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Title of Thesis: Magnetic and Velocity Effects on Ionospheric Electron 
Current to Cylindrical Electrostatic Probes. 

Nathan J.  Miller, Master of Science, 1967 

Thesis directed by: R. T. Bettinger, Assistant Professor of Physics 

Ionospheric measurements made with cylindrical electrostatic 

probes show fluctuations in the current collection due to both the 

satellite velocity and the earth's magnetic field. 

represent deviations from the Mott-Smith and Langmuir theory for current 

collection by electrostatic probes. 

These fluctuations 

The present analysis of electron 

current data from the Explorer 31 satellite probe experiment shows the 

satellite velocity effects and the magnetic field effects to be re- 

solvable into separate velocity and,magnetic field modulations of current 

which are superimposed upon some constant electron current. 

sqaration, the manner in which each effect arises is explored in a 

manner consistent with the data. 

After 

The results indicate that ionospheric electron current measure- 

ments in the accelerating region for cylindrical electrostatic probes 

may contain a velocity modulation-which could increase the current by a 

factor of two or reduce it by one-half. 

are accounted for, the magnetic modulations can cause fluctuations of 

from 20 - 60% in the remaining current. 

are used to deduce ionospheric electron densities, these velocity and 

magnetically related electron current modulations should be considered 

in evaluating ionospheric electrostatic probe data. 

If the velocity modulations 

Since such current measurements 
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FIGURE CAPTIONS 

Figure 1 Illustration of the ionospheric layer structure and 

the relation of electron density to total particle density. 

Figure 2 Schematic view of the Explorer 31 satellite illustrating 

the relationship between the satellite probes, the 

geomagnetic field lines, and the satellite velocity. The 

angles indicated are measured satellite parameters. 

Figure 3 Cylindrical probe characteristic illustrating the regions 

of differing current behavior. The reference voltage is 

arbitrarily taken at a region boundary. 

Figure 4 Probe characteristic maxima plotted as a function of 

aspect angle for a seven minute time period of a 

northbound pass. Each curve is labeled by the geomagetic 

latitude at which the data was taken. The minimum aspect 

angle is 15' and only forward aspect angles are considered. 

Figure 5 Probe characteristic maxima plotted as a function of field 

angle for a seven minute time period of a northbound pass. 

Each curve is 1abeled.by the geomagnetic latitude at which 

the data was taken. 

Figure 6 Curves showing the variation of I ( e , $ )  at 750 km with 

aspect angle where the numbers beside each data point are 

the values of $ in degrees. 

pass numbers from which the data came. 

The curves are labeled by the 

i v  



Figure 7 Curves showing t h e  v a r i a t i o n  of I ( e , $ )  a t  750 km with  

f i e l d  angle  where t h e  numbers bes ide  each d a t a  po in t  

are t h e  va lues  of 8 i n  degrees.  

by t h e  pass  numbers from which the d a t a  came. 

The curves are labe led  

Figure 8 The separa ted  V ( 8 )  f o r  t h e  I ( e ,$ )  appearing i n  Figures  

6 and 7 .  

Figure 9 The separa ted  M ( 8 )  f o r  t he  I ( O , $ )  appearing i n  Figures  

6 and 7. 

Figure 10 The separa ted  V ( e )  f o r  I ( e ,$ )  a t  1550 km. 

are l abe led  by t h e  pass number from which t h e  d a t a  came. 

The curves 

Figure 11 The separa ted  M($) f o r  I ( e ,$ )  a t  1550 km. The curves 

are l abe led  by t h e  pass  number from which t h e  d a t a  came. 

Figure 1 2  The separa ted  V ( 8 )  f o r  1(8,$) a t  2850 km. The curves 

are l abe led  by the pass number from which the d a t a  came. 

F igure  13 The separa ted  M ( 4 )  f o r  I ( e , $ )  a t  2850 km. The curves 

are l abe led  by the pass  number from which the d a t a  came. 

F igure  14 Veloci ty  e f f e c t s  on a p o s i t i v e  probe immersed i n  t h e  

ionospher ic  plasma when the probe v e l o c i t y  i s  g r e a t e r  

than  t h e  mean i o n  v e l o c i t y  but  much less than mean e l e c t r o n  

velocities. 

F igure  15 I l l u s t r a t i o n  of the satel l i te  i n t e r c e p t i o n  of charged 

particle pa ths  along geomagnetic f i e l d  l i n e s .  

F igu re  16 Geomagnetic f i e l d  e f f e c t s  on a p o s i t i v e  probe immersed 

i n  t h e  ionospher ic  plasma when i o n  energ ies  5 e l e c t r o n  

ene rg ie s .  
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CHAPTER I 

THE IONIZED COMPONENT OF THE EARTH'S ATMOSPHERE 

Introduction 

In terms of significant ionization, the earth's ionized 

atmosphere extends from near 50 km to the boundary of the earth's 

magnetic field. However, charged particles are a minor constituent 

of the earth's atmosphere until altitudes near 1500 km where neutral 

and charged particle densities become comparable. The charged 

particle density increases to an altitude near 400 lan. 

height, the decreasing atmospheric density causes the ion density to 

decrease with altitude, though the percentage of ionization continues 

to increase. 

