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EFFECT OF SUBCOOLING AND RADIATION ON FILM-BOILING 

HEAT TRANSFER FROM A FLAT PLATE 

by Thomas D. Hamil l  and Kenneth J. Baumeister 

Lewis Research Center 

SUMMARY 

A theoretical analysis of film boiling from a horizontal plate with subcooling and radi- 
The analysis is based on the postulate that the rate of entropy produc- 
The general solution enables the overall heat-transfer coefficient 

ation is presented. 
tion is maximized. 
htot to be calculated when the following heat-transfer coefficients and subcooling group 
are specified: (1) saturated film-boiling coefficient, hfb; (2) radiation coefficient, hrad; 
(3) turbulent free-convection coefficient for subcooled liquid, htcl; (4) subcooling param- 
eter, 8 = (Ts - Tb)/(Tw - Ts), where Ts, Tb, and Tw are the saturation temperature 
of the liquid, the temperature of the bulk liquid, and the wall temperature, respectively. 
The general solution consists of a unique relation between (htot - hrad)/hfb and 

(brad - htcle)/h,b' 
A simple formula, which is accurate when I (hrad - $c18)/hfbl < 1/2, was derived 

and is given by 

htot = hfb + 0. 88hrad + 0. 12htc18 

where the total heat flux qtot into the system is given by 

qtot = htot(Tw - Ts) 

Theory predicts that film boiling is impossible for values of the group 
(hrad - htc18)Jlfb < -1.27, that is, for strong subcooling. 

INTRODUCTION 

Radiation and subcooling are fundamental variables in film-boiling heat transfer that 



are particularly important in the quenching of metals. In quenching, radiation is a sig- 
nificant heat-transfer mechanism because the metal is initially at a high temperature. 
The temperature of the quenching bath is also important, because the properties of a 
metal resulting from an ice water quench can be markedly different from those obtained 
with a saturated quench. Subcooling, therefore, is of practical significance in quenching 
techniques. The purpose of this report is to extend the analysis of reference 1, in which 
film boiling of saturated liquids was considered with radiation neglected. The present 
analysis, which employs some of the concepts and results of reference 1, takes into 
account both radiation and bulk subcooling. It is hoped that the results will be of interest 
from a fundamental and a practical viewpoint. 

sides, as shown in figure 1, is considered. 
which has been heated to a red glow. 
is continually heated, keeping the temperature very high. 
is vaporized quickly, thus establishing an insulating layer of steam between the plate 
and the liquid. 

A concrete example is useful to clarify the general problem. A box with insulated 
The bottom of the box is made of steel plate 

Cold water is then poured into the box. The plate 
The liquid that hits the plate 

This condition is referred to as film boiling. The liquid that is evaporated 

Pressure- 

Coolant 

Insulation 

& 4 LHeated plate 

c 

D-8862 

Figure 1. - Film boiling of water with bulk subcooling. 

is assumed to be simultaneously con- 
densed by a reflux condenser inserted 
into the vapor space above the liquid. 
This condenser cools the condensate 
below the saturation temperature before 
the condensate falls back into the liquid 
pool. 

The coolant temperature and flow 
rate  in the condenser determine the 
various degrees of subcooling with re- 
spect to the saturation temperature that 
can be achieved. As a particular ex- 
ample, the wall may be at 1000° F, the 
interface at 212' F, and the bulk of the 
liquid at 50' F. The important point is 
that there are three temperatures that 
characterize the system: 

(1) Wall temperature, Tw 

(2) Saturation temperature, Ts 

(3) Bulk temperature of the liquid, 

Tb 
Heat is transferred across the vapor 
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layer to the interface by conduction, convection, and radiation. Some of the heat that 
reaches the interface evaporates the liquid. The rest escapes into the bulk liquid by 
virtue of the temperature difference between the interface and the bulk liquid. Because 
of the agitation induced by the steam bubbles, heat transfer from the liquid-vapor inter- 
face is by turbulent free convection. 

boiling heat transfer: 
In this report are considered two common problems that arise in discussions of film- 

(1) The effects of subcooling on the results 
(2) When radiation is important 

From a design viewpoint, a method or formula is needed for computing the overall heat- 
transfer coefficient in thoSe cases where both subcooling and radiation are present. This 
analysis indicates how the three heat- transf er coefficients (the saturated film-boiling 
coefficient, the radiation coefficient, and the liquid free-convection coefficient) are to be 
combined to yield the overall heat-transfer coefficient. The analysis is based on the 
postulate that the liquid-vapor interface attains an average configuration that maximizes 

the rate of entropy production of the system 
and surroundings. 

BASIC MODEL ASSUMPTIONS AND 

GOVERNING EQUATIONS 

(a) Top view. Symmetrical distribution of cells on surface. 

t Subcooled liquid, Tb 

Hot wall, Tw 1 

(b) Side view. Direction of vapor flow into domes; axial 
coordinate, z; radial coordinate, r; cell radius, Rg; dome 
radius, R1; gap thickness, 6. 

Figure 2. - Idealized model of f i lm boil ing on horizontal surface. 

An idealized model of film boiling is 
depicted in figure 2. A vapor film covers 
the entire plate with vapor domes spaced 
symmetrically. When a liquid is supported 
by a layer of vapor, as in film boiling, the 
liquid-vapor interface is inherently unstable 
in a gravitational field. At certain loca- 
tions on the liquid-vapor interface, vapor 
will  break through and escape, under the 
influence of gravity, into the bulk liquid. 
Photographs of film boiling show that these 
escape points are dome-shaped cavities 
arranged in a cell-type pattern (see fig. 2). 

