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ABSTRACT 

In this investigation the response of various soils to dynamic loads 

was studied by use of an impact penetrometer. A similar static penetrometer 

test was employed to determine any correlation between the static and dynamic 

cases, and to augment the evaluation of the important soil parameters 

affecting the impact mechanism. 

Considerations for the design of the equipment and development of the 

test program indicated that application of the penetrometer concept would be 

feasible for this investigation for both the static and dynamic tests. The 

dynamic penetrometer was designed as a projectile instrumented with strain 

gages for the measurement of impact forces. The static penetrometer decided 

upon was the Proctor Plasticity Needle. The penetrometer parameters affect- 

ing impact were held constant in the test program by dropping the projectile 

vertically and from the same height each time. 

Target media selected for testing were two poorly graded sands, a 

well graded sand, a clay, and a crushed stone. The moisture contents and 

densities of the sands were varied widely during testing, while the clay was 

tested in situ. 

For the 36 tests analyzed, observations showed that the soil-projec- 

tile interaction generally agreed with existing failure theories for impacts, 

and that the shearing strength of the soil apparently is a principal factor. 

It was found that impacts in granular soil were influenced greatly by the 

amounts of water and air in the target materials, and that no direct corre- 

lation exists between static and dynamic tests when these constituents are 

varied. Remote target evaluation employing penetrometer techniques is feas- 

ible if the penetrometer is properly tested and calibrated with respect to 

V 



possible target conditions and impact velocities. Also, prediction of impact 

forces could be simplified through use of a.dynamic penetrometer with charac- 

teristics affording the ability to extrapolate to a prototype projectile. 
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CHAPTER I 

INTRODUCTION 

In the past, requirements for evaluating soil strength have been dic- 

tated almost entirely by static loading conditions. Consequently, methods 

devised to measure the soil strength characteristics generally have been 

confined to evaluation of static strengths. More recently, however, the 

dynamic loading conditions encountered on highways and airfields have created 

a need for information about the action of soils under dynamic loads. In 

addition, there is the current probability of terminating space probes 

either on land masses here on earth, or on the moon, which necessitates the 

evaluation of soils as target media for impacting projectiles. 

For determination of soil response to impacting projectiles, a 

desirable test would be one which measured the strength, or hardness, of soils 

in situ, as well as being applicable to both static and dynamic rates of 

loading. Triaxial and unconfined compression tests and similar laboratory 

tests can be influenced by sampling disturbances and are therefore unsuitable. 

Static penetrometer tests, however, are easily employed on soils in situ, 

arid application of the penetrometer technique to dynamic loading conditions 

is feasible. 

OBJECTIVE 

The primary objective of this investigation was to develop a pene- 

trometer test to evaluate soil-projectile interaction during impact, and to 

compare the results of this dynamic test with those of a similar static test. 

SCOPE 

In this investigation, the only parameters that were allowed to vary 

appreciably were the soil type, density, and moisture content. Three types 
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of sands having different particle sizes and gradation were used. These were 

varied widely in density and moisture content during testing. In addition, a 

crushed stone, a clay, and water were used as target media. 

An accurate evaluation of the soil-projectile interaction mechanism 

during impact seemed more easily attainable if the variations of the pro- 

jectile parameters were held to a minimum. The penetrometer tests were thus 

designed to give repeatable conditions with little variation. Comparison of 

the static and dynamic types of testing was based mainly on the use of identi- 

cal geometrical configurations for the contacting portions of the penetrome- 

ters. 



CJUPTERII 

DESIGN CONSIDERATIONS 

The overall consideration for the design of test equipment was that 

it should be feasible in construction and operation. Also, the nature of the 

impact interaction effected by the dynamic test should be such that it could 

be correlated to other projectile-target impacts, as well as being reproducible. 

FEASIBILITY 

A basic consideration in the design of the dynamic test was that of 

instrumentation. If the instrumentation were too elaborate, the losses of 

portability and economy of time and money could nullify the advantages gained. 

However, since the information sought from the dynamic test included measure- 

ment of the impact velocity of the projectile and the acceleration-time record 

of the impact, it was recognized that a certain amount of electrical equipment 

was necessary. 

It was decided to monitor the dynamic test on an oscilloscope using a 

strain gage circuit to measure the impact forces. It was reasoned that most 

people interested in reproducing this type of test could obtain and construct 

the necessary components easily, whereas other methods of force or accelera- 

tion measurement and the corresponding instrumentation might be unobtainable. 

The arrangement could be set up in the laboratory and powered by line voltage, 

or taken to the field and powered by a generator. The latter situation required 

two men and a pickup truck. 

Developing a similar static testing procedure involved economic 

considerations, and required correlation to the dynamic test. The type of 

penetrometer needed was one which called for little extra equipment, little 
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preparation for use, and ease of handling during testing. Since so much 

time was to be committed to the design and construction of the dynamic test, 

it was decided to use, or adapt to use, one of the existing static penetra- 

tion tests, rather than design a new one. After a review of the possible 

types of penetrometers that seemed feasible, the Proctor Plasticity Needle 

was chosen. This apparatus, described later in more detail, is portable and 

convenient to use, either in the laboratory or in the field, and requires 

only one person for operation. 

CONTROL OF TEST CONDITIONS 

As was previously mentioned, it was desired to make all impact para- 

meters constant, except for soil type, density, and moisture content. It was 

found to be difficult to control dynamic parameters associated with the im- 

pact velocity due to the influence of friction and air resistance. However, 

geometrical parameters such as the shape of the contacting surface and the 

penetrometer weight were kept constant. 

Velocity 

The simplest way to deliver a projectile to a target is by dropping 

it. To minimize the possibility of varying the angle of impact of the pro- 

jectile from the vertical, a guide system was needed. By employing a delivery 

tube for the projectile, a vertical drop for each test and a reference datum 

for repeatable drop heights could be ensured. The delivery tube length was 

selected to afford a velocity of about 15 fps. This is considered to be in 

the range of impact velocities of aircraft landings or parachute-controlled 

drops. It is assumed that accelerations caused by impact velocities that are 

subsonic but not static are proportional to the magnitude of the velocity. 

Of the 36 tests analyzed, the average impact velocity was 15.37 fps, 

and the range between the maximum and minimum values was 1.71 fps. About 
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eighty percent of the velocities fell within f 0.5 fps of the average, as 

shown on Table 4, Appendix C. The slight variations in drop height to allow 

for proper oscilloscope trigger time seemed to have little effect on the 

velocities. 

Impact Mechanism 

The contacting portion, or foot, of the projectile was designed as a 

1.156 in. diameter (about 1.0 sq. in. area) cylindrical plate, with the flat 

portion as the impacting surface. This foot, described later in more detail, 

was designed to minimize any friction forces on its perimeter by making it 

only 0.32 in. thick and recessing the shank, or leg, connected to it. Exper- 

iments performed in granular media indicate that contact surface diameters 

of about 1.0 in. and greater give the same penetration for the same velocity 

and area1 mass density (mass/contact area), while those diameters of less 

than 1.0 in. tend to give less penetration because friction is proportionately 

greater2. A contact foot with the same dimensions was also attached to the 

static penetrometer, giving the two types of tests geometric similarity. 

5 



CHAPTER III 

APPARATUS 

The equipment for this testing program was selected and designed to 

satisfy the considerations of the preceding chapter. 

DYNAMIC PENETROMETER 

Development of this part of the testing program involved designing 

the penetrometer and adapting it to the instrumentation. 

Projectile 

The impact penetrometer is shown in Figure 1. Its weight is 5.384 

lb., and the foot, leg, and handle are threaded pieces. The ratio of length 

to diameter of the brass cylinder was selected to reduce wobbling of the pro- 

jectile during delivery, and the four holes in the cylinder help reduce air 

resistance. 

The penetration leg is annealed and heat treated beryllium copper 

alloy which has a modulus of elasticity of 18.5 x 10 6 psi and a proportional 

limit of 100,000 psi, making it quite suitable for the attachment of strain 

gages. The four strain gages were bonded symmetrically about the midpoint of 

the leg. ,The two axially oriented gages were placed diametrically opposite to 

each other, and the two transversely oriented gages were applied in the same 

manner. Waterproofing and shock protection for the strain gages and wiring 

were attached to the leg with tape during testing. The strain gage leads were 

run up through one of the holes in the cylinder and attached to the handle so 

they would not foul when the projectile was dropped. 

Delivery Tube 

The tube, shown in Figure 2, was outfitted with a fly lead hanger 
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FIGURE 1 

DYNAMIC PENETROMETER 
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FIGURE 2 
DELlVERY TUBE FOR DYNAMIC PENETROMETER 
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which has clips to hold the loops of the fly leads prior to a test drop. 

The ends of the fly leads are connected to a 4-spade plug which is detached 

from the socket and dropped down the tube after each test to avoid pulling 

the projectile back up the tube. The socket and necessary strain gage cir- 

cuitry and the velocity measurement contacts were attached to the tube. The 

upper velocity contact is swivel-mounted in order to allow the projectile to 

be inserted in the top of the tube and then the contact point to be swung 

over to touch the top shoulder of the brass cylinder. A hole was drilled for 

the detachable pin 5.5 in. below the top of the tube to provide a convenient 

way to hold the projectile in place before a test. The lower velocity contact 

is a small screw attached to the end of a metal strip. The screw head sticks 

through a slot into the tube far enough to contact the lower shoulder of the 

brass cylinder of the projectile. The vent slots at the bottom of the tube 

help reduce air resistance to the penetrometer during a test. Clearance 

between the base plate on the bottom of the tube and the soil is provided for 

by the three adjustable feet. The bearing surfaces of these feet are 2 in. 

by 2 in. plates. 

Electrical Instrumentation 

The instrumentation for the testing procedure was employed to monitor 

the drop time of the projectile and the force-time trace of the impact. The 

components and circuits are described here while the calculations for these 

values are explained in Data Beduction. Chapter V. 

Basic Components 

The components for the dynamic test setup are shown schematically in 

Figure 3. The A. C. source while testing in the field was a 1.5 KVA gasoline- 

driven generator, while the available house power was used in the laboratory. 
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FIGURE 3 

SCHEMATIC OF TEST SETUP 
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The oscilloscope used was a Type 565 dual beam Tektronix having two Type 3A3 

dual-trace, differential vertical amplifiers. These plug-in units were oper- 

ated in a single channel mode providing one trace each and low band width of 

5 kc for high frequency noise elimination. The velocity measurement circuit 

output was displayed on the upper beam, and output of the force measurement, 

or strain gage, circuit was displayed on the lower beam. The two independent 

time bases provided by this oscilloscope made it possible to record simul- 

taneously the velocity measurement trace, which lasts about l/2 second, and 

the force-time pulse, lasting only hundredths of a second. All oscilloscope 

data was recorded by a Polaroid oscilloscope camera on 4 in. by 5 in. film. 

A Harrison Labs model 6204A electronically regulated and adjustable D. C. power 

supply provided power for the strain gages. This voltage was continuously 

monitored with a voltmeter during testing. The velocity measurement 

circuit was powered by two 1.5 V. dry cell batteries. 

Velocity Measurement 

Figure 4 shows that part of the circuit used to measure the drop time 

of the projectile. The upper and lower velocity contacts were insulated from 

the tube to yield zero voltage on the oscilloscope while the projectile 

dropped. Figure 5 explains the sequence of a typical test as recorded on 

Photo No. 1. At position 1 on the velocity sweep, the projectile started 

dropping and cleared the upper contact. The voltage dropped to zero, giving 

a negative slope which triggered the upper beam unit sweep. Position 2 shows 

the duration of the drop, and position 3 shows the point at which the shoulder 

of the projectile first touched the lower contact. 

