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INTRODUCTION

It has been shown in recent papers by Vohr and Chow Ref. 13, Hirs [Ref. 21
and Malanoski Ref-%` 31 that spiral.-grooved, journal bearings have perform-
ance charact%istics which are significantly better than those possessed by

plain journal bearings. A particularly important asset of gas-lubricated
i

spiral-grooved bearings is that they are capable of high stiffness and high

load capacity at high A operation are due to the "self pressurizing"effect

of the spiral grooves.

Because the differential equation derived for the pressure distribution around

a spiral-grooved bearing is such a complicated one, the only solutions to the

equation obtained to date have been based on perturbation analysis, and are

valid for small radial displacements only. These solutions have proved valu-

able in providing basic design information on spiral-grooved bearings, and

because of their relative computation ease, will probably continue to be exten-

sively used to obtain optimization design data. However, in using small dis-

placements solutions, the question necessarily arises as to how accurately

they apply to bearings operating at moderate to high eccentricity ratios. A

second question that arises is whether the values of groove parameters which

produce optimum performance at low eccentricities will also provide optimum

performance at large displacements.

In order to resolve these and other questions, a numerical solution for the

pressure distribution in a spiral-grooved bearing was obtained valid for

arbitrary displacement and misalignment of the journal. Results of that solu-

tion are presented in this paper. These include performance charts, giving

the load capacity and attitude angle characteristics for one optimized con-

figuration of grooved bearing as a function of eccentricity ratio and bearing

number A.

Other aspects of grooved bearings on which data are given are: the effect of

length to diameter ratio on bearing load and attitude angle, the restoring

moment generated by misalignment of the journal, the variation of optimum
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values of groove parameters with eccentricity ratio and the effect of groove

depth on the linearity of the load vs. eccentricity curve.

Present theoretical results are compared with recent experimental data of

Malanoski.
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THEORETICAL AND NUMERICAL TREATMENT

The data presented in this paper are the result of a numerical ,solution of an

approximate form of Reynolds equation applicable to spiral groove geometries

with a large number of grooves. This equation was established by J. H. Vohr

and C. Y. Chow Ref. 1I and has as the dependent variable the "smoothed" pres-
sure distribution. The basic approximation made in the derivation is that the

actual pressure distribution deviates from the smoothed one by some small amount

over each ridge-groove pair and that the detailed shape of the deviation becomes

unimportant as the number of grooves approaches infinity„ The detailed pressure

gradient components over each of the ridges and grooves are considered constant

so that the flow can be calculated and related to the smoothed pressure profile.

With the nomenclature introduced by Fig. 1, the smoothed pressure equation as-

sumes the following form:

R ae L
(M9r sin p + (M7 )

9
 cx cos

-	 (Mz ) r a cos 0 - pVhr sin

+ aZ	 (MZ)g a + (Mz ) r (1 - g	 sin

+ (	 +	 e) p sin (3	 (1)
a	 R	 L g	 r

s,	

where the M's are the flow rates in the 9 and z directions in the ridges and

'	 grooves; they are related to the pressure distribution by the following rela-

tions:

... 
y^rwr.,..,W :. ^^	 _,,^.,	

_, _:?'^.^.,	 .r. ,<+►+aVM:.liYfwiFM^^-, iaT,,a , : - ..a:,..^ ,.^:.. -. 	 _

..:. .•	 ^... ,may ^`4k'x,. rd,,.:.^^^.. ,... ^-. ....^,.f. 	 'S._.^_..-_._..r: .....`	 ..^^..._..__:-^ °-,....____---.-.^_._y..e^._...^.,m._.._._._
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h 3
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In the present treatment, the speeds U and V and tx,(, clearances hr and hg were

specialized to the following forms:

V = Rw
	

(6)

U = R z2
	 (7)

r

hr = C + (xo + a1z) sin 9 + (yo + a2z) cos A
	

(8)

h = h +D
	

(9)
g	 r

where p = groove depth = constant.

The values of x  and yo represent the coordinates of the shaft center at z = 0

measured with respect to the concentric position. The angles al , and u2 
allow

misalignment of the shaft and bearing axes. The geometry is presented in Fig. 2.

