= 2u f i(0) sin0 dO (391)
S

0

This definition is in agreement with that of van de Hulst [246], who

states that if the total energy scattered in all directions is equal to the energy

of the incident wave falling on the area _s, the scattering efficiency factor may

be written in the integral form:

o" _-
s 1

Qs- 7rr 2 - 0/2 / [i1(07 + i2(0)] sin0 dO (392)
p 0

The conversion of equation (3927 into the following one in terms of the

Mie coefficients a m and b m is quite difficult and has been given by Debeye
[367] as

Qs-22 _ (2m+l){ am + bm
m=l

+(393)
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The absorption efficiency factor Qa or cross-section ffa may thus be
foundas the difference, respectively, between Qt and Qs or crt and _s"

The secondmethod of obtaining the total and scattering cross-sections
or efficiency factors involves the useof the Poynting vector as discussedby
Stratton [232], Svatonand Winer [357], Panovsky and Phillips [57], and
Goody[25]. The energy absorbedfrom an incident electromagnetic wave by
a spherical particle may be written as the divergence of the real part of the
radial componentof the complex Poynting vector _I, as

V. Re(_:")R= __12Re f_"R " d_ (394)
A

The radial components _ may be written as

- _ ( +E ) x (H.+S 1 R 2 (E0i Hqsi- E_)i H0")I

2ff --

(395)

1 -. 1 -. + ff_ _r,_iI_° _r4' H--oi)2 (E0sHqbs- nqbs I_0s) +_ (E0iH_s E0s i s s

where the subscript i represents the incident wave and s represents the
scattered wave.

If the external medium is assumed to be non-conducting, the first

term in parenthesis on the right is equal to zero. The second term on the

right measures the outward flow of the scattered energy from a concentric

spherical surface of radius r which encloses the spherical particle of radius

rp. The third term on the right is thus equal to the sum of the absorbed and
scattered energy which may be written as

Wt=W +W =
a s (396)

1 _ 2_r __ _
- _ Ref f (r0i_s +E0 -sH%i EqsiH0s Eq_sH0")l r2sin0 dO d_b.

0 0
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The energies Wa and Ws may be evaluated by making useof asymptotic
forms of Bessel functions Jm(z) and Hankel functions H_ ) (z) and with the use
of certain orthogonal functions as discussedby Stratton [232]. The energy
terms are thus

E 2 i ¢_

Ws = n_ _ (2m+ 1) a m + b m (397)
m=l

and

E 2 _

m=l
(2m+l)(a +b ) (398)

m m

The scattering, absorption, and total (or extinction) cross-sections

may be defined as the ratio of scattering, absorption, or total energy to the

energy of the incident wave, W i or

W W W
s a t

(_ - a - a,-s W. ' a W. ' _ W.
1 1 1

(399)

Since the mean energy flow of the incident polarized electromagnetic

wave per unit area (energy density) is

W. = _:. _--1 E2 (2 2 , (400)
_ 2 o

the scattering and total cross-sections may be written as the ratio of scattered

and total energy per second to the energy density of the incident wave, or

--- + b m(_s- k_ Re _ (2m+ 1) a m
m=l

(401)

and

oo

(rt=-_--2 Re (2m+l)(am+bm)
m=l

(402)
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These expressions reduce to equations (386) and (393) if the relations
2

2 and Qt = _t/= rp are usedt<2 a/rp = 2=/X, Qs = _s/vrp

3. Limiting Case of Ravleigh Scattering. It may be shown (Stratton

[232], Born and Wolfe [235]) that a limiting case of the Mie theory of scatter-

ing occurs when the quantity a << 1 and the Rayleigh theory discussed previously

may be used to compute the cross-sections and efficiency factors. In this

manner the Mie coefficients a m and b m may be expanded in powers of a. By

neglecting all powers above the fifth, and assuming #l- _2, the Mie coefficients

become

i (n 2 - 1) (_5 (403)
at _ 45

_I n2 - 1 3 i n4 - i ._bI _- _ -n2 + 2 i0 n2 + 2
(404)

and

i n 2 1
- a 5 (405)

b2 _ - 15 2n2+3

If a is so small such that _5 may be neglected compared to c_3, only

the first-order electric oscillation term needs to be considered, which is

2 i n2 - i OL3 (406)
bl = - 3 n2 + 2

If this expression is used in equations (380) and (381), it may be

shown, as in van de Hulst [246] or Stratton [232], that the resulting field of

the fundamental mode is that of an electric dipole which has a dipole moment

equal to

p = ex-- fiE +2 p
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This expression was determined in the previous discussion of Rayleigh

scattering. By using the above procedure, it may be shown (van de Hulst) that

the first terms of the expansion for Qt may be written as

Qt = -Im 4c_ n2 + 2 15 n2 + 2 2n 2 + 3

+ c_4 Re ]3 n 2 + + ....

(408)

It will be recognized that the first in_aginary term is the absorption

efficiency factor as given by equation (289) and the first real term is the

scattering efficiency factor as given by equation (288).

4. Discussion of the Mie Theory Calculation. Although the main pur-

pose of this entire section is to discuss the use of the Mie theory for A1203

particles immersed in a rocket exhaust gas, it appears necessary to cite the

work of investigators whose main purpose was to make Mie theory calculations

for other types of particles besides A1203 (other than carbon, discussed in

part 1 of "Methods of Predicting Carbon Absorption Coefficients and Emissivities"

in the preceding section) for various values of index of refraction, particle
radius, and wavelengths. Some of the work to be cited involved light-scattering

experiments and calculations using Mie theory in attempts to obtain particle

size distributions. These investigations were based on measurements of

scattered intensity as a function of scattering angle 0 and the corresponding

Mie theory calculations.

As can be understood from the many equations of the previous sections,

the calculations of the cross-sections (or efficiency factors) using the Mie

theory are exceedingly lengthy - especially if the index of refraction of the

particles is complex (absorbing particles) and a size distribution of the

particles is used rather than one particular size. Only in the last eight years

or so when high-speed electronic computers became readily available, have

the Mie theory calculations become feasible to perform. Throughout the Iast

10 to 15 years, however, there have been certain groups in the United States

that have performed most of the Mie calculations and have published some

rather lengthy tables for particles of various sizes, indices of refraction, and

wavelengths. Although all d_e publications of even these seven major groups

are too nmnerous to list completely, some of their most important publications

are mentioned.
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This list of groups includes (t) the group at the University of Michigan,

Gumprecht and Sliepcevich [368-370], Boll, Leacock, Clark, and Churchill

[371], Churchill, Chu, Leacock, and Chen [48], Churchill, Chu, Evans, Tien,

and Page [42], Chu and Churchill [372], Boll, Gumprecht, and Sliepcevich

[373], Boll and Sliepcevich [374], Chin, Sliepcevich, and Tribus [375,376],

Clark, Chu, and Churchill [377] , Gumprecht, Sung, Chin, and Sliepcevich [378] ;

(2) the group at Rand Corporation, Deirmendjian [379-381], Deirmendjian and

Clasen [382], and Deirmendjian, Clasen, and Viezee [383] ; (3) the group at

AVCO, Pendorff [384-392]; (4) the group at Wayne State University, Heller

and Pangonis [393], Heller and Pugh [394], Heller and Tabibian [395], Heller,

Nakagaki, and Wallach [396], Heller [397], Holler and Nakagaki [398],

Nakagaki and Heller [399,400], Pangonis and Heller [401], Stevenson, Heller,

and Wallach [402], and Tabibian and Heller [403]; (5) the group at Clarkson

College of Technology, Kerker [404] Kerker and Matejevic [405,406]. and

Kerker and Hampton [407]; (6) the group at the University of Oklahoma, Love

[29], Love and Wheasler [354], and Love and Beattie [408] ; and (7) the group

at Aeronutronic, Plass [409-411] , Bauer [412] , and Bauer and Carlson [413].

Of these seven groups perhaps the only one actively engaged in Mie

theory calculations for A1203 particles is Aeronutronic, although it is known

that Svaton and Winer [357] at Douglas performed Mie theory calculations for

A1203 particles several years ago (as discussed in the last part of this section).

However, the general results of the Mie theory calculations are the same

whether the particles have the same index of refraction as alumina (A1203) or

some other index of refraction. That is, as the value of _ increases, the

value of Qt asymptotically approaches a value of 2.0 (total cross-section _t

becomes twice as great as the geometric cross-section, =r_). This phenomenon
may be seen from the results of Plass [409] for A1203, reproduced here in

Figure 36, which also shows the Rayleigh limit. Also, for all values of index

of refraction and values of c_ in the Mie region, the intensity functions i1(0 )

and i2(0 ) are comparatively high in the forward scattering region (0-*0) and

tend to decrease significantly with increasing 0 mltil they reach a minimum in

the neighborhood of 0 = 100 ° to 110 ° . The intensity ftmctions then tend to rise

gradually toward the back scattering region (0---180 °) , but still have a value

at 0 = 180 ° usually an order of magnitude lower than in the forward scatterhlg

region.

To predict cross-sections of almnhm particles adequately using the Mie

theory equations, the index of refraction of alumina (both the real part, nl,

and the complex part, n2) must be known as a fmlction of both temperature and

wavelength. Values of index of refraction at room temperature for alumina in
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FIGURE 36. TOTAL EFFICIENCY FACTOR FOR ALUMINA

ASA FUNCTION OF c_ FOR _ = 2#

the infrared wavelength region up to k = 5.5 # are given by McCarthy, Wolfe,

and Ballard [414], and Malitson [415,416]. Absorption coefficients and trans-

missivities {from which n may be determined) for alumina at both room tem-

peratures and temperatures up to as high as 1000 ° C have been reported by

Mergerian [417], McAlister [418], Monroe [419], Openheim and Even [420],

and Lee and Kingery [421]. Gryvnak and Butch [422,423] at Aeronutronic

measured the absorption coefficient and index of refraction (n i and n 2) of single

crystals of A1203 (sapphire) which were heated in a furnace at temperatures up

to 1700 ° C and over a wavelength range from 0. 546 # to 6.0 #. Measurements

of index of refraction and absorption coefficient of molten A1203 (at a tempera-

ture of 2020 ° C) were also obtained by Gryvnak and Butch by immersing the

alumina samples into a hydrogen-oxygen flame. Adams and Colucci [424]

report measurements of the complex part of the index of refraction, n 2, which

is equal to (_/4_) K_, of alumina at temperatures from about 2100°C to 2600°C
based on their own and Carlson's [345] emissivity measurements in hydrogen-

oxygen flames. The real part of the index of refraction, n 1, may be calculated

from these emissivity measurements by combining equations (64-66), (267),

and the above relation for n 2.
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Plass [410] usedthe values of index of refraction as determined by
Gryvnak and Burch [422,423] as a function of temperature andwavelength and
found, by performing Mie theory calculations, that the absorption cross-section
increased by a factor of about 40 as the temperature increased from 1200° C to
2020° C. TheseMie theory calculations (using Gryvnak's and Butch's data)
are believed to be the most valid for A1203at the present time and were used in
the radiation calculations discussed in the last part of this section. In the next
section, various experimental data andtheoretical predictions for A1203particle
sizes anddistributions are given, as these data are also a very important input
to the Mie theory for cross-section and, consequently, emissivity predictions.

