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FOREWORD

Over the past 10 years, the rapidly growing capa-
bilities of digital computers have made it possible to
treat classical many-body problems in increasingly rea-
listic ways. This capability has encouraged the develop-
ment of a large number of specialized techniques for both
direct simulation and more conventional solutions of such
systems.

The purpose of this symposium is to provide a sum-
mary of past and present results, to provide a forum for
exchanging current techniques and philosophies, and to
assess future possibilities. It is believed that these
proceedings will also serve as an introduction for those

‘scientists newly interested in the field. Most of the

papers included here deal with long-range forces and col-
lective effects, such as those that occur in plasmas and
astrophysical systems, although several neutral-gas prob-
lems are also included.

The panel discussions and audience comments were tran-
scribed and edited for relevance and continuity; they have
been approved in this form by the members of the panels.
The papers and abstracts are presented as received from
the authors. The views, comments, opinions, and findings
expressed herein are not to be construed as an official
position of either the National Aeronautics and Space
Administration or the College of William and Mary.

4 i L B 3 BGK et A S IR
CVIWENLELZIINAT Y vV Sile wFA TGRS PRNN L LK Y A PN

iii




ACKNOWLEDGEMENTS

The Organizing Committee for the symposium wishes to acknowledge its
indebtedness to The College of William and Mary and to the Langley Research
Center of the National Aeronautics and Space Administration for their sponsor-
ship. Their joint cooperation turned the conception of this symposium into
reality.

The assistance and guidance of the Scientific Advisory Committee is also
acknowledged as having played a significant role in providing the guidelines
which made the program so successful. The members of this Committee were:

Charles K. Birdsall, Department of Electrical Engineering, University
of California, Berkeley, California

Oscar Buneman, Institute for Plasma Research, Stanford University,
Stanford, California

John M. Dawson, Plasma Physics Laboratory, Princeton University,
Princeton, New Jersey

Marc R. Feix, Physics Department, College of William and Mary,
Williamsburg, Virginia, and NASA Langley Research Center, Hampton,
Virginia

The Organizing Committee:

Fred R. Crownfield
College of William and Mary, Williamsburg, Virginia

Marc R. Feix
College of William and Mary and NASA Langley Research
Center, Hampton, Virginia

Frank Hohl
NASA Langley Research Center, Hampton, Virginia

Gary A. Massel
NASA langley Research Center, Hampton, Virginia

iv



CONTENTS

FOREWORD « &+ o o &+ o o o o o o o o o o o o o o o o o o o o o o o o o o« o« o 1iii
ACKNOWIEDGMENTS & ¢ ¢ & ¢ ¢ o o o o o o o o o o o o s o o o s o o o o o iv

INTRODUCTORY ADDRESS

THE SYMBIOSIS OF COMPUTERS AND THEORETICIANS IN PLASMA PHYSICS . . . . . . 1
By O. Buneman, Stanford University

PLASMA PHYSICS

/
/

COMPUTER EXPERIMENTS ON THE MICROSCOPIC THEORY OF PLASMAS . . . . . . . . 3 g//
By Marc R. Feix, Gary A. Massel, and Richard H. Weinstein,
NASA Langley Research Center (Invited)
INVESTIGATIONS OF NONLINEAR BEHAVIOR IN ONE-DIMENSIONAL PLASMA MODEL . . . 25\///
By J. M. Dawson, Princeton University (Invited)
SHOT NOISE IN THE LAGRANGIAN ONE-DIMENSIONAL MODEL . . . . e e e e e s 51\//

By Christopher W. Barnes and D. A. Dunn, Stanford UnlverS1ty

INVESTIGATIONS OF A SHEET MODEL FOR A BOUNDED PLASMA WITH
MAG’NETIC lelD AND RADIATION e o © o e o o e @ 9 o o e e e o e o o o 59“
By Bruce Langdon and John Dawson, Princeton University

NONLAMINAR EFFECTS IN PLASMA SLAB OSCILIATIONS . . « « « . . Ml.v//
By H. M. Schneider and A. Bers, Massachusetts Institute of Technology
PRELIMINARY MEASUREMENTS OF NOISE IN A TWO-DIMENSIONAL
ROD MODEL OF A PIASMA . . . . o s 8 & @& 8 © s 8 % & s @ W e s e e 57

By R. W. Hockney, Stanford Unlver31ty

MICRO-REVERSIBILITY IN COMPUTER SIMULATION . « « « « ¢ & « « & o = « « « . 61
By O. Buneman, Stanford University

ON THE NUMERICAIL SOLUTION OF POISSON'S EQUATION &« o « o o o o o o o o o o 651V/
By Craig G. Smith, Princeton University

DRIVEN OSCILLATIONS AND NORMAL MODES OF A NONUNIFORM PLASMA . . « « « « « T3
By William M. Leavens, Environmental Science Services Administration

NUMERICAL STUDIES OF THE STEADY-STATE PLASMA SHEATH PROBLEM . « « o « « & > V/
By Lee W. Parker, Mount Auburn Research Associates, Inc. (Cambridge, Mass. )
and Edward C. Sullivan, NASA Goddard Space Flight Center




NUMERICAL SOLUTION OF THE FOKKER-PLANCK EQUATIONS FOR A HYDROGEN
PLASMA FORMED BY NEUTRAL INJECTION . . . . S
By John Killeen and Archer H. Futch, Lawrence Radlatlon Laboratory,
University of California (leermore)

VLASOV THEORY

NONLINEAR STUDY OF VLASOV'S EQUATION FOR A SPECIAL CLASS
OF DISTRIBUTION FUNCTIONS

By K. V. Roberts and H. L. Berk, Unlver51tv of Callfornla (San Dlego)

NONLINEAR SOLUTIONS OF THE VLASOV EQUATION BY VELOCITY SPACE EXPANSION
IN LAGUERRE POLYNOMIALS . . . . A . .
By R. J. Lomax, University of Mlchlgan

ASYMPTOTIC STATE OF THE TWO-STREAM INSTABILITY .
By Thomas P. Armstrong, University of Iowa

ON SOME ASPECTS OF THE EIGENFUNCTION EXPANSION OF THE SOLUTION
OF THE NONLINEAR VLASOV EQUATION . . . @ % B w & e ®
By W. L. Sadowski, National Bureau of Standards (see also p. 433)

FOURIER-HERMITE EXPANSION OF THE VLASOV EQUATION .

By Marc R. Feix and Frederick C. Grant, NASA Langley Research Center

NUMERICAL SOLUTION OF THE VLASOV EQUATION IN A FOUR-DIMENSIONAL
PHASE SPACE . . . . .
By John Killeen, Lawrence Radlatlon Laboratory, Unlver51ty of
California (Livermore)

MAGNETOHYDRODYNAMICS AND PLASMA DEVICES

MAGNETOHYDRODYNAMIC PLASMA CALCULATIONS s
By K. V. Roberts, University of California (San Dlego)

COMPUTER SIMULATION OF THE THETA PINCH .
By Thomas A. Oliphant, Los Alamos Scientific Laboraiory

COMPUTER SIMULATION OF BEAM BUNCHING . . . . . o
By K. R. Crandall, Los Alamos Scientific Laboratory

NONLINEAR HIGH FREQUENCY-PLASMA INTERACTION IN A MAGNETIC MIRROR .
By E. Canobbio and R. Collet, Centre d'Etudes Nucléaires de Saclay

COMPUTER SIMULATION OF THE BEAM-PLASMA INTERACTION .
By J. A. Davis and A. Bers, Massachusetts Institute of Technology

vi

W,

137 \/

145

149

151

155

165\j
191 \J

197

199 \J
217 “J



NUWMERICAL SOLUTION FOR 1.5-DIMENSIONAL, TIME-DEPENDENT
MAGNETOHYDRODYNAMIC PROBLEMS . « « « . . . P T
By Klaus Hain, NASA Goddard Space Flight Center

CAILCULATION OF HIGHLY DISTORTED PLASMA INTERCHANGE MOTIONS WITH A
NONLINEAR TWO-DIMENSIONAL TWO-FLUID COMPUTER MODEL . « « « « « « « &
By J. A. Byers, Lawrence Radiation Laboratory, University of
California (Livermore)

THETA-PINCH SHOCK IMPLOSION CALCULATIONS BY MODEL SIMULATION OF
COLLISIONLESS ION VLASOV EQUATION & &« &« o « o o o o o o & s
By R. W. Kilb, General Electric Research and Development Center
(Schenectady, N.Y.)

