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ABSTRACT 

The evolution of spacecraft of optimum design and ac- 
ceptable reliability requires knowledge of in-flight dynamic 
behavior during configuration changes. Systems having 
radially telescoping or  folded appendages a re  analyzed. 
Neither system is completely amenable to closed form solu- 
tion, but analog or digital computer techniques can be ap- 
plied to specific cases. Digital techniques compare favor- 
ably with analog methods for this application. Coriolis 
effects a re  significant for rapid deployments. Behavior 
parameters can be related to system geometry in closed 
form but time histories require iteration. Telescoping 
systems a re  basically irreversible and folding systems 
cyclic but both are terminated in practice by latching de- 
vices. Solutions of the two basic systems may be rationally 
extrapolated to evaluate adequately more complex systems. 
Finally, pertinent test experience is summarized. When 
centrifugal appendage deployment is concurrent with despin, 
environmental simulation presents major problems includ- 
ing incorrect ambient gravity. Test methods a re  described 
with particular attention to gravity compensating techniques. 
Test results correlate acceptably with analytical predic- 
tions; however, it is concluded that analysis and testing 
should be complementary rather than mutually exclusive. 
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SIMULATION OF DEPLOYMENT DYNAMICS 
OF SPINNING SPACECRAFT 

b Y  
William E. Lang and George H. Honeycutt 

Goddard Space Flight Center 

INTRODUCTION 

Spin stabilized spacecraft often use the rotational energy of a constrained launch configuration 
to accomplish change to an orbital configuration of increased inertia and reduced spin rate by 
sequential or concurrent centrifugal deployment of various appendages. This paper is concerned 
with evaluation of the dynamic effects of such deployments, particularly the nonlinear transient 
phenomena generated during periods of variable inertia. This evaluation requires mathematical 
simulation of system behavior and may also require laboratory tests of system performance with 
appropriate environmental control including the negation of gravity effects. 

There has been prior recognition of appendage deployments as phenomena requiring both 
analytical and empirical study. Forsythe (References 1 and 2) and Gluck and Gale (References 
3 and 4) have reported both theoretical analysis y d  testing of satellites with deployable appendages. 
Either analysis or  testing may, for an actual spaceraf t  design, involve numerous complicating 
factors which must be considered in the overall evaluation. Such factors might include complex 
mechanical linkages, distributed mass effects, initia1,precession of the system, devices to assist 
o r  retard deployment, detent features to control o r  delay deployment, frictional effects, and the 
need to consider possible failure mode performance. A more general factor, less tangible but of 
obvious practical significance, is that for any specific spacecraft design the primary objective is 
to establish confidence that it wil l  perform acceptably, or  that it will  or may not, with deficiencies 
adequately identified to facilitate design improvements. Also, it is common to supplement even the 
most rigorous and complete analysis with some operational testing-primarily to verify quality 
control of components and assembly rather than to verify analysis. As either rigorous analyses or  
extensive test programs tend to produce much data which, however interesting, are irrelevant to 
the primary objective, along with a few values of critical significance, the purpose of this study is 
to develop methods to yield the critically significant values as quickly as possible. 

. ,  

The concomitant compromise of accuracy has to be considered but usually will be tolerable 
because design practice necessarily includes an 
would normally be considered unacceptable. To 

operational safety factor - a marginal design 
be more smcific, failure modes for a satellite 
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appendage deployment system would generally be either incomplete deployment o r  structural 
failure during deployment or at lockup into deployed position. The precise kinematics of deploy- 
ment a re  often irrelevant to evaluation except insofar as they impose loads and stresses on the 
structure. 

The following presentation will first discuss general principles involving formulations based 
on energy and momentum conservation, applicable to any case of centrifugal deployment of ap- 
pendage from a spinning free body. Specific formulation defining transient behavior will then be 
developed for two basic systems. The first postulates symmetrical point masses receding radially 
from a spinning central body, and the second considers point masses constrained to circular arcs  
coplanar with the spin axis. These basic systems characterize spacecraft having radially tele- 
scoping and hinged appendages, respectively. 

Various methods can be used to solve these basic systems, and the nature of the solutions wil l  
be discussed. Then the applicability of these solutions to the evaluation of more complex real 
systems wil l  be considered. It is contended that the solutions of the basic systems may suffice 
by rational extrapolation to yield adequate evaluation of many more complex systems from the 
viewpoint of critical design criteria. 

The evolution of testing facilities for subjecting spinning spacecraft to appendage deployment 
will be described and pertinent test experience will be reported. Particular attention will be given 
to the techniques which may be used to nullify gravity effects and to the significance of this factor. 
A discussion of testing facilities is included because theoretical analysis and test operations a re  
considered as complementary rather than alternative evaluation techniques. 

GENERAL PRINCIPLES 

It is axiomatic that any spinning spacecraft whether of constant or varying inertia must main- 
tain constant angular momentum. The total energy of the system must also be invariant and may 
or  may not include energy contributed by springs or similar devices to assist deployment or  ex- 
pended in friction or  deployment retarding devices. In many cases the energy involved is pre- 
ponderantly kinetic, and assumption that only kinetic energy is involved greatly simplifies analysis. 

Momentum and kinetic energy conservation yield two basic equations: 

L = 1,8 ,  = 1,8, (Angular momentum) , 

2T = I , e t  = I,e: -t Em:: -t (Kinetic energy) 

The subscripts designate initial and subsequent times; I is the polar moment of inertia of the system, 
and 6 its angular velocity; "m" designates masses of parts of the system: and i and & are  velocity 
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components of these masses, r being radial from the spin axis and x parallel to the spin axis. 
The third (tangential) component of absolute velocity is implicit in the Io6,? and I,e: terms - 
therefore, Equation 2 accounts for all the systems kinetic energy. 

