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ON THE MAGNETOSPHERIC TEMPERATURE DISTRIBUTION 

by 

H. G .  Mayr and H. Volland 

ABSTRACT 

Due to the low electron density and the large mean free path in the mag- 

netosphere it is necessary to modify the equation of the heat flux parallel to the 

magnetic field. It is shown that the heat conductivity is effectively decreased by 

this modification, which can explain the high temperatures in the upper mag- 

netosphere observed by Serbu and Maier. Since the effective perpendicular heat 

conductivity may be enormously enhanced due to plasma turbulence, it is then 

conceivable that both conductivities may be of comparable magnitude. This sug- 

gests a heat flux from the interplanetary space through the magnetosphere into 

the thermosphere, which could also effect the magnetospheric electron tempera- 

ture distribution. 
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ON THE MAGNETOSPHERIC TEMPERATURE DISTRIBUTION 

INTRODUCTION 

Measurements of the low energy electron spectrum by Serbu and Maier  

(1966) on IMP I1 have shown that in the magnetosphere these electrons have al- 

most a Maxwellian velocity distribution. 

In the equatorial plane the electron temperature Te increases with distance 

r from the earth's center a s  

Te 0: r 2  

above r = 2 a ( a  = earth's radius), reaching values of the order Te - 20 000 O K  

in heights between 5a and 15a. Otherwise relatively low temperatures of the 

order of 3000 O K  have been observed at the base of the protonosphere in heights 

of about 1000 km above the ground at  low and high latitudes (Brace, Reddy and 

Mayr, 1967). 

According to the classical formulae of heat conduction within an anisotropic 

plasma the predominant heat flow parallel to the geomagnetic fieldlines within 

the protonosphere is due to electrons (see e.g. Kaufman, 1966). The coefficient 

of heat conductivity is 

K , ,  - = A,T:'* erdcrn sec deg 
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with 

A, - 1 x 

Perpendicular to the magnetic field the ionic component is predominant and 

the coefficient of heat conductivity is 

with 

- 3 x 10-l6. A2 

Here Ti  , N i  and u i  are  temperature , density and collision number of the 

protons, B and W ;  are the earth's magnetic field and the ion gyrofrequency, and 

m i  and me are  ion and electron masses. 

Taking mean numerical values of Te - Ti - lo4 O K ,  N, - lo2 Cm3 and 

B - Gauss leads to a ratio between the coefficients of heat conductivity of 

K l  
- -  - - 3 x 1 o - I 2 .  
K1l 

(4) 

If the classical formulae of heat conductivity equations (2) and (3) are  valid 

within the protonosphere one would expect an extremely large anisotropy of 

temperature: namely nearly isothermy along the fieldlines and an almost com- 

plete heat isolation orthogonal to the fieldlines. 
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In order to derive a first approximation of the temperature profile within 

the protonosphere we consider a heat isolated fieldline, neglect the geometrics 

of the dipole field and assume no energy source within the protonosphere. The 

static energy equation has the form 

+ 

div j = - div ( K  grad T) = Q .  (5) 

+ 
j is the heat flux vector and Q is the external energy input per unit volume. 

Introducing the coefficient K,, of equation (2) into equation (5) and taking Q = 0 

leads to the solution 

a T  
where TI and Ti  = (a,) are  the lower boundary values at the height sI . From 

I 

equation (6) follows the expected small temperature gradient along the field lines 

proportional to sV in greater heights (s >> sI ). To maintain even this small 

gradient and to reach a temperature TI 20 000" at the top of the field line a 

heat flux of the order of 

- j ,  - K ~ T ;  1 erg/cm2 sec 

had to flow into the thermosphere in medium and higher latitudes. This would 

imply a temperature gradient of the order 



in 1000 km height. Tamao (1966) taking into account the geometry of the field 

lines came to the same result. He assumed that this heat flow must be supplied 

from the interplanetary space via turbulent diffusion across the field lines in 

greater heights. But the observations made by Brace, Reddy and Mayr  (1967) 

give evidence that a realistic upper limit of the electron temperature gradient in 

1000 km height is at least smaller by two orders of magnitude: 

If we introduce this value into equation (6) together with TI = 3000 O K  we ob- 

tain a temperature at the top of the fieldlines of TI ,  $ 7000 O K  in r = 8a dis- 

tance which is considerably smaller than the measurements of Serbu and Maier 

(1966) show. 