ASTROPHYSICS
MONTE CARLO METHODS IN STELLAR DYNAMICS . . . . N N e
By Michel Henon, Institut d'Astrophysique (Parls)
RELAXATION OF A ONE-DIMENSIONAL SELF-GRAVITATING GAS ¢ o « o o o « o o

By Myron Lecar, Smithsonian Astrophysical Observatory and
Harvard College Observatory

and Leon Cohen, Hunter College and Smithsonian Astrophysical Observatory

RELAXATION OF A TWO-COMPONENT SELF-GRAVITATING GAS + « ¢ v « &« ¢ o o o &

By Leon Cohen, Hunter College and Smithsonian Astrophysical Observatory

and Myron Lecar, Smithsonian Astrophysical Observatory and
Harvard College Observatory

THE N-BODY GRAVITATIONAL PROBLEM AND THE SIMULATION
OF GATACTIC CLUSTERS o o & @ . o % ® .
By A. Hayli, Institut d'Astrophy31que and Faculte des Sc1ences (Parls)

ONE- AND TWO-DIMENSIONAL MODELS TO STUDY THE EVOLUTION
OF STEIJ—IAR SYsI'EMS L ] L] ° - . L ] ® L] L ] [ ] L] L] L] L] o L] ] . L] L] (] L] L] o o
By Frank Hohl, NASA Langley Research Center

GRAVITATIONAL EXPERIMENTS WITH A CYLINDRICAL GATAXY =+ & o o o o o o o @
By R. W. Hockney, Stanford University

COLLECTIVE MOTIONS IN A SPHERICAL STAR CLUSTER « ¢ o « o « o o o « o o &
By Michel Hénon, Institut d'Astrophysique (Paris)

STABILITY OF NUMERICAL INTEGRATION AND REGULARIZATION IN THE
N-BODY PROBLEM . . « . . o e e s e
By V. G. Szebehely, E. M. Standlsh and C Frederlck Peters,
Yale University




NEUTRAL GASES

VELOCITY AUTCCORRELATIONS FOR HARD SPHERES . . . + . v s 367
By B. J. Alder and T. E. Wainwright, Lawrence Radlation Laboratory,
University of California (leermore)

NUMERICAL EXPERIMENTS ON THE NONLINEAR KROOK MODEL OF THE \/
BOLTZMANN EQUATION . . . P 369
By C. K. Chu, Columbia Uhlver51ty

THE NUMERICAL SIMULATION OF THE ATMOSPHERE (Presented orally only,
not for publication)
By Cecil E. Leith, Lawrence Radiation Laboratory, University
of California (Livermore)

BIBLIOGRAPEY AND CLASSIFICATION

COMPUTER EXPERIMENTS WITH CHARGED PARTICLES, CHARGED FLUIDS AND
PLASMAS: A CLASSIFICATION AND BIBLIOGRAPHY . « o o « e e e o o 315 \)
By Charles K. Birdsall, University of California (Berkeley)

PANEL, DISCUSSIONS AND CONCLUSIONS

METHODOLOGY IN THE N~BODY PROBLEM: LAGRANGE VERSUS EULER APPROACH - |
FIRST PANEL & ¢ o o o o o o o o o o o o « o o o o o « o o o o o« o . Lot
APPLICATIONS AND ORGANIZATION OF THE NEW FIELD OF COMPUTATIONAL PHYSICS -
SECOND PANEL « & « « o o o o o o o o o o o o o o o s o o o o o« o o o L7
REGISTRATION
LIST OF ATTENDEES '« ¢ & « o o o o o o o o o o o o o o « o o o o o o« o ko9

viii



INTRODUCTORY ADDRESS




Introductory Address
by

O. Buneman, Stanford University

The Symbiosis of Computers and Theoreticians in

Plasma Physics*

Ideally, plasma theory should make precise predictions on the basis of
precisely stated initial- and boundary-conditions, and the precisely known laws
of interaction. Failures of the theory, or its slowness of progress, cannot
be excused by lack of input data or by natural mysteries. Extreme complica-
tion, and our limited mathematical ability are to blame.

Our mathematical training and language are heavily biased toward
linearity and our attempts to grapple with non-linearities employ such linear-
ized language as "wave-wave interaction''. The philosophy of developing in
ascending powers of a '"'small" quanity has led to misleading answers in several
areas of plasma theory (moment expansions, adiabaticity, interaction expansions)
and an expansion in wave amplitudes has little chance of accounting properly
for plasma turbulence,

Even in the linear domain the simple wave dispersion picture has delayed
progress by decades as a result of its non-causal nature, and urgent linear
problems have still remained unsolved for this very reason. Computer simula-
tion scores over conventional theory because (1) it does not rely on lin-
earity and (2) it operates causally, sequentially.

It is suggested that in future we retain the mathematical apparatus of
conventional theory, in particular transforms, for those portions of our pro-
blems which are linear and have closed boundaries, and for the critical
analysis of computer accuracy, stability, resolution, economy. For an under-
standing of the evolutionary and non-linear processes we let the computer show
us the way. Simply watching the movies has already provided much insight and
qualitative explanation of phenomena, In due course it will lead to the birth

of a new mathematical language with which we can then operate quantitatively.

*
Supported by NONR 225(83).
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COMPUTER EXPERIMENTS ON THE MICROSCOPIC
THEORY OF PLASMAS
Marc R. Feix,*
NASA, Langley Research Center and
The College of William and Mary

Gary A. Massel and Richard H. Weinstein
NASA, Langley Research Center

The kinetic theory of homogeneous stabie plasmas was developed around
1960 by Lenard, Balescu, Rostoker and Rosenbluth. This theory gives the
fluctuations, the correlations and some of the irreversible coefficients such
as the drag and the diffusion for a plasma at thermal equilibrium. These
results are also applicable outside thermal equilibrium provided one can
define a stationary or '"metastable" distribution F(v). In both cases, the
theory is completely described by a dielectric constant e(k,w) given by the

well-known relation

" 2 dF (v) w 2
- P dv . dF(v)
e(k,w) 1+ % P Zr:fﬁ;'dv + in i%ET ( Tv (1)
—c0 v=§

*>" and

Computer experiments have been performed previously by J. Dawson,
0. Eldridge and M. Feix.3’4 In references 1, 3 and 4 the plasma was in

thermal equilibrium and the agreement was good. In reference 2 a first step

*
NRC-NAS Senior Postdoctoral Resident Research Associate




was taken to check the theory outside thermal equilibrium, with special
emphasis on checking a prediction concerning the time of Maxwellianization.
It is the purpose of this paper to briefly sketch some recent results
concerning both Maxwellian and non-Maxwellian plasmas. The experiments have
given qualitative and quantitative checks with both Vlasov theory and some

aspects of first-order theory.
I. COMPUTER PROGRAMS

The one~dimensional N-body problem with electrostatic interactions can
be solved exactly as described in reference 3. However, it is necessary to
stop at each crossing in order to recalculate the self-consistent electric
fields. The computer time needed to treat a plasma of length L with a

Debye distance D and for a time T is

Computer time = (nD) %-w T 6 (2)

where 6 1is the machine time per crossing.

In order to study a plasma outside of thermal equilibrium, nD must be
large enough so that the different order time scales are widely separated and
one can define a metaequilibrium. 1In order to get reasonable statistical
accuracy, it is usually necessary to take long time averages and require that
during this time the physical quantity of interest should not change. As a
consequence, nD should be large - certainly 20 or greater ~ and consequently,
the time for the exact program will be very long. Thus an approximate program
in which the system is advanced by fixed time increments has been used. The

equations of motion for the plasma particles are



- 1 2
X = x0+VOAt+ YO(At)

2
(3)
1. 2
v=v +y At +-2—yo(At)
where T & ﬁ'Eo and ?0 = ﬁ- E0 - E_1 . Use of the approximate program

results in an enormous time saving because it scales as nD rather than
(nD)z. The conservation of energy in the approximate program,given as the
fractional energy increase per wp- s 1s shown in figure 1. The necessity of
including the E term is evident from the figure. An important general
feature of the approximate program is the increasing accuracy with increasing

nD and decreasing AT allowing one to provide a good approximation to a

Vlasov (large nD) plasma with reasonable computation times.
II. THE FOURIER CHARGE DENSITY SPECTRUM

The first series of experiments to be considered concerns the microscopic

electric field, derived from the Fourier charge density

p(k,t) = J o, exp[- ikx, (t)] . (4)
3 J J

The autocorrelation of this quantity, i. e.,

C(k,t) = < p*(k,t)p(k,t + %) >t ’ (5)

is directly connected to the plasma dielectric comstant e(k,w). By calcu-
lating e(k,w), one can check not only the linearized Vlasov equation (the
Landau theory) but also fluctuating quantities to first order in the plasma
parameter (nD)—l through the use of e(k,w) in the dressed particle picture.

The connection between e(k,w) and plasma fluctuations and correlations has




7
been the object of many theoretical papers ’ ’

and represents a generalization
of the Nyquist fluctuation-dissipation for collisionless plasmas.
The potential energy of the plasma per degree of freedom (i. e. for each

wave number, in the Fourier representation) is calculated from the Poisson

law and C(k,T = 0). This has been checked previously by Dawsonl and

2
Eldridge and Feix3 for a Maxwellian plasma; with F(v) = Ae—BV the potential
energy, normalized to units of kinetic energy is
1 2 1 1
0 = (§) < 120o1? >, - () 25 - ®)
1+ kD

The experimental data given in figure 2 agrees fairly well with the theory
except for the long wavelengths, where the fluctuations are large.

Unless instabilities are present, any one-—dimensional distribution
function should be stationary in time to first order in g = %5 (as shown

later) and one may also calculate the potential energy harmonics for a

nonequilibrium plasma; for example, the square distribution
F(v) = == for |v| <a
F(v) =0 for |v| > a

for which Dawson studied the relaxation. Because there is no high energy
tail to this distribution there should be no excitation of long wavelengths;
i. e. < |E(k = O,t)|2 >, = 0 instead of 1/2 as for the Maxwellian.

The experimental results for the square distribution are shown in
figure 3. The long wavelengths are found to be excited contrary to the

prediction of the collisionless theory. It is necessary to take long time



averages in order to obtain any type of a steady result and even then large
excursions are noted. The reason for this lack of agreement is found both

in the limitations of the theory and the practicalities of the experiment.

In particular:

(a) The zero-order kinetic theory is valid at long wavelengths only for
nD very large; mathematically speaking, the limits g =-%5 -0 and k>0
do not commute. For the case shown, the collisionless theory would not be
applicable below kD = 0.6. Kaufman9 has shown that as k - 0, W(k) should
go to a finite limit.

(b) Once excited, the long wavelengths experience little damping and the
averaging times necessary for their equilibrium in the system are long enough
to strain the overall accuracy of the problem - both from an error standpoint
and also the eventual thermalization of nonequilibrium plasmas.