Above that 

The Ionosphere 

The term "ionosphere" could be applied to the total altitude 

range of atmospheric ionization, but the ionosphere proper is that 

portion of the earth's atmosphere which significantly influences ground- 

based radio wave propogation. 

through radio wave interactions that the charged particle region between 

This definition is used because it was 

60 and 400 km was discovered. Radio wave reflection occurs whenever 

the free electron density of a medium changes. 

occurs whenever the radio frequency is less than a critical frequency w 

termed the plasma frequency which is specified by the electron density 

ne through the relation 

However, total reflection 

P' 
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The properties of the medium containing the free electrons is 

accounted for by the term E, the permitivity of the medium while 

m and e are the electronic mass and charge respectively. 

ne 

scanning a frequency range of radiowaves sent upward from the earth 

and noting the time interval between emission and reception leads to 

an altitude profile of electron density, so long as the density i s  

increasing. 

the ionosphere, as shown in Figure 1. 

specified by a letter. 

Since 

is the free electron number denisty at a point in space, 

Ground-based studies have implied a layered structure for 

Each ionization layer is 

The lower D region is sometimes referred to as the C region 

and extends between 50 and 70 km. 

it a maximum electron density near 102/cc. 

is cosmic ray interactions with the neutral atmosphere. 

density disappears at night and maintains its maximum value at a 

constant height during daytime. This behavior results from an attach- 

ment of electrons to neutrals. The resulting negative ion is readily 

dissociated by sunlight. 

The C region has associated with 

The ionization source 

The electron 

- 
02 + e + M.+ 02 + M 
Electron Attachment 

- 
02 + hv + 0 2  + e 
Photodetachment 

Cosmic rays penetrate below the C region but attachment processes are 
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strong enough 

make the free 

The most 

and solar radiation transmission is weak enough to 

electron density negligible, 

important process for producing D region ionization 

is the photoionization of NO by Lyman - a solar radiation (Nicolet 

and Aiken, 1960). 

+ NO + hv -+ NO + e 

This region forms between 70 and 85 km and has associated with it 

a maximum of electron density near 103/cc. 

electron density increases with decreasing solar zenith angle in a 

predictable manner during the daytime. 

effects on radio waves become negligible because of electron losses 

in dissociative recombination reactions and electron attachment to 

neutrals. 

The altitude maximum 

The nighttime electron density 

Dissociative Recombination 

Atmospheric NO is only present in small quantities but it appears 

that the amount present is sufficient to account for NO as the 

principle ion in the D region. 

photoionization of 02 and N2 because there is a solar cycle effect 

in the electron density variations which does not occur in the Lyman - 
ct radiation. 

Some ions must be formed from x-ray 

The altitude range between 85 and 150 km is the E region, which 

has a daytime electron density maximum near 104/cc. This region 
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forms a transition from a realm in which charged particle motions 

are constrained by the geomagnetic field. 

electron motions are governed by the magnetic field lines and the 

In the E region, the 

ion motions are governed by the neutral particle motions. This 

behavior pattern emerges because the electron-neutral collision 

frequencies have decreased sufficiently for magnetic effects to be 

important while the ion motions are still collision dominated. The 

neutral particle motions also are changing in the E region, from a 

condition of convective equilibrium which existed below, to a 

condition of diffusive equilibrium. The result is that the altitudinal 

distribution of neutral particles is approximately described by the 

barometric formula 

d In ns ms g 
dZ I% T, = -  

which applies for diffusive equilibrium conditions. Z represents the 

altitude, ns is the number density of one neutral constituent, mS 

and Ts are the mass and temperature of the same constituent, g is the 

gravitational acceleration at height Z, and k is the Boltzmann constant. 

The ionization is formed by photoionization of 0, 02, and N2 by normal 

solar x-ray flux. 

electron density maximum increases in a predictable manner with decreases 

in solar zenith angle. 

because of ionization from meteors, and decreased recombination and 

electron attachment reactions. 

As with the D region, the height of the daytime 

However, radio wave effects continue at night 

In the F region, which lies between 150 and 400 km, the neutral 
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particles have reached diffusive equilibrium. The principle 

ionization reaction is solar ultraviolet photoionization of 0, 

The continuing decrease in atmospheric density with increasing 

altitude has a great impact upon the charged particles in this 

region. The collision frequencies have decreased enough that both 

ion and electron motions are constained by the magnetic field lines; 

transport into and out of the upper F region is great enough that 

the ion composition can no longer be predicted by local chemical 

processes alone; lastly, the electron loss mechanism charges from 

one in which dissociative recombination determines the loss rate to 

one in which the ion-aton interchange reacttons are rate determining. 

+ 
N2 N2 4- -+ '+I+ 0 NO+ + N  NO++^ + N + O  

Ion-Atom Interchange Followed By Dissociative Recombination 

The last effect leads to two maxima of electron density, the F1 

maximum with electron densities near 105/cc around 200 km, and the 

F2 maximum between 300 and 400 km with electron densities near 106/cc. 

The F1 maximum occurs in the vicinity of the F region photoionization 

maximum. Near this same position, the loss mechanism changes form. 