Determination of AI203 Particle Sizes and Distributions

The size of A1203 particles found in exhausts of aluminized solid propellant

motors depends on the combustion process of the aluminum in the propellant,

the A120 _ condensation process (liquid particles changing to solid particles},

and possibly on chamber pressure, chamber residence time, and throat size of

the engine. Aluminum oxide particle sizes have usually been determined by

one of three experimental methods. (1) firing small engines into tanks and

collecting the residue on the walls, from which it is then scraped off and analyzed

m_der a microscope or with a Micromerograph; (2} sampling the particle plume

with probes, microscope slides, and other types of collecting devices and con-

sequently analyzing the deposits; and (3) using optical (light-scattering) tech-

niques. Carlson [5] gives an excellent review of sizes and distributions for

both A1203 and BeO particles obtained by these three general methods. In the

present section Carlson's review is summarized and additional work performed

in this area which was not mentioned by him is reviewed. Since the combustion

of aluminum powder to A1203 particles is an important process in particle size

determination, it is briefly treated first in this section. The experimental

determination of A1203 particle sizes and distributions and the theoretical deter-

mination of A1203 particle sizes and distributions are then discussed.

1. Combustion of Aluminum Powder to A1203 Particles. The size and

distribution of the A120 _ particles found in the exhaust depend upon the com-

bustion process of the aluminum powder (which usually has a size range of l0

to 25 _) in the propellant. Many investigators have analyzed this phenomenon

of metal (such as aluminum) combustion in solid propellant motors. However,

there are some disagreements as to whether the metal burns by a surface or

by a vapor phase combustion process. These two combustion processes are
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distinguished, according to Glassman [425], by the fact that, if the boiling

temperature of the A1203 is higher than that of the aluminum powder, the com-

bustion process takes place in the vapor phase; however, if the aluminum boil-

ing temperature is greater than that of the A1203, a surface combustion process

occurs. These two processes are strictly for steady-state combustion, because
the ignition phenomena could be quite different.

Some of the many investigators who have analyzed surface and vapor

phase combustion processes in solid propellant motors include Glassman [425,

426], Brzustowski and Glassman [427], Fassell et al. [428-430], Gordon

[431-433], Wood [434,435], Avery [436], Henderson and Bowen [437],

Friedman and Ma_ek [438], Markstein [439], Davis [440], and Kurtovich and
Pinson [441,442]. ;:_ In the particular case of aluminum, experimental data

such as obtained by Wood [435], Watermeier, Aungust, and Pfaff [443], and

McCarty [444] tend to favor the vapor phase combustion process involving the
formation of A1203 particles.

Fassell et al. [428] state that the aluminum combustion process takes

place in four distinct phases: (1) pre-ignition, (2) ignition, (3) bubble expan-

sion, and (4) quasi-steady-state combustion. According to Avery [436], the

oxidizer (such as NH4C104) and the binder are first vaporized, heated to com-

bustion temperature, and then carry the aluminum particles with them into the

flame front. The molten aluminum is heated, according to Wood [434], first

to a dull red color, which then changes to a yellow-orange color. The actual

combustion takes place by the establishment of an incandescent reaction zone

around the particle. Davis [440] states that the diameter of the aluminum

flame is greater than the diameter of the aluminum particle, thus indicating that

the reaction zone is not situated on the particle surface, but is actually some
distance from the particle - similar to the halo of a diffusion flame found

around a burning liquid droplet. It is known that this zone expands during the

ignition process and slowly contracts during the remainder of the combustion

process. The ignition of large particles is delayed longer since the larger

particles conduct more heat from the surface than the smaller particles.

As the aluminum particle is heated to ignition, a shell of oxide forms

on the particle. Because of the intense radiant heating occurring at this time,

the aluminum is quickly vaporized and, according to Avery [436], as the oxygen

immediately surrounding the burning particle is rapidly depleted, the vaporized

aluminum attempts to obtain oxygen away from its surface. Since this process

;:'Also additional information was obtained from D. D. Kirtovich and G. T.

Pinson in an unpublished Boeing report of January 1960, entitled "Radiation

Characteristics of Rocket Engine Exhausts. "
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has proceededso rapidly, the oxide shell is not able to increase in thickness and
is consequentlyvaporized by the high radiant heating. This entire process takes
place in the vapor phase, with suboxides such as A10, A1202,andA120possibly
also occurring, according to Gibbons and Siegel [445]. The liquidA]203 is then

formed during the expansion process in the nozzle when itis condensed from

the vapor phase.

The surface combustion process occurs as described by Brown and
.

MeCarty [446] and Kurtovich and Pinson [441,442]. In this process, the

aluminum metal coalesces to large droplets on the propellant surface which are

then expelled from the surface and have an oxide coating formed around them.

After melting, the entire particle assumes a spherical shape because of surface

tension and vapor pressure. Continued combustion vaporizes the aluminum

inside the shell as the higher pressure inside the shell causes the ahm_inum to

be forced out in a stream of liquid vapor. The A1203 particles are thus formed

by rapid oxidation of the molten aluminm_ jet coming out of the shell. It is

possible, according to Kurtovich and Pinson, that the oxide shell, which is

made rigid by the internal pressure caused by the boiling almninum, will
occasionally burst, sending shell fragments out into the exhaust plume. To

understand this surface mechanism of combustion satisfactorily, it is necessary,

according to Markstein [439], to analyze the absorption of oxygen on the sur-

face of the molten oxide and the transport of oxygen or metal through the oxide

layer. Also, it is necessary to consider the reactions which occur at the oxide-

gas and at the oxide-aluminum interface as well as those within the oxide layer.

Because most of the A1203 particles recovered from the exhausts of

aluminized motors are small solid spheres of s-alumina, rather than hollow

oxide spheres, it is believed that the vapor phase combustion process of alumi-

num is the type of combustion process actually occurring in this type of motor.

According to Avery [436], when hollow spheres are found in exhausts, such as

mentioned by Kurtovich and Pinson, poor combustion occurred (such as at the

end of a firing), the radiation heating in the chamber was lower, and the

particles were formed by a surface mechanism process. Also, Brown and

McCarty [446] and Avery [436] state that if the surface mechanism process

were involved, rather than the vapor phase, the size of the A1203 particles

found would be greater than the size of the aluminum particles (10 _ <dp < 25 #)
placed in the propellant. This is not the case, as will be seen in the next
section.

*Also additional information was obtained from D. D. Kirtovich and G. T.

Pinson in an unpublished Boeing report of January 1960, entitled "Radiation

Characteristics of Rocket Engine Exhausts. "
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2. Experimental Determination of AI_O,_ Particle Sizes and Distribu-

tions. The sizes of A1203 particles collected from rocket exhausts 0y the major

ity of investigators are found to have an average particle radius, rp, of between
1 and 3 #. Some investigators, such as Sehgal [447] and Allport et al. [448],

by firing small rockets into tanks, fom_d a definite size dependence on motor

chamber pressure. Other investigators, such as Dobbins [449,450] and Dobbins

and Jizmagian [451,452] using optical techniques, and Brown and McCarty [446]

by passing microscope slides through the plume, did not find such a chamber

pressure dependence.

Carlson [5] presents a figure, reproduced here as Figure 37, which

shows this mean size (particle diameter) obtained by several investigators as

a function of chamber pressure. In most of these experimental tests, the

motors used were of a relatively small size having a throat diameter of one

inch or less. However, as can be seen from Figure 37, Nack's, Delaney's,

and Bartlett's data:" were for one rather large motor (dt= 7.5 in. ) and one

very large (120-in. solid) motor (dt = 37.8 in.), and the particle sizes found
were several times higher than those of the smaller motors. Cheung's and

Cohen's [453] set of data (for the longer residence time) falls right on Sehgal's

curve; however, the short-residence time data shows a much smaller mean

particle size. Allport's data, curve 3, which were collected from motors

fired into a tank, agree closely with Sehgal's data at low values of chamber

pressure and with Brown and McCarty's data at the higher values of chamber

pressure. Dobbin_s data obtained by light-scattering techniques using Mie

theory (discussed in the next section) showed the lowest particle size of all

(dp about 0.4-0.6 #).

The Air Force Rocket Propulsion Laboratory at Edwards Air Force

Base, California, has made considerable mcasurements recently (some of

which are shown in Fig. 37} of particle size from exhausts of 120-, 156-, and
260 inch diameter solid-fueled motors. Smith [459] has found that the mean

particle size can be represented Dest as a function of throat radius for a large

range of motor sizes. Figure 38, reproduced from Smith, shows this curve of

d43 as a function of r t showing a correlation not seen previously (such as in
Fig. 37}. In Figure 38 the 260-inch motor had a throat radius of 35 inches;
the 156-inch motors had throat radii of 30 and 17.5 inches; and the t20-inch

motors had throat radii of 18.9 and 12 inches. The particle collection technique

".-"This information is contained in two 1966 Aerospace Corporation unpublished

reports: "Two Phase Flow Phenomena in Rocket Motors" by T. H. Nack and

L. J. Delaney, and "Particle Size in Two Phase Nozzle Flow" by R. W.

Bartlett and L. J. Delaney. Additional information was received through

private communication with Mr. Delaney and the author.
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for the vertically-fired 260- and 156-inch motors was rather unique in that an

RB-57 airplane flew into the cloud of the exhaust about 15 to 20 seconds after

the end of the firing and collected the particles in a wing-tip pod which had a

10-inch opening for the particles.

Since many of the investigators analyzing particle sizes use various

definitions for an average or a mean size, it is necessary to list the various

types of sizes (diameters) mentioned in the literature. Carlson [5] presents

such a list as follows:

1. Mass median diameter, dl/2:

= 1
dl/2 f dpl/2 f(dp) d 3Pd(dp)=-_- f

0 0

f(d ) d 3 d(d ) (4097
P P P

2. Mass mean diameter, dta:

d43---off(dp7 d4pd(dpT/off(dp) d3pd(dp)
(4107

and

3. Mass average diameter, d30:

1

i60; d,dp,]d30 = - f(d ) d 3 d f(d ) 3
P P P

4. Volume-to-surface diameter, d32:

(4117

oo oo

da2: off(dp) d3pd(dp)/fOf(dp) d2p d(dp)
(412)

Some of these values of particle diameter are used in the theoretical

determination of A1203 sizes, as discussed in the next section.

Other investigators not mentioned by Carlson [5] have obtained A1203

particle sizes similar to those shown in Figure 37. Preckel, Jacobs, and

Gibson [455] at Allegany Ballistics Laboratory placed microscope slides in

the exhaust, mounted at distances of 15 to 100 feet behind the motor exit.
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The meandiameter of the particles collected on the slides in all cases was
between2 and 3 #. Optical techniques were also used in which film density
measurementswere made with a Densicron on the photograph, and trm_smit-
tancesof visible light through the plmne at a single wavelenglh for black-and-
white photographswere obtained and at three wavelengths for color photographs.
Using the Beer-Lambert equation (discussed in the next section), the optical
depth was found to yield a mean particle diameter of about one micron.