(c) The statistical accuracy of the long wavelength representation depends
on the total number of particles considered both through the %- ratio (L = N
for n = 1) and the number of particles in the tail of the distribution function.
As the %’ ratio is increased, the number of wavelengths in the system for
each mode grows, thereby improving the representation of each mode; this
problem is critical for the kD < 1 range. Also, since the excitation and
damping of long wavelengths is intimately tied to the superthermal particles,
increasing the total number of particles (and thereby the numbers in the high
velocity tail) should also help to improve the long wavelength energy balance,

again from a statistical point of view. Increasing the number of particles we

can treat is therefore a top priority goal.




III. FLUCTUATIONS ACROSS A PAIR OF GRIDS

To study the microscopic behavior of the plasma, one of the most useful
approaches is to immerse a pair of idealized grids into the plasma and either
launch a c. w. signal at a known frequency or to record the fluctuation
across the grids. Theoretically, the two problems are very closely related
because the solution of each requires obtaining the resultant signal of the
entire k-spectrum. Thus the result is only frequency dependent.

Derfler and Simonen10 have recently launched signals into a plasma with
an externally driven pair of grids and their data shows excellent agreement
with the Landau dispersion relation. This represents one contribution to the
dynamics of the plasma. Another is the contribution of the continuous
distribution of eigenvaluesll’12 or the branchline integral.13

In the computer experiments it is easier to use the grid pair as a
passive probe with which to observe the potential fluctuations. The periodic
boundary conditions which are necessary in computer simulation of an infinite
plasma introduce unrealistic feedback (in the computer model) which makes it
difficult to simulate launching a signal in an infinite plasma. In addition,
the fluctuations are an inherently linear phenomenon.

The relation of the plasma dynamics to the fluctuation is made through
an analogue of Nyquist's "Fluctuation-Dissipation TheorEm."6 For the case of
the finite sensing device - a grid pair - the analogous relation can be

derived directly from Vlasov theory to give

1 1 A
2w (-D—) Re z_(u) (7)
P

S(w) =




where S(w) is the spectral function defined by

S'(w) = %;;/[’F < ox(t)o(t + 1) > exp{— iwt df} (8)

and zg(w) is the impedance of the grid pair of separation:

+ ol k)
24 2 1
zg(w) T iw kA e(k,iw) dle - &
- 00 2

The properties of the plasma are manifested in the autocorrelation function
B(A,T) = < o(t)o*(t + 1) > (10)

of the potential fluctuations. The steady-state plasma properties are given
by t=0 (i. e. B(A,0) = < }@(t)\z >). TFrom equation (8) this is found to
be the area under the S(w) curve. For the Maxwellian plasma, B(A,0) is

shown to possess two distinct regions:
A

(@) <1
1 A 2
B(A,0) - 5;5-<5> (11)
A
(d) 5‘> 1
B(3,0) = iz (—%) ) (12)

These two regions correspond to the dominance of the individual particle
behavior for %-< 1 and of the collective effects for %-> 1. Figure 4 shows
very good agreement between the experiment and theory in both regions for

several values of nD. The potential ¢ 1is the actual potential normalized

to kT/e and thus B(A,0) scales as KkT.




Turning attention to the non-Maxwellian distribution, one expects the
k-integration to improve the accuracy of the quantities which are observed.
This is indeed the case. As has been shown by Rostoker6 and Feix and
Von Hagen.ow,7 the theory for an equilibrium plasma carries over to a non-
equilibrium case if a metastable state exists. This occurs for one-dimensional
plasmas as will be shown in the next section. Thus for a Druyvesteyn

distribution, the theory again defines two regions:

A

(a) D <1
A;Z
B(A,0) = —%(5) (13)
® $>1
3
B(A,0) = ;‘E (14)

where o = 1.48 and where the mean energy of distribution is normalized to
that of a Maxwellian. The experimental data is shown in figure 5. Here a
distinct leveling is seen which was predicted by the theory and arises as a
manifestation of the antishielding property of the Druyvesteyn and the square
distributions. The quantitative discrepancy with the theory is due to the
over—excitation of the long wavelengths described in section 2.

To study the dynamic behavior of the plasma, one can observe the
autocorrelation function defined in equation (10). Figures 6 and 7 show the
results for L= 2 and L 10. For =t f O, the continuous spectrum, which is

D D »

heavily damped, plays a role. For %-= 10, the initial damping is seen to be

less than for %-= 2 because the long wavelengths are more strongly excited.

10



The behavior for large Tt 1is dominated by the least damped portion of
the spectrum which is the discrete pole, i. e. the Landau pole. Thus,

asymptotically

2

1 1 A -1/2

B(A,T) = ——--—(—) T cos W T .
T 5 %?-nD D P

This same behavior has been predicted by Engelmann and Feix14 for the propagation
of a pulse in a plasma. The 1-1/2 damping is due to the phase-mixing of many
different modes. The agreement between experimental and theoretical results
is shown in figures 6 and 7. It was only possible to obtain meaningful
results up to Tmp ® 40 since beyond there the accumulation of computer error
began to destroy the correlations.

By taking the spectrum of B(A,T), it is possible to observe both the

resonance of w = wp .and the continuous distribution of eigenvalues. Thereby,

the existence of this contribution is explicitly demonstrated.

IV. METAEOUILIBRIUM AND TEST PARTICLE BEHAVIOR

In calculations involving the nonequilibrium plasmas, the existence of
stationary velocity distribution function was taken for granted. The time-
dependent behavior of both the overall velocity distribution and test particle
distribution can, however, be useful in checking the kinetic theory - especially
for nonequilibrium plasmas. Test particle experiments, impossible to perform
in a real experiment, are of particular interest in one-dimensional plasmas

for which the test particle and overall distribution functions behave

differently.

11



The Balescu-Lenard equation, i. e.

3F(§a) 3 4 > 25 3 8
=08 . l6re'n | dk | dV.k =

—>
k
T B, 1e(®R

' F’)a - V]] /3 v \F ,
o, - vy Ay, a%y(va) )
(16)

describes the thermalization of the one-particle distribution function (for
particle a) in terms of interactions with field particles (denoted 1); the

. ¢ nD . . -
time scale of this relaxation is 1, = % first order in the graininess

1
P
parameter. Because the Fourier transform of the electrostatic potential
(i. e. v(k)) has the same '%5 dependence in one and three dimensiona, one
may obtain a one-dimensional analog of equation (16) which may be obtained

simply by removing the vector signs and changing the multiplicative constant

from 16113 to 4m. The Dirac §-function G(ﬁ ) sz - Vi]) is nonzero only

for
k=0 )
- N k=0
V =V kin three dimensions and in one dimension.
o 1 >
vV = V1
2 -7 i
l_ a1

7

> >
Thermalization in three dimension comes from waves normal to [Va - VJ 5

but there is no thermalization on the scale of 71, in one dimension if

1
F(Va) = F(Vl), the total distribution function. The existence of this meta-
equilibrium was pointed out for the first time by Eldridge and Feix4 and

checked by Dawson2 with a one-species plasma model having an initially square

velocity distribution. Dawson found thermalization to occur on a second-

2
order time scale T, ~ 10 Sﬁgl_ . Figure 8 shows a calculation similar to
p

12



that of Dawson's mode with a two-species model also using a square velocity
distribution. The distribution function is shown for four plasmas with

nD = 10, 20, 40, 60 at a scaled time T = 4T1. As the separation of first
and second order time scales increases (with increasing nD), second order

effects become negligible and the original shape (indicated by the outline

corners at V = % 1,7) is closely maintained; the only prominent change is

the development of a small, high-velocity tail.

The absence of thermalization, while expected for a one-dimensional
system having only short range, binary interactions, is at first surprising
for a plasma, where the interactions are collective. The explanation is to be
found in the test particle picture, in which individual particles emit waves
(plasmons) which are resonantly absorbed by other particles. This process is
analogous to a binary encounter, even though the propagation and damping of
the waves is described by the collective properties of the plasma.

Relaxation effects are found to first order if we distinguish between a

test particle distribution and the overall distribution function. Thus, if

o6 (V
_ o .
F(Va) > ¢(Ya) and Va = Vl then E # 0. Equation (16) may then be
viewed as a Fokker-Planck equation with a time scale 1, = £ from which the

1 w

drag and diffusion (in velocity space) of test particles canpbe calculated.
A typical drag calculation for a Maxwellian plasma is shown in figure 9
giving the average velocity of groups of test particles as a function of the
first-order time. All test particles initially have velocities within * 10%
of the thermal velocity and the four sets of data represent nD = 10, 20, 40,
60. The overlap of the data clearly verifies the time scaling concept,
because the fundamental plasma time (in units of wp_l) over which the

measurements extend changes by a factor of six as nD goes from 10 to 60.

13




The initial slope of the data gives a drag coefficient of within 107% of the

theoretical value.

In general, the velocity diffusion coefficient can be shown to be15

-0
2
d [ 2 2] _(o\ 1 f 2 _
rral AR T B (m 2“[ dw dk <|E(k,w)|“> 6(w - kv) . (17)

It is most convenient to examine the diffusion at zero velocity, for which the

drag is zero and changes in the distribution function are entirely due to

y_

Vr

then the normalized diffusion coefficient

diffusion. Expressing the diffusion in terms of normalized velocity V =

and first-order scaling time Ty

at V=0 is

0.40 for F(V) Maxwellian
2
[<V > - <V>]

1 0.86 for F(V) square

To obtain a valid measurement for a nonequilibrium plasma, nD must be
large enough so that the metaequilibrium is maintained. Figure 10 shows
experimental data for Maxwellian and square velocity distributions with
nD = 60, and the diffusion coefficients given by the slopes of the data are
.41 and .90 for the Maxwellian and square distributions respectively. This
agreement is quantitatively good and re-enforces both the metaequilibrium and

the applicability of the kinetic theory out of equilibrium.
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V. CONCLUSIONS

Three kinds of problems have been treated: (1) the Fourier density
function; (2) potential fluctuations; and (3) relaxation effects. For non-
equilibrium plasmas, all three problems are intimately related to the prediction
of a metaequilibrium in one dimension, i. e. the persistence of any stable

2
distribution for times T << LEEL— . This point was well established by the

third problem, showing not only ihe existence of a metaequilibrium but giving
good agreement for first-order scaling and measurements of the diffusion
coefficient.