Force Measurement --- 

The schematic of Figure 6 shows the penetrometer at the position 
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FIGURE 4 

SCHEMATIC OF VELOCITY MEASUREMENT CIRCUIT 
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PHOTO NO. 1 

TYPIC& DROP TEST RECORD 

FIGURE 5 

TIME SEQUENCE OF DROP TEST RECORD 
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FIGURE 6 

SCHEMATIC OF FORCE MEASUREMENT CIRCUIT 
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corresponding to point 3 on Figure 5. The positive voltage rise of the 

velocity sweep at that position triggered the sweep for the force-time pulse. 

The projectile impacted the target at position 4 and began the impact pulse. 

The lower contact is adjustable vertically to facilitate recording 

of the force pulse, which only lasts 15 to 50 msec. Usually, 0.2 in. 

clearance was allowed between the penetrometer foot and the target when the 

lower contact and the penetrometer shoulder touched, which explains the time 

lag between points 3 and 4. The method of adjusting the lower contact to 

compensate for slight variations in drop height to the target was used in 

lieu of trying to attain the exact same drop height for each test. 

The full bridge strain gage circuit, consisting of four 120 ohm Budd 

Metalfilm Strain Gages, is shown in the insert of Figure 6. These are type 

C9-141-B gages with a gage factor of 2.08. By mounting the gages in this 

fashion, any force component normal to the direction of impact would theo- 

retically be cancelled out of the signal so that only axial loads would be 

recorded. Normal procedure was followed in balancing the circuit. Before 

each test series, the oscilloscope was adjusted, the voltmeter was put 

across the power supply, which was adjusted to 6 V., and then the gage 

circuit was balanced. 

STATIC PENETROMETER 

Figure 7 shows the plasticity needle designed by R. R. Proctor in 

the early 1930's to determine the condition, or plasticity, of soil under- 

going compaction5. As previously mentioned, its portability and ease of 

operation made it the best static penetrometer for this testing program. 

It is operated by placing the penetration foot in the desired loca- 

tion and then applying a vertical force to the handle. The foot should be 
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FIGURE 7 
STATIC PENETROMETER 
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forced through the soil at l/4 in. to l/2 in. per second. In some materials 

this is not possible, and the procedure used for this program was to apply 

force at the rate of about 5 lba. per second until the desired penetration 

or force was reached, regardless of fluctuations in the penetration rate. 

The penetrometer was calibrated in a compression testing machine prior to 

testing. 
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CHAPTER IV 

TARGET MEDIA 

The possibilities for different types of soils as targets are virtually 

unlimited, due to the portability of the equipment, but the target materials 

for the testing program included only the soils discussed in this chapter, 

and water. A recommended procedure was followed in describing these soil 

4 
types . The descriptions include the general results of the classification 

tests and the range of densities and moisture contents of each soil type. 

All the classification tests were run on the accumulated material from the 

moisture sample tests. Specific and detailed soil data for each drop test 

are listed chronologically in Appendix C. 

OTTAWA SAND 

This well-known type of silica sand was shipped from Ottawa, Illinois. 

It is referred to in this report as SP-(OS). The l'SP1l is the Unified Soil 

Classification System designation for a poorly graded sand, and the "CStl is 

derived from the name of the sand. It is a grayish-white colored material 

with mostly rounded particles. 

For the samples taken, the maximum void ratio (e) was 0.729, while 

the minimum was 0.511. The in situ density, or wet density, (y,), varied -- 

from 104 pcf to 130 pcf. Several mechanical analyses were performed on 

this sand, and a representative Grain Size Accumulation Curve is shown on 

Figure 8. U. S. Standard Sieve Sizes 200, 150, 100, 80, 60, 40, 20,and 10 

were used. 

Obtaining accurate measurements of specific gravity required very 

close control of temperature, volume, and weights. In these measurements 
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n 
accuracy was attained by using a 100,ml. flask, calibrated at 20°C, demineral- 

ized water, temperature-controlled weighings on an electronic balance, density 

adjustments for temperature, and the use of heat and vacuum to drive air from 

the soil. The specific gravity of Ottawa Sand was found to be 2.654. Pene- 

tration tests for this material were run only in the laboratory. 

COLORADO RIVER SAND 

This material is referred to herein as SP-(CRS), as it has the grain 

size and distribution that the U.S.C.S. classification designates as "poorly 

graded sand". It is a clean sand, light brown in color, consisting primarily 

of quartz. The particles of this sand are subangular and of rough texture. 

It is a Colorado River deposit obtained from the Austin, Texas area. Figure 9 

shows the Grain Size Accumulation Curve, for which the standard sieve sizes 

200, 150, 60, 40, and 20 were used. 

The density samples taken showed the maximum and minimum void ratios 

to be 0.884 and 0.584, respectively. Wet weight, (v,), of the samples varied 

from 95 pcf to 125 pcf. The specific gravity of Colorado River Sand tias 

found to be 2.648. Penetration tests on this sand were run only in the 

laboratory. 

CAPITOL AGGREGATES SAND 

The field testing site for this soil was located along the Colorado 

River, southeast of Austin, Texas, on the property of Capitol Aggregates, 

Inc. The soil for laboratory testing was taken from this site. The sand is 

referred to in this report as SW-(CA), 'tSW11 being the U.S.C.S. designation 

for a well graded sand. 

Capitol Aggregates sand is a Colorado River deposit typical of the 

area. It is a light brown color with subangular particles comprised basically 



MECHANICAL ANALYSIS 
Name- Colorado River Sand GRAIN SiZE ACCUMULATION CURVE Sampie No. -(@!L- 

Date 11-10-66 Sheet No. - 1 

0 
e 

CT2 

c 
E 

iti L 

d 

Sieve Sizes -- U.S.. Sgndgd Sieve Sizes -- U.S.. Sgndgd --Round Openggs on l/4” and Larger --Round Openggs on l/4” and Larger 

ki 
PC 0 FF g* 

?I - 
g z* t? t? E! E! z z : : z z 

A -I* -IN InIP 1 
I i I I 
I I1 /r 

.I 
-12 I 

I 1 I 
: f I I I 

1. i I I 1 
! I 

I 
I 

30 
1 I i I ,j j I 

k! 
il! /Ii” 

6, 
II I 

9 I 

70 
I I 

80’ I I/ ’ I 
! 

I - - Particle Size - - Diameter in Millimeters I 
CLAY 1 SILT FINE SAND COARSE COARSE 

SOIL BINDER SAND ! AGGREGATE 



of quartz with some limestone and feldspar. The rock fragments are fresh to 

slightly weathered. The maximum void ratio, (e), of the tested material was 

0.705, while the minimum was 0.429. The wet weight, (y,), varied from 99 pcf 

to 132 pcf. This sand tended to form a crust or cementation at low moisture 

contents in the field. Penetrometer tests (Nos. 10-10-2, 10-10-3, and 10-10-7) 

clearly show these effects and are discussed later. 

U. S. Standard Sieve Sizes 200, 100, 40, 20,and l/4 in. were used in 

the mechanical analysis of this sand. The representative curve, Figure 10, 

gives an accurate picture of the particle size distribution. Of all the 

mechanical analyses run for this sand, individual curve deviations vary less 

than 10%. The specific gravity of this sand was found to be 2.644. 

DEL RIO CLAY 

The test site for this clay was at The University of Texas Balcones 

Research Center in Austin. It is a typical Central Texas clay, and is 

indexed in this work as CH-(BS). "CH1' is the U.S.C.S. classification for 

inorganic clays of high plasticity, while "BS1' stands for llBlack Soil". 

Tests were run and samples taken over an area of about 30 by 10 ft in 

which the soil varied in color from dark brown to black. It is a preconsoli- 

dated clay, and contains some calcareous nodules up to l/4 in. in size, as 

well as tiny grass roots and very slight traces of sand. When the specimen 

is broken, the surface of the fracture appears dull and crumbly. Its dry 

strength is high, being hard to crush with the fingers, and it has high 

plasticity. 

From four borings run in the immediate area, the average liquid 

limit, plastic limit, and plasticity index for the clay were found to be 

59%, 34%, and 25%, respectively. The void ratio, (e), varied from 0.968 to 

0,870, while the wet weight, (y,), varied from 112 pcf to 118 pcf. The 
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average unconfined compressive strength was determined as 0.75 tsf. 

Standard "Quick I1 triaxial compression tests run on the borings yielded an 

average angle of internal friction, ($), of the clay of 4 0 , while an average 

value for the cohesion, (c), was found to be 5 psi. 

A specific gravity analysis of this soil showed that value to be 

2.678. Tests on the clay were run only in the field. 

TEXAS CRUSHED STONE 

This material was obtained from the Central Texas area. It is 

designated as SP-(TCS), has been washed and screened, and is composed mostly 

of crushed limestone with small quantities of quartz. The particles are 

fresh, angular and rough textured. It is a poorly graded coarse sand, 

almost gravel-sized. The mechanical analysis is shown in Figure 11, for 

which sieve sizes 50, 40, 30, 20, 10, and 4 were used. 

The void ratio, (e), for this test was about 0.9, while the wet 

density, (II,), was 87 pcf. The specific gravity of Texas Crushed Stone was 

found to be 2.691. Tests were run on this material only in the laboratory. 
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CRAPTERV 

EXPERIMENTAL PROCEDURES 

The procedures for this investigation are described in two main 

categories: data collection and data reduction. 

DATA COLLECTION 

The investigation procedure was the same for all targets, with the 

exception of the slight variations between laboratory and field testing. 

The arrangement for field testing is shown in Photo No. 2. 

Target Preparation 

Preparation of targets for in situ testing generally required removing -- 

grass and other non-soil materials, and leveling the impact surface. This 

was done by hand, or, as in the case of the clay, with a shovel. 

Laboratory tests, including most of the tests in this program, were 

run on sand placed in a waterproof 32-gallon can, 20 in. in diameter. Enough 

material was placed in the can to fill half of it. The sand was vibrated to 

the desired density when it was dry or saturated, but when moist it had to 

be hand-packed, layer by layer. 

Several tests were run on each soil condition to minimize the 

possibility of a poor test being used in data analysis. For these multiple 

tests on the same soil condition, the sand underwent the same preparation 

process each time. The chronological soil data listing, Table 3 in Appen- 

dix C, shows this control of the soil density and moisture. 

Equipment Preparation 

After the target area was prepared, the tube was set in place and 

leveled. The height of the base above the soil was then measured by sticking 
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PHOTO NO. 2 
Field Testing Arrangement 
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a graduated dowel through holes in the base around the impact area, and the 

lower velocity contact was set in the desired position. The oscilloscope 

was set, the information recorded, and the input voltages checked. A final 

check on the position of the trace was usually made, after which the Polaroid 

camera shutter was opened and the equipment was ready for a drop. 

Testing 

After the pin was pulled, the projectile was held firmly against 

the upper contact and released. After the drop, the fly leads could be de- 

tached, the tube removed, and the penetration of the projectile measured. 

The static penetration tests were then performed, usually two or three 

around the impact point. The method followed was to penetrate to the same 

depth as the projectile, read that force level, then penetrate until the 

force level reached 100 lbs., thereby obtaining an approximate static force- 

penetration curve. The average of the static tests was used. This procedure 

is shown in Photo No. 3. 

A sample was then taken from a nearby but undisturbed portion of the 

impact area, as in Photo No. 4, and weighed immediately. Samples were oven- 

dried, usually for 24 hours, thus completing the necessary data collection 

procedures. 

DATA REDUCTION 

Reduction of the test data included processing the dynamic penetration 

information for computer analysis, and doing the necessary computations and 

plotting of the soil data and static tests. 

Process 

The photograph records of the velocity and force-time traces were 

reproduced in the form of positive image transparencies through the use of a 
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PHOTO NO. 3 
Method of taking static 
penetrometer test. 