The photoionization above the F1 peak depends on the concentration of 

0 whereas the loss rate by ion-atom interchange depends on the concentra- 

tion of N,. Since the N2 density decreases with altitude much more 

rapidly than the 0 density, the loss rate for electrons decrases much 

more rapidly than the production rate resulting in an increasing electron 

density as the altitude increases to the position of the F2 maximum. The 



6 

height of the Fi maximum increases with decreasing solar zenith 

angle until it merges with the F2 maximum. 

during both day and night. 

The F, maximum is present 

Its behavior is not well correlated with 

that of normal solar radiation, hence the current view is that there 

is an important secondary ionization source for the F2 region, 

(Antonova and Ivanov-Kholodnyy, 1961). 

The Topside Ionosphere 

The topside ionosphere is the ionized atmosphere above the 

F2 maximum. 

region in which photo-chemtcal processes strongly influence the charged 

particle composition. 

o f  the form 

The bottomside ionosphere can be characterized as a 

The equation describing chemical equilibrium is 

+ 
AS the density of a molecular ion XY . 
xrf and generally is of the form kAFAn(XY) where kA is a production 
rate coefficient and FA is the solar flux for a given wavelength 

interval. 

where a is a recombination coefficient for dissociative recombination 

and ne is the ambient electron density. 

processes and transport processes have become equal in importance, so 

the continuity equation for an ionic species must add a transport term 

q Ls the productton rate for 

+ 
L is the loss rate and generally is of the form anen(XY ) 

At the F2 maximum, chemical 

and take the form 
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where v is the ionic transport velocity and s is distance along a 

magnetic field line. Within the topside ionosphere, transport 

processes become the dominant factor in determining the charged particle 

composition. Therefore, the topside ionosphere can be characterized 

as the region of the ionosphere in which the charged particles approach 

diffusive equilibrium. 

At topside altitudes, the neutral particle collision frequencies 

If neutral are so small that the neutrals perform ballistic motions. 

particles velocities are high enough particles can escape from this 

neutral exosphere. Standard gas laws based on fluid behavior no 

longer describe the neutral density distribution (Chamberlain, 1963) 

under these circumstances. In contraat, the long range coulomb forces 

guarantee that charged particle collision frequencies will remain 

important in the topside ionosphere. 

Because of coulomb interactions, the diffusive equilibrium 

which charged particles can attain is a modified form of the diffusive 

equilibrfum which neutrals reach. For a single ionic species, 

diffusive equilibrium is described by the equation 

where Ti and Te are the temperatures of the ions and electrons 

respectively. 

for neutrals except that the ion and electron temperatures must be 

The equation is similar to the barometric equation 
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considered separately. The difference in form occurs because there 

can be no appreciable charge separation between ions and electrons. 

The electrons, which from mass considerations should diffusive to much 

greater heights than any ion, must drag the ions along because charge 

separation produces polar electric fieldswhich act on the ions. The 

result is that ions diffuse to much greater heights than would neutrals 

of the same mass and temperature. 

charged particles must diffuse along magnetic field lines and also 

there is more than one ionic species present at a time. 

modify the manner in which diffusion takes place among charged particles 

and can produce situations in which diffusive equilibrium requires 

that the density of a-minor ion should increase with aititude. 

In the topside ionosphere, the 

Both factors 

+ The principal ions in the topside ionosphere are O+, H+, and He 

The process for ion production is photoionization of the atoms by 

normal solar x-rays and ultraviolet radiation. 

topside ionosphere above 1000 km and the F reglon of the ionosphere has 

been investigated in an attempt to explain the nighttime F2 peak 

(Geisler and Bowhill, 1965). It was found that magnetically aligned 

charged particle fluxes between the topside ionosphere and the F region 

of the ionosphere would be insufficient to account for the nighttime F2 

maximum. However, it was found that fluxes of photoelectrons flowing 

from the F region to the daytime topside ionosphere could exp1.aj.n the 

topside electron temperature structure. 

charged particle fluxes from the topside ionosphere to the F region. 

The charaeter of the ion transport changes at various altitudes causing 

Coupling between the 

At night then, there would be 
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the degree to which diffusive equilibrium is approached to vary 

similarly. For example, near the F2 maximum the diffusion is 0 

through a predominately atomic oxygen atmosphere; near 700 km the 

diffusion is H 

in this thesis was taken in the region above 700 lun where H 

rsajor diffusing ion, 

4- 

4- through a mixture of 0 and He. The data presented 
+ is the 
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CHAPTER I1 

THE EXPLORER*31 ELECTROSTATIC PROBE EXPERDENT 

Introduction 

The Explorer 31 satellite was launched on November 29, 1965 

into an elliptical orbit about the earth. 

3000 km and the perigee is 500 km. 

The orbit apogee is 

The satellite's spin axis is 

nearly perpendicular to the satellite translational velocity. The 

satellite carries a number of experiments to measure atmospheric 

parameters, among which is a Langmuir probe experiment. This consists 

of two cylindrical electrostatic probes mounted near the bottom of the 

satellite and at opposite ends of a satellite diameter. 