The specific formulation of the two basic equations will depend on the system geometry and 
will include variables 6 ,  r and its first time derivative i. Here, r will  be the expanding radius 
of gyration of the deploying part of the system or  possibly some angular parameter implicitly 
defining the mechanical restraints of the system geometry during deployment. It will include a 
constant (nondeploying) inertia plus mr2  terms for deploying masses. Velocities parallel to the 
spin axis (i.e., k components) will  be expressible without introducing any other variables by 
applying a third basic principle, namely that the linear momentum of the system in any direction 
and specifically along the spin axis, is constant and may be considered zero. (Any initial linear 
velocity of the entire system is irrelevant.) Therefore 

Em; = 0 

It is also true that 
the system about the spin axis (i.e., Appendages a re  usually designed as diametrically opposed 
similar pairs). 

m i  = 0. In most cases this is intuitively obvious because of symmetry of 

While a complete and general analytical solution of the problem thus formulated might be of 
academic interest, the questions of most practical significance are: 

1. What wil l  the spin rate be after deployment? This is obtained by substituting the deployed 
inertia value for I, in Equation 1. 

2. How much energy wil l  be dissipated by or in the structure due to deployment? The total 
amount is equal to 1/2 (Io8: -IF&:), or  1/2 1~6:  (1 - Io/IF) where I, and 8, a re  the final 
inertia and spin rate. The loads resulting from transfer of this energy into friction loss and/ 
or  strain energy depend on the geometry and compliance of the system. The total energy is 
proportional to the square of the initial spin rate. 

3. The deployment involves transfer of momentum from the central body, which slows down, 
into the appendages, which speed up. The resulting tangential accelerations cause a rectro- 
grade "bending back" of the appendages. A s  this effect is not constant during the deployment, 
pertinent questions are: 

(a) For what geometric configuration is the effect maximum? 

(b)When the effect is maximum, what loads a re  imposed on the structure? 

If the appendage mass "mtt  can be considered concentrated at a point at variable radius r 

from the spin axis, the basic Equations 1 and 2 may be written: 

(I + m r t ) i O  = (I + m r z ) B  

3 



where I is the invariant inertia of the central body, and &' will be expressible in terms of 
r ,  i' and constant parameters of the system. 

From basic analysis of the kinematics of a particle with curvilinear motion, the tan- 
gential acceleration a,  of the mass "m" is given by 

a, re' + 2i4 

or  

- -16. 
a, - - 9  mr 

where 26; is the so-called Coriolis acceleration. 

Equations 4 and 5 permit expressing 6 and i in terms of r and the constants. Then 
dd/d, can be determined and also 5 since g =  (di/dr);. Therefore a, can be expressed as 
a function of r ,  and its maximum value and the value of r for which it is maximum can be 
found by solving the equation daddr = 0 for r and substituting the solution for a,. 

Since ma, is the tangential force acting on m and can be determined for any value of a,, 

the loads acting on the structure can be determined. The bending moment at the root 
section of the appendage will be ma,d where 4 is the distance from the root of the appendage 
to the point where its mass is assumed concentrated. It should be noted that if  4 is depend- 
ent on r , rather than constant, the maximum value of the bending moment will  not coincide 
with the maximum value of a,. 

At this point the approach described has defined the angular and radial velocities and 
accelerations plus the tangential acceleration as functions of position (i.e., 8, 8, i', T, and 
a, as functions of r). The behavior of the system is completely defined except for the time 
factor. 

4. The final  question to be answered is "How rapidly does the deployment proceed and how 
long does it take?" Thus, it is necessary to express r as a time function; once this is 
done the preceding derivations of i', i, etc., can also be converted to time functions. 

Since i = dr/dt and is a known function of r then dt/dr = Vi. Separating the variables 
and defining integration over appropriate limits, 

= J r r +  , 
0 
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Therefore, the time to deploy to radius r can be determined by evaluating the integral 

Unfortunately, even for the simple systems to be considered, this integral can be evaluated 
only by graphical integration, iterative, or computer techniques. The application of these 
general principles to two basic simple systems will  now be considered. 

TYPE A SYSTEM 

This system is shown in Figure 1 and consists of a spinning spacecraft with moment of 
inertia I.  It has two diametrically opposed point masses m/2 initially located at radius r,,. At 
time to the masses a re  released and thereafter slide radially out from the spin axis along 
frictionless massless guides. This system 
resembles one with telescoping appendages. 

The kinetic energy is given by 

which is derived from Equation 2. I is the 
moment of inertia of the spacecraft without the 
masses. The equations of motion can be ob- 
tained by using Lagrange's equation (Reference 
5) (with no potential energy): 

Figure 1 -Radially telescoping deployment system 
(type A). 

where qk is each coordinate of the system in turn. Substituting Equation 9 into Equation 10 
yields 

(11) 
.. 

mr - mrBz = o , 

The solution of Equations 11 and 12 for r and 6. will define the motion of the system. These equa- 
tions are  nonlinear and difficult to solve in closed form. However, by reverting to the momentum 
and energy equations much useful information can be obtained relatively easily without need for a 
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complete solution. If a complete solution is desired, analog or digital computer methods must 
be used. 

Methods for partial solutions will now be presented: from energy and momentum conservation, 

(Note that there is no relative motion parallel to the spin axis so no C term.) 

