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FOREWORD 

This final report documents the work performed a t  the Dynamic Science 
Division of Marshall Industries under NASA Contract Number NAS7-442, 
relating to the  description of the flame structure of thermally unstable fuel s. 
At  Dynamic Science, th i s  work was  assigned the  project number SN-81 B & C. 
Two additional reports will be published under this  NASA contract which will 
descr ibe the  work performed under Dynamic Science project number SN-81 A 
and SN-81 D. 

Al l  phases  of th i s  contract were monitored by Dr. Charles Feiler and 
Dr. Richard Priem of NASA-Lewis Research Center. At  Dynamic Science, 
Dr. B. P.  Breen was  Program Manager of the total contract (NAS7-442). 
Mr. R. J .  Hoffman acted a s  Technical Manager of the work reported in this  
report (SN-81 B 6 C). The analytical model (Appendix A) was  developed by 
Mr. S. Hersh, Mr. B. R.  Lawver designed and constructed the experimental 
equipment and the experiments were conducted by Mr. Hersh and Mr. Lawver. 
Dr. E .  W. Nadig was  responsible for the physical properties, Appendix B. 

Thanks are expressed to  Mr. John White, Mr. Wm. Irwin, and 
Mr. Frank Cummings for their ass i s tance  in constructing and operating the 
experimental equipment. 



ABSTRACT 

The results of an investigation of the hydrazine/nitrogen 
tetroxide droplet flame are  reported. The results of the experi- 
mental work are the temperature and stable species concentration 
profiles. It is concluded that a hydrazine decomposition f l a m e  
exists at the droplet surface causing a large temperature gradient 
which results in much higher burning rate than found for thermally 
stable fuels.  
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SUMMARY 

The flame structure of a 2500 micron hydrazine drop burning in 
nitrogen tetroxide was determined experimentally by measuring the tempera- 
ture and specific concentrations a t  a plane 90 from the stagnation point. 
The hydrazine drop diameter was  maintained constant by suspending it on 
the end of a water cooled hypodermic needle attached to a constant flow 
rate syringe. N 2 0 q  was fed into the burner, establishing a thermal convec- 
tive flow field around the drop. 
0.002 inch platinum-platinum/lO% rhodium thermocouple a s  well a s  a 
concentration sampling probe. Both an "outer" and an "inner flame" were 
visually observable. The locations of these "flames" do not coincide with 
the high temperature points in the drop combustion zone, and therefore are  
not true flames but regions of strong visible radiation. 

0 

The flame was probed with a shielded 

The experiments indicate that hydrazine decomposes very close to 
the liquid drop surface producing a steep temperature gradient which controls 
the burning rate. Although not proven conclusively, the zone between the 
drop and the inner flame appears to consist primarily of hydrazine decom- 
position products. 
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INTRODUCTION 

An understanding of the processes by which a liquid fuel  drop is 
vaporized and burned in the presence of an oxidizing media is essent ia l  
t o  predicting the combustion process within a liquid rocket engine. In the 
course of an investigation of the rate of burning of a hydrazine drop in an  
atmosphere of N 0 4 / N 0  , it was found that conventional methods of treating 
droplet burning chd not g 1 v e  resul ts  in agreement with the experiment. 

In an attempt to  account for the difference in burning rate of an 
exothermic f u e l  drop (NzH4) and an endothermic drop (Heptane), experimental 
hydrazine decomposition rate data were applied to the prediction of combus- 
tion within the low velocity regions of a rocket engine (Ref.  1). While this 
approach showed promise of predicting correct burning rate and engine per- 
formance for the hydrazine family of fuels, it appeared appropriate, in view 
of the absence of similar s tudies ,  to  investigate the two flame nature of 
hydrazine/nitrogen tetroxide burning in detail.  

The objective of this work was thus to provide a description of the 
oxidiation of thermally unstable rocket fuels so that model of burning rate 
within a combustion chamber could be developed. 
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SYMBOLS 

th 

each of the other species (cma/ sec) 
= the binary diffusion coefficients of i specie into 

the enthalpy of the ith species a t  temperature T. = 

(c a l/mo 1 e) 
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= the enthalpy of t h e  fue l  a t  its initial conditions (cal/mole) 

= thermal conductivity(cal/cm sec "C) 

= equilibrium constant for the m reaction th  

= index for atomic species (e.g. a=1 indicates the 1st 
atomic specie) 

= partial pressure of the ith specie  (Pi/P = xi) 

= gas constant 

= 

= 

= rate of transport of the ith chemical species in (moles/second) 

= the mole fraction of the ith specie (moles i/moles 

total number of atomic species 

the fue l  burning rate in (moles/second) 

1 (m 1x1 
t h  

= the number of R atoms in the  i specie  

= 

= 

the number of k? atoms in a fuel molecule. 

stoichiometric coefficients for the reactants 
reaction 

= stoichiometric 
re action 

= total number of 

coefficients for the products 

chemical species 

th of the m 

th  of the m 
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DISCUSSION 

Although semi-analytical models for the determination of the burning 
rate of thermally stable fuel drops have been developed (Ref. 2 ) , an  analytical 
determination of the burning rate of a thermally unstable drop, such a s  hydra- 
zine has  not been achieved. 