The cylindrical electrostatic probes are conducting wires 

which extend into the ionized medium and are connected to a voltage 

generator on the satellite. The schematic diagram in Figure 2 shows 

the relationship between the probes and the satellite's translational 

velocity while the satellite rotates. The experimental procedure 

is to monitor the current drawn as the probe voltage is swept in 1 

second from -2 to 4-5 volts relative to the satellite potential. At the 

endpoint of a voltage sweep, satellite spatial relationships are 

measured,e. g. the angle between the probe axis and the sun direction. 

While one probe is being used for measurements appropriate to electron 

temperature determinations, the other is being used for measurements 

appropriate to the determination of electron densities. The wake region 

o f  the satellite path is not suitable for making these measurements and, 
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therefore, meaningful temperature and density determinations are 

separated in time by at,least the time necessary for the satellite 

to rotate through 180'. 

spatial distance of 80 km, 

This time is  10 seconds and represents a 

Neasurensent Theory 

m e  tkeory of electrastattc pxdie current cal1ect;lon was 

summarized by Mott-Smith and Langmuir in 1926, 

immersed into the ionospheric plasma, 

negatively charged because the electrons move faster than the ions 

and, therefore, accumulate faster. The limit of the charge buildup 

is reached when incoming electrons and ions are affected by the 

negative charge to the extent that the flux of ions and electrons 

to the conductor becomes equal, resulting in no net current, The 

potential distribution about the negatively charged conductor is only 

significant over a limited region of space surrounding the conductor 

known as the plasma sheath. 

between the conductor and the plasma falls within this sheath. 

the theory assumes that all plasma particles beyond the sheath behave 

as though the conductor were not present. 

When a conductor is 

it wtll nomally become 

Essentially all of the potential difference 

Therefore, 

The thermal motions of charged particles cause some to dfffuse 

into a sheath region where they are affected by the potentfal 

distribution. 

with an electrostatic probe, the sheath dimensions will vary similarly. 

However, under the assumptions of no collisions within the sheath region 

(Mott-Smith and Langmufr, 19262, it was found that the current to an 

Tf the potential on a conductor is varied, as is done 
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infinite cylindrical probe was independent of the sheath dimensions 

and potential distribution so long as the sheath radius was much 

larger than the probe radius and the potential distribution was 

monotonic. 

probe characteristics as typffied by the one in Figure 3 ,  

The probe equations correlate with observed cylindrical 

The equation 

where j is current density, describes the ion or electron flux to 

a cylindrical probe at rest in the ion or electron accelerating region 

of a cylindrical probe characteristic curve for a Mamell;Lan velocity 

distribution whenever eV 2 5kT. 

n ii the nwhex density of the charged speclles 

e = the electronic charge 

T = the temperature of the charged species 

k = the Roltzmann constant 

? = [%p = the mean velocity of a MaxwellAan velocity distribution 

V = the probe potential relative to the plasma potential 

The electron accelerating region is the voltage range where the probe 

is positive enough to repulse all ions resulting in only electron 

current collection. The ion accelerating voltage range is a negative 

counterpart to the electron accelerating range. 

particle current can be used to deduce charged particle densities from 

The accelerated charged 

the current equation. 

In the electron retarding voltage region the probe has a 
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negative potential but some of the electrons are energetic enough 

to reach the probe anyhow. 

cancel some of the ion flux which the negative probe attracts. 

The electrons arriving at the probe 

The 

equation - 
nev j =I 4 exp[eV/kT] 

applies to the retarded electron component of the charged particle 

flux to the probe in this region. The retarded electron current can 

be used to determine electron temperatures from the current equation. 

Measurement Results 

Satellite measurements in the ionosphere introduce complications 

into electrostatic probe theory since the satellite velocity and 

the magnetic field both affect the charged particle flux to the 

probe. We define the angle between the probe axis and the velocity 

of the satellite to be the aspect angle, 8, and the angle between the 

probe axis and the magnetic field direction t o  be the field angle, 4 .  

Determinations of both of these angles are made at the ends of the 

probe voltage sweeps and their values appear on data sheets along with 

the probe current values. Plots of the raw current values at the 

positive maxima of the probe characteristics taken from the Explorer 31 

satellite data yield results similar to the plots in Figures 4 and 5 .  

The data was taken while the satellite was traversing its orbit through 

changing altitudes and electron densities. 

current taken as a satellite probe rotated into the forward direction 

of the satellite's orbital motion, what would appear as a single curve, 

increasing or decreasing monotonically in time, appears on the graphs 

Since this data only includes 
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as unconnected curves because of the omission of wake region data. 

Moreover, there is the presence of a periodic fluctuation within the 

data producing minima and maxima at various aspect angles. 

of data show that the periodic fluctuations are related to both the 

aspect and field angles, hence, it is desirable to separate the current 

modulation into its components before attempting to explain the 

variations which appear. 

The plots 

The first assumption in the separation procedure is that in 

the electron accelerating region of the cylindrical probe characteristics, 

the electron current divided by the square root of the probe potential 

relative to the plasma potential is proportional to the electron density. 

Taking note of the equation describing the probe electron current for this 

voltage region shows that this is equivalent to assuming that eV/kT 

is enough greater than 1 to ignore the 1 in (1 + eV/kT)'. For the data 

that was analyzed eV/kT 1 5  which makes a maximum error of 9% resulting 

from this assumption. 