From Equations 13 and 14 the following can be derived: 

Using these values and Equation 6, the tangential acceleration a, can be expressed as: 

Settingda,/dr = 0 yields 

and by substitution the maximum a, i s  

at" = 0.572 16: (Im + m 2  r 2 r Y 2  . 
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From a load analysis viewpoint the maximum retrograde torque developed on the central body 
(i.e., mra,) or the maximum bending moment (denoted as B )  at the inboard end of the guide 
(Le., mat[r - ro)) would be more significant. Since general SOlUtiOnS for d(mra,)/dr = 0 or 
d(ha,(r - ro)  /dr = 0 cannot be conveniently formulated, these maxima could more easily be 
determined by graphically plotting mra, and mat(r - to) for appropriate ranges of values for r . 

It is noteworthy that a,, mra;, and mat(r - ro) values, which may be thought of as transient 
wrenching effects, are all basically proportional to the square of the initial spin rate. 

With phenomena of interest defined as functions of r , it remains to express r (and implicitly 
the other phenomena) as time functions. 

The time t for m to deploy to radius r is given by: 

It is noteworthy that for any particular system, deployment time is inversely proportional to initial 
spin rate. It is not possible to express the integral of Equation 17 in closed form, except for the 
singular cases where either I or m are  zero. However, an approximate evaluation can be made 
by graphical or iterative methods for any specific value of ro and the dimensionless parameter 
I /m r 02. The computer solutions discussed later essentially performed this integration producing 
curves for r ,  i ,  Ti ,  6, 8, etc. 

A graphical integration approach encounters the difficulty that the integrand function 

becomes infinite as r approaches ro . This problem can be circumvented by noting that for 
r < r l  -t 6 where S << ro,  ? ' *  ro 6;'. Therefore the time to deploy from ro to ro + 6 is essen- 
tially (26/ro 62) '12  and this time can be added as a constant to an integration from r = [ro + S] 
to the f inal  value of r .  

If either I or m are zero in Equation 17, closed form integration is possible. For I = 0, or 
I./mr: = 0, one may derive that t = 6 i - I  [ (r /rOl2 - 1]'12 or r = ro  (1 + 6: t2) ' l2 whereas for m = 0, 

or = a, 

7 



For real systems, numerical values of I >> m or  m >> I would be unlikely; however, all real 
systems a re  between these extremes as demonstrated in Figures 9 and 10 and these closed form 
expressions were used to verify generalized analog computer solutions for I /mrt  = 0 and 
I/mr: = 1024 . (Computer operation precluded input of I / m r t  = a). For I >> m or  m >> I the 
relationship between r and t depends only on go and ro. 

The behavior of any Type A system is therefore predictable with relative ease even without 
the computer techniques which will be described later. At this point, it is interesting and instructive 
to examine the nature of solutions for a specific case which are presented in Figures 2 and 3. For 
this example, I = 10.5 slug-ft2, m = 0.25 slugs, ro  = 1 ft., 6;  = 4.82 rad/sec. Figure 2 presents 

t=0.7 sec, 

I I  I l l  I I -  I I 
/ 

1 . 0 2 3 4 5 6 7 8 9 1 0  

r (  ft) 

Figure 2-Type A system 7 ,  a,, 8, B and time versus r. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
TIME secs) 

L I I I I I  I I I l l  I t  I L- 

r ( f t )  

1 .o 1 . 5 2  3 4 5 6  7 8 9 10 

Figure 3-Type A system F, a,, 8 and B versus time. 
;,a+, 6 ,  B (the maximum bending moment at the 

inboard end of the guide, which is ma,[r - ro I)  
and time, t ,  as functions of r . r starts at ro  do', increases to a maximum and then decreases. a,  
starts at zero, increases to a maximum defined by Equation 16, and then decreases. ;decreases 
as the system inertia increases. B rises from zero to a maximum and then decreases. Figure 3 
presents the same parameters as time functions. The various maximum are nonsimultaneous and 
occur at different values of r. 

TYPE B SYSTEM 

This system is shown in Figure 4 and consists of a spinning spacecraft as before, but this time ' 

the masses a re  attached to massless booms of length 4 which in turn a re  attached at radius ro . 
At time to the booms are  released and thereafter swing out from the spin axis. The central body 
has mass M. The angle between the booms and the spin axis is denoted a and is initially zero. Other 
symbols retain their significance in the prior discussion. 
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The kinetic energy of this system is ex- 
pressed by 

2T = m [ 4 2 6 2  + (to + 4 s in  a)2 i 2  + 2&4 s in  a $ +  j L z  1 
+ hik2 + 1 6 ' ~ ~  (18) 

where 2 = - m 4 c Y  sin a/M + m and is the linear 
velocity of M . 

If M is considered to be >> m, (see Ap- 
pendix A) then the kinetic energy of this system 
is simplified: 

+e  

Figure 4-Hinged deployment system (Type B). 

Using Lagrange's Equation 10 with Equation 19: 

(I t ,,')ti'+ b i i B l ' r t c o s  a = o , 

4% - r4cos a B12 = o , 

where 

r = r o  + 8 s in  a 

These equations a re  obviously more difficult than those for the Type A system but can still be 
solved with the help of an analog or digital computer. The analog computer used to solve the TypeA 
system did not have enough multipliers for the Type B system equations so only the digital solution 
was obtairied. 
solutions of considerable value. 

A s  with the Type A system, it is possible to use basic principles to obtain partial 

This system differs from Type A in two basic ways. Both M and m develop velocity components 
parallel to the spin axis; therefore, a rigorous formulation has to include the interchange of linear 
energy and momentum between them, consistent with the net energy and momentum of the whole 
system remaining constant. Also, while system A is an open ended, irreversible phenomenon (the 
sliding weights would recede without theoretical limit with the spin rate decreasing asymptotically 
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to zero), system B is basically periodic. The arms would flap repetitively through a 180" arc, but 
it will suffice to limit the study to the first 90" of travel. 