In the first type of problem, experimentally observed Fourier density
functions for infinite plasmas at thermal equilibrium were well described by
the usual linearized theory. For nonequilibrium plasmas, only qualitative
agreement was found because of long wavelength difficulties. Large fluctua-
tions in slowly damped, long wavelength modes are tied to the scarcity of
high-velocity particles and would also require averaging times long enough to
strain the metaequilibrium limitation and computer accuracy for the size of
present problems. Computer accuracy in an approximate program includes both
general cumulative errors and errors due to the larger number of crossings
made by high-velocity particles.

The use of the grid pair as a probe to study plasma fluctuations intro-
duces an interesting possibility for plasma diagnostics. Good agreement was
obtained for both the static and the time-dependent analyses. The diffusional
damping proportional to T—l/z was observed to dominate and would thus be

expected to determine the propagation of a pulse in the plasma. Only alluded

to in this paper was the existence of the contribution of the continuous
@

15




distribution of eigenvalue to the spectrum. This contribution has been
explicitly observed in these computer experiments.

The experiments also showed the limited range of validity of the theory
for finite nD. The relative success of equilibrium measurements comes from
the fact that the ratio of each order of excitation and damping mechanisms,

: . kT s g g .
which determines the potential energy is —— at equilibrium; i. e.

2
e + 4 g%, 4 wvs
o 8% T8 S
B = 2
Y, teyy vy, + e
N KT . .
where — = ;—-= ;—"" =5 - Introduction of first-order effects would not,
o 1 2

therefore, change the character of the small k result for equilibrium; for
the square distribution, the vanishing zero-order result (for k - 0) is easily
swamped by nonzero higher order effects for finite nD.

Decisive results for long wavelength phenomena in nonequilibrium plasmas
can be obtained only for much larger values of nD and %-. The need for

perhaps 10,000 particles and nD > 100 should prove to be a formidable test of

the new generation of computers.
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INVESTIGATIONS OF NONLINEAR BEHAVIOR - 3773 9
IN ONE-DIMENSIONAL PLASMA MODEL % -4

Je. M, Dawson

Plasma Physics Laboratory
Princeton University

The results of three experiments on the nonlinear behavior of one-
dimensional plasmas are presented. The calculations were carried out in
conjunction with Ramy Shanny of the General Electric Company, Space
Sciences Laboratory, King of Prussia, Pennsylvania. The three experi-
ments were the Landau damping of the large-amplitude plasma oscillation,
mode coupling between two strongly excited plasma oscillations, and the
turbulence generated by the passage of a weak beam through a plasma.

A short summary of the results follows.

I. LANDAU DAMPING OF A LARGE-AMPLITUDE
PLASMA OSCILLATION

The Landau damping of a large-amplitude plasma oscillation was
investigated. The wave had a phase velocity such that it fell in the tail of
the velocity distribution where very few electrons appear. It was found
that the damping was much stronger than was predicted by linear theory
and that the damping increased rapidly with increasing amplitude of the
wave. An explanation of these results is that the wave accelerates particles
with velocities considerably less than its phase velocity up to velocities

equal to or in excess of its phase velocity. The Landau damping of such a
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wave is nonlocal, thatis, it does not depend simply on the derivative of the
distribution function at the phase velocity, but rather depends on the mean
slope of the distribution function over a range of velocities that is roughly
equal to that for which particles would be trapped if the wave were

not damped.

II. INVESTIGATIONS OF MODE COUPLING ON
A ONE-DIMENSIONAL PLASMA MODEL

This experiment sought to verify the theory of mode coupling through
the mechanism of nonlinear Landau damping. The results are in agree-
ment with the theory within the accuracy of the experiment as long as
quasi-trapped particles (particles that would be trapped if one of the waves
existed by itself) are avoided. These quasi-trapped particles, if they exist,
give rise to a strong damping like that observed in the first experiment.

According to theory, two longitudinal modes with frequencies and
wave numbers wl ’ k1 K wz , kZ should be coupled by the particles
traveling at velocity v , v = ((4)1 - wz)/(k1 - kZ) , Wwhere v is roughly
the group velocity. The primary effect is to transfer energy from the
short-wavelength, high-frequency mode to the long-wavelength, low-
frequency mode. (The dispersion relation is wz = w; + 3k2 Vi, , Where
VT is the thermal velocity of the particles.,) The particles carry off a
small amount of the wave energy. Figure 1 shows the result of one such

-1
experiment. Two modes were strongly excited with (k)\D) =3.5and 4.4 .

The long-wavelength mode grows and the growth is almost exactly what is



predicted by theory. The short-wavelength mode decays somewhat more
rapidly than theory would predict. It appears that some of the damping of
the short-wavelength mode is due to collisions, i.e., because of the
discrete nature of the model, the collisions between particles result in the
absorption of some of the wave energy. Although this effect is small it is
of significance in this experiment. By going to a very large system with a
very'hot plasma and very long wavelengths, it was possible to reduce this
effect to about 10 percent of the mode coupling effect.

In order to obtain the results shown, it was found necessary to elimi-
nate particles that could be accelerated into resonance with a shorter-
wavelength mode. Therefore, the tail of the Maxwellian velocity distri-
bution was truncated at 1.6 times the thermal velocity. Also, the ampli-
tudes of all other wavelength modes, except the two that were specifically
excited, were surpressed. This was done to prevent the diffusion of
particles to the higher velocities that these modes caused. It was found
that with these precautions the agreement with theory shown in Fig. 1
could be obtained.

III. TURBULENCE PRODUCED BY THE TWO-STREAM
INSTABILITY IN A ONE-DIMENSIONAL PLASMA

Some numerical experiments have been carried out to investigate the
turbulence produced in a one-species, one-dimensional plasma by a bump
in the tail of the Maxwellian distribution. The purpose of the experiments

was to see if the results could be explained by means of quasilinear theory.
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Some aspects appear to agree with this theory but many do not. The initial
velocity distribution consisted of two components--the main plasma and the
beam plasma. The main plasma contained 95 percent of the particles and
had a Maxwellian distribution. The beam contained 5 percent of the
particles, it had a Maxwellian distribution whose width was equal to the
thermal velocity of the main plasma, and it had a mean velocity which was
3.5 times the thermal velocity. The plasma contained 2,000 particles in
all, and there were 10 sheets per Debye length. There were roughly
10 unstable modes.

The unstable modes grew and saturated after a few e-folding times.
At the same time, the bump in the tail flattened out as predicted by theory.
After the initial growth, the unstable modes remained at a relatively high
level of excitation; however, their amplitudes showed relatively rapid time
fluctuations, growing and dying in times of the order of one plasma period,
This is contrary to the assumptions of quasilinear theory, which assumes
that the amplitudes change only slowly in time. After the tail flattened out,
there was a gradual diffusion of particles to higher velocities with particles
ultimately reaching more than 7 times the thermal velocity (and roughly
3 times the maximum energy of any particle at time t =0) . The tail
develops into a Maxwellian shape with a temperature of roughly 10 times
the temperature of the main plasma. This temperature is roughly what one
would get if one equated the beam energy to KT . The energy of the

initially unstable waves is on the average equal to the energy of a particle
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in the tail (KT for the tail). Thus, there appears to be a rapid thermali.-
zation of the tail particles among themselves and with the waves they
interact with. None of this would be predicted by quasilinear theory. It
appears that many of these effects may be due to the discrete nature or
graininess inherent in the model. If one computes Cherenkov radiation of
longitudinal waves by the particles in the tail, one finds that they emit as
much energy as is contained in the waves in a time of the order of a few
plasma oscillations. Thus, it appears that this is a very important effect.
The waves appear to cause a rapid thermalization of the particles. This
thermalization is much faster than one would predict from simple
collisional calculations. Estimates of the importance of such interactions
for energetic particles embedded in a cold plasma indicate that these

effects can also be important in three dimensions.

B

This work was performed under the auspices of the U. S. Atomic
Energy Commission, Contract No. AT(30-1)-1238 and the Internal
Research Program of the General Electric Company, Space Sciences
Laboratory, King of Prussia, Pennsylvania. Use was made of computer

facilities supported in part by National Science Foundation Grant

NSF-GP579.

29




T T T I T
Q
\
y 17
o 50} 8 Q‘SPQ i
i yop
o VP
L A0F Rg -
>
<
=
30 -
o0 —e—K=4 -
~-0--K=5
10 —
0 l | | | |
0 10 20 30 40 50 60

TIME

Figure 1.- Wave energy vs time for mode coupling between modes L4 and 5.

30

L



o W67-37740

SHOT NOISE IN THE LAGRANGIAN ONE-DIMENSIONAL MODELT
by

Christopher Barnes and D, A, Dunn
Institute for Plasma Research.
/Stanford University
Stanford, California

SUMMARY
Presented here are results of computer experi- )
ments designed to test the effects of coarse graining

in the one-dimensional planar Lagrangian computer
simulation of a one dimensional electron diode.