Kurtovich and Pinson [441,442] * at Boeing obtained A120aparticle
samples on glass slides froln both 1/20th andfull-scale Minuteman firings
at a chamber pressure of about 760psia. It was found that two types of parti-
cles existed on the slides - hollow mieronic particles and solid, submieronic
particles. The hollow micronie particles showeda distribution around dp : 4 #,
while the number of solid submicronie particles appeared to increase as the
particle size decreased. Measurements at Rohm and Haas,:-* showeda mean
A1203particle size of about 2 to 4 p; however, the results were believed to be

inconclusive because of the amount of agglomeration and coalescence that

resulted. Based upon theoretical specific impulse calculations using various

propellants fired at Rhom and Haas, it is believed that tae mean particle

diameter should have been closer to one micron. Dimmock and Courtney [337]

at Thiokol, who collected A1203 particles in rocket exhausts in which the pro-

pellant had 8 percent aluminum and where the motor was tired at 750 psia,

found the mean particle size to be between 0.1 and 1.0 #. Povenelli and

Rosenstein [456] obtained a mean particle dimneter of about 1.6 g in almninized

(9 percent) propellant strand burning tests. Burns [457] inserted a probe in

the exhaust of an motor whose propellant had 19 percent aluminmn and was

fired at 630 psia. He obtained the very large mean diameter of 150 p; however,

the particles collected were of a large porous nature, and it was believed that

the probe-collecting device was biased in favor of the large particles, because

many of the small particles followed the gas-stream lines and did not go h_to

the probe.

- .

':'Also additional information was obtained from D. D. Kurotvich and G. T.

Pinson in an unpublished Boeing report of January 1960, entitled "Radiation

Characteristics of Rocket Engine Exhausts. "

*,:-'W. A. Wood, private communication to the author, August 1966.
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Measurements of A1203particle size anddistribution were obtained at
Aeronutronic [344,345] from the exhaust of a small hydrogen-oxygen engine
which was fired with a slurry of A1203particles dispersed in water. The A1203
particies coming out of the exhaust were collected during the firings by means
of a May-Welchman cascadeparticle analyzer and a shutter probe which was
placed about 15 feet from the motor exit. It was found that the distribution of
the collected A1203particles (which had a maximum diameter of about 10 _)
agreed quite well with the AlzO3particle distribution (analyzed with a Microm-
erograph) put into the slurry before firing.

At the time of this writing an investigation is underway by Boeing"'
performed in an altitude cell at MSFC Test Laboratory to determine A1203
particle sizes in small (dt = 3/4 in.) solid propellant rocket exhausts. The

chamber pressure is rather high (approximately 1500 psia) ; the expansion

ratio of the motors is 8:1; and the amount of aluminum is 14 percent and 20

percent. A particle collector which is pressurized by argon gas to slow the

particles dow_ (described by McGregor [458]) is mounted at several axial

distances varying from 27 to 43 inches from the exit and also at several radial

distances from the axis. The particles impinge on the inside walls of the collec-

tor (after passing through an orifice) where they are flushed out with a solvent

and analyzed with an optical microscope. It has been determined that the

particles are nearly spherical, a result which agrees with most of the investi-

gations mentioned above. To date (three firings) the average particle size

(diameter) appears to be about 5 #; however, it is believed that the smallest

particles are not being resolved by the optical microscope, so that Micromero-

graph techniques and possibly electron microscopes will be used in the future

to obtain more accurate measurements.

3. Theoretical Determination of AI20 _ Particle Sizes and Distributions.

Various theoretical predictions based upon some of the experimental data men-

tioned above have been suggested for A1203 sizes and distributions. Many of

these have been used in calculations of radiant heating from aluminized rocket

exhausts. Perhaps the simplest method used has been to assume that all of the

particles are the same size, such as rp = 2 _ as used by Fontenot [459] and
Bender and Mullin [460,461]. A size distribution method based upon the

analysis of Kliegel [462] was used by Morizumi and Carpenter [463], Gulrajani

[464], Rochelle [465], and Hunt [466] for AI203 particle radiation calculations.

This was based on five sizes of particles, rp= 0.79_, 1.28_, 1.76#, 2.44 #,

and 3.95 p, each representing 20 percent of the total A1203 particles in the

exhaust. This size distribution was based upon Kliegel's [462] fitting the

following logarithmic normal particle size distribution based upon Brown and

McCarty's [446] data and some unpublished data obtained at TRW Systems:

_".-'M. Baker, private communication to the author, September 1966.
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1

mp(dp)/m = [(27r) _ dP P _1expE d-lnVl- --- P 41In ( 3)O-g 2 In 2 o- '
g

where dp = 3.5 + 1.0/_, ag
mg is the gas mass flow.

= 1.9 + 1.0 #, mp is the particle mass flow, and

Crowe and Willoughby [467] performed a theoretical investigation of

A1203 particle growth in a solid propellant rocket nozzle by particle collision

and coalescence in the nozzle and shock waves of the exhaust plmne. This

was done in an attempt to explain certain UTC experimental data [448,468]

shown as curve 3 in Figure 37 which shows that particle size increases with

chamber pressure up to a certain point, beyond which there is no increase in

particle size. Besides chamber pressure effects on particle growth, Crowe

and Willoughby [467] looked at effects of nozzle scale, aluminum content, and

initial particle size effects on particle growth. The particular model which

was used to predict the rate of particle collision per unit time is

° .

N1._. 2 = 7r(r + r )2 N Iv - v , (414)
Pl P2 Pl [ Pt P2

where NI_ 2 is the number of particles of radius r_, which collide with parti-

cles of radius rp2 per unit time, Vp_ and Vl>_ are _l_e particle velocities, and

Npl is the number of particles of radius rpl per unit volume.

Nack and Delaney"" discuss a simplified aerodynamic model to predict

average particle sizes as a function of propellant composition, nozzle size and

contour, and motor operating conditions. They also discuss a mathematical

model which describes the gas-particle flow through a nozzle, taking into

account both agglomeration and break-up of particles. The four following

first order partial differential equations are solved in their analysis: (1)

total momentum, (2) particle motion, (3) particle heat transfer, and (4)

particle agglomeration. Theoretical calculations for four motors (d t = 2.5 in.,

7.5 in., 9.1 in., and 37.8 in. ) show agreement within 10 percent of experi-
mental data.

Fein [469] presented a theoretical model for predicting A1203 particle

size distribution in which he found the normalized distribution frequency f(Vp)
to be

* This information is derived from a 1960 Aerospace Corporation m_published

report by T. H. Nack and L. J. Delaney, entitled "Two Phase Flow Phenomena

in Rocket Motors."
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[ Vpj pn,lj3]f(Vp) _i/3(6 V )2/3 exp -(6

Pn P

(415)

where Vp is the volume of a single particle and Vn is the number average_-n
particle volume. In this analysis Fein assumed the rate of growth of a particle

dVp/dt to be given by the relation

dV 7 ( C - C e) Ap (MW)P_
dt p

, (416)

where p, MW, C, and C e are, respectively, the density of the oxide particle

in the condensed phase, molecular weight of the oxide particle, concentration

of the oxide particle in the gas phase, and equilibrium concentration of the

oxide particle in the gas phase at the chamber temperature and pressure of the

oxide particle. Also, 7 is the rate of growth constant, and Ap is the surface
area of the particle, assuming that the particle is spherical in shape.

McGregor [458] assumed an A1203 size distribution based upon the

following normalized error function for the ith particle (fraction of particles

of the i th size):

-i/2 ( rpi - rpm) 2

Yi = Ke (417)

where the mean particle radius rpm is a linear function of the motor chamber

pressure, as based on Sehgal's [447] chamber-pressure-dependent data as

r = 0.862(ln P - 4.17) , (418)
P m c

where the chamber pressure Pc is in psia and rpm is measured in microns.

The normalizing constant K is given by
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exp 1/2 (rpi - rpm)
i=l

(419)

Dobbins [449-452; 470-472] describes optical measurements using light

scattering (Mie theory) calculations to obtain Lhe particle size distribution

(curve 5 in Fig. 37). The optical transmission of small rocket plumes was

measured at two wavelengths, 0. 365 and 1.01 #, two spectral regions in which

there was no H20 emission and absorption. For a polydispersion of spherical

particles, the transmission expression may be written as the Beer-Lambert

equation (9) as

I=I e-T =I exp(-a_N _)
o o _ p

=Io exp - Qt(dp) f(dp) ---P-N4 Pld(dp)

where f(dp) is a particle size distribution function defined such that

(420)

f P2 f(dp) d(dp) = P(dpl < dp < dp2)

dpI

(421)

P(dpl < dp < dp2) is the relative probability of occurrence of particles larger

than dpl and smaller than dp2. A mean extinction efficiency factor, Qt, may

be defined as

oo

f Qt(dp) f(d ) d 2 d(d )P P P

Qt- 0 o_

off(d )d 2 d(d )P P P

, (422)
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and, if the particle vohme concentration cv

particle number concentration Np as

oo

7r of d3 dp)
c - N f(d ) d(
v 6 p p p

may be defined in terms of the

, (423)

and if the volume-to-surface mean diameter d32 is defined as in equation (412),

the transmission law, equation {420), may be written as

( )I - exp 3 QtCvi .
I 2 d32

O

(424)

From this expression, using Mie theory and measuring the ratio I/I o

experimentally at the two wavelengths 0. 365 and 1.01 _, the volmne-to-surface

mean diameter d32 was calculated and plotted in Figure 37. It is known that

other investigators such as those at United Technology Center;' have also made

or are planning to make light-scattering measurements and Mie theory calcu-

lations to determine A1203 particle sizes from rocket exhausts.

Holland and Draper [473] present the following A1203 particle size

distribution for a polydisperse cloud of particles:

f(d )d(d ) - p sb4/S exp
p p M F(4/s)

O

-b(dp/dpo) s] d(_d

Po

, (425)

where dpo is the median volume diameter of the particle, M o is the mass of

the median volume diameter particle, p is the mass of particles per unit

vohlne, and s and b are parameters of the size distribution obtained from

standard laboratory measurements of particle size. This size distribution

function was used by Holland and Draper to investigate (theoretically and ex-

perimentMly) the light-scattering effects of talc, carbon black, silicon dioxide,

as well as A1203, for the LID effect as discussed by Adams and Holland [474].

*W. Lai, private communication with the author, 1965.
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This LID effect involves the interaction of plmne radiation with particles
brought over the solid propellant missile from the rocket exhaust by plume-
inducedflow separation.

Peterson et al. [475] fitted the following equation for size distribution,
n(dp) [number of particles whosediameter lies between dp and dp + d(dp) ]
baseduponBrownian motion theory:

n(r ) 2
-0 3 dpP - 0.6 x 10 -2 d 2 e "

nTOTA L P
(426)

This equation, which is similar to Bauer and Carlson's equation discussed in

the next paragraph, showed very good agreement with the experimental dis-

tribution (see curve 6 in Fig. 37 for mass average diameter).