The time for a probe to rotate through the forward aspect angles 

on the Explorer 31 satellite is 10 seconds during which there should be 

only slight variations in the electron density. Therefore, a plot of 

I/V% values taken at the maxima of the probe characteristics against 

forward aspect angle should give a series of nearly straight horizontal 

lines. The fact that this is not the case is due to the modulations 

caused by satellite velocity and magnetic field effects in the ionosphere, 

which leads to the next assumption in the separation procedure. 

reference level for velocity induced modulations is arbitrarily defined 

The 
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as zero at 90’ aspect angle. 

current to a rotating cylindrical probe with an orbital motion in 

the ionosphere would draw the same current at 900 aspect angle as the 

same probe without its orbital motion, i.e. there is only a magnetic 

field modulation of current. 

Under these conditions, the electron 

Another assumption in separating magnetic and velocity effects 

on ionospheric probe current is that the velocity modulation of current 

should be strictly symmetrical about 8 = 0,and a function which gives 

the magnetic modulation of current should be nearly symmetrical about 

4 = 90°. 

V ( 8 )  and M ( 4 ) .  V ( 8 )  gives the satellite velocity induced modulation 

of I/+ as a function of field angle. 

The objective of the separation is to obtain the two functions, 

Define the experimental values of I / V  % as the function I ( e , 4 ) .  

Then I ( e , 4 )  = V(0) +- M(4) where V(4)  and M(4) have been defined and 

any interaction between velocity and magnetic effects has been assumed 

t o  be constant or negligible. 

symmetrical about e = 0’. 

current with a magnetically modulated current added. The first step 

in the separation procedure is to make one plot of I ( e , 4 )  against 

forward aspect angle and another plot of 1(0,4) against field angle, 

where the data is taken at the maxima of the probe characteristics. 

For each value of I ( e y $ ) y  there corresponds a field angle and an aspect 

angle which are coupled to each other. 1(+9O0,$1) = M ( 4 1 )  because 

V(+90°) = 0. In the first approximation M i ( 4 1 )  = M l ( 4 1 ’ )  where $ 1  

and $1’  are supplements; therefore, V o ( 0 2 )  = 1 ( 8 2 , + 1 ’ )  - M i ( + i @ )  = 

I ( e 2 , 4 l P )  - 1(9O0,41). NOW V0(82)  = V 0 ( - e 2 ) ,  therefore, 

V ( e )  is zero at 4 = 90° and is 

M ( 4 )  represents the unperturbed electron 
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M 1 ( $ 3 )  = I ( - e 2 , $ 3 )  - v0(-e2).  Since M1($3)  = M 1 ( $ 3 ’ ) ,  then, 

v O ( e d  = 1 ( e 4 , + 3 ’ )  - M1 ($/I v0(e4) = vO(-es) gives ~ l ( 9 5 )  = 

I(-es,$s) - Vo(-O4) .  

a first approximation, M I ( $ )  to the function M ( $ )  by plotting 

the values M 1 ( $ 1 ) ,  M 1 ( $ 1 ’ ) ,  M 1 ( $ 3 ) ,  M1($3’) ,  etc. against 6 .  

A numerical example of the first steps of the procedure is 

presented in the Appendix. 

I ( e , $ )  to obtain the first approximation to V(e). 

Continuing in this vein allows one to get 

The values of M l ( $ )  can be corqpared with 

If vl(e)  is not symmetrical about zero aspect angle one can 

get a second approximation to V(8) and M($) by drawing a mean 

curve for V I ( $ )  which is the symmetrical V2(-$) .  Then T($,e) - 
v 2 i e )  = ~ ~ ( $ 1  

The results of applying this procedure to the data which appears 

Shilar results for in Figures 6 and 7 are shown in Figures 8 and 9. 

data taken at other altitudes are shown in Figures 10 through 13. 

The final v(8)  curve represents the effect of a translational motfon 

on the electron flux to a rotating satellite‘s electrostatic prohe 

in the absence of a magnetic field where V(t90°) c 0, The final M($) 

curve represents the effect on the electron flux to a rotating 

satellite‘s electrostatic probe due to a magnetic field when there 2s 

no satellite orbital motion. The M($) curve shows the magnetic effect 

superimposed upon a constant current, 
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CHAPTER rrr 

CONCLUSIONS 

The results of probe measurements which have been presented 

illustrate the extent to which magnetic fields and satellite motion 

can affect electron current collected by cylindrical electrostatic 

probes. A mechanism for explaining these effectscan be developed, 

by viewing the sheath surrounding a positively charged cylindrical 

probe as possessing a nearly uniform electron density, approximating 

that of the surrounding medium and a nonuniform ion density 

distribution. Within the sheath, the ion density. will approach that 

of the surrounding medium with increasing radial distance from the 

probe. 

volume contains sufficient charge to "shield" the charge associated 

with the potential of the probe. 

the sheath structure by changing the charged particle distribution 

within the sheath. 