In recent years many researchers have made use of the one-dimensional
charge sheet model in computer simulations of electron and plasma diodes,

. , i 1-6 .
sometimes referred to as a Lagrangian or super-particle model . It is well
known that the use of many sheets and small time steps in a simulation is de-
sirable, although expense and computer size limitation place practical limits
on the ultimate graininess of the model, This paper examines some of the ef-

fects of time and space coarse graining on a computer simulation of an electron

diode using the Lagrangian model,

Fig, 1., One-dimensional
planar model

< X
I

o

The model is, as shown in Fig, 1, a planar, one-dimensional geometry,

Electron sheets are injected at x = O as if they had been accelerated from a

space-charge limited cathode at x = -S. The anode is placed at x = D, The

TThis work was supported by the U.S, Army Electronics Laboratories under

Contract DA-28-043 AMC-OOLB2(E).
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ratio D/S then specifies the relationship between diode spacing, injected
current and DC injection potential, The injection mechanism can be understood
by imagining all the sheets to be injected in the future as being lined up
behind x = O with constant spacing between them (Fig. 1, dashed lines). Each
time step the sheets lying in the next Ax = VOAT are placed inside the diode
(x > O) with the same spacing., Thus it is possible to inject effectively a
noninteger number of sheets per time step, This allows us to induce artifi-
cially some of the "noise" generated by the discrete nature of the computer
model. The electric field in the diode is approximated by calculating the
field at a discrete number of points at uniform intervals across the diode,

The physical parameters of the model are D/S and Vth’ the ratio of
cathode temperature in volts to mean DC potential Vo. The computer parameters

are N
o

]

the number of sheets injected in one transit time, At = length of
time step in transit times, NOAt = the number of sheets injected each time

step, and N the number of cells used in the field calculation, We mea-

cell’
sure the value of potential minimum and total diode current, from which is
derived the RMS fluctuation current,

Consider first the simulation of a diode below limiting perveance (D/S <
2.8). The potential minimum and current in such a system are non-time-varying,
A non-time-varying result is always found from the computer model provided that
an integer number of sheets are injected each time step, However, if a non-
integer number of sheets is injected each time step, the currents and poten-
tials will fluctuate with amplitudes that are a function of the number of sheets

in the diode and the number injected per time step. Figure 2 illustrates this

for three different cases, with various N

o’ NOAt, Each plot has several values

of NOAt with the first and last segments of each an integer NoAt. Two
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Fig, 2. Time variation of potential minimum (V ) and total
diode current, Each tic on the horizontal axis corresponds to
one transit time., For all three cases, D/S = 2.0, Vin = 0.0.
Each case has six slightly different values of N At with the
first and last an integer, The points at which N At was

changed slightly are denoted by vertical dashes. ?A) Ny = 32,
N,At = 8.0, 8.8, 96 10.4, 11.2, 12,0. (B)No_32Nt=1.0,
1.2, 1.4, 1.6, 1.8, 2.0, (c) N, = 256, N At = 8.0, 8.2, 8.4,
865 8:8; 9.0,

effects can be seen, The current fluctuations seem to be a function of NOAt,
Although NaAt is noninteger, the number of sheets injected for any one time
step of course is integral; thus if NoAt = 8.5, the model injects alternately
8 sheets and 9 sheets, The magnitude of the current fluctuation is then re-
lated to the fractional change in NOAt from one time step to another, The
second effect is that potential minimum fluctuations are related to NO, i,e,,
the potential profile is smoother for large No' This noise is present in all
models of this kind although not explicitly evident because of the presence of
other effects,

Now suppose a beam with a finite temperature (half Maxwellian plus DC com-

ponent) is injected into the diode. The potential minimum and current in the
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giode will fluctuate due to shot noise. For Lagrangian super particle models
the amplitude of the shot noise is very much greater than in real diodes be-
cause the charge per particle is much greater (by many orders of magnitude).
This noise can mask collective effects if too few particles are used in a simu-
lation, We present results of computer experiments designed to measure shot
noise under varying conditions in a model of an electron diode in which both
random velocity and current fluctuations can be introduced into the injected
stream, Figure 3 shows three waveforms corresponding to three values of No’
each case with four different At ranging from 1/4 to 1/32., Also shown are
curves giving the dependence of the RMS current fluctuations on l//fﬁ; and
the number of field cells used,

It is well known that in an electron diode past limiting perveance, large
oscillations are present in the potential minimum and current, We present the
results of computer experiments in which a beam is injected with a perveance
beyond limiting perveance with a finite temperature., Figure 4 shows results of
four cases, for two different No and two different temperatures, Again
several values of At are chosen for each run, It can be seen that with a
thermal spread on the beam velocities, the oscillations are present with greatly
reduced amplitude, Note that the number of sheets required to measure accu-
rately this effect is an order of magnitude higher than is needed in the cold

= 0.0 but at least 256 needed for V_ _ =

case, 32 being sufficient with V i

th

0.1, 1If Vth is made smaller the required NO is even further increased.

Figure 5 shows results obtained with V., =0.03. With as many as N, = 2800,

it is not clear that the solution is constant with No.
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For each curve there are four different At:

from left to right,

(C). The three curves show results for three values of At:
(E) Plot of the effect of changing the number of field points
1/32,

1/8.

on the fluctuation current,

At
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1/4, 1/8, 1/16, 1/32, reading
(D) Plot of I, vs 1/,/N, for data shown in (A), (B),

1/32, 1/16,
(Ncell)
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INVESTIGATIONS OF A SHEET MODEL FOR A e
BOUNDED PLASMA WITH MAGNETIC FIELD AND RADIATION

Bruce Langdon and John Dawson

Plasma Physics Laboratory

Princeton University

ABSTRACT

1

A number of extensions have been made to the usual one-dimensional

sheet model for a plasma.

The sheets, which lie in the y-z plane, are

allowed to move in the x-y directions, passing freely through one another.

The motion in the x direction produces the usual electrostatic field EX y

while the motion in the y direction produces radiation fields E

which are included in the calculation.

and B ,
Z

A static external magnetic field in

the z direction is included, and the smoothed-out neutralizing background

charge density no(x) varies with x ., All quantities vary only in the

x direction.

J (x,t)
y

dp
—X - ek
dt y

S

J (x,t) =
y

Px ek vw

a % 7x pr

= +B

c m(v)c (Bz o)
oE
e = 471 e[ n(x, t) - no(x)]
8BZ L BEY  an

0x c ot
oK oB

vy, __z _
9x c ot = B
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w

C

p

The relevant Maxwell's and Newton's equations are

X

n(x,t) = 25[ X - xs(t)]

ez vys(t)ﬁ[ X - xs(t)]




_ ®
Since vz ; Ez , and By are all initially zero, they remain so.

Some things which can be done with the model are:

The spectrum of the Poynting flux as a function of x may be measured,
and indicates where in the plasma emission originates. Under some con-
ditions strong harmonic emission occurs.

The drag and diffusion of sheet velocities due to crossings may be
measured,

By reflecting the radiation leaving the system back into it, one can
watch the radiation field approach thermal equilibrium with the plasma.

If radiation with a flat spectrum is directed into the plasma, the
reflective and transmissive properties of the plasma may be separated
from the plasma's spontaneous emission. The cross-covariances of the
inputs and outputs give the reflective and transmissive impulse responses;
the cross-power spectra give the usual reflective and transmissive cross

sections as functions of frequency.

Results of such experiments will be presented.

1.
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ABSTRACT

The dynamics of electrons which follow an initial displace-
ment of the electron cloud in a cold plasma slab with tapered
boundaries are presented. The behavior is quite different firom
the case where the slab has sharp boundaries. For a tapered
slab, the time of first crossing depends on the amplitude of
the initial displacement and the overtaking occurs for par-
ticles in the tapered region. If the initial displacement is
small, overtaking takes place where wp' is a maximum and
the time at which it occurs is inversely proportional to the
initial displacement.

* This work was supported by the National Science Foundation

(Grant GK-1165).

41




Introduction

The oscillations which result from an initial displacement
perturbation of a one dimensional slab of cold electrons neutral-
ized by a fixed background of ions have been known for some

(1)

electron and ion distributions have a sharp boundary with vacuum,

time Recently, it was suggested that if the unperturbed

the electrons which were originally displaced outside the ion
background by the perturbation would not move synchronously and
an overtaking or '"scrambling' of electron trajectories would take

(2,3).

place The time at which the first overtaking would occur

(4’5). The

result was that the first crossing always takes place in less

was calculated for a sharbly bounded plasma slab

than one plasma period, independent of the amplitude of the
initial displacement. Computer experiments with a charge sheet
model for the slab with a sharp boundary were in good agreement
with this analytical result(6). In addition, the computer
experiments gave the dynamics of the electrons after the first
overtaking, showing that the coherent oscillations of the slab
were destroyed by a layer of electrons having random motions
which spread to the center of the slab at a rate which was pro-
portional to the amplitude of the initial perturbation(6’7’8).
The details of these results are given in Appendix I.

It is of interest to gain an understanding of just how
important the assumption of a sharply bounded plasma is to the
results obtained in those calculations. We wish to present some
aspects of the oscillations of a cold plasma slab which has a

gradual boundary with vacuum.

Charge Sheet Model Calculations for a Tapered Boundry

Consider a slab of plasma which is cold and which in

equilibrium has electrons and ions distributed with the number
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density n(x) over a thickness d as is shown in Fig. 1. The
ion and electron distributions are represented by a discrete
number of charge sheets with the same charge per unit area on
each sheet and the nonuniformity in the tapered regions (0<x<t
and (d-t) <x<d) is modeled by a variable sheet spacing. The
electron sheets were given a uniform displacement & in the
X-direction and their trajectories were computed, assuming that
the ions are immobile (see Appendix II). 1In Fig. 2 we show the
electron sheet trajectories for the case t/d =} and o/d = .04
with the slab modeled by 50 sheets. Note that the first crossing
of electron trajectories occurs in less than one plasma period

of the central electrons. The new aspect of these results is
that the overtaking particles are in the tapered region and

were not originally displaced Ooutside the ion background (x > d).
In Fig. 3 we give electron sheet trajectories for the case

t/d = % and ¢o/d = .12, a larger displacement than that in Fig.2.
Here we find the first overtaking occurring in less than half of
a plasma period of the central electrons. This is a shorter time
than in the case of a sharply bounded slab. From Figs. 2 and 3
we conclude that for a tapered slab the overtaking time depends
on the amplitude of initiai displacement, whereas in the sharply
bounded case the overtaking time was independent of initial
displacement. In Fig. 3 we note that the particles which first
overtake are located in the tapered region at the bottom of the
slab ( having been displaced into the ion background) in contrast
with the results for sharp boundaries where the initial scram-
bling always occurs near the top ( particles displaced outside
the boundary). In both Figs. 2 and 3 the overtaking eventually
penetrates to the center of the slab in a manner which is similar
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to the results obtained for sharply bounded slabs. The coherent
oscillations of the central electrons are destroyed more rapidly
as the amplitude of the initial perturbation is increased.