The major portion of the heat transfer 
to the liquid (see fig. 2) occurs across the 
thin portions of the vapor film. The vapor 
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domes are so thick that essentially no heat is conducted into them. Physically, their 
function is to act as hydrodynamic sinks in which the generated vapor is collected. The 
assumed symmetrical distribution of these sinks implies that the velocity field in the 
thin film is radially symmetric. The proposed model is based on the assumption that 
there is some time-averaged or ensemble-averaged configuration of the system where all 
velocity, pressure, and temperature fields are at steady state, and that this statistically 
idealized configuration represents the average behavior of the actual system. 

however, no plane surface can be mapped completely by nonoverlapping circles. A 
hexagonal boundary would be more accurate but this pattern leads to intractable mathe- 
matics. Mapping by circles does not account for a large number of semitriangular 
patches. The heat transfer to these curved triangular patches is assessed in an 
a posteriori manner as used in reference 1. 
cient which accounts for these patches is of the order of 10 percent. 

energy equation& for flow and heat transport in the thin annular vapor film of a single 
cell. 
is at  a colder temperature Tb' 
the saturation temperature. The wall temperature Tw is held constant. Radiation is 
assumed to occur across  the vapor gap with negligible absorption within the vapor, and 
with no net radiative heat transfer within the liquid phase. All radiation is either absorbed 
or reflected at the liquid-vapor surface. The radiation rate depends on a "view factor" 
determined by the geometric shape of the liquid-vapor interface. An emitted photon can 
hit either the flat portion of the interface o r  the dome region. Reflection from these two 
surfaces would be different. A rigorous treatment of this problem would obviously be 
complex, and for simplicity, the view factor is assumed to be 1. This assumption com- 
prehends the first-order effects of radiation. 

Computation of the rate of heat transfer into the system for fixed wall, bulk, and 
saturation temperatures requires a solution of the momentum, continuity, and energy 
equations for all the boundary conditions. 
assumptions: 

erences 1 to 3. 

The outer boundary of each unit cell in figure 2 is a circle of radius Ro; in reality, 

The correction to the heat-transfer coeffi- 

The heat-transfer coefficient can be obtained by solving the momentum and thermal 

The liquid-vapor interface is at the saturation temperature Ts, and the bulk liquid 
The bulk liquid is, therefore, subcooled with respect to 

These equations are simplified by the following 

(1) The inertia terms in the momentum equzctions are negligible, as justified in ref- 

(2) The vapor is incompressible. 
(3) Convective effects in the vapor boundary layer are negligible. 

In addition, viscous dissipation is neglected, the flow field is assumed to be radially 
symmetric, and the physical properties a r e  regarded as constant, even though they are 
evaluated at the film temperature Tf = (Tw + Ts)/2. With the previous assumptions, the 
governing differential equations in cylindrical coordinates are as follows: 
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Momentum: 

Continuity: 

Energy : 

i a  aw 
r ar az 
-- (ru) +-  = 0 

dz2 

Entropy production: 

= maximum 
universe 

(3) 

(4) 

Equation (5) is the maximization postulate to be discussed more fully in the 
DISCUSSION OF MAXIMUM ENTROPY RATE POSTULATE section. 
"universe" is used in a formal sense. In this report, the word universe means system 
and surroundings. 
exist, as well as any bubbles rising through the liquid. Thus, both the vapor layer and 
the liquid thermal boundary layer are part of the system. The surroundings consist of 
a heat source maintained at Tw and a heat sink (the bulk of the liquid as well as a 
condenser) maintained at Tb. The energy of the universe (system and surroundings) is 
constant, and thus, it  can be considered an isolated system. 
the entropy principle applies only to isolated systems; that is, the entropy of an isolated 
system attains a maximum value in the final equilibrium state. 

The subscript 

The system is composed of those regions where temperature gradients 

In classical thermodynamics, 

In the mean statistical steady state, the total entropy of the vapor layer and the liquid 
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-.- - 
thermal boundary layer is constant. That is, all the entropy generated in the vapor and 
liquid boundary layers per unit time is convected into the heat sink. Thus, in the steady 
state, only the reservoirs (source and sink) experience a net change in entropy with time. 
The entropy production of the universe is then given by 

and since Tb and Tw are fixed temperatures, the entropy production is maximized if 
the rate of heat transfer Qtot is maximized. 
implies that the rate of heat transfer will be a maximum subject to the following boundary 
conditions (see fig. 2, p. 3): 

Therefore, the entropy production postulate 

z = O  u = O  w = O  T = T w  (7) 

where w6 is the evaporation velocity at the interface. 

balance over the annular area: 
The momentum and energy equations are coupled at the liquid interface by a heat 

The term on the left side is the rate of release of latent heat (w6 is a negative quantity). 
The first term on the right is the rate of heat transport by conduction through the vapor 
film to the interface. The second te rm on the right is the heat escaping from the inter- 
face into the bulk liquid because of subcooling. The symbol htcl is the turbulent free- 
convection coefficient for heat transport within the liquid. The third term on the right 
represents the heat reaching the interface by radiation. The symbol hrad is the radia- 
tion coefficient, a function of the plate and liquid emissivities and the wall and saturation 
temperatures. A s  stated previously, hrad is assumed to be independent of the shape of 
the liquid- vapor interface. 
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Additional boundary conditions apply to the pressure field. A static-force balance on 
the annular liquid region requires that the average pressure on the flat portion of the inter- 
face be equal to the saturation pressure P,: 

This requirement must be met in order for the vapor to support the liquid. One further 
condition on the pressure field is that 

This equation, which is derived in reference 4, relates the pressure at the entrance to 
the dome P(R1, 6)  to the saturation pressure and to the difference in head within the dome 
corrected for surface tension effects caused by curvature. The pressure at  the radial 
entrance must always be less than the system pressure in order for the dome to function 
as a hydrodynamic sink. A minimum dome size can be computed from equation (13) by 
letting P(R1,6) = Ps. This requires that 

If R1 was  less  than this value, the pressure inside the dome would be greater than the 
pressure within the annular film and flow into the dome could not occur. 