Liquid hydrazine burning in NTO exhibits two visibly discrete "flames" 
(Figure 1 ). Initial studies ascribed the "inner flame" t o  the  energy released 
by hydrazine decomposition, the "outer flame" being the region of oxidation 
of the decomposition products. 

As part of a program to gain understanding of the  processes underlying 
the hydrazine/NTO flame structure an analytical model which could be used 
to determine the N H burning rate under several simplifying assumptions was 
formulated (Appen Ciii x ) and experimental studies of the flame properties were 
conducted. 

The transport properties required by the analysis ,  consisting of both 
measured. values and approximate formulas where no experimental data was  
available, are compiled in Appendix B. 
snd is therefore of u se  for any analysis for which information of this  type is 
necessary.  

This information is of a general nature 

Two series of experimental tests were conducted. Both series utilize 
the same basic equipment, the difference being in the instrumentation used 
to measure t h e  flame parameters. 
atmosphere to the drop surface were obtained using a thermocouple probe while 
individual specie concentrations in the hydrazine-nitrogen tetroxide flame were 
determined from a mass spectrometric analysis  of samples withdrawn from the 
flame with a sampling probe. 

Temperature profiles from the ambient 

Hydrazine was chosenforuse in these  tests because it is the bas ic  
ingredient in the  most widely used thermally unstable fuel and the result 
would have the greatest practical application. 
run with propellant grade hydrazine burning the oxidizers , nitrogen tetroxide, 
oxygen , air, and oxygen/nitrogen mixtures. Temperature profiles were 
measured with al l  of these  oxidizers, however, concentration probing was 
done only for the nitrogen tetroxide oxidizer. 

Burning droplet tests were 
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Objectives e - The pixpose of these experiments was to measlx-e the 
flame structure of a hydrazine droplet burning in nearly stagnant nitrogen 
tetroxide vapor. The f l a m e  structure was  defined by measuring the tempera- 
ture profile and chemical species concentration in the free convective flame 
surrounding a constant diameter hydrazine droplet. 
with hydrazine burning in oxygen/nitrogen mixtures to  measure the effect of 
the oxidizer concentration on the flame structure. 

Tests were a l so  conducted 

These tests were conducted with propellant grade hydrazine and nitrogen 
tetroxide. The oxygen and nitrogen gases  were suppliedfrom standard gas 
cylinders,  

The Burner. - The tests were conducted with the burner apparatus* 
shown in Figure 2. Basically the burner cons is t s  of a test section which per- 
m i t s  observation of the combustion and the related propellant feed systems. 
The burner is designed such that either liquid fuel droplets or gaseous fuels 
can be burned in gaseous oxidizers. A flow schematic of the burner propellant 
feed system is shown in Figure 3. 

The droplet flame is produced by suspending the fuel  droplet from a 
water cooled hypodermic needle in the  burner test section. The fuel is fed 
from a syringe into the suspension needle with a variable speed syringe drive, 
The droplet diameter can be maintained constant by proper adjustment of the 
syringe drive. 

The fuel droplet suspension needle is shown in Figure 4. It is a 
0.010" O.D. (0,005" I .D.)  tube surrounded by two larger concentric tubes 
through which water is circulated, 
proportion of the s m a l l  needle,  to prevent boiling and thermal decomposition 
of the fue l  within the needle. 
through an  injector tube located in the  burner base  plate, The oxidizer flow 
rates  a re  controlled with calibrated sonic orifices,  by regulating the  orifice 
upstream pressures. Oxygen is fed to the  burner orifice through a pressure 
regulator mounted on the supply bottle. The N 0 vapor is generated by 

temperature and flowrate are controlled by regulating the heater current. 
The N 2 0 4  flowrate is also measured with a calibrated sonic  orifice. 

The water provides cooling of the exposed 

The oxidizing gases  are fed into the burner 

electrically heating the storage tanks and supp 2 1 4  y ines .  The N 2 0 4  vapor 

*This burner was  designed and built under Contract AF 04(611)-11616. 
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The burner test section has  opposing pyrex windows for observing and 
photographing the flames, 
burner tube with an air  driven ejector mounted to the burner top plate. 