The sheath edge occurs at that surface where the sheath 

Magnetic and velocity effects modify 

In general, discussions of the effects of satellite velocities 

upon electrostatic probe currents have not emphasized the case of 

electron currents in the accelerating region of probe characteristics 

because the thermal velocities for electrons are so much greater than 

the satellite velocities. However, the sheath structure for a positive 

probe is modified as a consequence of the satellite velocity. 

results of the present data analysis suggest that current collection 

depends upon sheath structure, 

the satellite probe is rotating through a sea of electrons whose density 

The 

When the satellite traverses its orbit 
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distribution is not greatly affected by the probe motion. 

the ion distribution in,the probe sheath is affected because the ions 

do not move as rapidly as the probe. 

distribution in the forward portion of the sheath is denser than in 

the rearward portion, resulting in a sheath which is not symmetrical 

about the probe axis. The spatial effect is that the sheath becomes 

elliptically shaped as shown in Figure 14. The equipotential surfaces 

which enclose circular areas near the probe, enclose elliptical areas 

as the sheath edge is  approached. This deformation of sheath structure 

results in a modification in current collection as the aspect angle 

changes from 0' to 90'. 

However, 

At 90' aspect angle, the ion 

The Mott-Smith and Langmuir equations were derived for a sheath 

which was symmetrical about an infinite stationary cylindrical probe. 

These conditions are most nearly met at 0' aspect angle. 

the finite length of the probe makes current through the end of the 

cylindrical sheath a possibility. When the aspect angle is zero, 

the ion distribution near the end of the probe is altered because the 

ions are being overtaken by the probe. 

the sheath should extend farther from the probe end. The sheath 

However, 

This situation requires that 

deformation near the end of the probe causes extra amounts of electron 

current to be collected. 

The velocity modulations of electron current depend upon the ion 

temperatures and masses rather than upon the electron properties as it 

is the ion motions which are producing the changes in sheath structures. 

The velocity modulation, neglecting end effects, decreases as ion 

temperatures increase because the ions are able to distribute themselves 
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about the probe more symmetrically at higher temperatures. In contrast, 

it has been suggested (Bettinger, 1966) that the end effect 

modulation for ion currknt to a negative cylindrical probe should 

increase in angular width as ion temperatures increase. Under the 

present mechanism one expects the same type of dependence for electron 

current to a positive probe. 

suggests that at the lowest ion temperatures the function V ( 0 )  should 

become increasingly negative at decreasing e. As the ion temperatures 

increase, a positive effect will appear at small aspect angles which 

gradually increases in magnitude while the negative effects at larger 

aspect angles are gradually decreasing in magnitude. 

a temperature will be reached at which the negative and positive 

modulations cancel each other. Then V ( 0 )  = 0 for all 0 I 90'. At 

the highest ion temperatures, only an end effect velocity modulation 

Combining these temperature effects 

In some cases 

will appear, resulting in a positive valued V ( e >  which increases in value 

as 0 decreases. Examples of all of these conditions can be seen in the 

V ( 0 )  curves presented in Figures 8, 10, and 12. 

The magnetic field effects are complex to discuss because the 

charged particles are constrained to spiral about the magnetic field 

lines. 

lines is the gyro-radius of the particles and that charged particles 

move at faster rates along the field lines than across them. The concept 

of a guiding center, the position of the instantaneous center of the 

charged particle orbit, can be used to describe the charged particle 

motions along magentic field lines. 

sheath must have guiding centers that came from within a tube in space 

This constraint means that the mean free path across the field 

The electrons which enter the probe 
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of he ight  (Re + L s i n  I$ + 2Rs cos 4) where L i s  the  length  of t he  

probe including t h e  shea th  thickness  a t  the  end, Re i s  t h e  e l e c t r o n  

gyro-radius, Rs is  t h e  ou te r  radius  of t he  shea th ,  and 0 is the  

f i e l d  angle ,  excluding zero.  

when t h e  f i e l d  angle  is  zero.  

e f f e c t s  s i n c e  t h e  sa te l l i t e  presence i n t e r f e r e s  with some of t he  f l u x  

which would normally e n t e r  t h e  probe shea th  and i s  t h e  reason t h a t  

t h e  f i e l d  tube c ros s  s e c t i o n  abrupt ly  changes a t  zero f i e l d  angle.  

Figure 15 i l l u s t r a t e s  t h e  in t e rcep t ion  of t h e  magnetic f i e l d  l i n e s  by 

t h e  sa te l l i t e .  