GENERAL METHOD OF SOLUTION 

Momentum Equations 

The momentum equations that apply in this analysis are solved in reference 1. The 
essential result is that in order to support the liquid phase at a height 6 above the plate, 
the evaporation velocity w6 required is given by 
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1 2 3  
2 

W6 = - - p  6 

where p2, a function of geometry, gravity, and physical properties, is 

p 2 =  - g C  

3 4  

2 f 
I I 

and f ,  the ratio of the dome radius to the cell radius, is 

f = -  R1 

RO 

Equation (15) is a functional relation between the evaporation velocity and the thick- 

For example, a relation identical 
ness of the gap that follows solely f rom momentum considerations. No matter how the 
vapor is generated, equation (15) must always apply. 
in form to equation (15) is derived by Whitney (ref. 5) and verified experimentally by 
Pearson and Bradfield (ref. 6) in their study of the gas-levitated disk. In the gas- 
levitated disk experiment, a s t ream of air is blown through a hole in a small solid disk 
at a rate high enough so that the disk floats on a cushion of air. The relation between the 
velocity of air flow and the distance the disk equilibrates above the plate is given by an 
equation identical in form to equation (15). While in the levitated disk problem the vapor 
flow is generated mechanically from a source of compressed air, in film boiling the 
source of vapor is evaporation at the interface due to the heat transfer across  the gap. 

Energy Equations 

To keep the mathematics simple, the effect of heat capacity C (or equivalently of 
convective effects in the vapor layer) has been ignored for the present. This simplifies 
the solution of the energy equation to a linear drop of temperature across the gap. This 
defect is ultimately corrected by attributing the effect of C 
boiling coefficient derived in reference 1. Thus, the temperature profile in the annular 
vapor layer is given by 

P 

to the saturated film- 
P 
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(18) 
Z T(z) = Tw - (T, - Ts) ; 

Substituting equations (18) and (15) into the interface energy balance (eq. (11)) yields 

Equation (19) is a quartic equation for the gap thickness in terms of the system param- 
eters. 

It is emphasized that equation (19) is a heat balance over the annular area only. 
total rate of heat transfer from the plate per unit cell is given by 

The 

In equation (20), the heat flux at the wall is being considered. 
flux by conduction under the dome qdome is shown to be negligible in comparison to con- 
duction under the annulus if the gap thickness is much smaller than the dome radius. 
Thus, if conduction under the dome is negligible, the total heat-transfer coefficient per 
unit cell is 

In appendix B, the heat 

2 Qtot = 5 (1 - f ) +brad 
6 htot = 

Optimization Procedure 

The maximization postulate requires that the amount of heat transferred compatible 
with the boundary conditions be a maximum; that is, that R1 and Ro adjust themselves 
in such a manner that htot is maximized: 

(2) = o  

R1 
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From a mathematical viewpoint, the problem is now completely formulated. 
ent variables (unknowns) at this point are 
independent equations (eqs. (16), (19), and (21) to (23)). The maximization postulate, in 
essence, specifies what values of Ro and R will exist physically. Without the postu- 
late, empirical equations (or some other theory, such as hydrodynamic stability consid- 
erations) would have to be used for Ro and R1. From this point on, the solution of the 
equations is merely a matter of algebraic manipulation and numerical techniques. Details 
of the algebraic manipulations and rationale of the numerical procedure are shown in 
appendix C. 

The depend- 
2 , 6, htot, Ro, and R1, and there are five 

1 

Dimensionless Groups and Parametric Solut ion 

The parameters of the problem a r e  combined into dimensionless groups. A dimen- 
sionless gap thickness q is defined as 

6 
q = -  

2 

where 

The characteristic length 2 emerges naturally from the analysis presented in appendix C. 
The optimal dome and cell radii are multiples of 2. 

Radiation and turbulent free-convection Nusselt numbers a r e  defined, respectively, 

by 

- htc12 
Ntcl - 7 
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where k is the thermal conductivity of the vapor in all Nusselt numbers in this report. 
The film-boiling Nusselt number Nfb in the absence of subcooling and radiation was 
derived from the application of the maximization postulate in reference 1 and is given by 

where Ra is the Rayleigh number and A *  a modified latent heat; both are defined 
further in appendix A. In addition, it is convenient to define the subcooling parameter as 

e =  Ts - Tb 

Tw - Ts 

The symbol 8 is the ratio of liquid subcooling to vapor superheat. 
lem involving subcooling and radiation, these three Nusselt numbers and the subcooling 
group can be computed a priori. From a design viewpoint, a method for relating these 
four groups to an overall Nusselt number for the system is required. 
number Ntot is defined by 

For a particular prob- 

The overall Nusselt 

- htotz 
Ntot - 7 

where 

qtot = htot(Tw - Ts) 

As shown in appendix C, the general solution was  reduced to two parametric equations 
(see eqs. (C35) and (C38)) of the form 

Ntot - Nrad = gP(f) 

Nf b 

= m -~ Nrad - Ntcle 

Nf b 
(33) 
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where 9 and I& are complicated functions of f. If values of f are substituted into the 
right sides of equations (32) and (33), a numerical correspondence between the two left 
sides of the equations is generated. In other words, the group (Ntot - Nrad)/$ifb is a 
unique function of the group (Nrad - N tcl e)/Nfi which can be calculated from equations 
existing in the literature. Thus an overall Nusselt number Ntot can be obtained. 

Nrad - Ntcle 

Nf b 
-- 

RESULTS 

Ntot - Nrad 

Nf b 

ical function is the general solution 
to the film-boiling problem with radi- 

Characteristic 

<1 
1 appendix C, p. 31) contains selected 

tabular values, including values of 

Positive 
Zero 

Radiation 
No subcooling or radiation 

(exactly balanced) 

(34) 

Negative 
<-1.27 

- N  e Ntot - Nrad - _ -  Nrad tcl 

Subcooling >1 f ,  corresponding to the two groups. 
No film boiling possible Undefined 

Nf b Nf b 

or 

Ntot = Ntcle (3 5) 
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Figure 3. - General graphical solution of effect of subcooling and radiation on 
f i lm boiling. 

and the total heat flux is then 

o r  simply 

What this means, then, is that the optimization procedure allows two solutions: one 
stable (film boiling), and one metastable (pure free convection). 