The combustion products are removed from the 

Temperature Probe. - The temperature probe is illustrated in Figure 5.  
This probe consists of 0.002" diameter platinum/platinum-10% rhodium thermo- 
couple wires mounted in a small ceramic insulator encased in a s ta inless  steel 
sheath. The steel sheath protects the exposed wires from the hot combustion 
gases  when the probe is fully submerged into the flame, a s  is illustrated in 
Figure 7 ,  

A 0.010 'I diameter platinum/platinum-10% rhodium thermocouple without 
the steel sheath was used for the initial probing of the N H f l ame .  These 
tests indicated that heat conducted along the  thermocoupfe feads from the ex- 
posed portion of the wires caused erroneous temperature measurements, there- 
fore, it was necessary to provide a steel sheath. In addition the response of 
the larger thermocouple was not satisfactory. To improve the response t i m e  an 
attempt was made to construct thermocouples with 0.001" diameter wires,  how- 
ever this proved t.0 be too t i m e  consuming to be warranted, The response of the 
0.002" diameter thermocouple is on the order of 40 milliseconds. 

The thermocouples were calibrated by immersing the probe in compounds 
with known melting point temperatures, The calibration data points are  shown 
in Figure 6 along with a plot of the standard calibration for thermocouples 
obtained from Reference 3 .  The good agreement between the observed and 
standard calibrations encouraged the use  of the latter in the higher tempera- 
ture range where calibration measurements were not mad e , 

The thermocouple probe is traversed through the droplet f l a m e  with a 
variable speed electric motor drive mechanism as shown schematically in 
Figure 7.  The thermocouple position is indicated on an oscil loscope by using 
the signal from a 5000 0 l inear potentiometer to  drive the oscilloscope hori- 
zontal sweep. The thermocouple output voltage is applied to the oscil loscope 
vertical amplifier input, providing direct temperature versus dis tance profile 
throughout the flame region. The temperature profile is recorded by photo- 
graphing the oscilloscope screen with a bezel mounted Poloroid camera . 

Concentration Probe , - The concentration sampling technique described 

The technique cons is t s  of kinetically freezing the reacting 
in Reference 4 ,  was used to measure the chemical species concentrations 
in the N H flames. 2 4  gases by drawing them through a very small supersonic nozzle into a vacuum 
environment. The rapid expansion quenches the reactions,  thus preserving 
the stable chemica l  species  for subsequent analysis.  
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The concentration sampling probe is a 6mm 0. D. quartz tube with 
l m m  wal l s  , drawn to a fine point a t  the sampling end to minimize the flame 
disturbance. The nozzle throat diameter is 0.002 inches in diameter which 
gives an expansion ratio of 62OO/’i, 2le iniet  area ratio is 3 O O j l .  
a f lame gas  velocity of 6-10 ft/sec, the nozzle residence t i m e  is approxi- 
mately 40 p sec, 

Based on 

The sampling system is shown in Figure 8. The gas  samples were 
collected in bottles and then analyzed on a Hitachi Perkin-Elmer mass 
spectrograph. 

The mole fractions were calculated from the relationship 

pi 

pT  
- -  - 

i 
X 

where 
= mole fraction of 

= partial pressure 
i 

i 

X 

P 

species i 

of species i 

= total pressure of sample pT 
The partial pressures are determined from the magnitude of the mass peaks 
measured with the mass spectrograph. 
the relationship 

The partial pressures are found from 

n 
11 

h m =? K Y  Pi 

= measured peak height of mass  number (m) 

= sensit ivity of spec ies  (i) to mass number (m) 
m where h 

Ki 
There is one equation for each mass number and the problem then is the solu- 
tion of a system of simultaneous equations. The number of equations is equal 
to the number of spec ies  involved. To simplify the data reduction, these  
equations were programmed on a CDC 3600 computer. 
the measured mass peak heights of the species of interest  and the sensit ivity 
factors .  The output is the species mole fractions. 

The input consis ts  of 

Analysis of the mass peaks for the hydrazine/NTO flame indicated 
that t he  mass numbers of interest  are, 
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M a s s  Number 

2 

17 

18 

28 

29 

30 

32 

44 

46 

Species 

H2 

"3 

H2° 

N2 

N2H4 
NO 

O2 

N2° 

N02 

The mass number 29 was used for the hydrazine to distinguish it from oxygen, 
mass number 32. The hydrazine exhibits a 29 peak that is 43% of its 32 peak, 
a l so  it exhibits a strong peak a t  mass  number 31.  The above mass numbers 
and sp.ecies were used in determining the hydrazine/NTO flame structures. 

Experimental Results 

Temperature Profiles. - A typical temperature profile for a hydrazlne- 
nitrogen tetroxide flame is shown in Figure 9. The temperature begins to rise 
before the "outer f l a m e "  is reached and rises to a peak between the "inner" 
and "outer flame. It This peak temperature corresponds to a blue region which 
is visually observable but does not appear in the f l a m e  photographs. At tempts  
to use  f i l m  with a greater spectral sensitivity in the blue region than the 
Polaroid color f i l m  normally used a l so  failed to  reproduce this region. The 
temperature decreases smoothly from its maximum, through the "inner flame, 'I 
to a relatively high value close to the drop surface. It should be noted that 
the locations of the visible "flames" do not coincide with the high tempera- 
ture points. Thus what have been denoted as the "inner" and "outer flames" 
are not true flames but regions of strong visible radiation. 