Bauer and Carlson [413] present the following skew-symmetric equation

for A1203 particle size distribution (probability of finding a particle of radius

rp to rp + drp) in a rocket exhaust:

b+l
a b -arp

f(rp) _- r e (4277P

This type of expcession was originally derived for size distribution in

clouds of water droplets as reported by Bauer [412], Bartky [476], and

Deirmendjian [380,381], but has been shown to fit AI203 particle samples

collected from rocket exhausts. Based on this distribution function, equation

(427), _he average particle area for a distribution of sizes may be written,

according to Carlson et al. [477], as

oO

n /f(rp) r 2 dr
0 P P (b+ 17 (b+ 2)

= = _ a2 , (4287
P o0

off(r ) drP P

and the average particle volume for a distribution of sizes may be written as
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4 oo

--Va/" f(rp) r 2 dr_ 3 p p
V = 0 4 (b+ 1) (b+ 2) (b+ 3) (429)

p co -3 _ a 3

f f(rp) drp
0

Bauer and Carlson [413] curve fitted equation (427) to the data of Brown

and McCarty [446] and Sehgal [447], obtaining values of a and b, using Mie

theory, and computed the corresponding scattering and absorption cross-sections

for several A1203 particle distributions. Carlson [477], using equation (427),
calculated the size distribution function for the S-II ullage rocket using a = 1. 895

and b - 1. 269 as shown in Figure 39. In the analysis of particle radiation heat-

ing from Saturn ullage and retro motors (See subsection following, entitled

"Radiation Calculations for Aluminized Solid Propellant Rocket Exhausts. ")

equation (427) was used to compute the absorption and scattering cross-sections

and emissivities (discussed in the next section).
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Determination of AI203 Particle Cloud Emissivity

An accurate prediction of the emissivity of the AI203 particle cloud in an

aluminized rocket exhaust depends upon the absorption and scattering cross-

sections, which depend on the index of refraction of the A1203 particles as dis-

cussed in the section on Mie theory of scattering, and upon the particular size

distribution of particles as discussed in the following section. However, this

cloud emissivity is also a function of optical thickness, T, of the plume and the

type of particle scattering involved (isotropic or anisotropic, single or multiple).

In this section emissivity expressions for optically thick and thin particle clouds

with various types of scattering are discussed. Three general methods for

predicting A1203 particle cloud emissivity are given: (1) inverse wavelength

method, (2) neutron-scattering analogy method, and (3) one-dimensional beam

approximation method. These methods are described in order of increasing

complexity (and accuracy) and decreasing value of radiant heating predicted.

1. Inverse Wavelength Method. This method, which was developed by

Fontenot [459] at Boeing as a simple approach to the radiation heating problem,

provides a conservative estimate of particle cloud emissivity. A form of

equation (298) was used to obtain the particle cloud spectral emissivity as

E = 1 - e -KkVI (430)

PX

where the absorption coefficient K is obtained from Schack [277] as 0.57/k

and V represents the volume fraction of A1203 particles in the cloud. The

total emissivity is obtained as by Sato and Matsumoto [279] from equation (301)

with hhe exception that the quantity × is equation (301) may be expressed as

× =0.57V1 /C 2 , (431)Tpx

where Tpx represents the particle temperature at a distance x from the nozzle

exit. The quantity V may be expressed in terms of M, the mass of A1203

particles per unit volume, as
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(r)2V = _ " e (432)

Pp r e + y '

where pp represents the density of an AI203 particle and y represents the
quantity r - r e where r is the radial distance from the axis and r e is the

nozzle exit radius. The quantity M can be approximated by the expression

W F

P (433)
M-g A 12 ,

e sp

where Wp represents the weight fraction of particles in the plume, F is the

thrust of the motor, Isp is the specific impulse, and A e is the nozzle exit
are a.

If equations (430), (301), and (431-433) are combined, the following

expression for the total emissivity of an A1203 particle cloud at a distance x

from the nozzle exit may be written:

Px Pp Ae (re + Y) 1 (434)

Although this prediction for particle cloud emissivity is much easier to

make than that of the two methods discussed below, it is not believed to be as

accurate because only one particle size (rp = 2 tt) is assumed. Also, the
effects of particle scattering are neglected, and it is believed that this inverse

wavelength dependence for spectral emissivity is more valid for carbon particles

(discussed in the previous section, "Radiation from Carbon Particles") than for

A1203 particles.

2. Neutron-Scattering Analogy Method. Morizumi and Carpenter [463]

and Morizumi [478] present a method of predicting the apparent surface

(hemispherical) emissivity from an A1203 particle cloud whose particles are

radiating isotropically, based upon a neutron-scattering analogy. Subsequently,

Gulrajani [464] and Hunt [466] produced computer programs based on Morizumi's

and Carpenter's [463] equations. The particular surface analyzed by these
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investigators was the surface generated by the limiting particle trajectory of

the smallest particle (rp = 0.76 _) considered. Five particle sizes were con-
sidered, corresponding to the size distribution assumed by Kliegel [462] dis-

cussed in the previous subsection. The cloud emissivity analysis was based

upon the method of successive generations (multiple scattering) of neutrons as

discussed by Stuart [479 ], Stuart and Woodruff [480] and Anthony [481 ]. In

this manner, the neutron blackness, fl(_), which is defined as the probability

that a neutron incident on a body will be absorbed within it, may be expressed

as

j-1
J
II Pi-l,k (T)

i=1

(436)

If photons in a particle cloud are substituted for the neutrons in the

analysis given [479-481], the following expression may be written for the

apparent emissivity of a slab or cylinder composed of A1203 particles:

.o j

Ea=ePj=l_ (1.- Ep) J-1 IIi=l Pi-l'0(z)
(436)

where Pi-1,0 represents the probability that the radiant heating originating
isotropically from an A1203 particle is reflected by another A1203 particle

within the slab or cylinder after having been reflected (i - 1) times. Accord-

ing to Morizumi and Carpenter [463], the quantities aa/a t and as/a t are

equivalent to the emissivity and reflectivity, Ep and 1 - ep, respectively, of
an A1203 particle (assuming the particle is opaque).

Equations for the first, second, and third collision probabilities, Po, k,

k, and 1)2 k, respectively, have been derived by Morizumi and Carpenter
[_63]. The f{rst collision probability 1)0, k which represents the probability

that once-scattered photons escape through the surfaces z = 0 and z -- _ is

Po,k = (k+ 1) f0NpatEk+l(NpatZ ) dz , (437)

where Ek+ 1 is an integro-exponential function which may be written as
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1 i-2 -(Npa tz)//_
Ek+i(Np_tZ) - f # e d# , (438)

0

where p = cos0 and k is a cosine distribution exponent equalling one for iso-

tropic scattering. The second and third probability functions, Pl,k and P2,k,
respectively, are very complex functions of the optical thickness, which was

summed over five particle sizes (mentioned in the previous subsection) as

5 £
n

n=l n Pn
(439)

where NPn is the particle concentration for the n th size particle obtained from

a two-phase plume program and atn is the total cross-section for the n th size

particle. Morizumi and Carpenter [463] used atn =_QtTrrpn 2Vrpn , using

the asymptotic value of 2 (see Figure 36) for Qt for large values of a.

It may be mentioned that an approximation to the particle concentration,

Np , may be written without going to a two phase plume program. This approx-n
imation, which was suggested by French [482], is

N - .... ]2----- _3 1 2 , (440)
Pn (4/3) 7r2pp v Kz 2 0L

g Pn n

represents the limiting streamline of the nth size particle (given
where 0Ln

as a function of r_ in Freneh's work) ; Vg is the gas velocity; z is the axial

distance downstream of the throat; K = Vp/Vg (where Vp is the particle

velocity) ;mp is the particle mass flow; ana Pp is the density of an aluminum

particle. Tl_e,quantity 1 - K (velocity lag) was plotted in his work as a function

of rp(rt)-_ z-4 where r t is the throat radius.

To obtain the value of particle emissivity, ePk' which Morizumi and

Carpenter [463] designated as Crak/atx = Qax/Qtx, these investigators extrap-

olated data of bulk alumina emissivity measurements and plotted their own
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emissivity data obtained from rocket exhausts. The apparent emissivity, Ca,

of the A1203 particle plume was calculated from experimental measurements

obtained during sub-scale Minuteman engines fired at AEDC, described by

Byrd [483] as

=--_-- (441)
a _B_r 4 '

where q, the heat transfer rate (per area), was measured with radiometers

(narrow-view angle) ; radiation calorimeters (wide-view angle), and spectrom-

eters (narrow-view angle). The effective plume temperature, T, was calculated

as will be discussed in the section immediately following, and the optical thick-

ness, T, was determined from equation (439). The particle emissivity _p
was then obtained from the cylinder curves presented by Morizumi and Carpenter

[463] in which _a was plotted as a function of T for various values of Cp. It

was found that a value of _p of about 0.25 was valid for both the experimental
Minuteman data and also the extrapolated bulk AI203 emissivity data. Morizumi

and Carpenter's apparent emissivity curves, which are presented here as

Figure 40, can be represented fairly accurately according to French [464] by

the" following equation:

= c1/4 [1-exp(-C_3/47)] (442)a p p '

where C = 2//3 for a cylinder and 2 for a slab.

It is mentioned by Carlson [477] that the ratio Qa/Qt should not be used

for the A1203 particle emissivity; instead, merely the absorption efficiency

factor Qa would be the true particle emissivity as stated by van de Hulst [246]

on page 452 of his book. If the ratio Qa/Qt were used for a blackbody (_p = 1)
in which the absorption cross-section, era, would equal the geometric cross-

section, 7rr_ (Qa = 1), the quantity Qa/Qt would be less than one since Qs

(and hence Qt ) would be greater than one. Carlson [477] also believes that

Morizumi and Carpenter's [463] experimental determination of _a is too high

since it is based upon the Planck blackbody distribution. In the case of solid

propellant exhausts, a number of sources (particles) will exist at different

temperatures, and thus a Planckian distribution from such a multi-temperature

source will not exist. Also, while the effects of one-dilnensional multiple

176



_.2

1.0

0.8
t

•"_ 0.6

i
0.2

0
0

1.0

_ I_-_ _- o_ "-" 0.4

' _ o.'I _-" o._

p _+c
//

2 4 6 8 I0 12 14 16 18

Optic01 Thickness, T = o"t NpJ,

FIGURE 40. APPARENT EMISSIVITY FOR A CLOUD OF PARTICLES

IN THE FORM OF A SLAB OR A CYLINDER

scattering are included in Morizmni's and Carpenter's analysis, the effects of

anisotropic scattering (important at large values of T) are not.

3. One-Dimensional Beam Approximation Method. This method is

currently being used at Aeronutronic under MSFC contract to analyze particle

radiation from the exhausts of Saturn ullage and retro motors and from exhausts

of 120-inch strap-on motors for the Saturn improvement study. This analysis

involves the study of optically thick plumes (where multiple and anisotropie

scattering is important) as well as optically thin plumes in which the radiation

from individual particles is smnmed over an incremental volume. It is gener-

ally felt that the plumes of the Saturn ullage and retro motors are optically

intermediate (not thin to scattering, but thin to emission and absorption), and

that _he 120-inch plumes will possibly be optically thick, especially near the

exit plane. Carlson [477] specifies the criteria for optical thickness by stating

that, ff

_(s) i
/dpL- _ << i , (443)

N A
P P dpL
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the plume is optically thick for emission (anisotropic scattering centers). If

the quantity

_(s) t
/dpL = _ >> 1 , (4447

N A
P P dpL

then the plume is optically thin for scattering (isotropic scattering centers).

hl these equations the quantity £ (s) represents the scattering mean path,
P

is the projected area of a mass-mean particle size, and dp is the particle

plmne diameter.