PHOTO NO. 4 
soil sampling method. 
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3-M Co. Model 70 dry photo copier. An overhead projector was employed to 

project enlarged records on 11 in. by 17 in. graph paper, which were then 

traced onto the paper for analysis. The force-time trace was then divided 

into equal time increments, and the ordinate of the curve at each increment 

was recorded and punched on computer cards. The length of the velocity trace 

between voltage changes, the oscilloscope settings, the clearance between the 

tube base and soil, the lower velocity contact setting, and the necessary 

constants were also punched for computer operation. 

Computations 

The Principle of the Conservation of Momentum states that for an 

impacting body having a lumped mass: 

where; 

F(dt) = q (dv) 

F = instantaneous force 

t = time 

m = mass of the body 

v = penetrating velocity. 

(1) 

The left side of the equation is the area under the force-time pulse, 

the integration of which yields the change in penetrating velocity: 

where; 

lt 
-I m F(dt) = v - v = u 

0 i 

'i = impact velocity 

u = change in penetrating velocity. 

(2) 

If the instantaneous velocity, (v), during penetration equals the 

impact velocity, (Vi), minus the change in penetrating velocity, (u), it 



follows that: 

$ v(dt) = Y (3) 

where: 
I 

Y = penetration depth. 

A computer program was written to manipulate the data in this manner 

after applying the necessary computation constants. Obtaining the correct 

impact velocity, (Vi), obviously was quite important, and calculating it with 

the known drop time between contacts was done as follows. 

The equation of the motion of the mass is: 

1 
h- 2 gt2 (4) 

where; h= drop height 

g = acceleration due to gravity 

t = corresponding drop time. 

If the effective acceleration were reduced somewhat due to air 

resistance and friction to a value (g'), then: 

where; 

1 
h = z g' tla 

hl = drop height of the projectile between 

velocity contacts 

t1 = drop time between velocity contacts 

(measured on oscilloscope). 

(5) 

If (ha) were the total drop height of the projectile to the target, 

and if (Vi) were the impacting velocity, then: 

vi = Jzir . i (6) 
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Substituting: 

yields: vi = f, J-ix- . 

(7) 

(8) 

. 

Checks were made on this method of obtaining impact velocity by 

inserting supplemental velocity contact positions, and the results were in 

good agreement with the chosen mode of calculation. 

Appendix B contains a discussion, input instructions, a listing, and 

representative output from the FORTRAN program used. It calculates the 

instantaneous forces, velocities, and penetrations for the time increments 

chosen. Also available is the option to have it plot out the force-time and 

force-penetration curves of each test, which are included in this text. 

The reduction of the static penetrometer data consisted of drawing 

the force-penetration curves and tabulating forces. The soil data calcu- 

lations included determinations of the unit weights, and the volumetric 

amounts of the components - air, water, and solids. 
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CHAPTER VI 

RESDLTS 

The results of this investigation generally are in agreement with 

existing impact theories. Information has also been developed on other 

aspects of dynamic interaction, such as the influence of the volume consti- 

tuents on impact response. Recommendations are made for an improved pene- 

trometer testing program. 

ANALYSIS OF DATA 

An analysis of representative test data, presented here in several 

forms, yields significant information about impact behavior under the condi- 

tions of this testing program. 

Characteristics of Impacts 

In general, there are three types of impacts - elastic, plastic, and 

penetration. Perfectly elastic impacts never occur, but can be closely 

approximated by impact between solid steel objects, or even between steel 

and concrete. Figure 12, (a), shows the characteristic deformation and force- 

time pulse, respectively, for elastic impact?. These same characteristics 

are shown for plastic impact in Figure 12, (b), wherein a non-deforming pene- 

trator enters a softer material for a distance usually less than the diameter 

of the penetrator. Penetration impact, represented in Figure 12, (c), is 

the most complex of the three types. For a given input energy (the same mass 

and velocity of the penetrator), the maximum force of the elastic impact 

will be larger than that of the plastic impact, which is larger than that of 

the penetration impact. The maximum time for the elastic impact will be 

shorter than that of the plastic impact, which is shorter than the penetration 
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impact time. Most projectile-soil impacts are of the penetration or plastic 

type of impact or a combination thereof. 

In an attempt to describe the impact mechanism between a blunt-ended 

cylinder and a non-compressible soil target, several references are made to 

the Prandtl-Terzaghi system for plastic equilibrium after failure beneath a 

continuous footing'. In this analysis, shown in Figure 13, the most notable 

simplifying assumptions made are: (1) the base of the footing is rough, 

(2) its depth below the surface is less than its width, (3) the footing 

exerts a constant, uniform, vertical pressure on the soil, and (4) that the 

soil is a homogeneous, isotropic, continuum which fails in general shear. 

Zone I of the failure mechanism is a wedge zone of active pressure in which 

the soil is in elastic equilibrium and acts as part of the footing. At the 

instant of failure it is resisted by the passive earth pressure, (P ), 
P 

acting 

at an angle (8) with the surface, and by the cohesion force, (Ca), acting 

tangentially to the wedge surface. The Zones II are zones of radial shear 

whose failure planes are the logarithmic spirals shown. The zones of 

passive pressure, Zones III, have the tangential failure planes. The cohe- 

sion force, (Ca>, is due to the cohesion of the soil, (c), while (0) is 

the angle of internal friction of the soil. 

It is emphasized that this system is, at best, an oversimplification 

for a complex static condition. Therefore, correlation to the dynamic case, 

which is an unstable case including viscous and inertial factors, is quite 

difficult to effect. However, investigations have shown that some correla- 

tion exists between the Prandtl-Terzaghi bearing capacity formula and experi- 

mental values for a one-inch wide penetrator in a simulated cohesionless 

1 soil . Also, analyses of projectile penetrations in soil-like cohesive 

7 media , and into cohesionless sand and slightly cohesive soils 10 suggest the 

35 



FIGURE 13 

PLASTIC EQUILIBRIUM AFTER A SOIL FAILURE 
BENEATH A FOOTING 

/I/ \\\ ///,\A. 

Surcharge Load 

/ / 
/ / / 
/ / 
/ / / / //A. \\ ' / /,\\ 
/ / / 
/ / 
/ / 
SP / 

/ ,P 
/ qd / 

Failure Surface 



occurrence of a penetration mechanism similar to the Prandtl-Terzaghi system. 

Figure 14 shows just such a type of assumed mechanism and the direction of 

soil flow. High speed photographs of projectiles penetrating both two- 

dimensional granular target media (small steel cylinders), and dry Ottawa 

sand, clearly show the formation of a soil wedge, shear fronts, and soil 

ejection. 

Soil Characteristics Regarding Impacts 

Soils may be classified into four different general types with regard 
l .a 11 to impact behavior . By assuming that soil impacts undergo some form of the 

above mechanism, explanation of impact-related phenomena for certain condi- 

tions is simplified. 

The first type is saturated dense sand and silt and saturated over- 

consolidated clays, and is included in this investigation, except for silt. 

Statically, these soils have a higher undrained strength than drained 

strength, and shearing causes a volume increase. Under dynamic loads, the 

drainage does not take place and the material is essentially incompressible. 

Observations show that soils with sufficient cohesive strength (clays) allow 

the penetration hole to stay open after an impact. The volume of the original 

hole, or volume of displaced soil, is about equal to the volume of the soil 

rising above the original surface and closing in on the hole. Saturated sands 

tend to flow around the penetrator foot and fill the hole shortly after the 

impact process is ended, even though the characteristic raised surface for 

incompressible materials is evident. 

The second type includes dense, dry-to-moist sands, silts, and clays. 

Experimental data for this.investigation include the sands, but not silts 

and clays.. The effects of penetration impacts on these sands vary because 

of varying moisture content. The dry sands eject much of the displaced 
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material, while the moist sands tend to show the characteristic raised surface 

with radial tension cracks around the open hole. Their frictional strength 

consists of resistance to particle sliding and slipping, and resistance to 

volume change. At the low velocities and confining pressures of this test 

program, these effects were not pronounced, even though there was some 

evidence of crushing behavior. Dessicated clays should behave much like a 

brittle solid until slippage occurs, then as a plastic solid. 

Saturated loose sand and silts and saturated normally consolidated 

clays constitute the third general soil type. Statically, these materials 

have a drained strength higher than the undrained strength, and tend to 

decrease in volume when sheared. No drainage occurs during an impact, caus- 

ing the material to be essentially incompressible and at constant volume 

with high pore pressures. This in turn reduces the total pressure between 

particles and causes the effective pressure to be small. If, in noncohesive 

material, this effective pressure approaches zero, the material behaves as a 

viscous fluid, in a process called liquefaction. Approximately the same is 

true for clays. 

The fourth general type of soil includes loose, dry-to-moist sands 

and silts. Some loose sands were tested in this investigation. The materi- 

als decrease in volume when sheared and act as compressible media, Shock 

waves should decrease the friction of the sand and collapse the structure of 

silt. Resistance to compression after this collapse would be the only 

important characteristic of this soil to resist penetration until shearing 

resistance took effect at the critical density. The displacement of the soil 

above the original surface during this type of impact is scarcely noticeable 

as the process is accompanied by considerable crushing and densification. 
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Representative Test Data 

An attempt was made to include in both this chapter and Appendix C 

all usable data, because in the case of research such as this which includes 

many parameters and measurements, there may be no present knowledge of the 

possible analyses which could be applied to these data. 

The force-time pulses, or lt.signaturesll, of tests on the soils des- 

cribed in Chapter IV and Appendix C were reduced for calculation by the 

computer program described in Appendix B. Since multiple tests were run on 

most of the soil conditions, only the representative information from each 

condition is included in this chapter. 

Table No. 1 shows static and dynamic force-penetration data, and 

the pertinent soil data: wet weight, (y,), and volumetric percentages of 

solids, (sv), water, (wv), and air, (a,). Figures 15 through 22 show the 

dynamic force-time and force-penetration curves for these representative 

soil tests as plotted by the computer. The static force-penetration curves 

as well as the measured penetration depths have been added to these curves. 

Discussion of Data 

Because of the complex nature of the impact mechanism, sdme character- 

istics of these data were observed to be affected by various conditions. It 

was desired to define or explain these conditions when possible, in addition 

to discussing and analyzing data. 

Impact Tests 

As previously discussed, the types of projectile-soil impacts are 

the continuous penetration type, the plastic type, or a combination of the 

two. An examination of the force-time signatures will reveal that the pro- 

visions for essentially plastic impact are met by test 10-10-g in the clay, 
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TABLE NO. 1 

REPRESENTATIVE TEST DATA 

TEST NO. 