The shape of this temperature profile, in particular the high temperature 
close to the drop surface would indicate that hydrazine decomposition had 
occurred at  the droplet surface. To further examine this behavior, hydrazine 
droplets were burned in oxygen-nitrogen atmospheres a t  various 0 -N 2 2  trations. A hydrazine-air profile is shown in Figure 10. As can be seen,  both 
the maximum and drop surface temperatures, are less than that obtained for 
the hydrazine-NTO system, (Figure 9) .  

concen- 
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The 0 -N concentrations were varied over a small range by varying 
2 2  the pressnres npstream of the snnic  nr i f icec.  Figures I l a  a d  h ,  are tempera- 

ture profiles for hydrazine burning in oxygen-nitrogen atmospheres of different 
0 -N 
The temperature profile shown in Figure 1 2  was obtained by red%cing the 
oxygen concentration until the only visual evidence of burning was a halo- 
type glow c lose  to the drop surface (Figure 13).  
actual temperatures were lower than those for the other c a s e s  but the steep 
gradient at the drop surface is still evident. The change in dis tance sca l e  
should be noted. Also it should be noted that the temperature near the drop 
surface with N H /air is not much higher than the maximum temperature of 
the halo flame. 

To verify that the temperature profiles obtained for hydrazine were 
functions of the hydrazine itself and not related t3 the experimental proce- 
dures or equipment, the flame surrounding a heptane drop was a l so  probed. 
Heptane was selected because of its endothermicity. Therefore, if the 
temperature gradient a t  the surface of the hydrazine drop is due to hydrazine 
decomposition, it would be expected that the profile obtained for the heptane 
drop would not exhibit this  s teep  gradient. 
profile obtained for heptane. A s  can be s een ,  the temperature r i ses  to  a 
peak and then decreases  to the droplet boiling temperature. Figure 14b shows 
that  two visible "flames" a re  a l so  present when heptane is burned in nitrogen 
tetroxide. Other investigators,  for example, Wharton, Miller, e t  a l ,  (Ref. 5 
and 6) have a l so  observed a dual reaction zone in premixed n-butane-NO 
flames. 
with the  oxidizer while two real  flames are  found only for hydrazine. 
combustion of hydrazine with any oxidizer will be a two flame structure con- 
s is t ing of decomposition a t  the droplet surface and the oxidation of the de- 
composition products. 

concentrations, Figure l l a  being a t  a higher value of 0 -N ratio. 
2 2  2 

Under th i s  condition the 

2 4  

Figure 14a is the temperature 

.? These results suggest that  t h e  two "visible flames" are associa  ed 
The 

Concentration Profiles. - The concentration data taken at several  
positions in the flame are  plotted versus reduced radius in Figure 15 .  
is noted that hydrazine was not found in measurable quantit ies.  
some question a s  to  whether th i s  is due to the nonexistence of hydrazine in 
the flame or to  hydrazine decomposition in the sampling probe. 

position of N O  to  NO and 0 . The mole fractions of N O  and 0 decrease 2 a s  the inner flame is approac ed.  

t e rpera ture  reaches a maximum is  in agreement with the results of 
Reference 5. That investigation demonstrated that the maximum temperature 

It 
There is 

Figure 15 a l so  indicates that the outer flame cons is t s  of the decom- 

2 2, 
The fact  that the decrease in  NO occurs in the region where the 
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in an n-butane-NO flame was due to the energy release associated with the 
decomposition of &. A t  the inner flame boundary the oxidizer concentra- 
t ions drop sharply to very s m a l l  amounts. 

Several phenomena which relate to the accuracy of the sampling 
results were observed. It was found that ammonium nitrate was collected 
in the probe throat a t  the yellow inner flame boundary. This problem 
prevents an accurate description of the inner flame composition being made 
by direct sampling. I t  is not apparent whether the  ammonium nitrate is 
formed in the probe or is precipitated from the flame. The formation of the 
ammonium nitrate in the probe would require very f a s t  reaction rates a t  low 
temperature. Ammonium nitrate is a stable product of the room temperature 
hypergolic reaction between NH and NO therefore, i t  is conceivable that 2' it m a y  a l so  be an  intermediate o 9 the high temperature reaction. 

The relative amounts of nitrogen were larger than they should have 
been, but thls may be due to  contamination from the probe purge system. 