In general, for an optically thin particle cloud, the cloud emissivity is

independent of scattering angle 0, the cloud emissivity for isotropic scattering

is equal to the cloud emissivity for anisotropic scattering, and the hemispherical

emissivity c H is larger than the normal emissivity 6 N. For an optically thick

particle cloud, the cloud emissivity is a function of scattering angle 0, the

cloud emissivity for an anisotropic particle cloud is greater than that for an

isotropic particle cloud, and the hemispherical emissivity (H is less than the

normal emissivity (N (except for the one-dimensional case). The above facts

may be seen in Figure 41 reproduced from Bartky and Bauer [34], which is

discussed later in this section.

The particle emissivity 6p, which is equal to Qa, for AI203 particles
was determined experimentally as reported by Carlson and du Puis [345],

Carlson [344], and Burch and Gryvnak [422,423], all from Aeronutronic, and

was found to be very much lower (especially in the solid phase) than the 0.25

value used by Morizumi and Carpenter [463]. The Aeronutronic investigators

found that a large change in order of magnitude of (p occurred when the Al203

sample reached its melting point, as can be seen from Figure 42, which is

reproduced from Carlson [344]. Additional measurements by Adams and

Colucci [424] have agreed closely with this set of data above the melting point.

Carlson [351] suggests several reasons why the Al203 particle emissivity

changes by such a large magnitude upon melting. These reasons include (l)

the effect of a polycrystalline structure of the A1203, (27 chemical reactions

occurring at the surface of the hot particles, (3) the "searchlight effect," and

(4) the effects of impurities on the optical properties of the particles.

To determine the A1203 particle cloud emissivity (hemispherical 6 H

or normal ON7 by the one-dimensional beam approximation, the equation of
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transfer (72) for the plane-parallel case must be solved. Equation (72) may

be written in the following form, which is consistent with Aeronutronic's

notation, as

dI
x (z,_, _)

# dz =- Np(Cra + as ) Ih(z'#'_)--

a 27r I

+N s flp 47r Of T(O) Ix(z,#',q_') dp'dqS' + N_ P
B (T)

a it (445)

if the following substitutions in equation (72) are made:

NpC_a=Kit, Npa s =ait, Np(r aBit(T) =jit, and 7(0) = p(#,_;#',_').

(446)

179



Io-i

i0-2

10-3

10-4

lO-e

Experimental Values (obtained by Carlson, Ref. 345):

v X = 0.59/.¢

0 )_ = 1.3/._ l
Spread in data point=

A X = 1.78/4. indicated by bracketed

D _ = 2.33__J lines shows typical
RMS error

i

Mie Theory Calculations
using alumina optical

properties meOsured by
Gryvnak and Butch (Ref 442_ _._

for X_I-3 F //

_X'XM.P. of AI20 s =

Z3Zo=K

I0 -e I I
600 I000 1400' 1800 2_'00 2600 3000 3400

T ('K)

FIGURE 42. SPECTRAL EMISSIVITY OF ALUMINA PARTICLES

In equation (445) the first term on the right is the attenuation (scattering plus

absorption) of the radiant beam of intensity IX, the second term represents
the energy scattered in the direction 0, and the third tern, is the energy

emitted by the unit volume under consideration.

In equation (445) the expression T(0) is the angular distribution func-

tion sometimes referred to as the differential scattering cross-section for

which

2u

f v; ")/(0) sinO dO d_)= 4_ (447)
0 0

and which is defined as
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1
7(0) =-_- [il(O) + i2(0) 1 (4.48)

where il(0 ) and i2(0) are the intensity functions defined in equation (387). For

an isotropic particle cloud, it may be noted that 7(0) = 1.

To solve equation (445) for Ik and consequently obtain the particle cloud
emissivity, various approximations may be considered. For a purely absorbing

medimn (cra >> crs) , discussed as one of the solutions to the equation of transfer
in the first section, subtitle "Solutions to the Equation of Radiation Transfer, "

part 2, the emissivity as a function of 0 may be written as in equation (66).

For 0 = 90", cos 0 = # = 1, and an expression may be written for the normal

emissivity of the cloud (assumed homogeneous) as

- era Np z• = 1 - e -_'= 1 - e ( ) (449)
N

The expression for hemispherical emissivity may be found by integrating

equation (66) over 0, and may be written according to Bartky and Bauer [34]

as

-T -T T2 -T T2
• H = I - e + Te - El(T ) = eN+ Te - El(T ) , (450)

where El(T) is the exponential integral defined as

oo

El(r ) = f (e-X/x) dx

T

(451)

The one-dimensional beam approximation solution (for anisot_'opic

scattering) to equation (72) will now be discussed for the cloud emissivity

expressions. The details of the solution will be given in the last part of this

section, and the expressions for emissivity, reflectivity, and transmissivity

(¢,p, and t, respectively) will be given in this section. A further approxi-

mation can be made for the one-dimensional beam method by assuming the

intensity scattered in the forward direction (0 = 0) is equal to the intensity

scattered in the backward direction (0 = 180 °) , or
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1 _/2 i I /'v(e) sine de (452)
a =-_- of T(0) sin0 d0- 2 - fl =-2- 7r/2

where a represents the fraction of radiation scattered forward and fl = 1 - c_
is the fraction of radiation scattered backward.

In this manner, the cloud emissivity may be written according to Bartky

and Bauer [34] and Rossler [484] as

-kT) ,e(T) =Too(l - e-kT)/(1 +pete (453)

where

1-k
P_ - 1 +k ' £oo = 1 - P¢o (454)

and

aO"

k = (m) _=
• +0"

S

(455)

If 2T is inserted for r in equation (453), the one-dimensional approxi-

mation for the hemispherical emissivity may be written.

For the general anisotropic scattering case, the assumption that fl = a =

0.5 is not made, and the expressions become much more complex. For this

general case Bartky and Bauer [34] present the following equations for p(_-),

t(T), and E(T) based on the analyses of Mecke [485] and Havard [356] :

p(T) = (k '2 - m 2) (e k'T - e-k'T)/D, t(T) = 4 mk'/D (456)

and
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ek' -k' ]c(T) = 1 - p - t = 2m r(k' + m7 + e T(k' - m7 - 2k' /D, (457)

where

kTT -kVT
D= (k v +m) 2 e - (k' - m) 2 e (4587

and

1

k' = { m[2(l - m7 /3+ m] } 2 (459)

For an optically thick medium (T--* _), the reflectivity reduces to that

in equation (454), and the normal emissivity, for various limiting cases, can
be written as

1

• -k' , lim ¢ = , and lim •(T) =mT (460)
oo + m m---0 T--_0

The hemispherical emissivity may be written by replacing 7 by 2T.

For the three-dimensional exact (nmnerical) case, values of emissivity

for isotropic scattering have been given by Bartky and Bauer [34], usfllg values

of the Chandrasekhar H(_) function, and for anisotropic scattering have been

given by Romanova [486]. Bartky and Baue_ plotted these three-dimensional

isotropic (for a = fl = ½) and anisotropic emissivities mentioned above. Both

hemispherical and normal emissivities were plotted as a function of the optical

thickness for various values of the parameter m = Cra/Crt. Bartky and Bauer's

set of curves is reproduced here as Figure 41. For an optically thin plume

(_---*0), Bartky and Bauer presented the limiting case of cloud emissivity for
both one- and three-dimensional cases for a semi-infinite medium. These

limiting values are, for isotropic scattering,

1 1 1

•ID = 2m _ , •3DH 2.31 m _ , and •3DN 2.91 1112 (4617
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and, for anisotropic scattering, using Romanova's [486] data, as

1 1 1

elD=3.93 m _, £3D H =4.8 m _, and E3D N= 6.6m _ (462)

It is suggested by Adams and Colucci [424] and Carlson [5] that a

representative value ofm for an aluminized rocket exhaust is of the order of 0. 005.

Based upon this value, Figure 41 shows that the exhaust of an aluminized rocket is

not optically thick until T _ 100 and then its emissivity is only about 0.1 - 0.2.

Carlson [5] states that BeO has a value of m of about 0.1; hence, its optically

thick plume would have a cloud emissivity at least twice as great as that of an

A1203 plume. Figure 41 shows that, when the scattering cross-section a s
approaches zero, the value of m approaches one (which is the case for carbon

particles), and the optically thick cloud emissivity approaches unity (blackbody
emission).

In the above analysis of one-dimensional anisotropic scattering for a

particle plume, the effects of multiple scattering were included, but only in a

one-dimensional sense. A two- or three-dimensional analysis of multiple

scattering is very complex, even though it is felt by Bauer [412] and Goldstein

[487]'that single scattering is far greater than double scattering, except for

very small scattering angles, 0. Among the many investigators who have

analyzed the effects of two- and three-dimensional multiple scattering {although

not necessarily applied to rocket exhausts) are Chin and Churchill [488],

Bellman et al. [489,490], Evans, Chu, and Churchill [491], Smart et al. [492],

Uenoet al. [41], Twersky [493,494], Grosjean [495], Chuet al. [496], Sekera

[497], Mullikin [498], Bauer [499], de Bary and Bullrich [500], Herman and

Browning [501], Halpern, Luneberg, and Clark [502], andRichards [503].

In the next section the effective particle temperature, on which the

absorption and scattering cross-sections (and consequently the cloud emissivity)

are dependent, is derived, and finally, in the last part of this section, the

various radiation programs are discussed, as they are based upon particle cloud

emissivity and the effective temperature.

Determination of AI20 Particle Cloud Effective Temperature

Since the particle cloud of an aluminized rocket exhaust is a non-

isothermal cloud, especially near the exit plane, and has a definite thermal
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lag betweenthe gas and particles, it is necessary to determine someeffective
temperature at each increment in the plm]le through which the radiation can be
analyzed. The particle temperature is a direct function of the radius of the
particle, with the large particles experiencing a higher temperature than the
smaller particles whosetemperature approachesthe gas temperature at the
samepoint in the plume. The amount of coupling between the gas andparticles
is an important factor in determining particle temperatures, if the particle
loadings, _b= m-/m., are large (q5> 0.4), the flow may be strongly coupled
(gas dynamic flo_wfiegldinfluenced by particle flow field andvice-versa),
especially in Lhenozzle for small motors and at low altitudes. A case of weaker
coupling arises when_heparticle flow field is influenced by the gas flow field,
but not vice versa. A third case of completely uncoupledflow arises if both
flow fields are independentof each other. This is the case in a highly under-
expandedplume (of low _) in which the meanfree path becomeslarger than
the diameter of the particles and the particles lose more heat by radiation than
by convection to the surrounding gas.