The numerical treatment of Eq. (1) follows the method introduced in references

5 and 6.

Eq. (1) is a second order partial differential equation with variable coeffici-

ents and contains the first derivative of density with respect to time. The

difference between this equation and all other forms of Reynolds equation en-

countered inthe literature is in the presence of the cross, second space

derivative P°
aZaG .

The assumption that the film is isothermal leads to the .replacement of the den-

sity by the pressure P throughout. The equation is now non-linear, containing

P2 as well as P.

The change in variables

Q = P2	(10)

leads to the same form of equation in Q with the quantity -vVin some of the

^i

FIR

r
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coefficients.

Approximating all space derivatives of Q by standard central difference formulae

and the time derivative by a forward difference formula, equation (1) becomes

algebraic, involving, at each point of a finite cell mesh drawn on the gas film,

the value of Q at the point and its eight immediate neighbors.

Letting the value of V Q at each grid point be a part of the coefficients,

(imagining that it is known) the resulting algebraic equations are linear in

Q.

Due to the fact that none of the central differences introduce points further

away from the center point than one column and one row, equation (1) .reduces

to the form

LA]j (Q )j + [B]j (Q
)j -1 + [^] j ( Q)j+l _ (R) j	 j = 1 N

	
(11)

where, for each value of j, the M equations pertaining to an entire column of

points (i = 1, 2, —M) are written at once. Therefore, each matrix equation

(11) conrains M equations thus making the dimensions of LAI j ,[B] j ,[C]i be

M x M and the dimensions of (R) j be It.

it should be noted that equation (11) can also be used for boundary points as

long as the proper value; axe inserted in the coefficient matrices and the

right hand side. This is shown below.

The boundary conditions are of the following types:

I

a) given pressure (such as ambient) at the bearing ends.

P 2	 (12)
Qi, j –	 a

I-uation (12) is of the same general type as equation (11) so that this

type of boundary condition can be formulated together with the field

equations.

z

r

t	
'
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b) flow matching between two grooved regions of different characteristics.

This includes the cafe of grooved regions adjacent to plain regions due 'to

the fact that, if ci	 s equation (1) reduces to the equation valid for

plain bearings.

The present treatment is limited to cases where dissimilar grooved regions

are joined on lines of constant z. Then the coaditions can be expressed as

	

I(M z ) g a + (Mz )r (1 - a)	 = 0	 (13)

where + and - mean the two sides of the joint line. The derivatives of

pressure implied by (13) on either side of the joint line are written by

means of two point formulae so that also equation (13) involves the joint

point and its immediate neighbors and can be written in the same form as

equation (11).

c) lines of symmetry. These only occur at z = constanr (center plane of

bearing). This condition means that no flow in the z direction can exist

at any A position or

(Md g a + (Md r (1 - CO = 0	 (14)

which can be used by writing the regular field equation at the symmetry

point and eliminating all values of Q at the points on the non.-treated

side of the boundary by means of equation (14):

d) cyclic condition

P(8) = P(8 -L 21r)	 (15)

a(e) = a
	

x(0 + 2TQ	 i6)

Letting j vary in the 8 direction, equations (15) and (16) reduce to the

fallowing:

^c
E? ^i	 ^_ ..*J6:nr ;L :c.t. t

=Y
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(Q)1 = (Q)N+l	 (17)

0) 0 	 ( 	 (18)

However, equations (17) and (18) introduce two difficulties: first, they

do not relate three or less adjacent columns of unknowns, and second, they

introduce 
(Q)N+l 

and (Q)O which are outside of the grid of unknowns. Refer-
ence [2] suggests how to write the regular field equations on columns 1

and N and gives a procedure for satisfying the boundary conditions (17) and

(18) .

Therefore, the columnwise influence coefficient methods introduced in Reference

[2- i can r,ow be used to solve equation (11) .