CONCLUSIONS 

The facts  that ,  all tests conducted with hydrazine indicate the 
presence of a s teep temperature gradient near the drop, and that this  property 
is associated only with hydrazine droplets, lead to the conclusion that 
hydrazine decomposition occurs a t  or very near the drop surface. This 
conclusion appears to be further verified by the  concentration profiles obtained 
with the  sampling probe. The failure to  detect  any hydrazine in the flame 
especially in the region near the  drop surface, when viewed in the light of 
the temperature profiles, is a further indication of hydrazine decomposition 
a t  or c lose  to the drop surface. 

The results of these experiments indicate that a t  low Reynolds number 
the dominant process controlling the hydrazine burning rate is hydrazine 
decomposition, since this  mechanism determines the temperature gradient a t  , 
and therefore the heat  transfer to ,  the droplet surface. The existence of the 
decomposition f l a m e  at the drop surface causes  hydrazine to have a signifi- 
cantly higher burning rate than thermally s table  f u e l s  such a s  heptane. 

10 



APPENDIX A 

ANALYTICAL VAPOR PHASE DECOMPOSITION MODEL 

Analytical Modei 

Derivation of Equations, - 
drazine in a nitrogen tetroxide atmosphere has been formulated in a manner 
similar to  that described by Coffin and Brokaw ,(Ref. 2)  in which equilibrium 
chemistry was assumed. As in Reference 2 ,  the problem is set up for a general 
fuel-oxidizer combination with the particular system under examination deter- 
mining the necessary physical properties. 

The analysis of the burning of a drop of hy- 

The equations describing the processes occurring in the  region between 
the fuel drop surface and t h e  ambient oxidizer atmosphere are: 

Conservation of Mass 
v .  

w~ i=1 i ,a  i 
= C a  w ,E= 1,. ... s 

W i 
,E 

= Rate of transport of the ith chemical species in (moles/sec) 

= Index for atomic species. (e .g . i=l  indicates the 1st 
atomic specie) 

th a = The number of R atoms in the i specie i , a  
S 

V 

= Total number of atomic species 

= Total number of chemical species  

th  This equation expresses the fac t  that  the transport of the A 
through any surface is equal to the  sum of the contributions due to the trans- 
port of chemical species containing R atoms. 
system the ne t  transport of oxidizer atoms is zero. 
production of f u e l  atoms since the drop is a f u e l  source. Therefore 

atomic species  

Since there is no sink in the 
However, there is a net 

9 = the f u e l  burning rate in (moles/second) and a 
in a fue l  molecule. 

= the number of ,E atoms 
f , R  

or 
V 

a = 1, .... s 

which describes the conservation of atoms in the systems. 11 



Energy Equation 

dT - C W.H. = - 4 d  K- WfHfo i=l 1 i dr  

V 

th 
= The enthalpy of the i 

= The enthalpy of the f u e l  a t  its init ial  conditions 

spec ie s  a t  temperature T. Hi 

Hfo 
K = Thermal conductivity 

Diffusion Equations 

The equations describing the diffusion of the  i spec ies  a re  ob- 
tained from the general diffusion equations (Eqn. 8-1-3 of Ref.  7 )  by neglecting 
external forces,  pressure gradients and thermal diffusion. In addition it is 
also assumed that each s p e c i h i  obeys the ideal gas  law and that  the  binary 
diffusion coefficients of the i 

are equal 

th  

specie  (D ) into each  of the other spec ies  il 
i.e. D,, = D,.  Under these  conditions the  diffusion equations can be  

put in the form (Re'f. 2 )iw x V - 1  dX X 
P dXi +-  c D i ) + 2 T  i = 1 . ~ - 1  

V 
x j = l  j dr  . w .  =-4 m2 - 

1 RT (Di;T;; V 

R = G a s  constant 

1 
?mix) 

Moles i 
= The mole fraction of the ith spec ie  ( - Mole X i 

For a v component g a s  there are  v-1 independent transport ra tes .  
Chemistry Equation s 

If the transport ra tes  are  much slower than the chemical ra tes  the  
burning process can be considered to  occur under equilibrium conditions. For 
a v component system there a re  v - s  independent equilibrium relationships 
among the chemical spec ies .  i , m  

i , m  

V c 

9 P i  

? Pi 
th pi specie (-&xi) 

t h  

B 
E These relations are  of the form Km V 

= Partial pressure of the i 

= Equilibrium constant for the m 

= Stoichiometric coefficients for the products of the m 

= Stoichiometric coefficients for the reactants of the m 

P 'i 
reaction. 

th 
m 

i , m  

i , m  

K 

E reaction 
th 

reaction. B 
If the transport and chemical ra tes  a re  comparable, the relationships 

between the gas components must be determined by finite rate chemistry. 
1 2  



Normalization Equation 

V c x = l  
i i=: 

That is ,  the  sum of t h e  mole fractions is unity. 