Hoglund [504] presents anexcellent review of two-phase (gas-particle)
nozzle flow-fields, surveying references through early 1962, and McGregor
[458] reviews the effects of two-phase flows, presenting numerous references
through the end of 1965. Carlson, Lewis, and Bartky [505] discuss the experi-
mental and theoretical aspects of both near-field (including location of the first
Mach disc) andfar-field gas-particle flows• The early analyses of two-phase
flow such as by Altman and Carter I506] and Gilbert, Davis, and Altman [507]
were concerned with effects of the thermal and velocity lags on motor specific
impulse. In _eneral, _heseinvestigators assumedthat the thermal lag was
independentof velocity lag, and found that thermal lag had a smaller effect on
specific impulse thandid velocity lag. Kliegel [462] performed the first one-
dimensional nozzle two-phase flow analysis that included both thermal and
velocity lags alongwith _heeffects of particle lag on the gasproperties. Kliegel
and Nickerson [508,509] performed the first two-dimensional (axisymmetric)
coupled two-phase flow analysis in nozzles, and later in exhaust plumes• Since
the early analyses of two-phase flow, numerous investigators have developed
computer programs for both coupled anduncoupledsolutions• Someof the
many investigators in tills area include Crowe et al. [510-512], Bailey et al.
[513], Hoffman [514-516], Rannie [517], Simons [518], Hasson [519], Glauz
[520], Morganthaler [521], Travis [522], Rudinger [523], Marble [524],
Torobin and Gauvin [525], Lype [526], Soo [527,528], Price et al. [529],
Carlson [530,531], andCarlson and Hoglund [532].
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In most of the investigations, the basic equations for particle trajectories
and particle temperatures involve the equation of motion for the particle as

d_ #
____P_ _ 9 K g___

dt ---2 DOp r2 (_'g -VP)P

(463)

and the energy equation for the particle as

dT _ r z K H _ (rB T4p__P pgCpg (T - T ) +

dt pp C Pr p g pp C
(464)

In these expressions, #g is the gas viscosity, _p, the particle velocity,

-_Vg, the gas velocity, pp the particle density, and C and Cpg the specific heats

of the particle and gas, respectively. The parameters K D and K H are the
values of the ratio of the actual drag coefficient and Nusselt number, respective-

ly, to the Stokes values. These quantities, K D and KH, are inserted in the

equations to account for Stokes law departures because of compressibility,

inertial, or rarefaction effects. An empirical correlation of K D is presented

by Carlson [530] as

KD = _(1 + 0.15 Re 0"687) [1 + exp(-0.427/M 4'63 -3.0/Re°'8_)]_
1 + (M/Re) (3.82 + 1.28 e -1"25 Re/M)

and the quantity K H may be expressed as

(465)

i [- 2 + 0.459 Re 0"5'_

KH- 2 LI+3"42(M/Re)(2+0"459Re°'5'_) J '
(466)

where M is the Mach number and Re is the Reynolds number.
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Kliegel [462] obtained a simplified solution to equations (463) and (464),

plus the overall momentum and overall energy equations given by Hoglund [504],

by assuming a constant value for the ratio of gas to particle velocities and the

ratio of gas to particle temperatures. Another simplified solution to equations

(463) and (464), given by Carlson [477], may be obtained by assuming that

there is no lag between the gas and particles, and the coupling effects may be

accounted for by using an effective isentropic exponent T and an effective

molecular weight MW as

f + qS(C/Cpg) 7

MW
and MW - (467)

Fontenot [459] made a simplified analysis for the particle temperature

(assumed constant across the plmne at a distance x from the nozzle exit) as

a function of x by combining the Stefan-Boltzmann equation with the heat flux

relation for the particle cloud, and obtained the following relation:

P P

dx , (468)

where mp is the particle mass flow. Solving equation (468) results in the
relation

1

[ t /l 21 i 67raB x 2

- T3 + _ f (re + y) i + - eT3 m C o Px
Px Pe P

dx , (469)

where _Px is found from equation (434). The only unknown in equation (469)

is thus Tpe which may be obtained from a two-phase nozzle flow program.

French [482] presented a curve showing the particle temperature lag

relation (Tpn - Tg)/(T c - Tg) as a function of rZp based upon data obtained

by Kliegel [462] and Carlson [532]. This curve is based upon the assumption

that the temperature lag approaches a constant value in the diverging part of

the nozzle and remains constant in the rest of the nozzle and in the exhaust

plume.
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The two-phasenozzle (and plume) program which is usedto predict
particle temperature, TPn, andparticle concentration, Npn, in Morizumi's and
Carpenter's [463] radiation program is Kliegel's [462] method, which assumes
five particle sizes (as discussed in the two preceding sections). After the
particle temperature, Tpn, for a particular size particle is determined from
the two-phaseplume, the averageparticle plume temperature along a given
line of sight through the axis is obtained as

1

5

f N x2
-- o n=l Pn Pn Pn

T= 77 _o+1 5 ' (470)

n=l Pn Pn x2

where the correction factor 77 is found by taking the temperature variation in

a lateral plane of view and averaging it over the lines of sight contained in that

plane weighted by the lateral variation of the shape factor.

Gulrajani [464] defines an effective particle temperature at any point

in the plume as

5

N r 2 T t
n=l Pn Pn Pn

T 4 = (47"J)
5

Peff _ N r 2
n--I Pn Pn

and divides the plume into segments perpendicular to its axis. Equations (470)

and (471) are used by Morizumi and Carpenter [463] and Gulrajani [464],

respectively, in their radiation analyses, as discussed in the following section.

The effective plume temperature analysis in the Aeronutronic radiation

program (one-dimensional beam approximation) includes a pseudo-two-
dimensional routine for the subsonic flow field to the throat and is combined

with the Lockheed/Huntsville method-of-characteristics program (at the throat).

This program is, in turn, matched with the particle trajectory and thermal
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history equations (463, 463, and467) andparticle size distribution equation
(427). In this manner, the particle momentumand energy equations (463 and
464) are integrated using a modified Euler technique and a four-point interpo-
lation scheme to determine the gasproperties stored in an orthogonal mesh.
The gas thermochemical data are obtainedfrom the NASA/Lewis thermochem-
ical programs, discussedby Svehla [533], Zeleznik and Gordon [534], and
Gordon and Huff [535].

For an S-II ullage rocket, the particle temperatures computedby this
program for 1-#, 2-t_, and 5-# radius particles are shownin Figure 43. The
super-cooling curve is for the case of the heat of fusion never released and
represents an upper limit to the particle temperature. The zero super-cooling
curve represents the heat of fusion for liquid particles being released as soon

IOO0

- Nozzle Exit

Plane

' _- rp=5p.

->-

/-- Gas

irp=2_.

40 80 120 160 200

X_ inches

FIGURE 43. TEMPERATURE PROFILES FOR SATURN S-II ULLAGE

ROCKET MOTOR AT 175,000 FEET

as possible and represents a lower limit for the particle temperature. Figure

44 shows the limiting particle streamlines (lines outside of which no particles
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of a particular size exist) also computedby this Aeronutronic two-phase pro-
gram for 1-#, 2-#, and 5-# particles superimposed on Mach number contours
at an altitude of 130,000 feet. This is the altitude at which the S-II ullage
rocket was fired in the J-4 test cell at AEDC in which radiation measurements
were obtained (as discussed in the following section).

e4° -- 1n_
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Ratio of Axial Distance from Exit to Radius of Exit, X/Re

FIGURE 44. S-IIULLAGE ROCKET PLUME AT 130,000 FEET

ALTITUDE SHOWING PARTICLE LIMITING STREAMLINES (A1203)

The effective temperature used for the radiation calculations in the

Aeronutronic pro_(_ram is the temperature which is assumed in each isothermal_

homogeneous slab viewed along the line of sight to the particular object on
which the radiation is incident, hi this rammer, the average radiation emitted

from a small increment of particle cloud is given by an average absorption

cross-section, <aa >, multiplied by the Planck blackbody function, Bx(Tef f)

at the calculated effective temperature, Tel f, or

f(r )a (r) BxIT(rP)]
1?---a_32- -- dr , (472)

<era> Bx(Teff) = f N P
0 p
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where

and

f(r )a (r)
<aa> = f --_P-_ dr , (473)N p

0 p

Og/O s
N - (474)

p 4 f ra-- n f(r ) dr
3 0 P P P

In equation (474), f(rp) is the size distribution obtained from equation (427),

Ps is the alumina bulk density, and pg is the gas density.

The next section discusses the incorporation of the effective tempera-

ture and particle cloud emissivity relations in the radiation calculations as

determined by'various methods wnicn include the inverse wavelength, neutron

scattering analog5, , and one-dinaensional beam approximation methods, as

discussed in the preceding section.

Radiation Calculations for Aluminized Solid Propellant
Rocket Exhausts

Since the advent of large solid propellant missiles (and smaller ullage

and retro motors), predictions of radiation heating from the motor exhausts

to the surrounding base region (or to other nearby structures and components)

have been very difficult to make. Before suitable radiation heating programs

were available, reliance was made on crude blackbody or graybody predictions

and on scale model and flight data. Some of the early analyses and measure-

ments of radiant heating to the base of solid propellant missiles include, for

the Minuteman first stage [536-549], Minuteman second stage [550-554], and

Minuteman third stage [555-560], for the Polaris first and second stages

[561-566], and for the 120-inch strap-ons to the Titan IIIC [567-573].

An early analysis of radiant heating for A1203 particles using the Mie

theory with various mass fractions of AI203 for particle sizes ranging from
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rp = 0.5 t_ to 10 # was performed by Svaton and Winer [357]. The radiant
heating equation used was a modification of equation (2087 as

q/A = 7r f f f atNp B,(T) e×p(-f atNpdS7cos0ds d, (4757
F 09S

where the quantity Np represented the number of particles per unit volume and
was given as

P(MW7 W

N = 0.2238 P (476)
p pp Tdp

where W is the percentage by weight of the A1203 particles in the plmnep

The pressure in Svaton and Winer's [357] analysis was varied from

1-20 atm for a theoretical isobaric plume of four inches in diameter. Radiant

intensities (watts/cm2#) were plotted as a function of wavelength for a tempera-

ture of 2000 ° K. The results are not believed to be representative of a practical

case because the value of index of refraction of the A1203 particles used was

n = 1. 315 - 0. 0143 i, taken from Harris [574], a value not in agreement with the

results of Carlson [344] and Gryvnak and Burch [422,423]. Furthermore,

Svaton and Winder's [357] analysis was made for an arbitrary temperature of

2000 ° K, with no suggestions as to the use of an effective te_uperature or parti-

cle size distribution throughout the plume.

Ohrenberger [575] presents another early analysis of particle radiation

from an aluminized rocket exhaust plume. His final equation for the radiation

from an isothermal cloud for particle size n to an element of area dA located

at the vertex of the n th cone of expansion is

q/A= ( I+--p-_ e-T) a t BX(T) fN (fi_" -_-) exp f N a d R2 ,

n v Pn _c Pn tn

(4777

where p and _ are the reflectivityand emissivity, respectively, of the particle

cloud, atn is the totalcross-section of the nth size particle, and R c is the

distance from dA to the edge of the cloud. The quantity
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n. --_- = de0,
(478)

where dw is the solid angle subtended by dA from a point on the particle. The

quantity ff is the normal to the surface dA which is located a distance R from

the particle of size n. Using this method, Ohrenberger was able to show only

a limited agreement with experiment as he had to make certain geometrical

approximations, along with the assumption of an optically thin particle cloud,

in order to make simplified integrations over the volumes considered.

The inverse wavelength method of predicting radiation discussed by

Fontenot [459] is based upon the Stefan-Boltzmann law for a particle:

qx/A = F a B E T 4 (479)
Px Px

In predicting radiation heating by this method, the particle total emissivity

¢px is calculated by equation (434), and the value of Tpx is found from equation

(469). Calculations have been made using this method by Fontenot [576] and

Hunt [577] for Minuteman strap-on motors for the S-IC stage and by Mullin and

Bender [460],461] for Saturn ullage and retro motors. In general, it appears

that this method gives higher values of radiative heating than does Morizumi's

and Carpenter's [463] method or the Aeronutronic method. As stated previously,

Fontenot's [459] method makes the assmnptions that the particles are all of

the same size, that the particle temperature is constant across radial cuts in

the plume, and that the effects of scattering may be neglected.