of the film-boiling line with the free-convection line places a theoretical bound on the 
However, the analysis makes an even more remarkable prediction. The intersection 
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possibility of film boiling in the presence of subcooling. That is, theory predicts that 
f i lm boiling is impossible whenever the value of the group (Nrad - Ntc18)/Nfb is less 
than - 1.27 (i. e. , strong subcooling). For values of this group below - 1.27, something 
must happen to film boiling; either it reverts to pure convection or to nucleate boiling. 
No physically meaningful value of f can be found for values of the group below -1.27. 
However, it is apparent from examining figure 3 that the film-boiling line becomes tan- 
gent to the free-convection solution at -1.27. Therefore, for values of (brad - htcle)/hfb 
below this critical value, the free-convection line is the correct and only solution. 

of 0.793, the gap thickness becomes zero and the model no longer applies. As  
(brad - htc18)/hfb approaches infinity (in the vicinity of f = 0.793), the group 
(htot - hrad)/hfb approaches zero. 
radiation, which is physically correct. Why the limit of infinite radiation should corre- 
spond to an f value of 0. 793 is not known. 

The optimum dome size R which is given by equation (C6) in appendix C, is inde- 
pendent of subcboling and radiation: 

At extremely high positive values of (brad - htc18)/hfb corresponding to an f value 

This implies that htot = hrad in the limit of infinite 

* 
1' 

Theory predicts, therefore, an upper limit to the spacing of the vapor domes when 
f = 0.4 which is given by 

(38) 

(39) 

For purposes of comparison, the most dangerous wavelength computed from hydrodynamic 
stability theory is given by 10.852 (ref. 4). The two numbers are of the same order of 
magnitude. 
closely spaced with increased radiation. The average s ize  of the vapor domes, however, 
should remain constant under all conditions. 

A simple formula for the overall heat-transfer coefficient was obtained by drawing a 
tangent to the graphical function at (N rad 

The vapor domes become more widely spaced with subcooling and more 

- NtclB)/Nfb equal to zero. The formula is 

(Ts - Tb) 
htot = hfb + 0. 88hrad + 0. 12htcl 

(Tw - Ts) 
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This linear approximation ought to be valid for many practical conditions encountered. 
It is quite accurate in the range I (N,,~ - N~~ e)/NfbI < 0.5; that is, if  the film-boiling 
coefficient is twice the value of I hrad - htclf3\, equation (40) is accurate. A numerical 
example of the film boiling of nitrogen is presented in appendix D to illustrate the theory. 

forced-convection film boiling from the outside of pipes. 
(liquid) flow with no subcooling but with radiation, Bromley recommends the equation 

The simplified formula (eq. (40)) is similar to one derived by Bromley (ref. 7) for 
For fully developed turbulent 

7 = h  + - h  
htOt  fb 8 rad 

where hfi is the saturated film-boiling coefficient appropriate to the pipe geometry and 
flow conditions in the absence of radiation. 

tion (40) may be a general relation for many geometries and flow conditions, if  the cor- 
r ec t individual c Oeff ic ients are used. 

The coefficients 0.88 and 7/8 are so close as to lead to the speculation that equa- 

DISCUSSION OF MAXIMUM ENTROPY RATE POSTULATE 

The present analysis and its predecessor (ref. 1) rely heavily on the postulate that 
the system will attain a state in which the rate of entropy production of the universe is a 
maximum. The universe (system and surroundings) is always an isolated system, and 
it is to isolated systems that the postulate is limited in analogy with classical thermo- 
dynamics. Since the word "entropy" has been used, it is natural to look to equilibrium 
thermodynamics for clarification. 

The central problem of classical thermodynamics is to predict the equilibrium state 
of a system resulting from the removal of a barrier.  For example, a rigid insulated 
cylinder separated into two parts by a barrier is considered. On one side is a gas a t  
high pressure, on the other a gas at low pressure. 
final state will result for the overall system when the barrier is removed. 

The problem is to determine what 

Callen (ref. 8, p. 24), in discussing this problem, states: 

. . . the tentative postulation of the simplest formal solution of a problem 
is a conventional and frequently successful mode of procedure in theoretical 
physics. What then is the simplest criterion that can reasonably be imagined 
for the determination of the final equilibrium state? From our experience 
with many physical theories we  might expect that the most economical form 
of the equilibrium criterion is in terms of an extremum principle. 
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The extremum principle of thermodynamics is that the entropy of a fixed-energy system 
is a maximum in &e final equilibrium state. 

In other words, the simplest formal solution to problems involving uncertainty o r  
randomness is to maximize o r  minimize some quantity; the idea is that the extremum 
principle generates the required number of equations to make the problem determinate. 
Although there is no obvious connection between equilibrium and nonequilibrium processes, 
both would appear to be amenable to the same type of solution. Something is known about 
the problem; for example, in the f i r s t  problem, perhaps the energy is constant, or  in the 
film-boiling problem, perhaps the boundary temperatures are fixed. But other boundary 
conditions cannot be known in sufficient detail to make the problem determinate. It is 
logical to hope that a mathematical procedure that worked for the first problem will also 
work for the second. 

study of turbulence. First, Malkus considered turbulent natural convection from a hori- 
zontal surface (ref. 9). He postulated that the turbulent fluid motions would attain an 
extreme state in which the maximum amount of heat compatible with the boundary condi- 
tions would be transferred. By using this postulate, he deduced the relation of the Nusselt 
number against the Rayleigh number to the one-third power, an expression for the tem- 
perature profile, and an estimate of the mean-square velocity distribution - a significant 
achievement considering the a priori approach. Zuber (ref. 11) subsequently adapted the 
results of Malkus to the problem of nucleate boiling. The present analysis and reference 1 
apparently complete a series of papers on heat-transfer processes from horizontal su r -  
faces in which the heat-transfer rate is a maximum (see table 11). 