In summary, there are  s conservation of mass  equations,  one energy 
equation, V-1 diffusion equations,  v -s chemical equations,  and a nonnaliza- 
tion equation for  a total of 2v+1 equations. There a re  u+1 unknown W's  
(Wi i = 1 , .. . .u and W ) and u unknown fractions (x. i = 1 ,.. . .v). f 1 
there a re  2v+l unknowns and 2v +1 equations and the problem is solvable in 
principle. 

Thus 

Since there are v W ' s  and u -  1 diffusion equati n s  one of the mass con- 
servation equations must be used to  determine the u W. The conservation 
equations a re  

tR 

U 
CCY w=CY w i , R  i f , R  f i= 1 

R =1/ . . . . s  

Select R for which ar 2 0  
f ,  

Designate this value of R a s  X 1 .  

Then 

or 
v- 1 

Substituting for W. from the diffusion equation and solving for Wy 
1 

i - CY +,c CY v,X1 i+1 i , X 1  

Therefore 
x. v-1 dx x . V - 1  dx +2z D i 4 z  CY x i=l i , X 1  (Di dr x j = 1  j dr 

dx X. V-1 dx 

i 4 - v  V 
- W , = 4 a r " P  - + L E  i 

u- 1 X 
1 RT i (Di dr x j = l  Dj  dr 

V 
i 

CY YCY v , h l  +1"=1 i , X 1  x, 13 



In order to eliminate a l l  the W' s  from the energy equation a second mass  con- 
servation equation is used t o  express W, in terms of the W , ' s .  Select 4 for 

V 

Substituting into t h e  energy equation gives  

dT w - C  W.H =-4ar  K - a f"=1 " i , ~ 2  i i=l 1 i dr  

V U - Hfo 

f , A 2  

Rearranging 

14 

dT - H )  W =-47rrlJdK dr / %,A2 v - 1  a 

c 1=1 C t f I h 2  Hfo - H . )  1 Wi + L a  Hfo v V 
/ i ,X2 

f ,A2 

The S-2 remaining conservation equations a re  

f R  t a r  - -  
i=l i , R -  a 

f , A 2  

V CY 

z a  i=1 i , A 2  wi 
-7 

f , R  ) w i = o  5 (CY - 
a 

f ,  A 2  i=1 i , R  a 

Equations (I) and (2) a re  of the form 

v -1 
c AiWi+B% = C  
i= 1 



Examining the terms in the above equation separately gives for t h e  
f i r s t  t e r m  

This relation can be rearranged into the  following form 

a v-1 x v-1 x v- 1 X dx v-1 ’ v- 1 - - RT .j-’ AiW= g=l{Ai- 5 A - i +.E Ai, i (l-gel ,- 1-  ai,xl<,))Di i y  dr i 47rr“ P S i=1 i x i=1 
The second term is V V 

v- 1 dx u- 1 x. v-1 dx  

4 n r  P v Si=1 i , X 1  i d r  S i=l  i ,x lx  j=1 j dr 
1 7  

V 

7 RT BW =-&  B ?  D -  i + B z  a! -b D 2 

u-1 u-1 X dxi - 7 

A)Di  dr s i=1\  i ,hl+i% a i ,x l  x V 
= - E  ( a  

Therefore Equation (3) becomes 
v- 1 

dT C = - 4nr”K - dr For Equation (1) 

For Equations (2) C = 0 

Substituting into the above equation gives 

v- 1 x, 



where 1 6i = - 
KRT 

OLi,x2 
For Equation (1) 

A. =(, 
f , X 2  1 

\ 
(. Ot,A2 \ 

B =\a - H .  J f ,X2 Hfo 1 

For Equations (2) 

C' = o  

The chemical equilibrium relations are 

E i , m  V 

3 Pi 

a = 1,. ... s 
a #  A,, 

Taking the temperature derivative of this  equation gives 

dKm F i l m  - 'i,m dT 
V 

- Km dT 1 
d v € 

- n Pi 
+ P P i  

U f V  j r m 7  -1 7 dpi 

d i , m  - 
ZT ? P i  

d ' i ,m 
But dT 3 pi = 7 Pi &l 'i ,m 'i dT 

Substituting and rearranging yields 

(5) 
m = 1 ,.. .U-S 1 6  



Where the relationship between the partial 
= p,/p, has  been used. xi 1 

It should be noted that Equations (5) 
X { ' S .  While these equations were derived 

pressure and the mole fraction, 

provide u -S relations between the 
lor equilibrium chemistry and other 

chemical assumptions, e. g. f in i te  rate kinetics,  or arbitrary specification of 
x vs  T,  can be made, providing a se t  of v - S  independent relationships are 
obtained. 