Here a choice of geometric variable exists: either the radius r to the mass m, or  the angle a. 
Either one implicitly defines the other since r = ro + 4 sin a. 

In terms of 

These equations 
(Equation 3) and 

In terms of 

r , the basic equations can be derived so that 

m t 2  F2 
(I + mr;) 6: = (I t mr2)5/2 t .e2 - (r - r,) 2 [ l -  & (y)] 

are  based on Equations 4 and 5 with due consideration to the fact that zmic = o 
the geometric constraints of the system. 

a, the equivalent equations a re  

If M >> m, as in many actual systems, the constant m/(M + m) might reasonably be neglected, since 
it is essentially zero; but even then the formulation is harder to work with than that for the Type A 
system. The implications of the relative magnitudes of M and m a re  discussed in Appendix A. 

The tangential acceleration a,  

3/2 21d: (I +mr:) 

The expression for a,  in terms of 

can be expressed as 

a is more cumbersome. The maximum value of a, may be found 
by trial substitution of values for r , since da,/dr = 0 is not amenable to solution. For constants 
representative of many real systems, atmax occurs between a = 20" and a = 30: The retrograde 
torque on the central body is mra, and its maximum will not coincide with atmax. However, the 
maximum bending moment across the hinge will coincide with atma and will equal m 4, atmax. 

The wrenching effects are, as with Type A systems, basically proportional to the square of 
initial spin rate. 
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The time t for m to deploy to radius r = r ,  (limited by conditions that r ,  7 ro + -4 and 
a, 7 907 is given by: 

It is noteworthy that, as for the Type A system, deployment time is inversely proportional to initial 
spin rate. Integration between the limits ro and r t  = ro + 4 would give the time to deploy through 
90". 

In terms of a, the time to deploy to angle a, 5 90" is 

Integration between limits of zero and a, = n/2 would give the time to deploy through 90". 

These time integrals cannot be evaluated in closed form. It is necessary to use graphical or  
iterative methods to obtain estimates for specific system parameters. In contrast to the Type A 
system, which can be characterized by a single dimensionless parameter (I/mr;) the Type B 
system requires three such parameters, namely I / m r ;  , .e/,,, and m/M + m and they a re  mutually 
independent. Therefore, though a computer could 
be programmed to solve any particular system, 
a generalized solution, like that obtained for 
the Type A system by plotting families of 
curves for a wide range of I / m r , 2  values, is 
not feasible. 

Figure 5 compares the time history of r 

for a Type A system having the constants used 
in the previous example with the time histories 
of r and u for an equivalent Type B system 
having the same constants plus values of 4 feet 
for 4 and m for M. The B system solutions 
were obtained by graphical and iterative meth- 
ods and later confirmed by a digital computer 
per Figures 12, 13, and 14 (described in a later 

I I 

70 (TYPE A )  

60 
8 
!! 50 - 

o(TYPE B )  

10 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

TIME(sec) 

Figure 5- r versus time compared for Type A and Type B 
systems. 
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section). The B system deployment is slower but minimally so for the period immediately after 
release when a is small. 

If M is assumed zero, the equations revert to the equivalent equations for the A system; and 
a B system withM = 0 would in fact behave as an A system with the Type A history of r .  A B 
system solution was  also obtained and plotted for M = 10 m = 2.5 slugs. The resulting r versus 
time curve (not shown) deviated only slightly from the B system curve shown and moved closer to 
the A system curve with a final deployment time of 0.6135 seconds rather than 0.6232 seconds for 
M = m. The magnitude of M also affects the tangential acceleration T (per Equation 26). T is less 
for infinite M than for finite M, but the difference is very minor for M 1 10m. The relative mass 
factor is discussed further in Appendix A. 

APPLICATION OF ANALOG COMPUTERS 

Type A System 

The solution of Equations 11 and 12 can readily be obtained (Reference 6) using any general 
purpose analog computer providing the computer has enough amplifiers, integrators, multipliers, 
etc. (The analog computer used for all of the problems discussed here was the Electronic Asso- 
ciates Lnc. PACE TR-48.) 

Since Equations 11 and 12 reasonably describe the motion of a number of appendage deployment 
systems, it was decided to nondimensionalize the equations and get a general solution in the form 
of families of curves which could be entered directly for approximate solutions. This was  ac- 
complished by introducing the following non-dimensional variables t : 

r = 8,it (non-dimensional time) 

r 
r0 

R = -  (non-dimensional radius) 

(e  = o) 

t 8 is inherently non-dimensional, but it is desirable to use different symhols for all variables in the generalized problem with the 
* superscripts denoting derivatives with respect to non-dimensional time 7. 

12 



Substituting these relationships into Equations 11 and 12 yields 

5 -  

4.  

A N  

p 3 -  $ >  
3 
m 

1 -  

0- 

Equations 29 and 30 consist of dimensionless variables and one constant term I/mr:. This constant 
term defines the physical parameters of the spacecraft system, i.e., I, m, and ro . Thus by solving 
equations 29 and 30 for a wide range of I/mr: values one can obtain a family of curves for each 

- 

h 

p 

2 - E  
:m 

1 

Figure 6-Analog computer schematic for general k e d  
Type A system. 

64 8ol 7- /" 

t / 

16 

TIME ( sec ) 

Figure 7-Specific analog computer solution for r, i, 
and i (Type A system). 

non-dimensional variable which can be transposed 
into the actual variables for any spacecraft that 
resembles the Type A system. 