Two solution strategies can be followed:

a) Iteration method. The time derivative is set to zero, the value of

V_Q in the coefficients is started at ,ome guess, the value of Q is found

at each grid point by solving equation (11), this value is used in-\/-Q-Q

and the answer is obtained by iteration. This method is quite efficient

when it converges because it usually gains one digit accuracy every one or

two iterations. However, for severe conditions of eccentricit y and bear-

ing parameter A severe numerical instability hinders the success of th is

method of solution.

b) Diffusion net.hod: the time derivative is left in equation (1), an
r-

initial distribution of Q is selected and used to evaluate the 	 Q terms,

and equation (11) is then solved repeatedly to find Q (AT) , Q (2Z^T) . ^ , .

where LT represents a suitable time step. Therefore, the progress of the

pressure distribution in time is followed as in the natural diffusion

process by which the pressure adjusts to a change in running conditions.The

asymptotic value of the sressure at any point is that corresponding to

steady-state, This method can always be made numerically stable by choice

of a suitably small value of LT. Therefore, although more computing time

4
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is necessary, answers can be gotten even for severe running conditions.

The output data include the integrals of the pressure distribution so that

the resultant forces along the x and y axes and the resultant moments about

the same axes are known.

Fx = f f P sit, A rdzd g	(19)

F 
	 = ff P cos 9 rdzd g	(20)

M =
x	

- f f Pz cc,: A rdzdg	(21)

My = f f Pz sin 9 rdzdg	(22)

The computer program used for implementation of the solution scheme is written

in FORTRAN IV, and can accomodate slider bearings as well as journal bearings.

• " 5	 rx	 is

W.
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RESULTS

Steady-state,radial displacement,performance data calculated for the spiral-

grooved journal bearing are shown in Figs. 3 and 4. Fig. 3 presents the

dimensionless load W = W
	

vs. bearing number A =	 (R) for various
P LD	 P	 C

values of eccentricity ratio E while Fig. 4 presents data aon the bearing atti-

tude angle 0 as a function of A and E. The data presented are for a bearing
of L/D = 1.0, with grooved member rotating, having the following values for

the groove parameters.

p = 25°

a = 0.35	 (optimum groove parameters for maximum radial

r = 2.33	 load at A = 20)

Z = 0.5

These are the optimum values to provide maximum radial stiffness* at A _ 20

and E = 0 for the case of grooved member rotating. This particular bearing

was chosen for high eccentricity analysis because it had been studied experi-

mentally Ref. 3 ] and a stability chart had been prepared for it. It should

be noted that optimum groove geometry for maximum stiffness at other values

of A are not too different from those presented above. Optimum values for

groove parameters are somewhat different if the smooth member rotates rather

than the grooved member. In this paper, all data reported are for the case

of grooved member. rotating.

In Fig. 5 is compared the load vs. eccentricity and attitude angle character-

istics of a plain bearing and our spiral-grooved bearing at A = 9.0. The

plain bearing data were obtained from a study by Raimondil Ref. 71 As can be

seen, the non-linear increase of load with eccentricity for the optimized

grooved bearing is very nearly the same as for the plain bearing. Also,the

Radial stiffness at E = 0 is defined as 
W cos 6 where E < < 1.

E

t^

}

f

i

3
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attitude angles for both bearings decrease in the same manner with c. One can

note, however, that the attitude angle for the grooved bearing is lower than that

for the plain bearing.

When run at other values of A (i.e., A = 0.1 and A = 1.5) the load capacity of

the grooved bearing was found to increase more rapidly with eccentricity ratio

than does that of a plain bearing. As we shall see later, the linearity of the

load vs. eccentricity ratio curve for spiral grooved bearings does depend on the

values of the groove parameters. Bence, it is difficult to gerealize about the

linearity of the load curve other than to say that like plain bearings, the ra-

dial stiffness of grooved bearings does always appear to increase with eccentri-

city ratio.

In Fig. 6 is shown the effect of length to diameter ratio on the performance of a

grooved bearing at A = 1.5. Increasing L/D from 1.0 to 2.0 for the grooved bearing,

results in an increase in dimensionless load of 90%. In comparison, the :increase

for a plain bearing would be only 75%. The greater percentage increase obtained

for the grooved bearing is probably due to its self-pressurizing effect, which

would be greater as length increases. One would expect this effect to be more

significant at higher values of A and to be insignificant as A->0.