Malkus (ref. 10) then used the same postulate (maximum rate of entropy production) 
to determine the turbulent-velocity profile in a flat channel. He deduced profiles similar 
to the defect laws of von Karman. Recently, Nihoul (ref. 12) applied the Malkus theory 
to magnetohydrodynamic turbulent channel flow. 

degree of complicacy of the mathematical techniques. Malkus considers turbulent flow. 
Associated with this condition are stability arguments and complicated mathematics. In 
film boiling the vapor flow is laminar, so the mathematics are simple. In fact, the tur- 
bulence in film boiling exists only at the liquid-vapor interface and not in the vapor flow 
itself. Yet, the Malkus principle still seems to be correct: maximize the rate of entropy 
production to make the problem determinate. 

Just  as Carnots' reasoning on steam engines was the beginning of a much wider 
principle (Second Law), i t  may well be that the Malkus postulate has wide applicability in 
engineering problems characterized by macroscopic uncertainty. Turbulent flows are 
time dependent, yet average values emerge. Many other engineering problems, such as 
two-phase flows, are time dependent, and for these problems the maximization postulate 

This kind of thinking led Malkus (refs. 9 and 10) to a possible breakthrough in the 

One of the differences between the film-boiling analyses and the Malkus papers is the 
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TABLE II. - PROBLEMS SOLVED BY MAXIMUM ENTROPY RATE  POSTULATE^ 

Process  

Shear turbulence 

Magnetohydrodynami' 
(MDH) turbulence 

Turbulent free 
convection 

~~ 

Nucleate boiling 

Film boiling: 
Flate plate 

Saturated 

Subcooling and 
radiation 

Horizontal tube 

Author 

Malkus 

Ni  houl 

Malkus 

Zuber 

Hamill and 
Baumeister 

Results 

Universal velocity profile 

Effect of magnetohydrodynamic variables 

Heat - t ransf e r  coefficient 
Temperature profile 
Eddy velocities 

Heat-transfer correlation 
using Malkus theory 

Heat-transfer coefficient 
Optimum dome size 

Optimum spacing of domes 
Effect of subcooling and radiation 

Effect of geometry 

Source 

Ref. 10 

Ref. 12 

Ref. 9 

Ref. 11 

Ref. 1 

Present 
report 

Ref. 16 

aPhysical problems involving ra te  processes that a r e  governed by unknown or chaotic 
boundary conditions a r e  resolved by maximizing the rate  of entropy production of 
the universe. 

may work, whether or  not the flow itself is turbulent. Time dependence or  uncertainty 
seems to be the key condition. In any event, the maximum entropy rate postulate is a 
technique worth trying whenever an analysis is hindered by a lack of information. 

CONCLUDING REMARKS 

The problem of film boiling with subcooling and radiation has been treated by means 
of the maximum entropy rate  postulate. 
process can be computed by 

The overall heat-transfer coefficient for the 

where y is a unique function of the individual heat-transfer coefficients (radiation, hrad; 
turbulent liquid free convection, htcl; saturated film boiling, hfb) and a subcooling pa- 
rameter 8 = (Ts - Tb)/(Tw - Ts). That is, y is given functionally by 

brad - htcle 

y = q (  hfb ) 
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which is given graphically in figure 3 (p. 13). A simple formula that approximates the 
numerical results is given by 

htot = hfb + 0. 88hrad + 0. 12htcl Ts - Tb 

Tw - Ts 

which is valid for 

I I hfb 
< 0. 5 

The analysis predicts that film boiling is physically impossible for strong subcooling - 
in particular, when 

brad - htcle< - 27 

This prediction and the heat- transf er relations should be verified experimentally. 

on a flat plate. 
the appropriate individual heat-transfer coefficients are employed. 
be true for forced convection with film boiling. 

The results obtained could possibly be valid for systems other than pool film boiling 

The same thing may 
For example, they may be valid for film boiling in other geometries if 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 15, 1966, 
129-0 1-09 -04- 22. 



A 

B 

cP 

cP, 2 

max 

F(f) 

f 

hf b 

brad 

htcl 

htot 

l/RaA 

APPENDIX A 

SYMBOLS 

k 

specific heat of vapor, 

specific heat of iiquid, 

Btu/lb mass 

Btu/lb mass 

maximum predicted diameter 
of cell (eq. (39)), f t  

function of f (eq. (C8)) 

ratio of vapor-dome radius to 
cell radius, R ~ / R ~  

2 local value of gravity, ft/sec 

Newton's law conversion factor, 
32. 174 (lb mass)(ft)/ 

2 (lb force)(sec ) 

saturated film- boiling coeff i- 
cient, Btu/(sec)(ft )( R), 2 0  

1 /4 

0.41 

radiation coefficient, 
Btu/(sec)(ft )( R) 2 0  

turbulent-f r ee - convec tion 
coefficient for subcooled 
liquid, Btu/(sec)(ft )( R) 

overall heat-transfer coeffi- 

2 0  

cient (eq. (31)), 
2 0  Btu/(sec)(ft )( R) 

k2 

2 

Nf b 

Nrad 

Ntcl 

Ntot 

N* 

P 

Pr2 

pS 

Qdome 

Qtot 

thermal conductivity of vapor, 
Btu/(sec) (ft) (OR) 

Btu/(sec)(ft)(OR) 

characteristic length, 

thermal conductivity of liquid, 

saturated film-boiling Nusselt 
number, hfb2 /k 

radiation Nuss elt number, 

hrad2 

turbulent free- convection 
Nusselt number for subcooled 
liquid, htc12 /k 

overall Nusselt number for 
system, htot2 /k 

Ntot - Nrad, see q. (c29) 

2 pressure, lb force/ft 

Prandtl number for liquid, 

cp,  2 IJ.2 4 
saturation pres  sure, 

lb force/ft2 

rate of heat transfer under 
dome, Btu/sec 

total rate of heat transfer into 
system, Btu/sec 
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heat flux under dome, 
qdome 2 0  

Btu/(hr)(ft )( R) 