Figure 6 shows the programming schematic 
for the solution of Equations 29 and 30. As a 
check on the generalized solution a specific 
problem w a s  also programmed using the same 
physical parameters used in the example of the 
preceding alternative method of solution; 
I = 10.5 slug-ft2, ro = 1 foot, m = 0.25 slugs, 
and 8, = 4.82 rad/sec., Figures 7 and 8 show 
the analog computer solution for this specific 
problem. 

Figures 9 and 10 show the generalized 
analog computer solution for the families of R 
and 6 for values of I/mrt from 0 to 1024. 

5 

4 

T 3  e 
- 2  

1 

0 

Y 

!I ,/' 1 - 2  

'0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
TIME( sec) 

Figure 8-Specific aflplog computer solution for 8, 8, 
and 8 (Type A system). 
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1024 

14 - 
12 - 

8 -  

6 -  

2 -  

' 0  ' 0!8 I 1.6 2.4 ' 312 ' 4lO 4.8 5.6 

7 I l l  1- 

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 
7- 

Figure 9-Generalized analog computer solution for R 
(Type A system). 

1 1 1 1 1  

0.9 - 

0.8 

0.7 

0.6 
* e 0.5 

0.4 

0.3 

0.2 

0.1 

_ _  
'0 0.8 1.6 274 3.2 4.0 4.8 5.6 

7- 

Figure 10-Generalized analog computer solution for 4 
(Type A system). 

Using the generalized curves and working back to obtain the actual variables for the specific 
problem will  give the same results, thus verifying the generalized solution. The results also 
correspond closely with those obtained for the same problem by the methods previously discussed, 
and shown in Figure 3. 

Type B System 

It would be interesting and informative to perform the same kind of analog computer solution 
for the Type B system. However, Equations 20 and 21 a re  more complicated than Equations 11 and 
12 and any attempt to non-dimensionalize them results in the several independent constants, men- 
tioned previously, which would made the number of family curves prohibitively large. In fact, even 
to solve a specific problem requires a number of sine-cosine generators and more multipliers than 
needed for the Type A system equations. The TR-48 computer did not have enough multipliers to 
solve this problem and since the MIMIC. Digital Simulation Program (Reference 7) was available 
no attempt was made to solve the equations with an analog computer. However, with a larger analog 
computer a specific spacecraft deployment problem could be readily handled. 

APPLICATION OF DIGITAL COMPUTERS 

The equations of motion for both Type A and Type B systems can be easily solved using a 
digital computer by employing the MIMIC Digital Simulation Program explained in Reference 7. 
This program was developed at Wright-Patterson Air  Force Base to facilitate the application of 
digital computers to engineering problems. MIMIC is a program whose input language endows a 
digital computer, from the viewpoint of the user, with some significant advantages of an analog 
computer, in that the input relates directly to the physical nature of the problem, while virtually 
eliminating the time and amplitude scaling needed for analog computation. 

The Type A system with the same exemplary parametric values previously used was also 
solved using the MIMIC Program and an IBM 7094 computer. The resulting answers were virtually 
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identical and the plots of the MIMIC results are therefore the same as those shown in Figures 7 and 
8. Figure 11 shows the input required by the MIMIC Program to solve the Type A system per Equa- 
tions 11 and 12. This is the necessary input form with one punched card per line. . 

- 
4.5- 4.5- 
4.0- 4.0- 
3.5-- 3.5 

8 3 . 0 - 8  3.0- 
- 0  

$2.5-k2.5 
2 . 0 - 5  2.0- 
1.5- 1.5- 
1.0- 1.0- 

O L  0- 

.U 

0.5- 0.5- 

Figure 12 shows the input to the MIMIC Program for solution of a Type B system, Equations 
17 and 18. The results of the Type B system solution are shown in Figures 13 and 14. The input 
values were the same as in the previous examples with 4 = 4 feet, and M assumed infinite. A finite 
value of M could be considered Without excessive complication. 

- 
10.0 
7.5 

- ", 5.0 
- 
8 2.5- 

- 5 0 
z - 2 . 5  
:U 

-5 .0 -  
-7 .5 -  

-10.0 

The MIMIC Program also lends itself to the solution of concurrent deployment of dissimilar 
appendages. The equations of motion would be more complicated and the computer input longer 
but the solution would still be much more rapid than by other methods. If some of the appendages 
a re  released sooner than others or  locked in place while others are still deploying, then the problem 
could be solved in steps. This means the initial conditions and equations of motion would change 
at each abrupt change caused by appendages releasing or appendages locking in place. The MIMIC 
Program is a powerful and useful tool in the 
solution of the spinning spacecraft problem. 

SPINNING BODY WITH SLIDING WEIGHTS 

CON(M, I, DT) 

2DR = R*lDTH*lDTH 
1DR = INT(ZDR,O.) 
R = INT(lDR, 1.) 
A = -2 . *M*R/ ( I+M*R*R)  
2DTH = A* lDTH* lDR 
lDTH = INT(PDTH, 4.85) 
TH = INT(lDTH,O.) 

FIN(T,2. ) 
HDR( TIME, R, RDOT, RDDOT, THDOT, THDDOT 
H DR 
OUT(T, R, IDR, 2DR, IDTH, 2DTH) 
END 

Figure 1 1-Digital computer program for Type A system. 

TIME (sec) 

Figure 13-Digital computer solution for a, h, and 
(Type 6 system). 

FOLDED APPENDAGES DEPLOYMENT 

CON(I,L,R,DT) 
PAR (M ) 

B = R+L*SIN(A) 
2DA = B*COS(A)*IDTH * lDTH/L 
IDA = INT(2DA,O.) 
A = INT( lDA,O.) 

lDTH = INT(2DTH,5.) 
TH = INT(lDTH,O.) 