In the present study, the moment M that would develop on the journal due to mis-

alignment was calculated for one value of A(A = 1.5). The results are shown in

Fig. 7. The abscissa in this figure is bL/C where b is the angle of misalignment

in radians. bL/C represents the change in eccentricity ratio from one end of the

bearing to the other. Also shown in Fig. 7 are misalignment moments for a plain

bearing obtained from a linear perturbation analysis by Ausman Ref. 8
w	 J

There are two interesting features about the data in Fig. 7, One is that the

misalignment moments for the grooved bearing are very linear with b (the moments

plotted for the plain bearing are necessarily linear because they were calculated

'	 from perturbation analysis). The second is that the attitude angle of the mis-

alignment moment is very much less for the grooved bearing than for the plain

bearing (39° for the grooved bearing vs. 80° for the plain bearing). Also, the

grooved bearing seems to have a larger misalignment moment relative to its load

capacity than does the plain bearing. For example, thEiyratio of the moment, M/L

at bL/C = 0.1 to the load W at E = 0.1 is .0263 for the grooved bearing but only

"i F	 . f ^	 : 2 ^. 	̂ x	 ^	 M	 y.
q
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.022 for the plain bearing. These ratios can be used to estimate misalignment

moments from load data for bearings with L/D = 1.0 if misalignment data is

unavailable.

An important question concerning the performance of grooved bearings at high

eccentricity is whether the values of groove parameters that yield maximum

radial. load at low eccentricities will also give maximum radial load at high

eccentricity. To investigate this, we determined the groove parameters to

give maximum radial load for e < < 1 at A = 0.1, and then studied the effect

that changes in these parameters would make on radial load at e = 0.6. The

results are presented in Fig. 8a through 8d. The optimum values for p, a, I'

and Z for E---> 0 are indicated, respectively, by the dashed vertical lines

in Figs. 8a through 8d. These values are:

= 29°

Cx = 0.51	 (optimum groove parameters for maximum radial

P = 2.2	 load at A = 0.1)

Z = 0.765

As can be seen in Fig. 8, the above optimum values of p, a and Z also are
very close to the optimum values for E = 0.6. An exception is the parameter

r = (hg/hr) E = 0, the optimum value for which is approximately 1.8 for E = 0.6.

That the optimum value of 1P should decrease with eccentricity is quite reason-

able physically. It follows from the fact that to maximize bearing load at

high E, one would want hg/hr to be at optimum value in the narrow clearance

region where the load carrying pressure rrofile is developed. To keep hg/hr

at a local optimum value in a region where hg and hr are becoming smaller,

one would have to reduce hg - hr i.e. reduce I' = (hg,/hr) E
	 0.

If one used a value of 1.8 for h in the design of a grooved bearing at A = 0..1,

the radial load at low eccentricity would be reduced below that obtained with

I'= 2.2 whereas the load at E = 0.6 would be increased. Hence, the load vs.

eccentricity curve would be even less linear than it would be with I'= 2.2.

The reverse possibility also exists. That is, by using a value of I greater

than 2.2 one should reduce load capacity more at high E than at low e and

t
i

i^
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b

produce a more linear load vs. E curve. This performance characteristic would

be desirable in many bearing applications e.g. gyroscope suspension systems,

To try to improve the linearity of the load vs. a curve, calculations we--,e

made using r = 2.8 and 3.2. As an index of linearity we can form the ratio

Me
	

0'6	 With perfect linearity, this ratio would be 2. From our calcu-Me = 0.3
Xations we obtain that this ratio is 2.3 for P = 2.8 and 2.18 for I'= 3.2,

For r = 2.2, the ratio is 2.57. We thus find that increasing P does signifi-
cantly improve the linearity of the load vs. E curve.