The width of t h e  tube i s  2(Rs + Re) 

The sa te l l i t e  adds t o  the  modulation 

Because of the magnetic f i e l d  c o n s t r a i n t s  on charged par t ic le  

motions and t h e  sa te l l i t e  presence, e l e c t r o n  cu r ren t  t o  a s a t e l l i t e  

probe i s  less than f o r  zero magnetic f i e l d .  

perpendicular  t o  t h e  magnetic f i e l d , l i n e s ,  i t s  sheath w i l l  be 

e l l i p t i c a l l y  shaped about t h e  probe axis as shown i n  Figure 16. 

t h e  probe is  al igned w i t h  t h e  f i e l d ,  t h e  shea th  w i l l  be c i r c u l a r  about 

t h e  probe a x i s  wi th  t h e  shea th  thickness  h c r e a s e d  from t h a t  a t  zero 

magnetic f i e l d .  The e l l i p t i c a l  sheath c ros s  s e c t i o n  and t h e  increase  

i n  shea th  th ickness  occur because shea th  formation by ion  repuls ion  

When t h e  probe i s  

When 

r e q u i r e s  motions across  t h e  magnetic f i e l d  l i n e s ,  which is  d i f f i c u l t  

t o  achieve.  The increased amount of p o s i t i v e  charge remaining near  t h e  

probe r equ i r e s  t h a t  more volume must  be included i n  t h e  sheath i n  order  

t o  encompass enough negat ive  charge t o  cance l  a p o s i t i v e  probe p o t e n t i a l  

Most e l e c t r o n s  reaching t h e  probe a t  180' o r  zero f i e l d  angles  

must c ros s  f i e l d  l i n e s  t o  do so. I n  c o n t r a s t ,  many e l ec t rons  a r r i v i n g  



2 1  

at the probe for 90° field angle can do so by traveling along field 

lines and the elliptical sheath configuration intercepts more than 

the normal number of field lines. 

in a current which reaches a maximum at 90' field angle and minima 

at 0' and 180' field angle. For no translational probe velocities, 

there may still be an end effect because it is easier for electrons 

to enter the end of the probe when the probe is aligned with the field 

lines. The plotted M(Q) curves do not conflict with the stated model. 

The magnetic field presence results 

The state of theories concerning magnetic modulations of probe 

current collection was reviewed by Chen in 1965. 

in accounting for magnetic field effects is that a collisionless theory 

may not be adequate. 

be ignored if the gyro-radius, %, is greater than the Debye length, h. 
The mean gyro-radius for an ionospheric electrQn is mcv/Be where B is 

the geomagnetic field strength; and h is (kT/4nne2)$ where n is the 

electron number density. 

The primary difficulty 

Magnetic collisions within the sheath can only 

8kT % ~ 5.7(mn)% 
Rg/h = [y-) [4.rrne2/kTl B 

For the conditions of the present.analysis 

3 5 10 /cc I n I10 /cc and B - 0.4 gauss. 

Since 

-2 7 10 
m 10 gm and c = 3 X 10 cm/sec, Rg/h -. 1.5 

demonstrating that the magnetic collisions within the 

sheath should be almost negligible. Under these circumstances, 
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magnetic collisions within the probe sheath are of little 

consequence in modifying electrostatic probe characteristics 

for ionospheric electron current collection. On the other hand, 

the altered charged particle diffusion in the presence of the 

geomagnetic field, as discussed previously, may be important in 

any case. 

An alternate mechanism for explaining the M@P.) curves is 

anisotropy in the pitch angle distribution for the electrons of 

thermal energies. 

in a magnetic field is U A / B  where UL is the kinetic energy of the 

particle in a direction AB.  

is constant, where a, the pitch angle, is the angle between the 

particle velocity and the magnetic field lines. Lenchek has shown 

that for charged particles escaping from a collision dominated region 

into a collisionless ionosphere, when 1.1 is conserved, there is a 

critical pitch angle, ac, which satisfies the relationship 

sin2ac = B/Bo. 

distance, R, from a magnetic dipole and Bo is the magnetic field 

strength at the base of the collisionless region. 

divides the pitch angle distribueion at a given height into two 

regions. 

which the charged particles might have. 

permissible velocity, ym9 whPch charged particles can have where 

The magnetic moment, 1.I, of a charged particle 

If 1.1 is conserved, then v2sin2a/B 

B is the magnetic fteld strength at a given radial 

The critial angle 

For a 1. ac there is no specific upper bound to the velocities 

POK a > ac there is a maximum 

vIs2 = f(sin2a, RIG, B/B,). 

The effect o f  taktng into account couloqb collisions in the "collisionless" 
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reg ion  i s  t o  reduce t h e  anisotropy by increas ing  t h e  va lue  of urn. 

The important p a r t  of t h e  Lenchek model of tops ide  ionospheric  

escape f luxes  of charged p a r t i c l e s  f o r  t h e  present  s tudy i s  the  

p red ic t ion  of a f l a t  p i t c h  angle  d i s t r i b u t i o n  of p a r t i c l e s  f o r  

ct s ac. 

is  predic ted .  

curves.  

When a > ac,  a rap id  f a l l -o f f  i n  the  p i t c h  angle  d i s t r i b u t i o n  

This is p r e c i s e l y  t h e  behavior of many of t h e  M(+) 

I f  one accepts  t he  shape of t h e  M(+) curves as an adequate 

i n d i c a t i o n  of t h e  dominant mechanism i n  producing t h e  shape, one 

can state t h a t  of t he  curves p lo t t ed ,  s ix  out  of e leven show an 

a n i s o t r o p i c  p i t c h  angle  d i s t r i b u t i o n  of e l e c t r o n s  t o  be t h e  dominant 

mechanism i n  producing magnetic f i e l d  modulations i n  t h e  ionospheric  

e l e c t r o n  cu r ren t  t o  c y l i n d r i c a l  probes. 

shapes i s  t h a t  f o r  a v a r i a t i o n  of f i e l d  angle  from 90' towards e i t h e r  

0' o r  180° t h e r e  should be a continuous decrease i n  e l e c t r o n  cu r ren t  

i f  slow d i f f u s i o n  across  magnetic f i e l d  l i n e s  i s  t h e  dominant 

mechanism. Only two out  of e leven displayed t h i s  behavior.  I n  

c o n t r a c t ,  t h e  an i so t rop ic  p i t c h  angle mechanism requ i r e s  a region of 

almost constant  cu r ren t ,  centered.  around 90' f i e l d  angle.  