2DTH = -2.* M * IDA * lDTH* B L* COS( A)/(  I+M B*  8 )  

FIN ( T, 2. ) 
HDR( TIME, ALPHA, ADOT, ASDOT, THDOT, TH2DOT 
HDR 
OUT(T,A, lDA,2DA, lDTH,2DTH) 
END 

~~ 

Figure 12-Digital computer progrom for Type 6 system. 
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TIME (sec) 

2.50- 

Figure 14-Digital computer solution for B and e" (Type 
6 system). 
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COMPARATIVE EVALUATION 

At this point it is pertinent to note that the same specific Type A problem was  solved by three 
different and independent methods - the quasi-classical, with an analog computer and with a digital 
computer. All methods yielded essentially identical results. The actual system which led to the 
choice of these specific parameters also behaved approximately as predicted during test deployment 
(see test experience). 

EVALUATION OF ACTUAL SPACECRAFT SYSTEMS 

At this point it is pertinent to consider pragmatically the value of the preceding material. 
Real systems are less simple than those considered though deploying elements a re  often either 
essentially free to recede radially from the spin axis (Type A system) or essentially constrained 
to rotate out about fixed axes (Type B system). From discussion of these simple systems, the 
prospect of attempting a classical solution for a real system is discouraging especially as practical 
objectives often require only approximate answers to specific questions. Although even extremely 
complicated systems could be solved iteratively by sufficiently sophisticated analysis and computer 
facilities, the effort involved might well be inappropriate if  acceptably accurate solutions leading 
to the same practical conclusions could be obtained relatively easily and quickly. 

It is suggested that a sufficiently accurate and probably conservative (i.e., more severe than 
actual) estimate of dynamic behavior can be made by assuming that a real system has a functionally 
equivalent Type A or B system. Such an educated guess is certainly preferable to neglecting a 
possible problem area. It seems reasonable to postulate a rational equivalent model for many 
actual configurations. 

Examples 

1. Appendages which telescope radially outward. These a re  basically Type A systems and 
could be analyzed as such by assuming the mass of sliding elements concentrated at the 
mass center. 

2. Single hinged appendages folded back against final stage booster, each as solar paddle 
arrays on many spacecraft. These a re  basically Type B systems with distributed de- 
ploying element mass. The total mass of each appendage could be c0nsidere.d concentrated 
at its mass center. Then the deployment could be analyzed as a Type B system. 

3. Double hinged appendages such as shown in Figure 15. The validity of a simplified model 
for this kind of configuration is more dubious and controversial and largely depends on the 
relative mass and inertia of the inboard and outboard elements. In general, the inboard 
element is a Type B system while the outer element tends to behave like a Type A system, 
especially if its mass greatly exceeds that of the inner element. A Type A deployment is 
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4. 

5. 

It 

inherently more violent than a Type B 
deployment and if a Type A system, with 
deploying mass equal to the total append- 
age mass, is assumed, conservative es- 
timates of angular deceleration and de- 
ployment time will be obtained (i.e., 
Angular deceleration wi l l  be greater 
and deployment time less than for the 
actual system). The results would give 
some insight as to whether the transient 

ELASTI 
SUPPOR 

dynamic effects during deployment might ( a )  (b) ( C )  

be significantly detrimental to the sys- FOLDED DURING DEPLOYMENT DEPLOYED 

tem. Before actual tests of a system as 
shown in Figure 15, behavior was  pre- 
dicted by assuming aType A system and 
the results obtained for duration of deployment and maximum angular deceleration 
were reasonably compatible with observed behavior during the tests. 

Figure 15-Gravity negation for double hinged boom 
deployment. 

Concurrent deployment of dissimilar appendages such as a set  of inertia booms and a set 
of solar paddles. A system of this type requires consideration of the extent and nature of 
dissimilarity. For minor differences, a possible approach might be to assume that (1) the 
booms deploy from the initial spin rate with the paddles initially fully deployed and then 
(2) the paddles deploy from the initial spin rate with the booms initially fully deployed. 
For each case, develop time histories of accelerations, forces and torques, including the 
effects on the deployed paddles of boom deployment and vice versa. Then, assume (1) and 
(2) to be concurrent and add the two time histories for each parameter. The results would 
be conservative as the hypothetical situation involves greater energy and momentum transfer 
than the actual concurrent deployment. 

Systems having springs to assist deployment and/or damping devices to retard deployment. 
A preliminary step would be to compare the energy dissipated in deployment (i. e., 
E = (1/2) (I, eo2) (1 - Io/IF) with the energy supplied by the spring (+e) or absorbed by the 
dampers (-e) during deployment. If "E" considerably exceeded "e", it would suffice to add 
"e" to "E" (for springs) o r  subtract "ett from "E" (for dampers) and calculate a new equiv- 
alent initial spin rate as [do' f 2e/10 (1 - 10/1,)] 
for the modified initial spin rate as if the springs and/or dampers were not present. 
Forsythe 
deployment. 

. Then the system could be analyzed 

has applied similar logic to the problem of simulating zero gravity appendage 

should be emphasized that these examples a re  given only to illustrate the kind of logic that 
might be usefully applied with appropriate discretion. Any particular system should obviously be 
studied with full and complete knowledge and consideration of all germane factors. Also, this kind 
of "ballpark" analysis is more appropriate in conjunction with experimental testing of system 

17 



t 

behavior. If the system cannot be tested, a more rigorous analysis would be desirable though 
even then the methods discussed here might establish sufficient confidence in operational 
reliability to omit further study - .or show that the design is fundamentally unreliable. 