This obvious and striking discrepancy between theory and observations is the 

subject of the following investigation. We shall show that a more rigorous treat- 

ment of heat conduction leads to an effective decrease of the heat flow in regions 

of low electron density and to a general increase of the temperature at greater 

heights. 
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Parallel Heat Conduction 

An examination of the mean free path approximation of heat conduction re- 

veals that it contains the assumption of a linear temperature distribution within 

the range of the mean free path. In the magnetosphere where the mean free path 

is large (in the order of 10 

electron densities Ne, it seems questionable whether this assumption remains 

valid. Mayr (1965) generalized the mean free path method by considering the 

actual free path distribution and by allowing for any temperature distribution. 

With this generalization the heat flux-is represented as an integral that covers 

the entire temperature range, implying that rigorously the heat flux depends on 

the entire temperature distribution. For an investigation on the magnetospheric 

temperature which requires the integration of the energy equation, this integral 

representation is inconvenient because of the necessarily involved analysis. For 

this reason we shall approach the problem by merely generalizing the mean free 

path derivation for a non linear temperature distribution. 

cm), due to high electron temperatures Te and low 

Expanding the temperature into a power series in s around so  = 0 gives to 
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when higher order terms are  assumed to be neglegible small. If 5 is the angle 

of the velocity direction toward the s axis, each electron carries the energy 

- 3 k To - A COS 5 [$ ($ k T)] t A 2  cos2 [- (+ kT)] - 
2 

0 0 

-- A3 cos3 5 [$ (+ kT)] 
6 

0 

k is Boltzmann's constant 

through the plane at s = 0 .  Correspondingly, electrons going in exactly the 

opposite direction transport the energy 

- 3 k To t A cos 5 [$ (t kT)] t 2 A 2  cos2 5 [s ($ kT)] + 
2 

0 0 

The difference of these two energies is 

cos3 5 [ -  (; kT)] . (10) 
- 2h cos < [$ ($ kT)] - 7 h3 

0 0 
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During unit time 

c cos 5 Ne f d5  

electrons traverse the unit area at s = 0, if f is the distribution function for the 

velocities C ,  given by 

1 me 
f 277 ( 2rmekT )3’2exp [ 2 ) . 1 c 2  2 k T  s in  5 d c .  (11) 

The net energy transported by electrons with the velocity c and the angle 5 

is therefore 

- 2X cos2 5 c a (+ kT) N e f  dc  - 

A 3 a3 
a s3  3 

-- 5 c __ (+ k T) Ne f dS . 

77 
Integration over o 1. 5 1. 3 and o 5 c 5 Do then leads in a straight forward 

manner to the heat conduction flux in the form 
b 

where C is the mean thermal velocity. 
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Introducing in equation (13) the dependance of the mean free path on tem- 

perature and density (equation (7)) yields 

The heat flux j in equation (14) contains now an additional term which is 

proportional to the third temperature derivative. A s  can be seen, this term be- 

comes of increasing importance for high temperatures and low densities. Thus 

it may have an important effect on the temperature distribution in the mag- 

netosphere such as  to decrease the conductivity of the plasma in a way that could 

allow the very high temperatures measured by Serbu and Maier. 

We have employed the new heat flux formula equation (14) in the energy 

equation (5) which leads to 

Equation (15) was solved with the following boundary conditions. 
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At s = sII, where sIIis the field line distance to the equator we assume 

TI, = 20 000 O K  according to Serbu and Maier's measurements, and we assume 

(g) II = (5) II = 0 which implies that at the equator the heat flux is zero and 

that our solution is symmetrical with respect to the equatorial plane. The second 

derivative was choosen such that for s = s I ,  in 1000 km height TI = 3.000 OK. 