We will now give a theory based on a fluid description of
the ions and electrons which shows that overtakings will occur

in the bulk of an inhomogeneous cold plasma slab.

Overtakings in a slab with Tapered Boundaries

Assume that the electrons and ions in a one dimensional
plasma slab of thickness d are cold and in equilibrium have
equal number density distributions n(x) where O0< x < d. If
the ions are immobile, we can easily calculate the equation of

(5)

motion for the electrons The electric field acting on an
electron whose instantaneous position is x and unperturbed

position is X, is given in the absence of overtakings by

X

= € . .X ' ' - ©
E=|) n () oax - |
(o] (o] (o]

n (xo') dxo'] o<x<d (1)

Here e 1is the magnitude of the charge on an electron.
(Equation (1) applies to electrons which remain inside the ion
background, which is the group of electrons whose motion we wish
to find). The integrals over x' represent the contributions
to the field due to the fixed ions, while those over xo' give
the field due to the electron density. We note that the equation

of motion of an electron may be written as

d2 e2 X
m d—'g = - E—- j n (X') dx' (2)
t o X

o
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Here m is the mass of an electron. For a nonuniform plasma slab,
equation (2) is a nonlinear differential equation. If the dis-
placement from equilibrium X, is small, we may linearize this

equation and obtain

a’x _ 2 (x) (x-x) (3)
d—t-z = - Wp xo X-Xo
where
2
e“n(x )
’qu2 (Xo) = -ETHT_Q- (4)

is the local plasma frequency. We wish to solve equation (3)
subject to the initial conditions that at t = 0, x = x, + 6
and JE = 0 (the initial displacement perturbation). The sol-

ution of (3) is

X = x, + 0 cos w (xo) - (5)

This equation is valid for particles which remain inside the ion
(4) ox
=0

3x
o

to equation (5) and call the time of overtaking to' Then we

background. Let us apply the overtaking condition

have

w

wy (xo) t, sin w (xo) t, = EEE;T (6)

where the prime indicates differentation with respect to X, -
This equation gives the overtaking times to for a given dis-

placement 6 as a function of X, To find the particles that
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ot
overtake the earliest we set 8§2 = 0, Then fromeq. (6) we find
o
-9 w " w 2
s _ _ p
[Wp (Xo) to_} cOos UJp (Xo) tO 'g(w—')gg (7)
p

In Fig. 4, we show a graphical solution to equation (6) if X,
and & are known. We have assumed wp(xo) is symmetrical
about the center of the slab. In this case there are two places
in the slab where .|wp' (xon = const.; only their signs will be
different. For large initial displacements, an overtaking will
first occur where wp' is positive (xo<d/2) and then within
one plasma period (measured at the local plasma frequency) where
wp' is negative (xo>d/2). As the displacement & decreases,
an overtaking occurs first for xo>d/2 and then xo<d/2. The
overtakings are still within one period (at the local plasma
frequency) of each other and the location of the first one jumps
back and forth as 6 decreases. This explains the change in
location of the first crossings as a function of initial
amplitude indicated in the charge sheet model calculations given
in Figs. 2 and 3.

More general conclusions about the time of first overtaking
in a tapered slab can be obtained if it is assumed that the
initial displacement is very small. Then the solution to equation

(6) is approximately

1
tO ~ gu-)—l-;' (8)

ot
Applying the condition for first overtaking 529 = 0 to equation
o

(8) we find that

wpn (Xo) =0 (9)
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The first overtaking occurs at the point where wp' is a
maximum. The time of overtaking is inversely proportional to
the amplitude of initial displacement.

An Example

We wish to show that a slab with smooth boundaries has Over-
takings in the region where wp' is a maximum as discussed in
the previous section by integrating equation 2 for a simple
density distribution.

Suppose the equilibrium density distribution in the slab is
given by

n(x) = 19 (1-cos 235) 0<x<d (10)
so that
2nxo
wp(xo) =y 3 (l-cos =X ) 0<x_<d (11)

where wpo is the plasma frequency in the center of the slab
(see Fig.6) The equation of motion (eq. 2) for electrons
inside the slab is

2 21x
g—g = -1 wp°2 LB (x—xo) + d (sin —a—g - sin ggf)
t 2 m
4mx
+ d (sin 4nx - sin 3 o)] (12)
8n d

This equation was integrated numerically.
The results are shown in Fig. 7 for the case where the slab
was given an initial displacement ©6/d = 0.1. The lines drawn

in Fig. 7 are the integrated trajectories x = x (xo,t) for
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values of xo/d between 0.0 and 1.0 in steps of %Od' The first

overtaking occurs at the bottom of the slab for the particles
whose unperturbed positions were between (/10)d and (2/10)d.
(the linearized equations predict overtaking when wp" = 0 which
for this density distribution (eq. 11) is X, = d/4 or x_ = 3d/4).

Summary and Conclusions

The dynamics of electrons which result from an initial dis-
placement perturbation of a slab with a tapered edge are fund-
amentally different from the case of a sharp boundary.

For a sharp boundary, the time of overtaking is independent
of the amplitude of initial displacement and occurs for particles
which were displaced outside the sharp ion background.

In a slab with a tapered boundary, the time of first over-
taking depends on the amplitude of the initial displacement
perturbation. For small initial displacements, the overtaking
occurs for electrons in the tapered region where wp' is a
maximum, and the time of overtaking is inversely proportional
to the initial displacement.

It has been noted that linearized hydrodynamic equations
for a cold inhomogeneous plasma have solutions (for similar
initial value problems to those given here) in the first order
electron density which are secular (of the form t sin wpt).(g)
These solutions may be related to the bunching and consequent
crossing of trajectories illustrated by the Langrangian analysis
of a nonuniform slab such as is shown in Fig. 7. These difficul-
ties with the Lagrangian and hydrodynamic descriptions indicate
that a model in which nonlaminar effects are included in a
self consistent manner (namely temperature) may be required

when the plasma is inhomogeneous.
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Appendix I - Results for a Sharp Boundary

It has been shown from computer experiments that the os-

cillations of a plasma slab with sharp boundaries are destroyed

(6)

For small initial displacements, a layer of electrons with

by a scrambling which originally occurs near the surface.

random motions spreads to the center of the slab at a constant
rate Rs which is directly proportional to the amplitude of
the displacement & and given by the equation

RS = 1.33 fp ) 13

where fp is the plasma frequency in cycles peyr second.(s) The

numerical factor in eq. 13 was found from the results of the
computer experiments. If the plasma slab has thickness d, eq. 13
implies that the coherent oscillations are completely destroyed
in a time Td which is approximately

iz ; 14
Td ~ 0.38 (d/fpb)

The velocity distribution of the electron sheets has also
been investigated. After the scrambling has made its way to
the center of the slab, a Maxwellian was fitted to the velocity
distribution of the electron sheetsand a temperature of the
slab was found. For example, with an initial displacement

6/d = .018 we found a temperature which could be expressed by

AD = .,007d 15

-



where KD is the Debye length,

2

D 16

From conservation of energy, an upper bound on the Debye length
can be found. If all the initial energy given to the slab

by the displacement perturbation appears after a long time as
thermal energy, the Debye length will be just equal to the
amplitude of the initial displacement,

<<
XD e 0 6<<d 17
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Appendix II - Calculation: of Sheet Trajectories

The continuous electron and ion density distributions were

(10,11) Since the ions were

both modeled by charge sheets.
taken as having infinite mass, the ion sheets remained fixed in
position. The motion of the electron sheets was obtained by

the so called "exact'" method which is decribed below.

An electron sheet experiences a constant force as long as
it moves in the space between two other sheets. The electric
field which acts on the sheet is the average of the electric
fields on either side of it. When an electron sheet approaches
another electron sheet or an ion sheet, it is allowed to pass
freely through the other sheet. At this time of crossing, the
electric field acting on the electron sheet changes and it
obeys a new equation of motion. Thus crossing times play an
important role if the exact electron trajectories are desired.

Initially, all the electron sheets are given a uniform
displacement and their velocities are zero. The crossing times
of all the electron sheets are calculated and the smallest
one is found. The motion of all the sheets is updated to this
first crossing time. The field acting on the crossing sheet
is corrected to its new value (after crossing) and the next
crossing time is again calculated,

The accuracy of the computations was checked by monitoring
the total energy of the system (the kinetic energy of motion of
the electron sheets plus the energy in the electric field) which
should be conserved.
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Figure l.- Density in a tapered slab.
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thickness t/d = &. Initial displacement &/d = .12.
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Preliminary Measurements of Noise N 6 7 - 37 ? {l.é

in a Two-dimensional Rod Model of a Plasma

by
R. W. Hockney

Institute for Plasma Research, Stanford University

Computer models of the superparticle type grossly exaggerate the fluctua-
tions (or noise) in a real plasma because, of necessity, each superparticle
carries the charge of 106 or more electrons. It is important, therefore, to
be able to* estimate this "'computer'" noise in order to be sure that it does not
cover-up the real physical phenomina that the computer model is attempting to simulate.