The above example points up one of

bearings, namely, their flexibilit

performance requirements by proper

this is not without its drawbacks.

ated with spiral-grooved bearings,

very complicated task.

the important advantages of spiral-grooved

y to be designed to satisfy many different

choice of the groove parameters. Of course,

Due to the many design variables associ-

proper design of these bearings can be a

Before leaving the discussion of optimum values for ^, cx, IF and Z, we can note

that the optimum values of these parameters for A = 0.1 are not too different

from the optimum values for A = 20. More significantly, the bearing optimized

for radial load at A = 20, when run at A = 0.1, has only 13% less radial load

capacity than the bearing optimized specifically for operation at A = 0:1

Hence this A = 20 design can give satisfactory performance over a wide range

of A.

been obtained by Malanoski LRef. 3]

for maximum stiffness at A = 20.

in Fig. 9 along with the appropriate

Two test bearings were used, each

es with 36 spiral grooves etched onto

As noted earlier, experimental data have

for the spiral-grooved bearing optimized

The load vs. eccentricity data are shown

theoretical curves obtained from Fig. 3.

of length and diameter equal to 1.5 inch

the journal surface.

As can be seen, agreement between experiment and the - is quite good at all

to

. i

S ,L •3L.a	 1F '
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values of A up to 15.5, with the unexplained exception of the data taken at

A = 2.68, which is quite a bit lower than theory predicts. The fact that all

data lie somewhat below the theoretical curves can be partly explained by the

so called "edge effect" considered by Muidjerman Ref. 91 for incompressible

thrust bearings. The predicted degradation of load due to edge effect in

Malanoski's bearing, as calculated from Ref. 101, would be 8%.

In Table 1 below the values of attitude angle measured by Malanoski at higher

values of eccentricity are compared with theoretical values obtained from the

curves. in Fig. 4.

FABLE 1

Comparison of Predicted and Measured

Attitude Angles for Spiral Grooved Bearing

L/D = 1.0,	 = 250, a = 0.35, r = 2.33, Z = 0.5

Attitude Angle

	

A	 e	 Expt	 Theory

	

1.25	 .396	 580	 520

	

1.25	 .523	 580	 470

	

2.68	 .327	 50.50	 41.50

	

2.68	 .487	 48.50	 360

	

8.47	 .269	 21.60	 170

	

8.47	 .310	 23.50	 16.50

	

15.5	 .27	 11.20	 70

	

15.5	 .333	 9.10	 6.50

In general, agreement between theory and measurement is reasonably good

although measured values of attitude angle are consistently larger than

predicted.

For sake of completeness, we have included in this paper a stability map

for the spiral-grooved bearing tested by Malanoski. This map is

-14-

r

.h

4

yj



4

n

-15-

shown in Fig. 10. Discussion of the theoretical basis for this map is beyond

the scope of this present paper; the interested reader is referred to the

papers by Pan Ref. 41 and by Malanoski Ref. 31 for details of the analysis

leading to construction of the map.

The ordinates for

cal mass M	 Use
c

determines the be,

lates the maximum

mass must be less

Fig. 10 are bearing number A and bearing dimensionless criti-

of the map for design purposes is very simple: one simply

3ring number A at which one plans to operate, and then calcu-

value of critical mass corresponding to that A. Actual roLor

than this value for stability.

Alternatively, one may enter Fig. 10 with a dimensionless critical mass, and

determine the maximum value of A at which the bearing can operate stably.

The stability data in Fig. 10 pertains to unloaded bearings operating at 	 = 0:

Limited experimental data indicates that loading the bearing improves its

stability. FRef. 11^ .

Full experimental verification of the stability map in Fig. 10 has not been

achieved. However, the test bearing of Malanoski was run unloaded at 60,000

RPM(A = 20) with no sign of instability. The rotor mass was 2.125 lbs. per

bearing which gave a value for the dimensionless mass parameter of 0.2. Pre-

dicted critical speed for the bearing was approximately 80,000 RPM.

k
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SUMMARY AND CONCLUSIONS

A solution for the pressure distribution around a spiral-grooved journal bear-

ing operating at large eccentricity ratios is obtained numerically by the

method of influence coefficients. Performance charts giving load capacity

and attitude angle are provided for a bearing optimized for radial stiffness

at A = 20 for the case of grooved member rotating. The charts cover the

range of A from 0.1 to 20. Curves are given for eccent;riuilty ratios up to

c = 0.7. The bearing considered has good load carrying repabilities over the

entire range covered by the performance charts and is 'therefore a useful de-

sign. A stability map is provided for the bearing.