11-22-1 

11-22-7' 

Water 62.4 0.0 100.0 

SP-(TCS) 86.9 52.6 47.4 0.0 

11-15-3 SP-(OS) 108.0 65.4 34.6 0.0 

11-9-3 SP-(OS) 107.0 57.8 24.7 17.5 

11-10-l SP-(OS) 118.8 60.4 10.2 29.4 

11-11-4 SP-(OS) 130.0 66.2 2.7 31.1 

11-16-2 SP-(CRS) 100.4 60.7 

11-16-5 SP-(CRS) 99.8 55.8 

11-18-2 SP-(CRS) 111.6 56.1 

11-18-4 SP-(CRS) 121.0 60.6 

39.3 0.0 407.7 61.5 2.81 2.8 69 2.8 

31.7 12.5 257.7 82.8 3.35 3.4 72 3.4 
13.7 30.2 208.0 173.1 1.73 1.7 72 1.7 

6.4 33.0 116.4 197.8 1.83 1.9 81 1.9 

12-2-3 SW-(CA) 

10-10-7 SW-(CA) 
12-2-5 SW-(CA) 

12-2-8 SW-(CA) 

10-10-g CH-(BS) 

111.0 

101.2 

101.3 

131.5 

112.0 

67.2 32.8 0.0 357.5 68.0 3.41 3.5 

59.6 36.0 4.4 484.9 111.5 1.71 1.9 

58.6 33.8 7.6 192.1 96.0 2.55 3.0 

70.0 4.2 25.8 431.1 213.6 1.16 1.3 

50.8 5.8 43.4 -- 310.7 0.96 0.8 

SOIL DATA 
TYPE ;: I 

,. Y, 'j sv a 
V 

'(pcf) / (%) (%) 

c 

i- 

l- DYNAMIC l- STATIC II 
MAX. F 

Fc 

(lbs) 

5.0 

474.2 

262.2 

284.0 

116.8 

176.8 

.CE 
Fs 

(lbs) 

PENETRATION 
Calcu- Meas- 
lated ured , 

1 

f 

FORCE 

P 

(in) L (in> (lbs) 

ENETRATION(I 
Measured i 

(in) 
1 

5.7 

44.3 

3.21 3.5 mm -- 

2.64 2.7 115* 2.7 

64.5 3.55 3.5 66 3.5 

94.7 3.22 3.0 69 3.0 
121.6 2.35 2.6 58 2.6 

140.8 1.84 1.7 15 1.7 

100 

110* 

77 

10 

200* 

3.5 

1.9 

3.0 

1.3 

0.8 

* Extrapolated values 



FIGURE 15 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
WATER AND TEXAS C&USHED STONE, SP-(TCS) 
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FIGURE 16 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
OTTAWA SAND, SP-(OS) 
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FIGURE 17 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
OTTAWA SAND, SP-(OS) 
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FIGURE I8 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
COLORADO RIVER SAND, SP-(CRS) 
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FIGURE 19 

FORCE-TIME AND FQRCE-PENETRATION CURVES FROM TESTS IN 
COLORADO RIVER SAND, SP-(CRS) 
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FIGURE 20 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
CAPITOL AGGREGATES SAND. SW-(CA) 
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FIGURE 21 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
CAPITOL AGGREGATES SAND- SW-(CA\ 
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FIGURE 22 
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Figure 22. The combination type of impact is generally seen in tests on the 

saturated or nearly saturated sands, and the continuous penetration type of 

impact is seen in the impacts on sands with low water content. 

On virtually all of the penetration type of impact tests in sands 

there is an initial force peak, or spike, which also has been encountered in 

many other investigations of impacts in granular media. This force is listed 

as the initial contact force, (Fc), in Table No. 1. A secondary force peak, 

listed as (Fs), usually occurs some time later in the test. 

An attempt to analyze the force, (Fc), leads to several theories. 

The process of liquefaction, previously described as the densification of a 

loose soil after being impacted, and behavior of the soil as a viscous fluid 

in the process, could certainly be attributed to some of the cases. Of 

course, for most of the tests, the density of the sand exceeded, or was 

close to, the critical density, and liquefaction probably did not occur. 

Comparison of the test signature of ll-22-7-SP-(TCS), Figure 15, with any 

of the signatures from the fine grain sands at zero moisture shows a signi- 

ficant difference. This is apparently due to the impact of the penetrometer 

foot with a relatively smaller number of grain,s, each having a much larger 

mass than the fine grain sands, causing them to blast out a crater which was 

almost 2 in. deep. The tests in the finer sands show a slight trend in this 

direction as the average grain size increases from (OS) to (CA). From obser- 

vations, it would also appear that the size of the spike varied from one time 

to the next when the only soil condition that varied was the surface condition. 

Smoothing the soil surface by hand after vibration tended to decrease the size 

of the spike, while impacting on a vibrated, but manually undisturbed, surface 

yielded a high (Fc)- The possibility of some influence by shock waves can- 

not be drscounted. 



In any event, for a cylindrical plate contacting surface, the value 

of (Fc) can be quite high and short in duration, making it extremely difficult 

to record with precision. As a result, the measured values of (Fc) appear to 

be random and have no relationship with any other important parameter. In 

this analysis, the contact force, (Fc), is not significant, recognizing, 

however, that in a few cases it is large enough to obscure the value of 

(Fs). A different contact geometry is recommended for future tests if this 

is to be avoided completegy. 

For impacts in cohesive soil (lo-lo-9 in Figure 22), there is no con- 

tact force, (Fc), and the peak force for these tests is listed as (Fs). This 

secondary force tends to exhibit values for cohesive and noncohesive targets 

alike, which are influenced by various parameters. Figures 23, 24, and 25 

show dynamic impact relationships between (Fs), (y), and the total pulse 

time, (t,>, of an impact, for this investigation. The shape of the curves 

is due to the nature of the system, which has a constant energy input. 

However, the relative arrangement of the points suggests that some principal 

factor, probably shearing strength, influences most soil impacts. 

Coulomb's equation for shear is as follows: 

where; 

s=c+ptan@ 

s = shearing resistance 

c = cohesion 

p = component of effective stress normal to 

the surface of sliding 

4 = angle of internal friction. 

(9) 

The principal source of shear for cohesive soils is the cohesion, (c), 

while it is internal friction, (@), for noncohesive material. The correlation 
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FIGURE 24 
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FIGURE 25 
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of (Fs) for both soil types on the curves of Figures 23 and 25 tends to point 

out that shearing resistance is the main influencing factor. It is recog- 

nized that density and possibly other parameters have decided influence on 

impact relationships, but this investigation did not reveal significant 

information to that effect. 

Remote Target Evaluation 

The problem of remote target evaluation for impact is of interest for 

the possibility of landings on earth, but it is extremely critical in the 

case of extraterrestial landings. The penetrometer concept is quite a 

valuable tool for this type of target evaluation, as it is feasible to send 

an instrumented probe, or penetrometer, virtually anywhere landings are anti- 

cipated. It should be pointed out that great care must be exercised in the 

use and interpretation of penetrometer tests, remote or otherwise. 

Figure 23 shows the secondary peak force, (Fs), versus penetration 

depth, (y), for the tests of this investigation. The average curve and the 

boundary curves show the variable nature of penetration-force relationships. 

Analysis of this relationship for dynamic tests shows that: (1) penetration 

varies with different energy input (area under force-time curve); (2) it 

varies when the energy input is constant and the total pulse time, (t,), of 

the test is varied, as in Figure 26, (a); (3) if the energy input, time of 

pulse, and maximum force levels are held constant, but the centroid of the 

area of the curve is shifted with respect to time, the penetration will vary 
6 accordingly, as shown in Figure 26 (b) . 

Figure 24 shows the average and boundary curves for the penetration 

versus total pulse time, further illustrating the above discussion. In 

Figure 25,. however, it is seen that the relationship of (Fs) to the total 

pulse time is without the variations which accompany penetration. The trends 

55 



FIGURE 26 
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observed in these curves indicate that it is feasible to evaluate a remote 

target. 

In order to use a penetrometer system for remote target evaluation, a 

complete investigation would have to be run on the characteristics of impact 

response to the system by a comprehensive range of target media. This inves- 

tigation, or calibration, of the penetrometer-target impact parameters would 

necessarily include all the expected input energy levels, as well as all 

contact shapes, diameters and other geometric parameters which might be 

varied. Then for a given set of parameters, such as those included in this 

investigation, curves similar to Figures 23, 24, and 25 would tell enough 

about the material to evaluate it fairly well from such scant information as 

length of pulse (t,). 

For example, if a remote penetrometer transmitted the information 

that (tt) was 30 msec, use of a curve as in Figure 25 would reveal that the 

expected force level, (Fs), was 95 lb. Use of both Figures 23 and 24 would 

show the expected penetration to be between 2 and 3 inches. 

Of course, if the complete signature or other additional data were 

obtained from the remote penetrometer, identification of the target impact 

characteristics would be simplified that much more. 

Effects of Soil Constituents on Impact 

Figure 27 is a triangular phase diagram for earth materials. The 

axes are determined by the volume percentage of the three constituents, 
6 solids, air, and water . The normal regimes for rock and in situ soils -- 

are shown. It is recognized that some in situ soils, usually clays, fall -- 

outside this soil regime. The soil phase conditions for the impact tests of 

this program are shown on the diagram. Analysis of test data in relation to 

the phase condition of the target media seemed a logical step in the process 
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FIGURE 27 
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of determining to what extent these const .ituents influence such impac t- 

penetration parameters as shearing resistance, soil flow, viscosity, edge 

effects, wave effects, and pore pressures. 

The groups of curves for Ottawa Sand on Figures 16 and 17 show the- 

force-time signature gradually increasing from the continuous penetration 

type of impact to the plastic-penetration type. It can be seen that the wet 

weight of the soil, (y,), and the volume percentage of water (wv), increase 

during this trend. A more complete picture of this trend is obtained by 

observing the force-penetration curve under each force-time signature for 

the tests. Most notable in these curves is the fact that (Fs), the secondary 

force peak, or plateau, as the case may be, gains in magnitude, and that the 

ends of the force-penetration curves show an increasing trend to shorten, peak 

out, and drop abruptly,as the density and moisture content increase. Inspec- 

tion of the curves for CRS and CA, Figures 18 through 22, shows the same 

trends. A good comparison of these to a purely plastic impact is made on 

Test No. 10-10-9, Figure 22. The saturated, dense cases (Tests Nos. 11-11-4, 

Figure 17, 11-18-4, Figure 19, and 12-2-8, Figure 22) show the slight rebound 

effect on the force-penetration curves. Test No. 10-10-7, Figure 21, was run 

in material with a heavy crust, which influenced the signature as shown. 

In an attempt to develop the relationships of the soil constituents 

to the impact parameters, curves of (Fs) versus (sv), (av), (wv), and (y,) 

were plotted for the non-cohesive materials. The most marked relationships 

were those of (Fs) versus (wv), Figure 28, and (Fs) versus (av), Figure 29. 

The first of these shows that the dry tests tend to group while the saturated 

tests form a level. Individual curves could have been drawn for each sand 

type, but a lack of complete data precluded this,and the average curve was 

applied. The same effects are visible on the (Fs) versus (a,) plot, and an 
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average curve was also employed. It must be remembered that the shearing 

resistance of each sand influences the force level encountered, and that the 

angle of internal friction, (@) p u on which this resistance depends princi- 

pally, varies between the sand types and between the moisture contents for 

each sand type. No attempt was made to analyze this varying friction angle. 

It is evident that the density of a material can vary while one of 

its constituents is held constant. It was therefore decided to use a tri- 

angular phase diagram to show the trends in the force levels. 

Figure 30 is a partial triangular phase diagram for the noncohesive 

target media of this investigation., The areas outlined by the dotted lines 

include the average force levels, (Fs), which were encountered for impacts 

on soils made up of those constituents. It is emphasized that the method 

used here is incomplete in that it contained only tests on four materials, 

but that expanded use of just this type of diagram for the four previously 

mentioned basic types of materials could help define the impact character- 

istics of a target by only identifying it and determining its moisture 

content. 

An improved penetrometer system designed with the capability of 

extrapolating impact characteristics to other penetrating bodies could prove 

to be doubly useful in target evaluation for impact. By applying phase 

diagram-force level information coupled with extrapolation to prototype for 

other important parameters, the impact of a projectile could be well defined. 

Correlation of Static and Dynamic Test Data 

The static tests yielded the average force-penetration curves plotted 

on Figures 15 to 22. They.vary widely with the dynamic force levels as the 

soil condition changes. In an attempt to define and understand this varia- 

tion, several relationships were investigated. Once again the percentages 
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of air and water in the target material were found to be the most influential 

factors. 

Figure 31 is a plot of the ratio of (Fs) to (P) versus (w,) for non- 

cohesive material. (P) is the static force required to penetrate to the depth 

of the dynamic test. The plot of (Fs)/(P) versus (a,) is shown in Figure 32. 