Btu/(hr)(ft w 
total heat-flux into system, 

2 0  qtot 

Ra Rayleigh number for film boiling, 
3 

2 gPcp(Pl - P)/@ 

radius of cell, f t  RO 

radius of vapor dome, f t  

optimal cell radius, Rf/f, ft 

optimal dome radius, 

R1 

R;; 

Rf 

r radial coordinate (see fig. 2), 

S entropy of universe, BtuPR 

T temperature, OR 

Tb 

f t  

0 temperature of bulk liquid, R 

film temperature, 
Tf = (Tw + Ts)/2, OR 

Tf 

saturation temperature of liquid, 
TS 

Tw 

OR 
0 wall temperature, R 

t time, sec 

U 

W 

w6 

radial velocity of vapor, ft/sec 

axial velocity of vapor, ft/sec 

evaporation velocity at the inter- 
face, ft/sec 

Y dummy variable used in ap- 
pendix B 

z 

02 

P2 

e 

A 

x 

lJ 

distance from plate to arbitrary 
point in vapor, f t  

thermal expansion coefficient for 
liquid, 

l/(ft2) ( s  ec) 
parameter given by eq. (C7), 

vapor-layer thickness, f t  

correction factor, eq. (C7), 

dimensionless gap thickness, 
6 /I 

subcooling parameter, 

(Ts - Tb)/(Tw - Ts) 

enthalpy ratio, X*/C (T 

latent heat of vaporization, 

- Ts) P W  

Btu/lb mass 

modified latent heat, 

). x ( 2 0 p  1+-c  x 19 (Tw - Ts) 

/ Bt;/lb mass 

viscosity of vapor, 
lb mass/(ft)(sec) 

viscosity of liquid, 
lb mass/(ft) (sec) 

perpendicular distance from wall 
to point on dome surface, f t  

3 

3 
density of vapor, lb mass/ft 

density of liquid, lb mass/ft 
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APPENDIX B 

JUSTIFICATION FOR NEGLECTING CONDUCTION UNDER VAPOR DOME 

Conduction under the dome can be estimated by assuming a linear drop of temperature 
from the plate to any arbitrary position on the curved interface. 
profile at any radial position under the dome will  be 

Thus, the temperature 

z T(z) = T - (Tw - Ts)- 
E W 

where 5 is the perpendicular distance from the wall to any point on the surface of the 
dome (see fig. 4). The symbol 5, which is a function of radial position, is given by 

5 = 6  +Val 2 2  - r 

The total heat flow under the dome is obtained by integrating the heat f l u x  over the dome 
area: 

This integral can be evaluated exactly by letting 

or  

1 
Y =  

Figure 4. - Typical vapor dome with coordinate system for estimating con- 
duction under dome. 

and noting that 
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2 dr  = 2r d r  

= 2rk(Tw - T ) S 

or 

1/6 
1 

Y 
- - - 6 In y 

1/(6 + R1) 

d r  = 2 - - 6  y dy i: ) -2  

Therefore, 

1 y = -  
= 2rk(Tw - T s ) j  (: - 6) dY Y Qdome 

v = -  
6 + R 1  

= 2rk(Tw - Ts) + 6 In ___ 
6 + R 1  

in equation (20) yields the total rate of 2 
Substituting this value of Qdome for "R1qdome 
heat transfer at the wall as 

r 1 

2 2 
Qtot = rRo(Tw - Ts) (1 - f ) + brad] + 2mk(Tw - Ts) 
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The overall heat-transfer coefficient htot is then 

or  

2 2kf 2k6 

RO R; 

htot = k (1 - f ) + hrad + - + - In 
6 

It is seen that if R and R1 a r e  much greater than 6,  then 0 

= k ( l  - f  2 ) +brad 
htot 

which is equation (21) in the main text. A question might arise as to the order of mag- 
nitude of the third term in equation (B7) with respect to the first. 
other yields 

Dividing one by the 

2kf 

5 (1 - f2) Ro 
6 

Calculations indicate that 6/Ro is of the order of 
be safely dropped. 

therefore, the third term can 
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APPENDIX C 

METHOD OF SOLUTION 

Algebraic M a n  i pu tat ions 

A simultaneous solution of equations (19), (21), (22), and (23) in conjunction with the 
The maximization with respect to Ro is con- 2 expression for P (q. (16)) is required. 

sidered first. Equation (22) can be rewritten in terms of new variables as . 

(see appendix E). From equation (21), the following equation can be deduced: 

(.!k)f = (g) = 0 

f 

This condition requires that the gap thickness be minimized with respect to Ro in order 
to maximize the heat transfer. Equation (19) gives an implicit equation for 6 in terms 
of Ro. In equation (19), P is a function of Ro as shown in equation (16). Taking the 
derivative on both sides of the interface energy balance (eq. (19)) with respect to Ro and 

2 

The only way for this equation to be satisfied for all arbitrary values of the parameters is 
for 

(g)f = O 
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2 Taking the derivative of P (eq. (16)) with respect to R,,, setting this equal to zero, and 
solvingfor Ro yield 

or 

The optimum vapor-dome rab,Js R; given by equation (C6) A identical to the result ob- 
tained in reference 1. The determination of the optimum f is not as straightforward - a 
numerical approach is necessary. Substituting R i  into the expression for P (eq. (16)) 
yields 

2 

where I is a characteristic length given by equation (25). The motivation for its intro- 
duction is based on Rf. A function only of f is given by 

F(f) = (- 

A characteristic length given by R*Jfi emerged quite naturally from the first maxi- 
mization. This characteristic length is used to make the equations dimensionless. Mul- 
tiplying equation (21) by Z / k  gives the dimensionless equation 

2 1 - f  
Ntot = - + Nrad r7 

The interface energy balance (eq. (19)) becomes 
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L J 

The characteristic Rayleigh number for film boiling is given by 

Employing this dimensionless group yields 

4 = F ( f ) [ -  +( Nrad - Ntcle )] 
Ran Ran 

where 

Tw - Ts 

* 
is a subcooling parameter and replacing X by h gives 

The maximization with respect to f will now be undertaken. At this point, there a r e  
three unknowns (7, f ,  and Ntot) and three equations (eqs. (C9) and (C12) and the maximi- 
zation with respect to f) to be considered. Thus, for maximum heat transport, 