The normalization equation can also be differentiated to  give 

u dx. 
1 c -  = o  dT i=1 

Equations (4), (5), and (6) are respectively S-1 , u-SI 1, equations for a 
total of v equations for the v unknown x 's. i 

The above equations can be numerically integrated to  give x vs T for 
a l l  the  species. The mass conservation equations can then be used to obtain 
the spatial  specie distribution from the  drop to the ambient atmosphere. 

i 

Since the experimental programs described above indicated that the 
hydrazine burning rate was controlled by decomposition c lose  to the drop surface 
the usefulness and applicability of an analytical model of this type toward the  
prediction of the burning rate was uncertain and a computer code was not 
developed. 
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APPENDIX B 

PHYSICAL PROPERTIES 

For u s e  in the  analytical  hydrazine decomposition model , enthalpies,  
diffusion coefflcients , and thermal conductivities a re  needed for the  following 
chemical species: H 2 r  NH3, N 2 r  H 2 0 ,  NO, NO2, 0 2 r  0 ,  N t  NH4N03, 
and N2H4. 

Enthalpies. - The enthalpies of H 2 r  "3, N 2 r  H2Ot NO, NO2, 02t 

0, and N are  given in Reference (8) from O'K to  6000' K. The enthalpies 
of N H and NH NO are not given but can be determined from the same 

NASA-Lewis program. However, apparently the program shows that  N H does  

not exist a s  such a t  any temperature s ince equilibrium calculations are  involved. 

2 4  4 3  

2 4  

Diffusion Coefficients. - Two suitable expressions a re  available for 
determining the coefficient of diffusion in a binary mixture. 

Hirschfelder, Curt iss ,  and Bird, (Ref. 4 ) give the analytical  expression 

' T3 (M1+M2)/2M1M2 4 
= 0.0026280 

Dl 2 

where 
= diffusion coefficient 

Dl 2 
P = pressure 

u u  11- 2 - -  - 
O 1 2  2 

= molecular diameters of species 1 and 2 
'O2 

T = temperature 

M1 rM2 = molecular weights of spec ies  1 and 2 

~ 2 "  'I)*= integral parameter, approximately equal t o  1. 

T1 2 

1 2  
* 

= overall reduced temperature between the  two spec ies  

Another suitable expression for estimating the diffusion coefficient between 
species 1 and 2 is the empirical Gilliland (Ref .  9 ) expression 

18 



+-  I' 
M1 M 2  

D = u.uu43 1/-3 P(VA + vB1/3)2 

where 
D = diffusivity, cma/sec 

T = temperature, OK 

P = pressure atm 

M1M2 = molecular weights of gases  

= molecular volumes a t  the normal boiling points, cc/g-mole 'AI'B 

The molecular volume can b e  calculated from the molecular weight and 
the density of the substance at the boiling point. If the density a t  the boiling 
point is unknown, the molecular volume can be calculated from the sum of the 
atomic volumes. The atomic volumes are given in Reference 10. 

Thus, if the molecular diameters are given (some are given in Ref. 7)  
the more exact Hirschfelder, Curtiss 
molecular diameters are  unknown, the Gilliland equation can be used. Either 
equation will give a reasonable estimate of the diffusion coefficient in a 
binary mixture. 

and Bird equation can be used. If the 

Since a binary g a s  mixture is assumed in use  of the equations, in the 
actual multicomponent c a s e  the diffusion coefficient can be obtained from a 
mass weighted average of the properties of the remaining spec ies  into which 
the i specie  is diffusing. If the specie diffuses into a mixture containing a 
large amount of one component with respect to the others in the mixture (i.e. 
approaching an overall binary mixture between the specie  and the remaining 
material) the calculation will be reasonably accurate. The error involved if the 
overall mixture (specie diffusing plus t h e  remaining materials) is not a binary 
mixture is not known a t  this t i m e .  
gas  mixture the dependence of the diffusion coefficient on composition is 
only slight. 

th 

It should be mentioned, that  in a binary 

Thermal Conductivities. - Since only limited experimental thermal 
conductivity data is available, it is necessary to u s e  a theoretical expression 
to determine the thermal conductivity. 

The thermal conductivity of a substance can be reasonably estimated 
from an analytical expression given by Hirschfelder, Curtiss,  and Bird, 
(Ref. 7 ) .  

19  



where 
k = thermal conductivity 

- - T 
M =  

temperature 

molecular weight 

mol e cul a r  diameter 

integral parameter, approximately equal to  1. 

heat  capacity 

universal gas  constant 

reduced temperature 

As used in the model, the thermal conductivity, k ,  is included because 

In this analysis,  the thermal conductivity will be determined 
of a comparison with heat conduction. Therefore, k represents an overall 
constant value. 
from a mass weighted average of the thermal conductivities of the respective 
species. 
more accurate the u s e  of the mass weighted average thermal conductivity will 
be. 