The grouping of data around (Fs)/(P) = 1.0 on both plots tends to support the 

conclusion that (Fs) is influenced by the shearing resistance of the soil as 

in static tests. The number of points in this region for which (Fs)/(P) is 

less than one can be attributed to the influence of air blast during impact. 

The tube used in this test tended to add to this effect. It seems that just 

before impact on dry, granular material, the air blast permeates the target 

and adds to the breakdown of the soil. This effect has been recorded on high 

6 speed film in an investigation involving larger models . 

The trend of the average curve drawn on both figures indicates that 

the correlation between the static and dynamic penetration tests on nonco- 

hesive materials deteriorates in meaning as the water content of the target 

is increased. The influence of high pore pressures under dynamic loads 

accounts for this phenomenon. Once the sand has water, the pore pressures 

develop and the air blast is decreased. By the time the soil is saturated, 

the static penetration test is meaningless. The clay data on these curves 

do not follow the trend of the noncohesive media because they do not drain 

under static or dynamic conditions. 

It seems evident that a static penetration test is not useful in 

evaluating target media for impact except under certain restricted condi- 

tions, but that it may be used in conjunction with dynamic tests to aid in 

evaluation of the target. 
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FIGURE 31 
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FIGURE 32 
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SUMMARY OF CONCLUSIONS 

The results of this investigation generally support the assumptions 

about failure conditions and mechanisms based principally on the Prandtl- 

Terzaghi system. Observations of tests revealed the soil volume displacement 

at the surface during impact and other evidence supporting this conclusion. 

For the types of soils tested, which included parts of three of the four 

basic types of soils (classified with respect to impact response), the 

results in the form of signatures and force-penetration curves showed that 

most soils do yield impact responses of the continuous penetration type, 

plastic type, or a combination of the two. Soils with cohesion, such as 

clays, yield typical plastic types of impact respons-e, while dense granular 

soils with high water contents yield the combination type, and drier cohesion- 

less materials yield the continuous penetration type of response. 

For the circular plate contact surface used in this investigation, 

the initial force peak, (Fc), appears to have no relation to any important 

parameter. It is recognized that closer monitoring of this portion of the 

test under different conditions could prove this wrong. The secondary force 

peak, or plateau, (Fs), appears to be large dependent upon the shearing 

strength of the soil. Some other factors, primarily density, also showed 

some influence on the impact response of the target media. 

Using a penetrometer system for remote target evaluation is quite 

feasible. Proper calibration of this system with regard to target conditions 

and expected input energies could yield much information about the impact 

parameters. Effective definition of the expected target impact response 

could be possible with only scant data from the remote penetrometer. Addi- 

tional data, in the form of a force-time signature, could aid in obtaining 

a very complete picture of the target qualities. 
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Analysis of the effects of the different soil constituents on impact 

response shows that for dense, cohesionless materials the relative amounts of 

water and air involved are quite important. The dry sands showed possible 

evidence of air blast by the projectile, while sands with moisture clearly 

showed the high force levels effected by the high pore pressures encountered. 

Cohesive soil targets tested did not show significant variations of force 

caused by particular volume constituents. . 

Use of a soil constituents triangular diagram to help relate impact 

force levels with target constitution could prove to be very useful in target 

evaluation. A properly calibrated, or tested, penetrometer system used in 

conjunction with a volumetric phase-force diagram and proper scaling to 

prototype methods could predict quite closely a soil-projectile impact inter- 

action. 

Data taken for this investigation show that the use of a similar 

static penetration test for analysis of the impact response of sand is quite 

limited. For dry sands, the correlation between static and dynamic tests is 

good, but addition of water tends to cause the dynamic forces to be much 

greater than the static forces for equal penetrations. Insufficient data 

were collected for cohesive soils, but indications are that the difference 

between the two types of forces would not be so pronounced, or dependent on 

water content, because clays will not drain appreciably, even under static 

loads. 

It is emphasized that the tests for this program were too few and 

limited in scope for it to be comprehensive. In addition, test conditions 

such as penetrometer size and weight may have induced certain unforeseen 

influence upon the results of the analysis which are not fully understood. 
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RECOMMENDATIONS 

Expanded research in several areas of this type of investigation 

could add considerably to the usefulness of penetrometer testing. A compre- 

hensive program including dynamic and static testing in many more soil types 

and conditions could yield much information. Detailed observation of the 

contact force, (Fc), and possible influencing factors is recommended. 

It appears that much research on the nature of impact mechanisms 

for soils is needed. Investigation of the parameters influencing impacts, 

such as shearing strength of soils, could be an area of fruitful research. 

The problems encountered in this investigation related to instrumen- 

tation point out several possibilities for improvement. Proper shielding of 

all wiring, including the fly leads, is important. Use of accelerometers 

to record the signatures appears to be less troublesome than use of a strain 

cell, in light of some of the difficulties of this program. 

Several improvements are recommended for the design of a projectile. 

The over-all geometry should be such that deep penetration does not affect 

the signature. In this program the shoulders of the brass cylinder influ- 

enced most tests which penetrated more than four inches. A configuration 

such as an artillery shell, with the instrumentation packaged inside, would 

eliminate these problems. Use of a conical or hemispherical contact surface 

is recommended in lieu of a plate to avoid an excessively large contact 

force spike. Preliminary tests on the various designs available could help 

determine the optimum configuration. The size, weight, and diameter of the 

projectile should be designed with extrapolation to a prototype in mind, if 

necessary. 



APPENDIX A 
I 

EQUIPMENT CALIBRATION 

For the strain gage circuit as shown in Figure 6, the theoretical 

strain sensitivity, or output, is expressed as: 

where; dE = output voltage 

N= number of active gages 

v- voltage across the bridge 

F = gage factor 

As = input strain in in./in. 

(10) 

The number of active gages, based on a Poisson's Ratio of the beryllium 

copper of 0.30, is 2.60, the voltage used was 6.0, the gage factor is 2.08, 

and the input strain per 100 lb. is 2.75x10 -6 in./in., (100 lb/.1964 sq. in. 

x 18.5 x lo6 psi). This gave 449 lb/mv as the theoretical calibration value. 

The penetrometer was then calibrated by loading it statically in a 

compression testing machine, and a value of 440 lb/mv was obtained. However, 

use of this value in analyzing test data gave results which could not satisfy 

the conservation of momentum principle, Eq. (l), and it gave calculated 

values of penetration which were completely unrealistic when compared to the 

measured penetration values. Although the theoretical output seemed to agree 

with the static calibration value, it should be pointed out that the theore- 

tical calibration could be influenced by slight changes in Poisson's ratio 

of beryllium copper, by changes or non-uniformity in cross-sectional area of 

the cell, or by misalignment of the gages. 
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The oscilloscope was checked for amplitude and sweep-time errors 

using a Tektronix Time Base Generator. Then the procedure for arriving at 

the impact velocity was thoroughly examined, and no significant amount of 

error was detected in any case. Moreover, a survey of literature showed that 

this discrepancy between a strain gage circuit output for dynamic loads and 

one for static loads has been encountered previously and in approximately the 

same ratio 8 . It was assumed that the difference lay in uneven stress dis- 

tribution under dynamic loads. 

To arrive at the final strain gage output of 562.5 lb/mv, a range of 

several outputs was used in the integration process. This value gave results 

for calculated penetration which agreed quite closely with the measured 

values. In regard to the comparison of computed and measured penetrations, 

it is recognized that the measured penetration cannot be an exact measure of 

the absolute maximum penetration occurring during a test due to projectile 

rebound and measurement errors. 

In any event, a check of the results by the energy balance method 

using the output value of 562.5 lb/mv satisfied the conservation of momentum 

requirement. In this method of calibration, the area of the force-penetration 

curve represents the total potential energy of the system (in the case of 

significant rebound, this energy is represented by the area of the curve 

bounded by the curve up to the point of maximum penetration, the x-axis, and 

a vertical ordinate through the point of maximum penetration). A.comparison 

of this area with the total energy of the system showed differences between 

them averaging less than 3%. 

The investigation of the discrepancy between the two calibrations 

was not pursued further, it being assumed that the stress fields present 

during the two loading conditions are different. The validity of the results 
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and conclusions presented in this thesis still hold in principle,even allow- 

ing for the possibility of the calibration being wrong. In that case, the 

magnitude of the parameters involved would differ from those shown here, but 

their values relative to one another would not change. 

In addition, the method used in this investigation for integration of 

the force-time curve was to analyze that partzof the signal up to the point 

where the force initially returned to zero. It was found that substantial 

error crept into the unused part of the signature due to poor resolution of 

the smaller signal and cumulative errors encountered in the integration 

process. 
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APPENDIX B 

COMPUTER PROGRAM FOR DATA REDUCTION 

FORTRAN program DYPEN was written for use on a Control Data Corpora- 

tion 6600 computer to integrate force-time data taken from oscilloscope 

records of this investigation. The numerical integration is performed by 

addition of trapezoidal increments of area bounded by the curve and the 

time axis. 

LISTING FOR FORTRAN PROGRAM DYPEN 

The following listing included program DYPEN, with instructions and 

definitions, and two subroutines for plotting the force-time and force-pene- 

tration curves of this investigation. These subroutines, GRAPH1 and GRAPH2, 

are for use on the plotting facilities of The University of Texas Computation 

Center, however, and probably have limited use elsewhere. 
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PROGRAM DYPEN (INPUT,OUTPUT, PLOT, TAPE 34 = PLOT) 

PROGRAM INSTRUCTIONS 

THIS FORTRAN PROGRAM- WRITTEN FOR USE ON THE CDC 6600 
COMPUTER, WILL CALCULATE THE INSTANTANEOUS TIMES, FORCES, VELO- 
CITIES, AND PENETRATIONS FOR IMPACT BY THE DYNAMIC PENETROMETER ON 
THE TARGET MEDIUM. TriIS IS DONE BY DOUBLE INTEGRATION OF THE FORCE 
-TIME RECORD. THE PROGRAM ALSO AFFORDS THE OPTION OF PLOTTING 
FORCE-TIME AND FORCE-PENETRATION CURVES FOR EACH DATA SET. THE 
NECESSAHY INPUT DATA ARE EXPLAINED BELOW. 

C 
C INPUT DEFlNlTIONS 
C IDENT = TEST IDENTIFICATION 
C N = NUMBER OF DATA POINTS--MUST BE BETWEEN 4 AND 100, INCLUSIVE 
c IGRAF = PLOT ROUTINE CONTROL--O=NO PLOT, l=PLOT 
C XMULT = NUMBER OF GRAPH DIVISIONS PER INCREMENT (INCREMENT = AREA BETWEEN 2 

‘C DATA POINTS) 
C YFRAT = VERTICAL U-SCOPE SCREEN CM. PER GRAPH DIVISION (FOR FOKCE-TIME CURVE) 
C XFRAT = HORIZONTAL O-SCOPE SCREEN CM. PER GRAPH DlVISION (FORCE-TIME CURVE) 
C YFSET = O-SCOPE SENSITlVlTY SETTING FOR FORCE TRACE, MV/CM 
C XFSET = O-SCOPE SWEEP SETTING FOR FORCE TRACE, SEC/CM 
C VINCl = VELOCITY GAGE HEIGHT 1NCREMENTp INCHES 
C VINC2 = VELC)C I TY CLEARANCE HE IGHT I NCREMENT 9 I NCHES 
C VSET = O-SCOPE SWEEP SETTING FOR TIME TRACE, SEC/CM 
C VTIM = LENGTH OF VELOCITY RECORD, GRAPH DlVISIONS 
C DATA = FORCE CURVE DATA POINTS, GRAPH DIVISIONS 
C 
C SUCCESSIVE SETS OF DATA MAY BE RUN BY ADDING TO END OF LAST DATA SET. 