Morizmni's and Carpenter's [463] neutron-scattering analogy was used

to predict radiation heating to the base of the Wing VI second stage scale model

and full scale Minuteman vehicle and also predict radiation heating to the Vela

Nuclear Detection Satellite [578] from its injection rocket exhaust. The basic

equation for radiation heating which these investigators used in their numerical

technique was

Ill

q/A=a B _ -_ ( T4. AF.
i=l a.1 Ti) 1 1

$
(480)
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where -_ai and T. are, respectively, the mean value of apparent emissivity and1
effective temperature based on equations (436) and (470) for a particular (the
i th) isothermal, homogeneousslab through which the radiation is seen. The
shapefactors AF i from the surface to be analyzed to the slabs in the plume
are determined by methods of Morizumi [579,580].

Other investigators have used modifications of Morizumits and CarpenterWs
[463] theory to predict radiation from solid propellant plumes. Gulrajani [464]
combinedKliegel's [462] two-phase plume and simplified the radiation analysis
by segmentingthe plmne normal to its axis and calculated heating rates from
the subscale secondstage Minuteman rocket fired at AEDC [483]. He also
presenteda model which was basedon aneffective length of the plmne equal to
3 de for purposes of radiation calculation. Hunt [466] programmed Morizumi's
and Carpenter's [463] method and used the two-phase plume program of Simons
[518] in an attempt to predict heating rates for the first stage Minuteman motor
firings discussed by Hunt [581]. Other more simplified analyses of Morizumi's
and Carpenter's [463] program were used by Brower [582] to predict heating
to the baseof the S-IB stage from the exhausts of Minuteman strap-ons, and
by Rochelle [465] to predict radiant heating to the S-IC ordnance disconnect
causedby the exhaustof the S-II ullage rockets. French [482] also used a
modification of Morizumi's and Carpenter's program for a generalized particle
radiation problem basedon certain velocity and thermal lag assumptions as
discussed in the last section.

It is feltthat Morizumi's and Carpenter's method is superior to the other

methods above; however, itis believed thatthe particle emissivity, 6p, used

is not equivalent to the quantity m = aa/at, and should not be set equal to a

constant value of 0.25, which is feltto be more than an order of magnitude too

high. The effectsof change of index of refraction with phase state (as discussed

in the firstpart of this section), and consequently change of emissivity with

phase state,are not considered in their analysis. Also, the assumption of five

particle sizes with each size represented by 20 percent (by weight) of the total

A1203 weight fraction is not believed to be as valid as an appropriate size distri-

bution function such as equation (427). Finally, although the effects of one-

dimensional multiple scattering are included, the effects of anisotropic scatter-

ing, in which the phase function y(0) is not equal to unity are not considered,

nor is Mie theory used to calculate the appropriate extinction efficiency factor

(a value of Qt = 2 was assumed).

The particle radiation method developed at Aeronutronic under contract

to MSFC's Thermal Environment Branch which is based upon the one-dimensional
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beam approximation technique described in the previous section and the effective
temperature method mentioned in the preceding part of this section, has been
described by Kuby [583,584]. This method, which is based uponone-dimensional
multiple anisotropic scattering with appropriate particle size distribution, is
believed to be more accurate than any of the methods discussed previously.

The basis of the one-dimensional beam approximation method as origi-
nally developedby Schuster [585], modified by Hamaker [586], Churchill et al.
[587], and Rossler [484] andfurther discussedby Klein [588]::' is the writing
of the plane-parallel equation of transfer, equation (445), in terms of a forward
component I i (for 0° or forward scattering) and a backward component Ji (for
180 ° or backward scattering). Equation (445) thus reduces to the following

two equations in one dimension:

dI.

1 _ N (,r +fli_si )I.+ N fli a J + N a B(Teffi ) (481)dz Pi ai 1 Pi s.1 i Pi ai

and

dJ.
1

dz - a s I i N a + fii s i 1 Pi aiNpifii i Pi ai

where i represents the i th slab in the direction of the line of sight which has

an effective temperature, particle number density, and size distribution, and

fl represents the back-scattering fraction obtained from equation (452).

A general solution to this set of equations may be found by using the

optical thickness Ti and ratio of absorbing to total cross-sections, m = _a/a t,

as

I=-- e -- + + -- e - + B(Teff)m 2

and

J=_ e - 1 +_-e + + B(Teff) , (484)

;;_Additional information was obtained from an Aeronutronic unpublished paper of

February 1966, by C. D. Bartky, entitled "The Reflectance of Homogeneous,
Plane-Parallel Clouds of Dust and Smoke. "
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where the quantity kt is defined in equation (459).

If the radiation passes through n slabs to a surface or detector where
it is measured, there would thus be 2n equations (I1, J1, .... In, Jn) with 2n
constants (A1, C1,.... An, Cn) which have to be determined. At the boundaries
of the slabs, a set of continuity equations wouldbe written as

I (T.) - I. (r.) and J.(r.) = J (r.) (485)i 1 1+1 1 1 1 i+1 1

At the two outer boundaries the intensity in the forward direction I(r =:0)
would equal Io, which would be zero ff viewed across a diameter of the plume
(incident intensity at the edgeof the plmne away from the observer would be
zero), and if viewed along the axis of the plume (up the nozzle of the motor),
the value of Io would be

Io = CoB(Teffo)+ PoJo(7o) (486)

The 180 ° scattered intensity at the outer boundary, J(_- _krn ) , if viewed along
the axis would be input as

I180 =enB(Teffn+l)+Pn In(T )n
(487)

Equations (483) and (484) would thus be solved to obtain the constants A1, C1,

etc., and the intensity at Tn, the position of the surface or detector (ff inside
the plume) on which the radiation is incident, would thus be determined. The

corresponding heating rate would then be the intensity integrated over wavelength
and solid angle.

In considering a simplified solution for the intensity for a three-slab

case viewed perpendicular to the plume axis near the nozzle exit, Kuby [583]
writes the following equation for the radiant intensity to a detector mounted

outside the plume. This equation, which considers the reflections and trans-

missions for all of the slabs as discussed by Bartky and Bauer [34] and by
Harrison [310] is
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I =Ilz + 11(I - P2) t2+ 13(i - Pl) ti(I - P2) $'Z]

(4887

+ [I2 Pit2+ I, P3tl(1- _) t¢]+ [I3(1-Pl) _ _ Pa(1-p2) t2 +...] + [...]

The upper (fl = 0) and lower (fl = 1) bounds for the solution of equations

(481) and (482) are described by Kuby [583], as well as the "best estimate"

obtained by using the correct expression for /_ as a function of 0. Calculations

of particle radiation heating using this method are currently being performed by

Aeronutronic under the MSFC contract mentioned previously. These calculations

will be made to compare with data obtained from both wide- and narrow-view

angle radiation detectors as shown in Figure 45, which shows the layout of
instrumentation associated with the S-II ullage rocket tests at AEDC, discussed

by Rochelle [6,589]. Comparisons of this theoretical method will be made
with the data obtained at AEDC from the narrow (2 in. x 2 in. at 20 ft) view

angle FF-1 radiometer presented in Figure 46, together with the wide veiw angle

(120 °) radiafion calorimeter data obtained on the probe shown in Figure 47.

Figure 48 shows the theoretical spectrum (H20, CO 2 and CO emission) for the

S-II ullage rocket calculated by the method described in the previous section

entitled "Gaseous Radiation," subsection "Methods of Predicting Gaseous

Radiation from Rocket Exhausts," part 3c, as seen by the FF-1 radiometer

in Figure 45.

Comparisons will also be made with data from the same FF-1 radiometer

and 150 ° view angle radiation calorimeters for the Centaur retro tests described

by Rochelle [590]. It is expected that comparisons will also be made with data
obtained from the S-IB retro scale model tests at Cornell discussed by Rochelle

[591] and Hendershot and Dennis [592-594]. Calculations of radiation heating

to the stagnation point of copper and Teflon hemispherical-cylindrical probes

shown in Figure 49, mounted 20 inches from the exit plane during sea level

static firings of the S-II ullage rocket, are also expected to be made using this

method. This particular test, described by Rochelle [7] and Datis and Fowler

[595] resulted in total heating rates at the stagnation point of the order of 3000

to 3200 Btu/ft _ sec. Finally, calculations of heating caused by 120-in. strap-on

motors are expected to be made to the base of the S-IC and S-IB stages. The

120-inch strap-on configuration for the Saturn V vehicle is shown in Figure

50. It is expected that a base heating experimental program will be performed

for this configuration (first stage only) at Cornell Aeronautical Laboratory in

the spring of 1967, and a combined base heating/Launch Umbilical Tower

impingement heating program will be started at MSFC's Test Laboratory early

in 1967.
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FIGURE 49.  MOUNTING SUPPORT FOR COPPER PROBE USED 
IN S-I1 ULLAGE SEA LEVEL TESTS 

Besides the radiation analyses of the three major groups (Boeing, TRW, 
and Aeronutronic) discussed here,  it has  been recently discovered by the author 
that another group at Hughes Aircraft  has  been actively engaged in determining 
radiation from rocket exhausts which scat ter  as well as emit and absorb. 
Edwards and Bobco [ 5961 discuss solutions of the radiation transport  equation 
(51 )  for an isothermal dispersion which emits,  absorbs, and sca t te rs  iso- 
tropically. Equation ( 51) is transformed into a second-order differential 
equation and is solved by using the moment technique to obtain a f i rs t -order  
solution and an iterative procedure to obtain a second-order solution. 
[ 5971 describes a closed form solution to obtain directional emissivities from 
a two-dimensional absorbing and scattering medium. 
analysis of some of Aeronutronic's alumina measurements and describes cal- 
culations of the parameter  m = (T /(T for  exhausts of the Surveyor main 

Bobco 

Bobco"' presents an 

a t  

:::R. P. Bobco, "Extinction, Absorption, and Scattering Parameters  for  Alumina 
Particles in Exhaust Plumes, 
November 22, 1966; also "Some Numerical Results on the Radiant Emission From 
Particle Exhaust Plumes, If  Final Report on IR and D Study of Exhaust Plume 
Radiation, Hughes Aircraft  Interdepartmental Correspondence , Noveiiiber 30, 
1 966. 
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retro motors engines. Bobco and Edwards

[598] describe calculations of directional

emissivity from non-uniform axisymmet-

ric dispersions of isotropically scatter-

ing particles in which the particle num-

ber density, Np, is assumed to vary
inversely with the square of the distance
from the cone vertex.

This concludes the section on

radiation from A1203 particles. It is felt

that most of the basic points of radiation

from aluminized rocket exhausts were

covered. The details of the Mie theory

for scattering phenomena, combustion

of aluminum to A1203, sizes and distri-

butions of A1203 particles, A1203 parti-
cle cloud emissivities and effective

temperatures, and particle radiation

programs were discussed. The advan-

tages and disadvantages of several pro-

grams of predicting radiation heating
from aluminized rocket exhausts were

given and it is felt that the one-dimen-

sional beam approximation method of

Aeronutronic provides probably the

best approach to the particle radiation

problem. For additional details and dis-

cussion of current problem areas involv-

ing particle radiation and 2-phase flow,

it is suggested that the proceedings of
AFRPL Two-Phase Conference held at

Norton Air Force Base, California, on March 15-16, 1967, and the final Aero-

nutronic report on the NASA contract mentioned previously [599] be consulted.