2 dNtot - -(1 - f ) dq 2f - _ _ -  _ -  _ -  
df 2 df 17 

77 

see equation (E3). Solving for dq/df yields 
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Before taking the derivative of equation (C12) with respect to f ,  it is convenient to let  

and 

Nrad - Ntcle B =  

Thus, the energy interface balance becomes 

From this point on, F = F(f). Taking the derivative of 7 with respect to f yields 

4 1 7 3 d r l = ( ~  + B ~ ) - + B F J  d F  d 
df df df 

Solving for dq/df gives 

3 df 417 - BF (4q3 - BF)F 

Equating (C15) to (C20) gives 

4 d F  
1 7 -  

2f df -___ 2 1 7 =  
l - f  (4q3 - BF)F 

The goal of these manipulations is a se t  of parametric equations relating A and B to f. 
Solving for B from equation (C21) gives 

27 
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3 4 1 - f 2  1 d F  
B = q  (;.->z) 

but from equation (C18) 

4 
A = r ] - q B  

F 

Substituting equation (C22) into equation (C23) gives 

Thus, 

Cubing equation 325) and substituting for q3 in equation (C22) give 

4 1 - f 2  1 d F  - +--- 

\3/4 
A3/4 3 1 - f 2  1 d F  

Substituting equation (C25) into the expression for the total Nusselt number (eq. (C9)) 
gives 

( 1 - f )  - 

Ntot = 2 (  

\ 1/4 
3 1 - f 2  1 d F  

I _---- 
F 2f F2 df/ 

Nrad 
A 1/4 
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Equations (C26) and (C27) constitute a pair of parametric equations for Ntot, the indi- 
vidual Nusselt numbers, and the value of f. That is, if an arbitrary value of f is sub- 

result. Numerically computing these values for the entire range of admissible f values 
results in a complete correspondence of Ntot to the individual Nusselt numbers. This 
constitutes the general solution. It is convenient to define 

stituted into equations (C26) and (C27), unique values of B/A3l4 and A 1/4 (Ntot - Nrad) 

The ref o r  e, 

The solution for the case where there is no radiation or  subcooling is given in reference 1 
as 

(C30) Nfb = 0.41(Rah) 1/4 

When equation (C16) is used, A l l 4  is 

Thus, 

N * - 1 - f 2 /  3 1 - f 2  1 dF\ 1/4 
_ _ _ ~  

0.41 \ F 2f F2 df/ Nf b 

Changing the form of equation (C26) by expressing B/A3I4 in terms of Nusselt numbers 
through the use of equations (C16) and (C17) yields 
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- N  8 Nrad tcl 
B RaR Nrad - Ntc18 

A3/4 (RaA)-3’4 (Ran) 

which from equation (C31) reduces to 

-!?L = 0.41( Nrad Nfb - tcl-) 

A3/4 

Thus, substituting equation (C34) into equation (C26) gives 

-+--- 4 1 - f 2  1 d F  
F 2f F2 df 

~~ 

Nrad - Ntc18 - 1 -- 

Nf b 

A small correction factor must be applied to the conduction term in the total Nusselt num- 
ber. 
correction factor, which is derived in reference 1, is given by 

This correction accounts for the triangular patches shown in figure 1 (p. 2). The 

N u  mer ica I Procedure 

The important relations of the preceding section a r e  

(C37) 

where 
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Nf b 

and is given parametrically in terms of f by 

df) = 50 = 
0.41 

and where 8 is related parametrically to radiation and subcooling by 

4 1 - f 2  1 d F  
F 2f F2 df 1 

0.41 
= *(f) = - Nrad - Ntcle 

Nf b 3 /4 
(-3- 1 - f 2  1 dF\ ---- 

The function F is given by equation (C8), and 5 by equation (C36). These equations 
constitute the general solution of the problem, since a method for computing cp when 

Nrad9 Nfb7 Ntc19 
the grouping (Nrad - Ntc18)/Nfb. The numerical procedure is to substitute values of f in 
the range 0 to 1 into the right sides of equations (C38) and (C35). In this way, the com- 
plete functional dependence of cp on radiation and subcooling can be determined. The 
rather involved algebraic manipulations of the preceding section have thereby eliminated 
any need for numerical iteration. The calculations are presented graphically in figure 3 

and 6 are given is apparent. Simply stated, cp is a unique function of 

TABLE III. - TABULATED NUMERICAL RESULTS SHOWING EFFECT 

OF SUBCOOLING AND RADIATION ON DOME SPACING AND 

OVERALL HEAT-TRANSFER COEFFICIENT 

iatio of vapor-dome 
3adius to cell radius, 

f = R ~ / R ~  

0.40 
.45 
.50 
.55 
.60 
.65 
.673+ 
.700 
.750 
.790 

Individual heat-transfer 
coefficient group, 

= (brad - htcle)/hfb 
-. 

-1.266 
-1.235 
-1. 165 
-1.032 
-. 7926 
-. 3431 
. 0000 
.609a 
3.471 

~~ 

41.56 

Overall heat -transf er 
coefficient group, 

cp = (htot - hrad)/hfb 

1.262 
1.252 
1.228 
1.188 
1.130 
1.049 
1.000 
.9355 
.759a 
.3a77 
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(p. 13) and selected values a r e  tabulated in table III. 
When values of f = R1/Ro less  than 0.4 are substituted into the parametric q u a -  

tions, a new branch solution is obtained (shown by the dotted line in fig. 3). This branch 
is discussed in the RESULTS section; it is the degenerate case of pure f ree  convection. 
Also, for a value of f = 0.793 the gap thickness becomes zero and the value of 
(brad - htclO)/hfb becomes infinite. At the same time, the ordinate (htot - hrad)/hfb 
becomes zero. Thus, for infinite radiation, htot = brad, which is physically correct. 
However, why infinite radiation should correspond to f = 0.793 is unresolved. 
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APPENDIX D 

SAM PLE C A LC U LAT ION 

To illustrate the heat-transfer relations obtained, a numerical example of the film 
boiling of liquid nitrogen is considered. The various temperatures are shown in figure 5. 