; TO END CALCULATIONS, ADD 2 PLANK CARDS TO END OF LAST DATA SET. 
C 
C DIMENSIONING VARIABLES 

DIMENSION DATA(1CO),FORS(100),OVEL(lOO~~VEL(lOO~~PEN~lOO~~ 
1 TIME1 100.1 rIDENT(5) 

C SKIPPINti PAGE 
1uo PRINT 1 

1 FORMAT (lH11 
c READiNG IDENTIFICATION CARD 



C 

c 

C 

C 

C 

C 

C 

READ 2,fIDENTtI 1 ,I=1’,5) 
2 FORMAT (5AlO) 

READING IN VALUES FOR CALCULATION AND CbNTROL 
READ 3, N,IGRAF ,XMULT~YFkkT,XFKkl ,YFSETvXFStT 

3 FORMAT (13,5X,12,5X,F4.2,4(3X~El@.3) 1 
CHECKlNti FOR PROGRAC’ COf<TINU/‘tTICN 
IF (N) 4,1000,4 
READING ADDITIONAL VALUES 

4 RFAD 5, VINCl,VINC2,VSFT,VTIM 
5 FORMAT(E10.3,3(5X,E10.3)) 

READ I NG DATA 
READ 6, (DATA(J),J=l,N) 

6 FORMAT ( laF8.3 1 
PRINTING OUT IDtNTlFlCATION 

PRINT 2,(IDENi(I),I=1,5) 
PRINTING DATA 

PRiNT ~~,NIXMULTIYFRAT,XFR~T~YFSET,~FSET,VIN~~,~INC~,VS~T~VTIM 
50 FORMAT (///,15X,2dHINP!JT CONTKOL VkLUES,//,5X,3HN =,1394H PTS, 

112XvSHXMULT = ,F3.1,8H DIV/INC,/v8H YFRHT =,E9.3,7ti CM/DIV,3Xv7HXF 
2RAT =vE4.3~7H ClM/UlV,/r8H YFSET =vt9.3,6ti MV/ClMv4X,7HXFSET =vE9*3, 
37H SEC/CM,/,8H VINCl =,t9.3r4H IY I .,6X,7HVINC2 =,E9.394H IN.,/,SH, 
4VSET =vt9.3,7H SEC/CM,4X,6HVTIM =rE9.3,4H CIV) 

PRINT 60 
60 FORMAT (///,17X,17HINP!JT DATA POINTS,/) 

PRINT 61, (DATA(J),J=lrN) 
61 FORMAT (5F10.2) 

PRINT 1 
CHECK1N.b FOR INVALID INPUT 
IF (N-4) 7,999 

7 PRINT 8 
8 FDRMAT (69H INVALID VALUE OF N INPUTTED, N MUST BE BETWEEN 4 AN 

1D 100, INCLUSIVE.) 
GO TO 100 

DEFINING COMPUTATION CONSTANT 
9 FCONS = 562.5*YFSET+YFRAT 

CALCULATING FORCE VALUtS 
DO 1V J=l,N 

10 FORS(JI = DATA(JI*FCONS 
DEFINING COMPUTATION CONSTANT 



TCONS = XMULT*XFRAT*XFSET 
C CALCULATING TIME INCREMENTS 

TIME(l) = 0.0 
DO 11 J=2,N 

L = J-l 
11 TIME(J) = TCONS + TIME(L) 

IF (IGRAF) 110~120,110 
110 CALL GRAPH1 (TIME~FORSIIDENT,N) 
120 CONTINUE 

C CALCULATING VELOCITY CHANGE VALUES 
OVEL(1) = 0.0 

DO 12 J=2rN 
L = J-l 

12 OVEL( J) = (FORStL) + FORS(J))*(TCONS*16.08)/5.384 + OVEL(L) 
C CALCULATING IMPACT VELOCITY 

13 HG = 45.90 + VINCl 
HT = HG + VINC2 
PROD = HG*HT 
GTIM = VTIM+VSET*XFRAT 
VI = (SQRTF(PROD))/(6.0*GTIM) 

C CALCULATING INCREMENTAL VELOCITIES 
DO 14 J=l,N 

14 VEL(J) = VI-OVEL(J) 
C CALCULATING THE INCREMENTAL PENETRATIONS 

PEN(l) = 0.0 
DO 15 J=2,N 

K = J-l 
15 PEN(J) = (VEL(K)+VEL(J))*(TCONS* 6.O)+PEN(K) 

C PRlNTING OUT COMPUTATIONS 
16 PRINT 17,HTpVI 
17 FORMAT !///,5X,l4HDROP HEIGHT = ,Ell.5,3X,6HINCHES,/,19H IMPACT 

1 VELOCITY = ,Ell.5,3X,3HFPS,///) 
C PRINTING OUT TABULATIONS 

PRINT 18 
18 FORMAT (~X,~HTIMEI~~X,~HFORCE,IOX,~HVELOCITY, 7X,llHPENETRATION 

1,/r5X,3HSEC,l3X,3HLB5,13X,3HFPS,12X,6HiI\rCHES,/) 
DO 20 J=l,N 
PRINT 199 TIME(J),FORS(J),VEL(J),PEN(J) 

19 FORMAT (/,1X,E10.3~5X,E12.5,5XTE11.4,5X,Ell.4~5X~Ell~4) 



20 
C 

21 
22 

1000 

1001 

C 
C 

C 
C 

CONTINUE 
CHECKlNG FOR PLOT ROUTINE 
IF (IGRAF) 21, 100, 21 
CALL GRAPH2 (PEN,FORS,IDENT,N) 

CONTINUE 
GO TO l@O 

CALL AXTERM (0) 
PRINT 1 

PRINT lCO1 
FORMAT (24H CALCULATIONS TERMINATED) 

END 

BEGlNNING PLOT ROUTINE FOR FORCE-TIME CilRVE 
SUBROUTINE GRAPH1 (TIMEIFORS,IDENT,N) 
DIMENSION TIME(10@)~FORS(1O0)~IDENT(5),KIP(2) 
CALL AXES ~0.06U,6.0~0.0~1.5~550.0~2.75~0.25~~~01~100.0~0~50~ 
CALL PLOT (TIME,FORS,Nq-2) 
CALL PLO TITL ~IDENT~40,0,2,2.1,1.25) 
KIP(1) = 1OHTIME SEC/ 
KIP(2 1 = 3HlOO 
CALL PLO TITL (KIP,13,0,2r2.2,-0.2) 
KIP(1) = 1OHFORCE LBS 
CALL PLO TITL (KIP~10v1,2,-0.3,Z.O) 
CALL AX ‘TERIVI (1) 

RETURN 
END 

BEGINNING PLOT ROUTINE FOR FORCE-PENETRATION CURVE 
SUBROUTINE GRAPH2 (PtN,FORS,IDENT,N) 
DIMENSION PENl100),FORS(100)~IDENTo,KIPO 
CALL AXES ~4.0,6.0,0.C~1.5,550.0~2.75~0.25,1.0,100.0~0~50~ 
CALL PLOT (PENvFORS,N,-2) 
CALL PLO TITL (IDENT~40r0,2~2.1,1.25) 
KIP(1) = lOHPENETRATI0 
KIP(2) = 6HN IN. 
CALL PLO TITL (KIP,16,0,2,2.2r-0.2) 
KIP(1) = 1OHFORCE LBS 
CALL PLO TITL (KIP,lO,l,Z,-0.3,Z.O) 
CALL AX TERM (1) 



DATA INPUT 

A listing of the ~ISI)U~ required for a computer ru*$ including plots, of two data set6 is !a8 follows: 

ll-18-2-+(CRs) 
7.77 E-O2 7.78 E-02 29 E-01 5. 26 1 2.0 

2.0 E-0.1 1.0 E-01 6.30 E+Ol 8.G E-01 
13.50 18*tiO 23r80 18.00 15.50 15*40 14.50 u.00 

19 .OQ 19.00 19.10 19.50 19*50 19.80 17.80 18r90 
6.50 -1.00 -3.10 -4.10 18.60 18.ii0 16*69 15.10 

11-18-3-SP-ICRS) 
7.75 E-02 7.78 E-02 2. E-01 5. 29 1 2.0 

2.0 E-Cl 1.0 E-01 6.40 E+Ol 4.7 E-01 
9.30 10.60 12.50 13*60 13.50 ll,i)O 8*25 

19.10 
0.00 

17r90 llirb@ 19.50 19.00 19.40 ,19*25 15.90 
16.60 15.75 12.50 3.00 ‘O-h0 18r25 18.Ug 17.25 

E-03 

13*50 15.50 
19.80 19.00 
-4.60 -4.60 

E-03 

33.75 14.50 
18.90 19.00 
-1.10 -2.90 



PROGRAMOUTPUT 

Printed output for the computations of the two previously listed data 

sets follows on the next six pages. The plotted curves are found on 

Figure 19, page 46, and Figure 40, page 96. 
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INPUT CONTROL VALUES 

N m 26 PTS XMULT * 2.0 OIV/INC 
YFRAT $?,ttOE-02 CM/DIV XFRAT r7.78OL-02 CWDIV 
YFsET m2.000E-01 Mv/cM XFSET mS,OOOE-03 SEC/CM 
VINCl n R.OOOE-01 IN, VINCE l 2,oOOE-01 IN. 

VSEt rl.OOOE-01 SEC/CM VTIM m6,300E*Ol DIV 

TNPUT DATA POINTS 

0. 18.00 23.80 18.00 15,50 
15.40 14.50 13.50 13.50 lS.SO 
17.80 18.90 19.00 19.00 19.10 
19.50 19.50 19e80 19.80 19.00 
Is.60 18.00 16*60 15.10 6.50 
-1.00 



DROP HEIGHT = 4,69OOOE+Ol 
IMPACT VELOCITY = 1,5913BE+Ol 

TIME 
SEC 

0. 

7,78OE-04 

1.556~-03 

2,334Em03 

3.112E-03 

3.890E-03 

4.668E-~13 

5.4466-03 

6.224E-03 

7.002E-03 

7.7HOE-03 

6.558E-03 

9.336E-03 

l.OllE-02 

1.089E-n2 

l.l67E-02 

1.24SE-n2 

l,323E-02 

1.4oOE-02 

1.478E-02 

l.S!%E-02 

1.634E-n2 

1.712E-n2 

FOWCE 
LBS 

0. 

1,57342E+02 

2.QR042E+02 

l.S7342E+02 

1,3S489E+02 

1.34615E+02 

1.26748E+02 

1,18007E+02 

l.lR007E+02 

1.35489E+o2 

1.55594E+02 

1.65210E+02 

1.660846*02 

1,66084E+02 

1,66958E+02 

1.7n454E+02 

1,7n454E+02 

1,73077E+o2 

1.730776+02 

1.66084E+02 

1.62587E+O2 

l.S7342E+02 

1.4Slt'SE+02 

INCHES 
FPS 

VEKTY 

1.5914E+Ol 

1,5548E+Ol 

1,4699E+Ol 

1,3850E*Ol 

1.3170E+Ol 

1.2542E+Ol 

l.l93SE*Ol 

1.13666*01 

l.O818E+Ol 

l.O229E+Ol 

9,SS23E*OO 

8,8069E+OO 

8,0371E+OO 

7.2653E+OO 

6,4915E+OO 

5.7074E+OO 

4.9153E*OO 

4,1171E*OO 

3,3128E*OO 

2,5247E+OO 

lr7610E+OO 

1.0176E+oo 

3.1483E-01 

PENETRATION 
INCHES 

0. 