A formula has previously been derived for the mean square fluctuating
field appropriate to a particular type of computer model.1 We present here
an alternative derivation of this formula and compare it with the measured
values of the fluctuations.

In the model, space is divided into a square array of cells of side H,
In the centre of each there is a mesh point which is used in the finite
difference solution of Poisson's equation. In order to obtain the potential,
a charge distribution over these mesh points is found by associating the

charge of all the rods in a given cell with the mesh point at the center of

the cell, The effect of this coarse-graining in space is to eliminate the
| force of interaction between rods when they are in the same cell, or separated
by less than the mesh distance H.

Let there be N ion rods and N electron rods per square centimeter of
the model each with a charge per unit length Q. Let us consider the fluctua-
ting field on a test charge to be due to the statistical fluctuations of the
charge density in each of the cells. This charge fluctuation being estimated

simply as the square root of the number of rods in a cell.
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Then the mean square charge fluctuation in a cell is

(6q)2 = 2NH2Q‘2

The contribution of this fluctuation to the mean square fluctuating field

on the test charge is

2
(SE) = éﬁﬂl) =4ﬁ5_qﬁ

where r is the distance of the cell from the test charge. Assuming that

these fluctuations are random the total mean square fluctuating field is

r
max 2 r
<5 > =§E (58)° g:)f u(ég) . 22X 16mvQ° log, ( ﬂix)

cells H r H2

Where rmax is the maximum distance at which the effect of a charge is felt.
The lower limit of the integration recognizes the absense of interaction at

distances less than H.

In the case of a plasma, Debye shielding makes r = A

. If we take
max D

the correlation time to be the time taken for a ''thermal’ particle to travel

a Debye length, then the collision time can be derived and one obtains:

RE 1 XD
= N 1Oge H
Teoll 2

XD
where

Tpe is the electron plasma period

T is the collision time for electrons
coll

N 5 is the number of rods in a Debye square
XD

Te is the correlation time
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In the case of a gravitational problem where there is no screening
rmax = L the total dimension of the star system. The plasma period is
replaced by the dynamic time scale. 1In galactic applications this is the

rotation period of a galaxy in which centrifugal force balances gravitational

attraction. Thus

Trot 1 - (E)
Teoll Ntot e Wi
where
Ntot is the total number of stars in the system
T the rotation period of the galaxy

rot

A further refinement to the above formula is necessary to take into account
the fact that, since the force on a rod is only computed every time step DT,
a rod has a mean free path of VthDT , Wwhere Vth is the characteristic
thermal velocity. Hence the shielding distance cannot be less than this dis-
tance. To allow for this effect we replace the physical Debye length XD’ by
an effective Debye length in the computer model of (XD + VthDT). Hence
+ Vt DT

h

P 2o (1)

< E" > = 16nNQ2 log

An alternative expression for the noise may be obtained from the thermal

fluctuation theory expression:

<E™> % kf[7ﬁzz—:—;;§735;

.E-\Dl
n

integrating we obtain

< E

V
1}
=
2
o
N
[
Q
(5]
(0]

s
o]
+

g
-
8

"
~
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Because of the finite mesh used in the solution of Poisson's equation
k = t/H in the computer model.
max

In the following table we compare the measured values of the RMS E-field
fluctuations 0 = V< B > with formulas (1) and (2). The Datum case
refers to the scaling used in the anomalous diffusion experiment in Reference 1,
for which N = 16,000 rods cm_2, Q =2.4 x 103 esu, V

-11
and DT = 4 x 10 sec. The other cases are the same except for the change

8 -1
hp = 3.9 X 10” cm sec ,

in the variable shown. We see that both noise estimates give very similar

results and that both agree very well with the measured values,

Case Measured Formula (1) Formula (2)
DATUM 3.32 3.08 2.46
Q X 4; ot x /4 10.5 7.0 9.84
Q X 1/k4 0.88 0.93 0.61
N x 1/k 1.6k4 1.33 , 1.23
DT X 1/k4 3.20 2.80 2.46
Vi, X 1/4 245 2.46
Vip X 1/16 2.34 1.36 2.46

Measured and Calculated Values of RMS
E-field Fluctuations in a Rod-model of

a Plasma. Units esu of field.

Reference
1. R. W. Hockney, "Computer Experiment of Anomalous Diffusion", Phys.

Fluids 9, 1826 (1966).



Micro-reversibility in Computer Simulation®

by

O. Buneman, Stanford University

The computer simulation of micro-dynamical processes often demands that
the principle of reversibility be observed strictly. Five examples are pre-
sented to show how such reversibility can be achieved in fast integrations, in
spite of the presence of first-order time-derivatives. The examples are: the
Lorentz equation, relativistic orbits, orbits in central coordinates, gyro-

center motion and continuity equations.

*Supported by NSF Grant GK-625.
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I CRSOLUING FA'cT SLAINK NOT FILMED.

On the Numerical Solution of Poisson's EquationN 6 7 - 37 7 4.3

Craig G. Smith
Plasma Physics Laboratorﬁ“,\ Princeton University

\

A recurring problem in the computer simulation of plasma is the need
to repeatedly integrate Poisson's equation numerically. Having thus ob-
tained the potential, the solution must then be differentiated to calculate the
electric field, which in turn is squared and integrated for the calculation of
the energy. As this must be repeated hundreds of times in the course of an
"experiment, "' some premium is attached to having a fast—even if at the
expense of high accuracy—method for performing this computation.

The purpose of this note is to point out an appealing approach for the
two-dimensional integration of Poisson's equation in a finite circular domain.
The method is most appropriate for fluid or guiding-center simulations of
plasma, for which the potential may be expected to be a reasonably smooth
function of the spatial coordinates. It is not suitable for the exact treat-
ment of dynamical systems for which close encounters are important.

Following Hockney,1 Poisson's equation is first Fourier analyzed with
respect to the azimuthal coordinate. But rather than numerically integrate
the resulting system of ordinary differential equations in the radial coor-
dinate, the solution is expressed in terms of integrals of the charge density
with kernels which are simple powers of r. If the charge density is given

a representation (such as by a finite power series in r), then the expres-

sions for potential, electric field, and energy are immediately obtained
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(and would likewise be finite power series). Furthermore, the electric
field is given as a continuous function of r, which may be of use for the
integration of the equation of evolution of the simulation.

The idea thus is to numerically fit the data (charge density) globally to
a function and then to analytically integrate Poisson's equation and perform
the subsequent differentiations and integrations to obtain the related quan-
tities. The numerical approximation may be accomplished by the least-
squares technique. If the coefficients describing the fit appear linecarly in
the representation, then solving for these unknowns need, in effect, be done
only once; the coefficients are then repeatedly obtained by only matrix
multiplication.

The crux lies in selecting the form for the approximation, and here a
vast number of variations are possible. In order to place this discussion
in definite context, the following describes an example which, in fact, has
been tried successfully in one application.

The problem then is to solve Poisson's equation,

2 2

o] 0 0
e )t S (k)0
s r" 8¢ ‘ D

where r is the dimensionless radial coordinate measured in units of R,
0 = (n+ - n_)/nO is the dimension less charge density and RD is the Debye

length. Fourier analysis with respect to the azimuthal variable,
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[> o}

2 =0 + Z (@E cos Q¢+<1>£S sin £9 ),
£=1
reduces the partial differential equation to a system of ordinary differential

equations, whose solutions for either amplitude are (aside from the constant

factor of the right hand side)
dr
<1>0_c1+5 . (c2+§r60dr)

IQ = (Cl+ Zl_ﬁ Sr_£+15£dr)r2+ (CZ ——le—SrQHﬁﬂdr)r—ﬂ .

The constants of integration, C1 and CZ’ may be used to make the integrals
definite. Typically, the potential would be approximated by the first L
modes.

It is now supposed that § is given as a set of values on a discrete grid

in coordinate space. Since for cylindrical coordinates the elemental area

is given by

rdrd¢ = dr2 do¢

L
2
it is most appropriate to use r as the variable measuring radial position.
This results in a nonuniform grid in (r, ¢) space, but the cells are then of
: . . 2 : :
equal weight. Thus 0, is assumed to be a function of r and in particular

L

a power series with a finite number of terms
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M
_ X 2(m-1)
éﬂ = r Z aﬂ’mr
m=1

where the rﬁ factor is added to insure regularity of the solution at the origin.
With the boundary condition, ®(1, ¢) = 0, corresponding to a perfect
conductor at R, the expressions for the Fourier amplitudes of the potential,

electric field component, and energy (integral eO/Z E-E over the entire

domain) are simply

> M+1
__KT (R ‘ 2(m-1)
Y Bl (RD> r E bm”
m=1
> M+1
_ KT/e R (-1 2(m-1)
<Er>ﬂd R ( RD) t Z Cﬁ,mr
m=1
o s > M+1
(E ) _ . KT/e (R_) rﬁ—l 0 z LS © rZ(rn—l)
(o} 0 R RD, o ¢, m
M M

a a
¢, m {,m'

o 2 2 (R N\ ' N
Sg: 1.09* 107(KT) <RD> zz Z[(Q+m+m)(ﬂ+1n)(ﬂ+m)]

c,sm=1lm'=1l

with the following definitions

N M+1
_ ¢, m N
bﬂ,m+1 T 40 +m)m bg,l' - bﬂ,m
m=2
Cﬂ,m+l = (L+am) bﬂ,rn+1

The plus or minus sign applies, respectively, to the cosine or sine ampli-

-1
tude of E¢ . The coefficient of & has the units (eV -cm) , and the

66




expression for 80 should contain an additional factor of two.