Q, the energy input alongthe field line was assumed to be 2 X 10- 12 erg/cm3. This 

is an upper limit of the heating rate expected from fast electrons that escape the 

ionosphere (Geisler and Bowhill, 1965) and could quite well be produced in part by 

the solar wind which is another possible energy source. The electron density 

choosen to be 102/cm3 according to the proton density trough at high latitudes ob- 

served by Taylor et al. (1967), was  assumed to be constant alongthe field line. 

With these inputs the computation of equation (15) leads to the temperature 

profile shown in Figure 1 a s  full line. It reveals a magnetospheric temperature 

structure consistant with Serbu and Maier's measurements and a temperature 

gradient of the order of l0/km in 1000 km height. The resulting heat flux is 

j I = -6 x 10-3erg/cm2 sec in this height and is comparable with the energy flux 

expected to flow downwards into the thermosphere (see section 3). For com- 

parison we show also the temperature distribution (dashed line) derived with the 

classical heat flux formula, which illustrated the strong effect of the additional 

flux term introduced here. Thus it appears that our approach offers an appropriate 

mean of explaining high temperatures in the magnetosphere. 
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We have shown that the heat flux equation (14) is actually density dependent. 

With decreasing concentration the third derivative of the temperature distribution 

becomes more effective in a way to decrease the thermal conductivity. The re- 

sult was an increase of the temperature in greater hights. This density dependant 

temperature behavior could also be responsible for the measured increase of the 

equatorial temperature (equation (1)) because at the equator the electron density 

decreases like 

Ne = r-3  to r-4 

(Carpenter and Smith, 1964; Serbu and Maier ,  1966). An alternative explanation 

of the temperature variation with height according to equation (1) will be given 

in the next section. 

Perwndicular Heat Conduction 

low 

Up to now our investigation was based on the assumption of an extremely 

heat conductivity perpendicular to the field lines and therefore a complete 

heat isolation of the different field lines within the magnetosphere. But experi- 

ments as well as theory in plasma physics reveal that plasma turbulence en- 

hances transport processes perpendicular to the magnetic field, such that the 

effective transport coefficients a re  by several orders of magnitudes larger than 

the classical coefficients. (Bohm, 1949; Kadomtsev, 1965; Tsuda, 1967). 
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In the previous section we have shown that the effective parallel heat con- 

ductivity can be significantly decreased due to the low electron concentration in 

the magnetosphere. Thus it is conceivable that the effective conductivities 

parallel ( K ~ ,  e ) and perpendicular ( K e f )  to the magnetic field a re  of the same 

order of magnitude and therefore the anisotropy of the temperature behaviour 

may diminish in the magnetosphere. The consequence would be that the perpen- 

dicular heat transport could also effect the temperature distribution. 

- 

In order to estimate the equatorial temperature profile of such "quasi iso- 

tropic" magnetosphere we employ a transverse heat coefficient ( K ,  e f )  which has 

the same temperature, density and magnetic field dependance as the classical 

term in equation (3), an assumption which is rather arbitrary in view of the very 

different energy transport mechanism involved. If we take B - r-3 and a density 

distribution Ni = r-4 in agreement with Carpenter and Smith (1964) and in the 

order of that measured by Serbu and Maier, the spherical energy equation ( 5 )  

with Q = 0 leads to 

- 

which gives the measured r dependance of T [ E q .  (111. 

From the interpretation of satellite drag measurements a global heat flux 

from the interplanetary space into the thermosphere in the order of 

j erg/cm2 sec 
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is suggested, which could possibly explain the geomagnetic activity effect, the 

semiannual effect and the second heat source of the Harris and Priester model 

(Priester, Roemer and Volland, 1967). Such a heat flux would require a perpen- 

ticular heat conductivity 

From Tsuda's (1967) calculations a factor of K ,  e J K ~  > lo7 can be de- - 

rived which gives evidence that the value of equation 1 7  is not completely in- 

conceivable. 

The present investigation served primarily to indicate that the classical 

energy transport formulae for a plasma are not necessarily valid within the 

magnetosphere. Our calculations are  only crude estimates, which appear to be 

justified by the qualitative agreement between our results and measurements. 
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Figure 1 .  Calculated electron temperatures along a f ie ld  line. The dashed l ine represents the 
result obtained from the classical  formula of the heat flux, the sol id l ine was derived employing a 
modified formula. 
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