'Temperature of 
bulk liquid, 

114" R 
Tb 

- 4 a t u r a t  ion temper - 
ature of liquid, 

Tsat. 
140" R 

Hot wall Wall temperature, 
TW, 

2740" R 
Figure 5. - Film boiling of l iquid nitrogen. 

These temperatures were chosen because the 
saturation temperature of nitrogen at atmos- 
pheric pressure is very nearly 140' R and the 
triple point is 114' R. A wall temperature of 
2740' R was selected arbitrarily to assess the 
effect of radiation. To evaluate the heat- 
transfer coefficients the vapor properties are 
evaluated at the film temperature: 

1 2 2 

Physical Properties 

The following vapor properties were  taken from Eckert and Drake (ref. 13, p. 506) 
and converted to consistent units: 

3 p = 0.0267 lb n s s / f t  

C = 0.2681 Btu/lb IYELSS 
P 

p = 2 3 . 4 1 ~ 1 0 - ~  lb mass/(sec)(ft) 

k = 0 . 0 9 ~ 1 0 - ~  Btu/(sec)(ft)(OR) 

The liquid properties used were taken from reference 14 and evaluated at Ts. The 
number of the section in which it appears is given after each property. 

p2 = 50.4 lb maSS/ft 3 (Sec. 1.004) 
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= 1 . 0 5 5 ~ 1 0 - ~  lb mass/(sec)(ft) p2 

k2 = 2 . 2 4 ~ 1 0 - ~  Btu/(sec)(ft)(OR) 

= 0.49 Btu/(lb ~ n a s s ) ( ~ R )  %, 2 

X = 85.81 Btu/lb mass 

0 = 6 . 0 3 ~ 1 0 - ~  lb force/ft 

P, = 3. 23x10 -3  ( 0 R)- 1 (calculated) 

(Sec. 10.004) 

(Sec. 3.004) 

(Sec. 4.004) 

(Sec. 5.004) 

(Sec. 9. 004) 

(Sec. 1.004) 

Evaluation of Saturated F i lm-Boi l ing Coefficient 

The saturated film-boiling coefficient is evaluated as 

where 

and 

Therefore, 

hfb = 0. 41  
3 

(0. O ~ X I O - ~ )  x 748.01 x 0.0267 x 32. 2 x (50.4 - 0.0267) 

2 3 . 4 1 ~ 1 0 ~ ~  x 2600 x 3 . 4 6 ~ 1 0 ~ ~  

1/4 

x 3600 
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or 

2 0  hfb = 27.00 Btu/(hr)(ft )( R) 

Evaluation of Radiation Coefficient 

The plate and liquid emissivities are assumed to be 1 in the following evaluation of 

brad: 

2 0  4 4 4  
hrad = 0.1713X10- Tw - Ts = 0.1713 27* 44 - '* = 37. 50 Btu/(hr)(ft )( R) 

Tw - Ts 2600 

S u bcoo I i ng  Par a met e r 

For the film boiling of liquid nitrogen, the subcooling parameter is evaluated as 

e =  Ts - Tb - 26 -0.01 
2600 Tw - Ts 

Liquid Free-Convect ion  Coefficient 

One of the major questions left unanswered by the present analysis is what to use for 
the turbulent liquid free-convection coefficient, since the vapor bubbles induce strong 
turbulence in the liquid. 
purposes of this calculation, a coefficient based on ordinary turbulent free convection 
from a horizontal plate given by McAdams (ref. 15, p. 180) is used. 
were evaluated at T,, though McAdams recommends using the liquid film temperature: 

Experimental data in this area would be most helpful. For the 

The liquid properties 

htcl = 0. 14 

The Prandtl number is given by 

2 
I-ll 
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Pr = 'p, 2 p 2  - - 0.49 x 1.05550-4 = 2. 31 

k2 2 . 2 4 ~ 1 0 - ~  
2 

Therefore, 

htcl = o. ..[". 2 4 ~ 1 0 - ~ ) 3  __ x 50.42 ~ x 32.2 __ x 26 x . 2.'31 -. 

(1.055X10 

1 /3 

x 3600 

2 0  
= 127. 15 Btu/(hr)(ft )( R) 

Evaluation of Overall Heat-Transfer Coefficient 

To evaluate the overall heat-transfer coefficient 

- h  0 brad tcl - - 37.50 - 127.15 x 0.01 - - 1. 342 
27.00 hf b 

is first computed. From figure 3 (p. 13), the value of 50 is 0.871. Thus, 

2 0  htot = qhfb + hrad = 0.871 X 27.00 + 37. 50 = 61.02 Btu/(hr)(ft )( R) 

and from equation (31) 

= 61.02 x 2600 = 1. 59x10 5 Btu/(hr)(ft 2 ) 
qtot 

The simple formula given by equation (38) predicts 

hfb + 0. 88hrad + 0. 12htc10 = 27.00 + 0.88 X 37. 5 + 0. 12 X 127.15 X 0.01 %ot = .  

2 0  = 60. 16 Btu/(hr)(ft )( R) 

This value is very close to the graphical solution, indicating the utility of the simple 
formula. 
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APPENDIX E 

TRANSFORMATION OF VARIABLES 

The optimization constraints, equations (22) and (23), are rewritten in terms of the 
parameter f for convenience in the mathematical operations, as given by equation (Cl). 

The total heat-transfer coefficient can be rewritten in terms of the parameter f as 

The functional forms of htot on the left and right side of this equation are, of course, 
different. 

The optimal constraint, equation (23), can now be rewritten as 

o r  

which is used in arriving at equation (C14). 

be rewritten as 
Now, by the chain rule of differentiation, the optimal constraint, equation (22)’ can 

However, because of equation (E3), equation (E4) simplifies to 

which is equation (Cl). 
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