1,4686E-01 

2,8806E-01 

4,2133E-01 

5,4746E-01 

6,6748E-01 

7,8174E-01 

6,90SlE-01 

9,9406E-01 

l.o923E+OO 

l.l846E+OO 

1.2703E*OO 

1.3490E+OO 

1.4204E+OO 

1.4846E*OO 

1.5416E+OO 

l.S912E+Oo 

1.6333E+Oo 

lr6680E+00 

1.6952E+OO 

lrflS3E*OO 

1,7282E+OO 

1,7344E+OO 

I- 



1.769E-n2 1.319Q3E+oE -3,2903E-01 1,7344E+00 

1.867E-02 5.68181f+Ol -7,6775E-01 l.f293E+OO 

1.945E-02 -8.741256+00 -8;7946E-01 lr7216E+OO 
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INPUT CONTROL VALUES 

N I 29 PTS XMULT I 2.0 DIV/INC 
YFRAT r7,750E-02 CM/OIV XFRAT =7,76OE-02 CWOIV 
YFSET l 2,00OE-01 MV/CM XFSET *S.OOOE-03 SEC/CM 
VINCl r6,70OE-01 IN, VINCZ rZ.oOOE-01 IN, 

VSEt rl,OOOC-01 SEC/CM VTIM =6,40OE+Ol OIV 

INPUT DATA POINTS 

0. 11.00 8.25 9.30 10.60 

;2:: 
19:4n 

:$*z 
19:25 

13.50 18.60 xi 14.50 19.00 
19.10 IL90 19.00 

18.60 18.25 18.00 17.25 16.60 
15.75 12.50 3.00 -1.10 
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DROP HEIGHT =-*.67700E+OI 
IMPACT~VELOCIT'Y = 1.56216E+Ol 

TIME 
SEC 

0. 

7,7BOE-a4 

1.556~003 

2.334~.03 

3,112~-03 

3,89OE-03 

4,668E-03 

5.446~~03 

6.224~~03 

7.002E-03 

7,78OE-03 

8,55@-03 

9,336E-03 

l,OllE-02 

1.069~~02 

1.147~~02 

1.245E.02 

1.3236-02 

1,40OE-02 

1.478E-02 

l,556E-02 

l,634E-02 

1.722E-n2 

FORCE 
LBS 

0. 

9,59962E+Ol 

f.l9297E+Ol 

8,10844E+Ol 

9.24187E+Ol 

l.O8984E+02 

l.l8575E+02 

1,17703E+O2 

1,19883E+o2 

1.264226+02 

1,38628E+02 

1.56066E+02 

1.62169E+o2 

le70016E+o2 

1.65656E+o2 

1,69144E+02 

1.67836E+02 

1.66528E+02 

1.64784E+02 

1.65656E+02 

1.62169E+02 

1.59117E+o2 

1,56937E+02 

INCHES 
FP5 

VE%lTY 

1,5622E+Ol 

1,5399E+01 

1,5009E+Ol 

1,4653E*Ol 

1.4250~*01 

1,3782E+01 

1.3253E+Ol 

1,2704E*Ol 

1.2152E+Ol 

1,1580E+01 

1,0964E+ol 

1,0279E+01 

9,5399E+OO 

IJ,7680E+OO 

7,9881E+OO 

7,2lOlE+Oo 

6,'+271E+Oo 

5,6502E+00 

4,8804E+OO 

4,1126E*00 

3,3509E+OO 

2,6043E*OO 

1,8699E+Oo 

PENETRATION 
INCHES 

0. 

1.4480E-01 

2,8675E-01 

4,2521E-01 

5,6013E-01 

6,9098E-01 

8,ltlBE-01 

9,3836E-01 

l.o544E+OO 

lr1652E+00 

1,2704E*OO 

1,3696E+Oo 

1,4621E+Oo 

1,5475E+OO 

1,6258E+OO 

1,6967E*OO 

1,7604E+OO 

1,8167E+OO 

1.8659EtOO 

1,9079E+OO 

1.9427EtOO 

1,9705E+OO 

1,9914E'+Oo 
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1.789E-02 1.50398Et02 1,1558E+OO 2,0055E+Oo 

1.867E.02 1.44731Et02 4,7002E-01 2,0131E:+OO 

1.94SELo2 1.37320E*02 -1.8535E-01 2.0144E+OO 

2,023E-02 1.08984Et02 -7,5766E-01 2,OlOOE+OO 

2.101E-02 2.6i562E*Ol -1.0717EtOO 2aOO15EtOO 

2.176E-02 -9.59062E+OO -1.1102EtOO lr9913EtOO 
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APPENDIX C 

ADDITIONAL DATA 

IMPACT TEST DATA 

Table No. 2 lists the pertinent soil data and static and dynamic 

force-penetration data for each test. The force-time and force-penetration 

curves for these tests are shown in Figures 33 to 45. 



- 

TABLE NO. 2 

TEST DATA 

I’ TEST NO, 

I 

11-15-2 SP- (OS) 

11-15-1 SP- (OS) 

11-9-4 SP- (OS) 

11-10-2 SP- (OS) 

10-9-4 SP- (OS) 

10-9-5 SP- (OS) 

11-11-1 SP- (OS) 

11-11-2 SP- (OS) 
11-11-3 SP- (OS) 

11-15-7 SP- (CRS) 

11-16-3 SP- (CRS) 

11-15-9 SP- (CRS) 

11-16-6 SP- (CRS) 

11-18-3 SP- (CRS) 

SOIL 
TYPE ’ 

4, Y, 
‘F 

S 
V 1 

r 

-1 (PCf) / (“/.I 

104.0 63.0 

105.8 : 64.0 

111.7 60.7 

116.7 60.1 

118.0 60.8 

117.0 59.6 

118.0 59.5 

126.2 64.0 

127.0 64.4 

97.5 59.0 

100.8 61.0 

101.8 61.6 

95.2 53.1 

125.2 63.1 

a 
V 

0) 

W 
V 

(%) 

MAX. 1 
FC 

(lbs) 

=S 

(lbs) 

C 
PENE’I 

Calcu- 
lated 
(in) 

ITION 
Meas- 
ured 

(in) 

S’ iTTIC 
FORCE ?ENETRATIOI 

P Measured 

Ws) (in) 

37.0 0.0 251.0 61.1 3.85 3.5 59 3.5 

36.0 0.0 255.4 72.0 3.61 4.3 ,50 4.3 

21.1 18.2 247.3 124.9 2.02 2.0 84 2.0 

11.8 28.1 58.3 126.4 2.51 2.7 58 2.7 

10.6 28.6 125.1 177.4 1.79 1.8 51 1.8 

11.2 29.2 174.4 175.8 1.68 1.9 52 1.9 

8.7 31.8 165.7 95.9 3.49 3.5 22 3.5 

3.7 32.3 183.6 105.8 2.66 2.1 15 2.1 

3.0 32.6 207.3 118.9 2.15 2.0 19 2.0 

41.0 0.0 221.4 65.4 5.11 5.0 90* 5.0 

39.0 0.0 517.1 54.8 3.02 2.8 66 2.8 

38.4 0.0 488.0 72.6 2.84 3.1 66 3.1 

34.8 12.1 275.7 70.4 3.55 3.5 98 3.5 

3.1 33.8 95.9 170.0 2.01 1.9 71 1.9 

* Extrapolated values 



TABLE NO. 2 (CONT.) 

TEST DATA 

TEST NO- 1 SOIL DATA STATIC DYNAMIC 
TYPE MAX. FORCE PENETRATION FORCE PENETRATION 

YW 
S a W Calcu- Meas- 

V V V Fc Fs lated ured P Measured 

(pcf) (%I (%I (“/PI (lbs) (lbs) (in) (in) (lbs) (in) 

12-2-4 SW-(CA) 113.2 

12-2-l SW-(CA) 114.7 

lo-lo-2 SW-(CA) 99.2 

lo-lo-3 SW-(CA) 101.4 

12-2-10 SW-(CA) ~ 125.0 

12-2-9 SW-(CA) 131.0 

10-10-10 CH-(BS) 117.0 

68.5 31.5 0.0 337.6 72.9 

69.5 30.5 0.0 468.7 68.4 

58.7 37.2 4.1 419.9 87.9 

60.0 35.9 4.1 533.4 82.4 

66.4 9.1 24.5 245.5 213.9 

69.7 4.5 25.8 265.1 211.3 

53.5 2.1 44.4 -- 
I 

286.7 

3.50 3.3 

3.66 2.8 

1.99 2.0 

1.43 1.7 

1.41 1.0 

1.34 1.3 

1.06 0.9 

110* 3.3 

93 2.8 

100 2.0 

110* 1.7 

44 1.0 

25 1.3 

200* 0.9 

*Extrapolated values 
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FIGURE 33 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
OTTAWA SAND, SP-(OS) 

-. -_ a--- .--A--- I I 
I 

TIME 

11-15-2 - SP-(OS) 

Yn = 104.0 pcf 
w = 

V 
0.0 % 

i,._-.--~.-%~x~* _:: _” ,:: ~-” ‘: __--- ---- ___---- L. I , 
PENETRATION 

LEGEND 
- Dynamic Curves 
----- Static Curves 

f Measured Penetration 

SCALE 
Y-Axis - (Force) - 100 lb/div. 
X-Axis - (Time) - 0.01 sec/div. 

- (Penetration) - 1.0 in/div. 

- ~. -, 1 I I 

TIME 

11-15-l - (SP-(OS) 

Y” = 105.8 pcf 
w = 

V 
0.0 % 

PENETRATION t d, 



FIGURE 34 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
OTTAWA SAND, SP-(OS) 

T TIME 

11-9-4 - SP-(OS) 

Yw = 111.7 pcf 
w = 18.2 % 

V 

I L I 

PENETRATION -f 

LEGEND 
- Dynamic Curves 
----- Static Curves 

f Measured Penetration 

SCALE 
Y-Axis - (Force) - 100 lb/div. 
X-Axis - (Time) - 0.01 sec/div. 

- (Penetration) - 1.0 in/div. 

I TIME 
1 I r t--b-. --~---c -.-A 

11-10-2 - SP-(OS) 

Yw = 116.7 pcf 
W = 28.1 % 

V 

>i 

___---- 
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PENETRATION 



FIGURE 35 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
OTTAWA SAND, SP-(OS) 

10-9-4 - SP-(OS) 

LEGEND 
&+& Dynamic Curves 
----- Static Curves 

t Measured Penetration 

SCALE 
Y-Axis - (Force) - 100 lb/div. 
X-Axis - (Time) - 0.01 sec/div. 

- (Penetration) - 1.0 in/div. 

I , 

TIME ' 
I 4 

10-9-5 - SP-(OS) 

Yw = 117.0 pcf 

_---- 
_--- 

_---- 

1. 4 
PENETRATION 
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FIGURE 36 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
OTTAWA SAND, SP-(OS) 

11-11-l - SP-(OS) 

Yll = 118.0 pcf 
w = 

V 
31.8 % 

LEGEND 
- Dynamic Curves 
----- Static Curves 

t Measured Penetration 

SCALE 
Y-Axis - (Force) - 100 lb/div. 
X-Axis - (Time) - 0.01 sec/div. 

- (Penetration) - 1.0 in/div. 

11-11-2 - SP-(OS) 
Y" = 126.2 pcf 
w = 

V 
32.3 % 

PENETRATION 
I 
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FIGURE 37 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
OTTAWA SAND, SP-(OS),AND COLORADO RIVER SAND, SP-(CRS) OTTAWA SAND, SP-(OS),AND COLORADO RIVER SAND, SP-(CRS) 

TIME TIME 
1 1 

11-11-3 11-11-3 - SP-(OS) - SP-(OS) 
yw = 127.0 yw = 127.0 
W W 

V V 
= 32.6 = 32.6 

I I 

I I 
PENETRATION PENETRATION t " t " 

LEGEND LEGEND 
e Dynamic Curves e Dynamic Curves 
----- Static Curves ----- Static Curves 

t t Measured Penetration Measured Penetration 

SCALE SCALE 
Y-Axis Y-Axis - (Force) - 100 lb/div. - (Force) - 100 lb/div. 
X-Axis X-Axis - (Time) - (Time) - 0.01 sec/div. - 0.01 sec/div. 