Testing Experience 
Various spacecraft have been subjected to appendage deployment under conditions intended to 

adequately simulate orbital situations. The most intractable problem is probably the elimination 
of unrealistic external restraints, particularly those imposed by the ambient gravitational field. 
Four methods have been used to overcome this problem. 

The first and certainly the best, when it can be used, is to have the deployment occur under 
'Ifree fuzzrr conditions. Unfortunately it is only feasible for short test durations for obvious reasons. 
The larger and more massive systems characteristically require longer times for deployment to 
occur and should not be subjected to the high accelerations which would necessarily be imposed by 
injection into, and recovery from, extended free f a l l  trajectory. 

The second method, of limited value but having the merit of simplicity, is based on determining 
the kinetic energy loss due to deployment which is (112) (Iod2) (1 - Io l IF)  and assuming that this is 
absorbed by the structure at lockup into deployed configuration and appropriately divided between 
the various structural elements. Then each element is subjected to a shock pulse of appropriate 
energy content. This can often be done by setting up each appendage so that gravity causes its 
deployment with supplementary energy input from springs if necessary. The entire system is not 
subjected to spin, and the kinematics of deployment, including the possibly critically significant 
Coriolis effects are not simulated. However, such subsystem tests can reveal the ability of the 
structure to withstand "lock in" shock loads. 

The third method, described by Forsythe (Reference 2 )  is to %ouerspinrr the system to ( e ,  t 6) 

so that the excess available energy which is (1/2) I, (2 84, + S 2 )  (1 - Io&), equals, and therefore 
cancels, the gravity potential energy required to deploy the appendages. It is easy to apply and 
proper in some cases but for many cases it is entirely incorrect. For example, for a system 
shown in Figure 15 (with spin axis vertical) overspinning would cause excessively violent deploy- 
ment of the outboard elements and possible failure to lock into fully deployed position. Also, for a 
basic Type A system, telescoping radially in a horizontal plane, no overspin would be indicated, 
but the weight of the deploying elements could well cause significant frictional resistance to 
deployment. Therefore this method should be used only with due consideration as to how well it 
actually duplicates orbital conditions. At best, it imposes equivalent "lock in" shock loads; the 
dynamics of deployment will always differ from those in orbit to some extent. 

The fourth method is to actually provide a '%ounterfwcerr to each deploying element to cancel 
its weight. Elastic elements a re  commonly used, and they may either equate elastic energy with 
appropriate potential energy with a substantial force variation during deployment or, in more 
sophisticated applications, have a low enough spring rate (normally by virtue of length) that the 
force during deployment is relatively constant and essentially vertical, thereby approximating 
cancellation of gravity during deployment. 
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Figure 15 illustrates a test arrangement used to achieve compensation of gravity to less than 
a net variation from -0.03 g to +0.03 g (by actual measurement) during deployment of double 
hinged appendages. The elastic elements used were  cis-polyisoprene (natural gum rubber of high 
purity, as used in surgical tubing). This material was  selected as having superior elastic proper- 
ties and was used at elongations for minimum percentage deviation from tensions equal to the 
weights of the suspended elements. The radii to the upper attachment of the suspension elements 
were determined for minimum departure from verticality of their attachment to the appendage 
elements, after allowing for their spin-induced centrifugal deflection. The lower attachments 
were located at the mass center of each appendage element. Figure 15 shows a rigid extension 
of the spacecraft (to a height about 35 ft. above it) to drive the suspension beam - in a more recent 
application there was  no physical connection except the elastic elements and the suspension beam 
remained oriented with the spacecraft within acceptable deviations. 

It is believed that this test achieved a close approximation of zero gravity deployment. The 
total counterforce, as monitored by a load cell above the suspension beam, deviated only 6 percenr 
during deployment. Unrealistic horizontal components of the suspension force did not, from high 
speed movie coverage, appear to exceed 7 percent of the tension in the element. 

The test results tended to confirm predictions based on the foregoing analysis. A Type A 
system w a s  assumed as the majority of the appendage mass was in the outer elements. The movies 
showed that the outer element mass center did, in fact, tend to recede radially in a horizontal plane 
from the spin axis. The duration of the deployment transient was approximately as predicted. The 
maximum angular deceleration from monitoring accelerometers installed tangentially on the central 
body was  also approximately as predicted. The appendages (fiberglass booms) showed extreme 
deflections and hinge failure occurred during an overspeed (failure mode) test. The failure occurred 
during deployment and before4atch in and w a s  observably due to the Coriolis wrenching effect. Ac- 
celerometers were installed on the appendage elements to monitor transient accelerations; but the 
results were difficult to interpret because of the failure and because of the transient shocks induced 
by pyrotechnic boom release devices plus other high frequency indications of indeterminate origin. 

To summarize the test results (including some not cited) tend to confirm the validity and utility 
of the preceding analysis. The accuracy of either analysis or  testing cannot be precisely evaluated 
because the analysis applies to simplified and idealized systems and because the test systems, 
besides differing from the idealized models, were subject to imperfect environmental simulation. 
Since the analysis is based on incontrovertible basic principles, the computational e r rors  would 
be minor, and the environmental simulation e r ror  was  demonstrably minor, discrepancies between 
predictions and test results could be considered largely due to idealizing of the actual systems. 
Since these were no major discrepancies, the idealizing assumptions were apparently essentially 
valid. 

CONCLU SlONS 

The most significant conclusion is that the deployment dynamics of spinning spacecraft can be 
adequately simulated either analytically o r  by testing, but for maximum confidence the approaches 
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should be complementary. Also, the solutions of simple systems, as described, can provide 
valuable insight into the dynamic behavior of more complex systems. 