It is found that the load capacity of a spiral-grooved journal bearing optim-

ized for maximum radial stiffness increases non-linearly with eccentricity

ratio in qualitatively the same fashion as does the load capacity of a plain

bearing. Also, the attitude angle for grooved bearings decreases with ac-

centricity in essentially the same manner as for plain bearings. Hence, it

is tentatively recommended that in cases where only low eccentricity data is

available on a grooved bearing, this data can be extrapolated to high eccen-

tricity by assuming that the grooved bearing behaves similarly to a plain

bearing. Calculations indicate that this would 'result in a conservative es-

timate of load capacity for the grooved bearing.

The variation of grooved bearing performance with length to diameter ratio is

briefly examined. It appears that the increase in dimensionless load with

L/D is greater for grooved bearings than for plain bearings.

The restoring moment generated due to misalignment of a grooved journal is

found to increase approximately linearly with the angle of misalignment. The

attitude angle of the restoring moment is rr ►uch lower for grooved bearings than

the plain bearing.

Optimum values of the grooved parameters ^, Cx, Z, to produce maximum radial

stiffness at high eccentricity were found to be approximately the same as

those obtained from small eccentricity analysis. However, it was found that

B



-17-

the optimum groove depth ratio, r, for maximum load at high eccentricity should

be smaller than that producing maximum load at low eccentricity. It was also

found that the choice of r significantly affected the linearity of the load vs.

eccentricity,with larger values of r tending to make the curve more linear

although with some sacrifice in load capacity. In some applications, however,i

linearity of bearing response may be more important than large load capacity.

.
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NOMENCLAMME

C =	 Bearing clearance - in.

D =	 Bearing diameter - in.

Fx , F Radial and tangential bearing forces - lb.

hg
0

=	 Local film thickness in groove region -	 in.

11r a	 Local film thickness 1,n ridge region - in.

L —	 Bearing length - in.

L1 =	 Total length of grooved region

M Total moment	 =	 M 2 + M 2- in.lb .x

M

y

=	 Critical bearing mass - 1b.sec2/in.

5
_ Mc (R) RP
Mc =	 Dimensionless critical mass	 =

a

LD 2
µ

M
, My =	 Radial and tangential moments - in.lb .

•	 (MG)g, (Mz)gl

(M0) r , (Mz ) r =	 Local groove and ridge mass flow components - lb/sec.in.

P =	 Pressure - lb/in2

P(8,z) =	 Idealized, "overall" pressure distribution - lb/in2

Pa —	 Ambient pressure - lb/in2

Q =	 P2 - lb 2 /in 4

r,®,z =	 Cylindrical coordinates

t =	 Time - seconds

U =	 Velocity of smooth member - in/sec.

V =	 Velocity of grooved member - in/sec.

W =	 Bearing total force -	 lb.

W =	 Dimensionless load	 =	
W
P LD

a
xo , yo =	 Coordinates of shaft center at Z = 0.

Z =	 Fraction of bearing length occupied by grooves	 =	 Ll/L
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f

i

I

I

a	 = Fraction of width of groove-ridge pair that is occupied
by groove

al , a2	 = Misalignment angles - radians

P	 = Groove angle - radians

r	 — Ratio of groove clearance to ridge clearance when bearing
is concentric = (hg /hr)  	 = C

A	 = Grooved depth = (h g - hr )- in.

LET	 — Time step - seconds

S	 =	 Total misalignment angle = C12 
+ `x22 - 

radians

e	 = Eccentricity ratio = e/C

n	 = Compressibility number, 6-^
2 PaC2

µ	 =	 Viscosity - lb.sec/in

P	 = Density - lb /in3

= Bearing attitude angle - radians

w	 = Sum of rotational speeds = w 1 + w9 - radians/sec.

wl	— Rotational speed of grooved member - radians/sec.

0'2	
= Rotational speed of smooth member - radians/sec.
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