- (Penetration) - 1.0 in/div - (Penetration) - 1.0 in/div. 

y+-w+e*4- y+-w+e*4- 
I I I I L L "\t; 

I I 
TIME TIME 

11-15-7 11-15-7 - SP-(CRS) - SP-(CRS) 

Yn = 97.5 pcf 
w = 0.0 % 

V 

PENETRATION 

93 



FIGURE 38 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
coLoRADo RIVER SAND. SP-(CRS) 
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FIGURE 39 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
COLORADO RIVER SAND, SP-(CRS) 

11-15-9 - SP-(CRS) 
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FIGURE 40 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
COLORADO RIVER SAND, SP-(CRS), AND CAPITOL AGGREGATES SAND, SW-(CA) 
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FIGURE 41 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
.__C;APITOL AGGRj$ATES SAND, SW-(CA) 

12-2-1 - SW-(CA) 
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w = 0.0 % 
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FIGURE 42 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 

10-10-2 - SW-(CA) 

Yn = 99.2 pcf 
W = 4.1% 
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FIGURE 43 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
CAPITOL AGGREGATES SAND, SW-(CA) 

10-10-3 - SW-(CA) 
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FIGURE 44 

FORCE-TIME AND FORCE-PENETRATION CURVES FROM TESTS IN 
CAPITOL AGGREGATES SAND, SW-(CA) 
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FIGURE 45 

FORCE-TIME AND FORCE-PENETRATION CURVES FRDM TESTS IN 
DEL RIO CLAY, CH-(BS) 
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SOIL DATA 

Table No. 3 is a chronological listing of the soil data of this 

investigation. The information includes the dry unit weight, (y,), 'and the 

natural water content, (w), as well as the wet unit weight and constituent 

volume percentages listed previously. 
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TABLE NO. 3 

CHRONOLOGICAL LISTING OF SOIL DATA 

TEiT NO. TYPE 
YW 

(PCf) 

'd 

(PCf) 

W 

(%) 

10-9-4 SP-(OS) 118.0 100.3 17.9 
10-9-5 SP-(OS) 117.0 98.7 la.4 
10-10-2 SW-(CA) 99.2 96.8 2.6 
10-10-3 SW-(CA) 101.4 98.8 2.6 
10-10-7 SW-(CA) 101.2 98.5 2.8 
10-10-g CH-(BS) 112.0 84.5 32.0 
10-10-10 CH-(BS), 117.0 89.2 31.0 
11-9-3 SP-(OS) 107.0 95.7 11.4 
11-9-4 SP-(OS) 111.7 lOOi3. 11.3 
11-10-l SP-(OS) 118.8 100.1 la.4 
11-10-2 SP-(OS) 116.7 99.3 17.6 

11-11-l SP-(OS) 118.0 98.3 19.8 
11-11-2 SP-(OS) 126.2 105.8 19.1 
11-11-3 SP-(OS) 127.0 106.5 19.1 
11-11-4 SP-(OS) 130.0 109.4 18.8 
11-15-1 SP-(OS) 105.8 105. a 0.0 
11-15-2 SP-(OS) 104.0 104.0 0.0 
11-15-3 SP-(OS) 108.0 108.0 0.0 
11-15-7 SP-(CRS) 97.5 97.5 0.0 
11-15-9 SP-(CRS) 101.8 101.8 0.0 
11-16-2 SP-(CRS) 100.4 100.4 0.0 
11-16-3 SP-(CRS) 100.8 100.8 0.0 
11-16-5 SP-(CRS) 99.8 92.2 a.5 
11-16-6 SP-(CRS) 95.2 87.7 8.6 
II-la-2 SP-(CRS) 111.6 92.7 20.3 
ii-la-3 SP-'(CRS) 125.2 104.1 20.3 
ii-la-4 SP-(CRS) 121.0 100.0 20.6 
11-22-1 Water 62.4 --- --- 

S 
V 

(xl 

a 
V 

(%I 

60.8 10.6 

59.6 11.2 

58.7 37.2 

60.0 35.9 
59.6 36.0 
50.8 5.8 
53.5 2.1 

57.8 24.7 

60.7 21.1 

60.4 10.2 
60.1 il.8 

59.5 a.7 
64.0 3.7 

64.4 3.0 
66.2 2.7 

64.0 36.0 

63.0 37.0 

65.4 34.6 

59.0 41.0 
61.6 38.4 

60.7 39.3 
61.0 39.0 

55.8 31.7 

53.1 34.8 
56.1 13.7 
63.1 3.1 
60.6 6.4 
-me 

W 
V 

m 

28.6 

29.2 

4.1 

4.1 

4.4 
43.4 

44.4 

17.5 

la.2 
29.4 
28.1 

31.8 
32.3 

32.6 

31.1 

0.0 
0.0 

0.0 

0.0 
0.0 

0.0 
0.0 

12.5 

12.1 

30.2 

33.8 

33.0 
100.0 



TE%T NO. TYPE 
YW 

(Pm 

yd 

(PCf) 

W L 
~ (%) 

S 
V 

(X) 

a 
V 

(%I 

W 
V 

m 

11-22-7 SP-(TCS) 86.9 86.9 0.0 52.6 47.4 0.0 

12-2-1 SW-(CA) 114.7 114.7 0.0 69.5 30.5 0.0 

12-2-3 SW-(CA) 111.0 111.0 0.0 67.2 32.8 0.0 

12-2-4 SW-(CA) 113.2 113.2 0.0 68.5 31.5 0.0 

12-2-5 SW-(CA) 101.3 96.8 4.9 58.6 33.8 7.6 

12-2-a SW-(CA) 131.5 115.5 13.9 70.0 4.2 25.8 

12-2-9 SW-(CA) 131.0 115.0 14.0 69.7 4.5 25.8 

12-2-10 SW-(CA) 125.0 109.6 13.9 66.4 9.1 24.5 

TABLE NO. 3 (CONT.) 

CHRONOLOGICAL LISTING OF SOIL DATA 
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$lJMM&?J OF DYNAMIC TEST CHARACTERISTICS 

Table No. 4 lists the characteristics of the dynamic tests with soil 

and penetration data added to supplement the information. 
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TEST NO. 

11-22-1 Water 62.4 46.71 15.67 17.23 

11-22-7 SP-(TCS) 86.9 46.97 15.53 47.77 

11-15-2 SP-(OS) 104.0 46.67 15.66 38.16 
11-15-1 SP-(OS) 105.8 46.63 14.90 43.12 
11-15-3 SP-(OS) 108.0 46.76 15.40 36.19 
11-9-3 SP-(OS) 107.0 46.94 15.63 33.15 
11-9-4 SP-(OS) 111.7 46.96 15.58 20.64 
11-10-2 SP-(OS) 116.7 46.77 14.56 26.63 
10-9-4 SP-(OS) 118.0 46.83 15.47 17.14 
10-9-5 SP-(OS) 117.0 46.75 14.80 18.81 
11-10-l SP-(OS) 118.8 46.54 14.34 26.72 
11-11-l SP-(OS) 118.0 46.87 15.86 33.79 
11-11-2 SP-(OS) 126.2 46.87 15.38 24.58 
11-11-3 SP-(OS) 127.0 46.77 15.34 20.68 
11-11-4 SP-(OS) 130.0 46.73 14.99 19.16 

TABLE NO. 4 

SUMMARY OF DYNAMIC TEST CHARACTERISTICS 

SOIL 
TYPE 

T- 
VW 

(PCf) 

DROP HEIGHT 

(in) 

IMPACT VELOCITY 
'i 

(fPS) 

TIME OF 
PULSE 
(msec) 

CALCULATED 
PENETRATION 

MO 

3.21 

2.64 

3.85 
3.61 
3.55 
3.22 
2.02 
2.51 
1.79 
1.68 
2.35 
3.49 

2.15 j 
1.84 ' 



TABLE NO. 4 (CONT.) 

SUMMARY OF DYNAMIC TEST CHARACTERISTICS 

TEST NO. SOIL DROP HEIGHT IMPACT VELOCITY TIME OF CALCULATED 
TYPE 

YW 'i PULSE PENETRATION 

(PCf) (in> (fPS) (msec) (in) 

11-15-7 SP-(CRS) 97.5 46.61 15.34 49.22 5.11 
11-16-2 SP-(CRS) 100.4 46.92 15.04 45.90 2.81 
11-16-3 SP-(CRS) 100.8 46.90 15.65 44.95 3.02 
11-15-9 SP-(CRS) 101.8 46.95 15.80 45.19 2.84 
11-16-6 SP-(CRS) 95.2 46.97 15.66 33.97 3.55 
11-16-5 SP-(CRS) 99.8 46.76 15.68 34.87 3.35 
11-18-2 SP-(CRS) 111.6 46.90 15.91 19.45 1.73 
ii-la-3 SP-(CRS) 125.2 46.77 15.62 21.78 2.01 
11-18-4 SP-(CRS) 121.0 46.92 15.40 19.40 1.83 

12-2-3 SW-(CA) 111.0 46.89 14.76 54.35 3.41 
12-2-4 SW-(CA) 113.2 46.97 14.20 50.62 3.50 
12-2-1 SW-(CA) 114.1 46.88 15.64 58.74 3.66 
10-10-2 SW-(CA) 99.2 46.87 15.65 30.00 1.99 
10-10-3 SW-(CA) 101.4 46.87 15.61 29.55 1.43 
10-10-7 SW-(CA) 101.2 46.87 15.69 29.70 1.71 
12-2-5 SW-(CA) 101.3 46.82 15.30 38.42 2.55 
12-2-10 SW-(CA) 125.0 46.84 15.48 15.03 1.41 
12-2-9 SW-(CA) 131.0 46.87 15.32 16.42 1.34 
12-2-8 SW-(CA) 131.5 46.82 15.34 15.71 1.16 



TABLE NO. 4 (CONT.) 

SUMMARY OF DYNAMIC TEST CHARACTERISTICS 

TEST NO. SOIL DROP HEIGHT IMPACT VELOCITY TIME OF CALCULATED 
TYPE 

YW 'i PULSE PENETRATION 

(PCf) (in> (fPS) (msec) (in> 
5 
03 

10-10-g CH-(BS) 112.0 46.87 15.69 12.92 0.96 
10-10-10 CH-(BS) 117.0 46.97 15.46 14.26 1.06 
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APPENDIX D 

DEFINITION OF SYMBOLS AND NOTATIONS 

The notations used in this report are defined in the following 

table. 
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TABLE NO. 5 

LIST OF NOTATIONS 

a 
V 

C 

e 

FC 

FS 

P 

S 
V 

t 
t 

V 

'i 

W 

W 
V 

Y 

percent by volume of air in target (%) 

cohesion of a soil (psi or tsf) 

void ratio of soil (volume of voids/volume of solids) 

initial, or contact force peak occurring in impacts on granular 

media (lbs) 

later, or secondary maximum force occurring in impacts on granular 

media, or maximum force encountered for impacts on cohesive media 

(lbs) 

force level obtained from static tests (lbs) 

percent by volume of solid in target (X) 

total time length of a force-time signature (msec) 

penetrating velocity of projectile during impact (fps) 

projectile velocity at impact (fps) 

natural water content in percent of dry weight (%) 

percent by volume of water in target (%) 

penetrometer displacement into target media (in,) 

unit weight of oven-dried soil (pcf) 

unit weight of in situ soil (pcf) -- 

angle of internal friction of a soil (degrees) 
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