The closer one specie comes to being present in a large amount, the 

Whenever possible experimentally determined values of the thermal con- 

High temperature thermal conductivity data (3000-4700OF) is available 

ductivity of the substance should be used. 

in Reference 11. Figure 16  shows experimental results obtained from Reference 
11 in addition to results from Reference 1 2  (indicated by the broken l ine).  

The following low temperature experimental thermal conductivity (k) data 
is available for all of the species except 0, N, NH4N03, and N2H4. 

Temperature, 

- 57.6OC 
0 

100 

-191.4 
- 78 .4  

0 
100 

"3 

N 2  

20 

ca 1 orie s 
c m  sec°C  

3.82 
5.135 
7.09 

1.829 
4.305 
5.68 
7.18 

Reference 

13 
13 
13 

13 
13 
13 
13 



Temperature 

-252,ZOC 
- 78.4 

0 
100 

H20 (9) 46 
100 

HZ 

NO (9) - 71.4 
0 

-191.4 
- 78.4 

0 
100 
8 O°K 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
2 60 
270 
273.1 
280 
290 
293.1 
298.1 
300 

O2 

calories 
c m  sec°C k 

3.22 
30.65 
39.60 
49.94 

4.580 
5.510 

4.160 
5.55 

8.88 

1,721 
4.292 
5.70 
7.427 
1.701 
1.930 
2.159 
2.387 
2.614 
2.840 
3.064 
3.287 
3.508 
3.728 
3.946 
4.162 
4.375 
4.584 
4.790 
4.993 
5.194 
5.392 
5.586 
5.780 
5.839 
5.970 
6.159 
6.218 
6.314 
6.350 

Reference 

13 
13 
13 
13 

13 
13 

13 
13 

13 

13 
13 
13  
13 
14 
14 
14 
14 
14 
14 
14 
14 
14  
14 
14 
14  
14  
14  
14 
14 
14  
14  
14  
14  
14 
14 
14 
14 
14 
14 

2 1  



Temperature 

O2 3 1 O°K 
32 0 
330 
340 
350 
360 
37 0 
380 

calories 
c m  sec°C k 

6.547 
6.748 
6.954 
7.164 
7.378 
7.594 
7.812 
8.033 

Ref ere n c e 

14 
14 
14 
14 
14 
14 
14 
14 

Thermal Decomposition of Hydrazine. - In connection with the model, 
information on the thermal decomposition of hydrazine is desired.  Although 
there are discrepancies in the literature , the  following information is considered 
significant. 

Thomas (Ref. 1 5  ) shows that hydrazine decomposes according t o  two 
consecutive overall reactions at 20 atm total pressures 

3H H + 4NH + N  +80.15Kcal 2 4  3 2 
4NH3 + 2N2 + 6H2 - 44.00Kcal 

The overall decomposition reaction is 

+ 4(1-x)NH3 + (1+2x)N2 + 6xH2 + (80.15-44.00x)Kcal 3NzH4 
where x = the fraction of NH3 decomposed. 

A s  the temperature ?s raised above 400°K, NH decomposes with the decomposition 
becoming complete at 800'K. Experimental resul ts  show that  the decomposition 
reaction of NH (11) is slower than reaction I. Hence, if the  decomposition (I) occurs 
in the order of %illiseconds , it then might be reasonable to assume that only 
part of the NH could decompose. 

Ammonia (" ) is only negligibly dissociated for temperatures below 400'K. 

3 

3 

Lucien (Ref.  16 ) carried out thermal decomposition studies of hydrazine 
in the ranges of 175' to  250'C and 300 to 430 psi.  He found that  the decom- 
position went according to 

3N2H4 + 4(1-x)NH3 + (1+2x)N2 + 6xH2 

where x = 0.017 a t  222'C and 300 ps i  

= 0.034 at 250'C and 430 psi  

2 2  



The calculated activation energy was about 73Kcal per mole which is greater 
by a fac tor  of two than other reported values. The rate of decomposition 
decreased with pressure over the range studied. 

Eberstein and Glassman (Ref .17 ) studied hydrazine decomposition. The 
rate constant for hydrazine was found to be 

The stoichiometry observed was 
k = exp (-36,170/RT)sec-l 

N2H4 + 0.9 NH3 + 0.5N2 + 0.6H2 

The disagreements in the literature may indicate that the  hydrazine 
decomposition mechanism changes with pressure and temperature. 
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FIGURE 1. HYDRAZINE / NITROGEN TETROXIDE 
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FIGURE 4. WATER COOLED NEEDLE 
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FIGURE 5. TEMPERATURE PROBE 
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FIGURE 1.2.. HYDRAZINE/LOW OXIDIZER CONCENTRATION 
TEMPERATURE PROFILE 
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HALO 
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,FIGURE 14a .  TEMPERATURE PROFILE 
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