Both analysis or testing are subject to some degree of inaccuracy, the analysis being subject 
to simplifying assumptions and imprecise parametric data, and testing to imperfect simulation. 
Therefore either analysis o r  testing should demonstrate adequacy for conditions moderately more 
severe than those anticipated in flight. If this is done then the inaccuracies a re  tolerable, provided 
they a re  recognized. 

Both analog and digital computers a re  valuable tools for analysis and the relative ease with 
which useful results may be deduced without recourse to computer facilities suggests that this 
approach should not be neglected even if computer facilities are available. It affords a useful 
concept of the nature of the dynamic phenomena involved. 

ACKNOWLEDGMENT 

The authors wish to thank Miss  Rebecca Michaels for assistance in the analytical and computa- 
tion phases of this study. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, December 30, 1%6. 
124-08-05-1 1-5 1 

REFERENCES 

1. Forsythe, R. W., "Analysis of Dissimilar Satellite Appendages During Erection", NASA Tech- 
nical Memorandum X-938, January 1964. 

2. Forsythe, R. W., "A Method for Simulating Zero Gravity Erection of Satellite Appendages", 
NASA Technical Memorandum X-937, January 1964. 

3. Gale, E. H. and Gluck, R., "Final Report, Pioneer Spacecraft Appendage Deployment Verifica- 
tion Test", Thomas Ram0 Woolridge Systems Report PP-IQ-02, April 1965. 

4. Gluck, R. And Gale, E. H., "Motion of a Spinning Satellite During Deployment of Asymmetrical 
Appendages", Preprint 66-100, AIAA 3rd Aerospace Sciences Meeting, January 1966. 

5. McCuskey, S. W., ''An Introduction to Advanced Dynamics", Reading, Mass.; Addison-Wesley, 
1959, pp. 55-58. 

6. "Handbook of Analog Computation", Electronic Associates, Inc., Publication No. 00-800-0001- 1, 
October 1965. 

7. Petersen, H. E. and Sansom, F. J., "MIMIC - A Digital Simulator Program", Directorate of 
Computation, Systems Engineering Group, Wright Patterson A i r  Force Base, Internal Memo- 
randum 65-12, May 1965. 

20 



Appendix A 

Influence of Central Body to  
Appendage Mass Ratio on Deployment Dynamics 

For tests involving components of motion of the deploying appendages parallel to the spin axis, 
there has been consideration of whether the support and restraint of the central body of the space- 
craft, which effectively couples it to the comparatively infinite mass of the earth, compromises 
environmental simulation appreciably since in orbit (or in free fall tests) the central body mass is 
limited and the entire system is a free body. This general topic is discussed in this appendix and 
it is concluded that this factor can reasonably be ignored for the usual case where the central body 
mass in orbit is considerably greater than the total mass of deploying appendages. 

Referring to the discussion of Type B systems, the orbital mass ratio is M/m. For Type A 
systems this ratio is immaterial, and, as previously mentioned, i f  M = M/m = 0, a Type B system 
behaves like a Type A system with faster deployment and higher values of tangential acceleration 
a,. From Equation 26 the highest possible a, with M/m = 0 exceeds the lowest possible a, with 
M / m  = a~ by a factor of [ t 2 / d 2  - (r * -  ro)2]1'2 . For an arbitrarily chosen partially deployed position 
where r - ro = X/2 this factor would have a numerical value of 1.156. However, a similar compar- 
ison between M/m = 1 and M/m = gives a numerical value of 1.069 and between M/m = 10 and 
M/m = aJ gives a numerical value of 1.011. The effect of mass ratio on deployment time is simi- 
larly minor for M/m > 1 (from Equation 27). Deployment is slower for a greater value of M/m. 

Therefore the support and restraint of the central body actually results in an undertest so far 
as the transient effects during deployment a re  concerned but to a minor degree for usual mass 
ratios (e.g., only 1.1 percent for M/m = 10). 

The other factor to be evaluated is the shock effect at lockup. From basic principles it is 
known that this effect has a constant energy content of (1/2) Io&: (1 - Io&), regardless of mass 
ratio, and since. it is a collision between elements which terminate deployment (though energy is 
dissipated in compliance of the entire system) the question is essentially whether the "damage 
effect" of collision between two bodies depends only on the impact energy content or  whether it 
is also influenced by the relative masses of the bodies. Their absolute and relative compliance, 
resilience and surface hardness a re  also pertinent factors but an adequate review of all these 
factors is a complex general problem beyond the scope of this paper. However it should be 
mentioned that precise orientation of appendages after deployment is often a design objective. 

If a collision between two thdies has to dissipate a fixed amount of energy their relative 
velocity at impact is maximum when their masses a re  equal and minimum when one mass is 
infinite. The maximum relative velocity exceeds the minimum by a factor of fi. Between these 
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two extremes, the relative velocity for a mass ratio of 10 is much closer to that for an infinite 
mass r@tio than to that for a mass ratio of unity. However, the momentum change (i.e., impulse) 
to eaGh body is greater for high mass ratio and lower relative velocity. 

It &llows that, for the appendage lock-in situation, an infinite (coupled to earth) mass ratio will 
producd a shock pulse of longer duration, but lower onset rate, than a true orbital mass ratio. The 
former sees more momentum change but at a slower rate. Both develop the same maximum forces 
and therefore the same stresses if elastic lima are not exceeded. These facts, though of academic 
interest, hardly warrant any definitive conclusion, except that the "test versus orbit" comparison 
of thia dactor for most systems would show it as probably insignificant as neither onset rate nor 
i-e .would differ appreciably. 

/ 

Therefore, restraint of the central body during test can usually be ignored for evaluation 
purposes. Also, the central body mass could usually be considered infinite for analytical 
eduatdbn. 
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