The d i s t i n c t i o n  i n  curve 

Then a t  

some c r i t i ca l  angle  t h e r e  should be a rap id  f a l l -o f f  i n  cur ren t .  

extra modulations i n  t h e  M($) curves a t  1550 km a l t i t u d e  i n d i c a t e  some 

mechanism i n  a d d i t i o n  t o  those  operat ing a t  the o the r  a l t i t u d e s  s tud ied .  

I n  t h i s  case, t h e r e  appears a p a r t i c u l a r  p i t c h  angle  about which t h e r e  

i s  a dep le t ion  of e l ec t rons .  

The 

Because of t h e  l o c a t i o n  of the probes near  t he  bottom of t h e  
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satellite, there should be an assymmetry in the M($) for all field 

angles if the satellite presence is an important factor in the 

modulation of normal electron current collection. 

symmetrical nature of the If($) curves indicates that the satellite 

presence has little effect on the curve shape. In some cases 

there is an assymmetry in M(4)  for field angles near 90°, but 

these assymmetries can be interpreted in terms of a net flux of 

electrons in one direction. 

ilux became the satellite will t end  to scatter the particles out 

of the field tube for electron collection at one field angle but not 

at the supplement of that field angle. The result is an assymmetric 

M(9) curve. The assymmetry disappears for field angles such that 

a > ac because of the restriction on the velocities permissible to the 

lowest velocities. The net flux would tend to involve particles in 

the higher velocities of a Maxwellian distribution where collisions 

would be less important. In this study, assymmetries in M(O)  are of 

the order of 5% when they occur. 

The general 

The satellite presence affects such a 

The results presented are important in explaining the effects 

of satellite velocity and the geomagnetic field on cylindrical probe 

measurements in the ionosphere. The modulations observed due to 

satellite velocity effects represented changes in the accelerated 

electron current from doubling of the current, through no effect what- 

soever, to reducing the current by one-half. When the satellite 

velocity effects were removed, the magnetic effects, which were always 

present, remained. The stationary probes' accelerated electron currents 
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contained a 20 - 60% modulation from magnetic field effects where 

both diffusion effects and pitch angle distributions for the electrons 

are the important contributing factors. 

measurements are one of the principal methods for deducing plasma 

charged particle densities, the results of this analysis should be 

useful in determining how to extract an unambiguous value of 

ionospheric electran density from electrostatic probe data. 

addition, the results suggest a possible means of determining the 

presence of charged particle fluxes and anisotropies in pitch angle 

distribution among the ionospheric electrons. Both of these phenomena 

are important in the theory of transport processes in the ionized 

atmosphere. 

Since electrostatic probe 

Tn 
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APPENDIX 

A SAMPLE CALCULATION FOR MODULATION SEPARATIONS 

The first few steps in the separation procedure can be.illustrated 

by numerical calculations on the data taken from Pass 8268 at the 750 

km level. The curves labeled #268A of Figures 6 and 7 are used. Since 

there is a data point at 87' aspect angle, rather than 90°, one can 

use 87' as the starting point with little error. 

V ( 8 )  is taken as zero at 87' aspect angle. 

From our definitions, 

Therefore, the electron 

current to the probe is only influenced by the iaagnetic riodulation 

of the data point is 0.405. 

1(87O,37O) is taken for both Ml(37O) and Ml(143"). 

On a magnetic modulation plot the value of 

If only magnetic effects were important, I(e,$) would show a 

value of 0.405 at 9 = 143O. However, X(8,143O) = 0,348 which indicates 

that velocity effects have lowered the current by 0.057 units. 

found by looking at I(e,+) plotted against aspect angle for 20° < 8 < 37O 

with I(e,@) = 0.348 units. 

units. 

gives the electron current without a velocity modulation. 

0.488 units and the subtraction of Vo(-27O) gives 0.545 units which 

e 2  is 

e2 is 27O from Figure 6 and Vote2) = -0.057 

VO(27O) = V0(-270), hence, subtracting VO(-27O) from 1(-27O,$3) 

1(-27',$3) = 

only contains a magnetic modulation. 

$3 corresponding to 1(-27',$3) = 0.545 current units is obtained 

by looking at I(e,+) plotted against field angle to find 95' c: Cp < 116' 

where I(8,Cp) = 0.488 units. 

is the value of MI (101') and M1(7go) . 
Vo(f3) for another aspect angle can be determined as before. 

is continued until an approximate Ml(e) curve can be drawn. 

From Figure 7 this angle is 101'. 0.545 

1 ( 8  ,79') = 0.480 and a value of 

This process 
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