CONCLUSIONS AND RECOMMENDATIONS

The report has presented a review of the general theory of thermal

radiation from liquid and solid propellant rocket exhausts. Discussions of

practical programs for predicting gaseous radiation, radiation from carbon

particles, and radiation from A1203 particles were given. The equation of
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transfer of radiation for a medium (such as a rocket exhaust) which absorbs,
emits, and scatters radiation was derived in detail, and various simplified
solutions (such as for a purely absorbing medium or a purely scattering medium)
were presented. The gaseousradiation from H20, CO2 and CO bands in liquid
propellant rocket exhausts in which the effects of scattering were neglected was
then discussed in detail. Analyses of radiation from an aceeierated charge,
shapeandbroadening of spectral lines, band models, and various methods of
predicting gaseousradiation from rocket exhausts were then treated. It was
concludedthat the generalized method with the modified Curtis-Godson approxi-
marion, which includes the combined effects of collision andDoppler broadening

was best suited for the prediction of gaseous radiation from rocket exhausts.

Use is currently being made of the above generalized radiation method by

Roeketdyne [266,293] to obtain the radial distribution of temperature, pressure,

concentration, and emissivity across various plmnes at the nozzle exit. This

procedure, termed "zone radiometry," employs the Abel inversion technique

and the measured values of transmissivity at the nozzle exit for each zone,

together with the calculated values of absorption coefficient as a function of

temperature and pressure, to obtain these radial distributions.

Radiation from carbon particles, such as found in the exhausts of H-I

and F-I engines, was next discussed. It was seen that these carbon particles

radiate at near blackbody level, producing a continuous spectrmn (except in

the regions of atmospheric absorption). One of the main difficulties in analyzing

this type of radiation lies in obtaining an accurate mass fraction of carbon pres-

ent in the exhaust. Recent measurements at Rocketdyne [199,266] have shown

that this fraction lies between 0.01 and 0.05 depending upon the position in the

plume, the type of hydrocarbon exhaust (gas generator, F-I engine, etc. }

analyzed, and the O/F ratio.

In the section on carbon particle radiation, the formation of carbon

particles in luminous flames was discussed, and various theories were pre-

sented which suggested possible formation mechanisms for these partieIes.

The determination of carbon particle sizes (an important factor in analyses of

scattering by these particles) was discussed briefly, and it was concluded that

a mean value for the carbon particle radius, as obtained from luminous flames

and both scale model and large (F-i) engine exhausts, could be taken as about

200 _. The dispersion equation for carbon as it relates to radiation from an

oscillating dipole (Rayleigh scattering) was discussed, and equations for the

real and imaginary parts of the index of refraction of carbon were developed.

The Rayieigh theory of scattering by small particles (such as carbon) in which

c_ << 1 was then discussed, various means of predicting carbon absorption
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coefficients and emissivities were presented, and subsequentlymethods of
predicting radiation from luminous flames and rocket exhausts were discussed.
It was concludedthat the experimental methodsobtained at General Dynamics/
Convair [230,231] were probably the most accurate for predicting carbon
absorption coefficients (and consequentlyradiation), although this method was
probably not valid at small wavelengthsor for large particle sizes. For these
cases the effects of scattering become important, and methods such as used by
Stall and Plass [240] andBeheshti [260] shouldbe used to obtain emissivities
and radiation. Mention was then made of various means of predicting radiation
to the base of the S-I and S-IB stages from the H-1 engine exhausts and to the
base of the S-IC from the F-I engine exhausts as used by MSFC and itsassoci-

ated contractors.

Radiation from A1203 particles, such as those found in the exhausts of

solid propellant motors, was then discussed. It was seen that the A1203 parti-

cles were larger than the carbon particles and had a lower emissivity, but a

higher temperature. Since the A1203 particles are relatively large, scattering

effects were seen to be more important than for carbon particles, and the Mie

theory of scattering, in which _ ~ 1, was discussed in detail in order to derive

expressions for total and scattering cross-sections and efficiency factors. The

determination of A1203 particle sizes by various experimental and theoretical

methods was then discussed, as well as the combustion of aluminum powder in

the propellant to A1203 particles. It was concluded that the A1203 particles were

formed by a vapor-phase combustion process, and that the particles were of

the general size (radius) of i to 3 #, although samples obtained from large

motors showed sizes larger than this, and particles analyzed by optical tech-

niques showed sizes smaller than this. The particle size distribution equation

(427) was concluded to be the best theoreticalrepresentation of AlzO 3 particle

sizes for use in radiation calculations. Various methods of predicting particle

cloud emissivities were presented, and itwas believed that the one-dimensional

beam approximation method developed at Aeronutronic provided the most realis-

tic analysis. This is because this method considers anisotropic, multiple

scattering and uses the most accurate data for A1203 particle emissivity (and

consequently index of refraction). A brief discussion of two-phase flow and

particle cloud effectivetemperature was given; itwas feltequation (472) should

be used for the calculations since itdid not depend upon the assumption of five

sizes of particles, as did equation (470). Discussions of radiant heating cal-

calated by differentmethods were then given and various sets of experimental

data were listedwhich are currently being compared with the one-dimensional

beam method of predicting A1203 particle radiation.
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The ultimate objective of all of these radiation programs is a program
which will combine the best methods mentioned aboveinto one single program
which can be usedwith any rocket exhaust. Since a solid propellant exhaust
would be the most difficult to analyze theoretically, this ideal program would
have theA1203(and possibly Fe203) absorption coefficients tabulated as a
function of wavelengthand temperature just as the current MSFC radiation
programs are being adjusted to have the carbon, CO2, CO, H20, and possibly
HC1absorption coefficients tabulated. In this combined program the graybody
continuum emission of AI20 _ (or Fe203) particles and the near blackbody con-

tinuum emission of carbon particles would be superimposed on the bands of the

gaseous species whose radiation would be computed by the generalized method

with modified Curtis-Godson approximation (with combined collisionand Doppler

broadening). This is the method currently being used in an attempt to predict

radiation heating to the copper and Teflon probes which were immersed in an

S-II ullage rocket exhaust 20 inches from the nozzle exit, as discussed by

Rochelle [6] and Datis and Fowler [595]. In this particular case, radiation

from behind the bow shock in front of the probes will possibly contribute a

sizable amount of the totalheating and because of the higher temperatures

(-_ 5500° R) in this region, absorption coefficients from ionized species might

have tobe investigated.

Most of the radiation processes discussed in this report have generally

been of the equilibrium type, and the temperatures of all of the gaseous species

have been assumed to be equal in the same point in the plume. In the after-

burning mantle of a plume (especially the plume of a hydrocarbon-fueled engine)

where chemiluminescence occurs, it is known that radiation from molecules

such as OH, CH, and C 2 may be of the nonequilibrium type (i. e., radiation is

emitted when these molecules are in an excited state and the corresponding

temperature is higher than the Planck blackbody temperature). Recent studies

at Rocketdyne [266] have determined that in the afterburning mantle an effective
rotational temperature for OH at 3064 A was about 8100 ° R (over 3000 ° R higher

than CO 2 gas temperature measured at the same point) and the effective rotational

temperature for CH at 4312 _ was about 5400 ° R (over 1000 ° R higher than the

CO 2 gas temperature). It is thus felt that these nonequilibrium effects, including

determination of effective vibrational and electronic temperatures, should be

investigated further in order to extend the limits of the current radiationpro-

grams. Since the next generation in liquid propulsion systems will be hydrogen-

fluorine engines, consideration should also be given to nonequilibrium (and

equilibrium) radiation from the exhausts of these types of engines. Discussions

of the rotational fine structure for the HF molecule in the 2.5 to 2.8 # vibrational

band have been given by Simmons and Golden [ 600], Golden [ 601], Kuipers,

Smith, and Nielson [ 602], Deeds et al. [ 603], Benedict et al. [ 604] , Mann [ 605],

and Simmons [606, 607].
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Further investigations involving solid propellant plumes might include
a practical three-dimensional multiple anisotropic scattering analysis for
rocket exhaust radiation. This type of analysis might be applicable for radiant
heating to the base of the S-IB and S-IC stagescaused by the optically thick
exhausts of the 120-inch and Minuteman strap-ons. The problems of search-
light emission from the inside of the combustionchamber possibly should be
investigated further, both for solid propellant motors and for hydrocarbon-fueled
engines. Since the analysis of radiation from A1203particles is only as accu-
rate as the particle size distribution assumed, it is felt that additional work
in particle size analysis is needed, especially with respect to the larger solid
propellant motors and for higher chamber pressures (up to 2000psia). Experimen-
tal measurements to determine the complex part, n2, of the index of refraction
for liquid alumina should beobtained at wavelengthsgreater than 2.3 p, the
limit of current experimental data. Also, values of n2 for Fe203should be
obtained for temperatures up to andbeyondits melting point for a wide range
of wavelengths {visible out to 8 to 10 #). According to Kuby [608] current

optical measurements show that, at X = 1 _ and at room temperature, the value

of n 2 for Fe203 is about 15 times that of A1203 at the A1203 melting point and
over seven orders of magnitude higher than the room temperature value of n 2

for A1203. Hence, if the Fe203 value of n_ is found to increase with tempera-

ture as does the A1203 value, the Fe203 will be found to be a stronger radiation

emitter than AlzO 3.

The analys2s of scaling effects for radiation measurements obtained

from plumes of small motors fired in altitude cells, such as those at Cornell,

should be investigated in detail in order to make better comparison with full

scale test and flight data. Additional measurements in plumes of velocity,

pressure, and temperature such as those performed in the UTC 120 motor

plume by Lai [ 609] and in the Minuteman and larger solid motors by McGee

[ 610] and Johnson et al. [ 611] should be obtained to correlate with theoretical

flow fields which are prerequisites for radiation calculations. Radiation mea-

surements using heat transfer probes which have radiation calorimeters mounted

on the stagnation line or point and which are immersed directly in the rocket

exhaust, such as those described by Rochelle [6] and [589], should continue

to be made for additional correlations of experiment with theory. The analysis

of radiation behind normal and oblique shocks, especially for solid propellant

plumes, should be investigated further, since this could be a major source of

radiative heating to an object inside a plume (especially at low altitudes).

Also, thorough investigations should be made of radiation effects of intersecting

plumes of solid propellant motors (including effects of clustered nozzles, as well

as plumes which intersect some distance downstream). Finally, flow fields
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from 120-inch and Minuteman strap-on solid propellant motors which intersect
H-1 and F-1 liquid propellant plmnes should be analyzed thoroughly so that
radiation from these composite flow fields can be predicted for the S-IB and
S-IC baseregions.

In conclusion, it is felt that this memorandum has provided a detailed
review of the various theories of predicting radiation from liquid and solid
propellant rocket exhausts, describing what is felt to be the most accurate
methodsfor predicting gaseousradiation, radiation from carbon andA1203
particles, and suggestingpossible improvements in these general theories
and methods.

George C. Marshall SpaceFlight Center
National Aeronautical and SpaceAdministration

Huntsville, Alabama, April 26, 1967
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