The above expressions are quite easily evaluated, and the numerical

problem is that of determining the a's. That is, we must fit the function
M
o(r) = rﬂ E g o)
m
m=1

(subscript ¢ now dropped) to the N data points On given on the grid

r = (n - 1/2)/N. The least squares technique chooses the a's so as to

minimize the expression

N

2
) Loy -0,

n=1

S

1l

Experimentally, however, it has been found useful to add side conditions to
the fit. The first is a normalization requirement insuring that there is not

created more electric field than what the total charge density can account

for,
1 M

arn 1
{ oorean- Y mp -

m=1

7z
o
o]

1

Also, it has been found important to make some specification at the edge of
the fit, r = 0 and 1, since the least squares fit is unreliable for extrapolat-

ing data. For a perfectly absorbing boundary, since § must go to zero,

another condition imposed is

5(1)=Z am:O

m=1

At the origin 6(0) = 0 for { #0 . For =0, an extra data point is created
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by extrapolating the data at the first two points back to the origin,

Confining ourselves to the case ¢ 7 0, the two side conditions determine

two of the coefficients, say aM 1 and aM , in terms of the others, and thus

the fit is to the function

N
6(r) = g(r)%z 19) +

n 1')

M-2
a h (
m m
m

=1

where

(2(M-1) + @M+ 0)(1 - £2) ! FeM=2)

N

g(r)=

h (r) = rﬂ+2(m-l) +

1 0 +2(M-2) 2
2 7 ...
m 2

2
(2(M-1) + £ - 2M+40)r ) = Q+2mg(r).

The effect of imposing side conditions is to complicate the functional
dependence of the fit on r . Minimization of S with respect to the a's
results in a set of simultaneous equations determining the first M-2

coefficients

M-2 N

Y n

N
LY 1
L m,nhm',nam' B {hm,n ) NZ hm,n' gn,} 6n

m'=1n=1 n=1 n'=1

N

where g, = g(rn) and hm . h (rn‘). As the equations are linear, the
’ m

solution may readily be obtained; then 2y and a,[ are given by a linear

combination of the other a's. Let H be the M-2 by N matrix h ., and

T,-1
further let B=(H-H ) . Then the coefficients are given by the expression
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N
a = Z C o)
m m,n n
n=1
where for m=1,...,M-2,
M-2 N
1
Cm,n - Z bm’ m' {hml’n - N Z hml’ i gnl}
m'=1 n'=1
and for m = M-1, M,
M-2 ‘
2m+{  2(2M-1-m) + £ < 2(2M-1-m) + ¢
= =+ - .
°m,n R 2N * 1 2m' + 4 ) “m', n }
m'=1

The plus or minus sign applies, respectively, to the M-1 or M equation.
The treatment of the { = 0 case, for which a fictitious N+1 data point

was added, proceeds in a similar fashion, and the above formulas may be

taken over with ( set to zero. The exceptions are that H is now an M-2

by N+1 matrix, where h =1 for m = 1 and is zero otherwise, and

m, N+1
BNl - 0. Furthermore, to the expressions for €, i and Cm, , must be
. 3 1
added, respectively, > bm’1 and - me,l .

The important point to note is that the inversion of the matrix, and
hence the subsequent calculation of ¢ , need be done only once. Then
at each time step in the integration of the equation of evolution of the simula-

tion, when the electric field must be updated, the a's are obtained by simple

matrix multiplication.

: .2
The choice for the representation in this example, a polynominal in r ,

is the least sophisticated one from the standpoint of approximation theory,
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but it is the most efficient scheme for machine computations. The sort of
(£ = 0) data to which it has been applied is shown in Fig. 1; a fifth-degree
polynominal in r2 (M =6, N =10) is adequate to describe the formation of
the charge sheath near the boundary. The corresponding solution is shown
in Fig. 2. In the interest of high accuracy, one can compromise with the
execution speed and introduce more complex functions of r , but it should
be obvious that it is highly desirable to have the parameters describing the
fit appear linearly in the representation. Imposing side conditions is an
extremely useful technique for ''doctoring'' the fit to the application.

This work was performed under the auspices of the U. S. Atomic
Energy Commission, Contract No. AT(30-1)-1238, and made use of com-
puter facilities supported in part by National Science Foundation Grant

NSF-GP579.

1
R. W. Hockney, J. Assoc. Computing Mach. 12, 95 (1965).

2
A. S. Bishop and C. G. Smith, Princeton Plasma Physics Laboratory

Annual Report MATT-Q-23, p. 314 (1966).
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DRIVEN OSCILLATIONS AND NORMAL MODES OF A NONUNIFORM PLASMA
by

William M. Leavens
Environmental Science Services Administration
Institute for Telecommunication Sciences and Aeronomy
Boulder, Colorado

ABSTRACT

Over the past several years we have accumulated numerical solutions of the
linearized Vlasov equation, obtained by the conductivity kernel method, for the
driven oscillations of a realistic plasma model with a sheath. Most of the
results are well described by a driven normal mode model, with a discrete
spectrum of normal modes.

The conductivity kernel equation is:

Bp(x) = J* Ky(rsx' ) (B (x') + By(x') ax’ (1)

where E, 1s the oscillating electric field due to sources in the plasma and Ey
is an externally supplied driving field. The conductivity kernel, Kw(x;x‘),
is a nonlinear function of W, obtained by a formal solution of the Vlasov
equation in terms of integrals over unperturbed orbits. For nonzero driving
field, Eq. (1) has solutions for any real w, the only difficulty being the
numerical computation of Ky at reasonable cost. The technique we have used to
compute Ky is described. For zero driving field, Eq. (1) has solutions only
for certain values of W. Thus far our only successful approach to the free
oscillation problem has been to assume a normal mode representation of the
solutions of the driven mode problem,

N En(x)
Ep(x) = ngi —— * a slowly varying part (2)
W -
and to identify W, En(x) with the free oscillaticrs, or '"normal modes". The

location of the @ 's in the w-plane were first found by searching for the set
of uh's, with N as small as possible, which would give a good least square fit
to the Ww-dependence of E,. This was an especially successful procedure for
analyzing the w-dependence of

Vy = if Ep(x) ax.

Five distinct poles were able to completely describe Vy over the frequency
range studied. The slowly varying part does not contribute to V,
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Having found the w,'s, the "eigenfunction" E, (x) can be determined by success-
fully subtracting out the poles from Eq. (2), in such a way as to maximize the
"smoothness" of the remainder. This procedure has been carried out for Ei(x),
but it is not yet complete for the higher En's.

The discrete spectrum is an inherent property of the nonuniform plasma;
it is not introduced by boundary conditions. The existence of a few normal
modes which dominate the plasma response opens the possibility of quite another
kind of plasma simulation, in which the plasma is represented entirely by the
normal modes.
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A number of plasma sheath problems where collisions may be neglected1

: 2-7 . . . .
(e.g., electrostatic plasma probes , vehicles moving in the ionosphere

>
plasma diodesll, and ion engineslz) may be described theoretically in terms of
solutions of a particular form of the Poisson equation, in which the right-

hand side (charge density) involves integrals over velocity space, where each
integrand is in turn a solution of the associated Vlasov equation. This

Poisson equation is usually a non-linear partial differential equation, and,

in general, numerical methods are required to obtain solutions. Such solutions

are beset by two principal difficulties.

One difficulty is connected with the fact that the charged particle
density at a point is a functional of the potential distribution; that is, it
depends not only on the local electrostatic potential, but also on the poten-
tial distribution elsewhere in space.

The other difficulty arises in problems comprising a large class
important in practice where the potential vanishes at infinity. In the pro-
cess of obtaining a solution by numerical means to such a problem, an inherent
instability appears which prevents the solution from being carried to indefi-
nitely large distances. If the asymptotic behavior (at large distances) of
the solution were known, as in the case of a spherical probe2-6, it would be
necessary only to carry the solution to a finite distance where the asymptotic
condition could be invoked, such that the instability is not manifested.

Since the asymptotic behavior of the solution is not generally known for the
Poisson equation, as distinguished from the Laplace equation, a common !
procedure is to invoke an artificial condition (e.g., vanishing potential or
potential gradient) at a finite boundary7-10. The boundary must then be

taken sufficiently far out that the solution in the region of interest is

76




unaffected by the nature of the assumed boundary conditionlB. If the boundary
is taken too far out, then, as will be shown, instability sets in and a
solution cannot be obtained. If the boundary is taken too near, the solution
is easily obtained but does not resemble the solution to the infinite-boundary
problem.

These numerical aspects have been discussed in regard to special
cases by Laframboisea, Parker7, Maslennikov and Sigovg, and Taylorlo, who
developed their own methods to apply to these cases. In the recent studies
by Taylorlo on solutions to a moving cylinder problem, comparisons were made
between various artificial boundary conditions, but the instability problem
was not explored. On the other hand, Maslennikov and Sigov9 were concerned
with the stability problem, but not generally with its relationship to the
boundary. Thus, scattered information exists, but such information is not
yet sufficient to enable a worker, without a great deal of preliminary develop-
ment, to choose an appropriate method for solving a new problem when it
involves an infinite boundary condition (or a large electrode separation).

The investigation reported here is intended to clarify the numerical aspects
of infinite-boundary problems, so that systematic methods may be developed.
The previously-mentioned numerical difficulty associated with the non-local

character of the charge density caleulatdons” * L 0tL

will not be treated here.
In one-dimensional problems, the solution of the associated ordinary

differential equation may be computed either by a '"marching'" (step-by-step)

method in which the solution is propagated from one point to another B , or

by a '"grid" method in which the solution is determined simultaneously at a

number of points. The marching method has the advantage of affording control

over error propagation. However, in multi-dimensional problems leading to

7




non-linear partial differential equations, the grid method appears to be the
only recourse7-10’12, but little information exists regarding this method. A
possible additional advantage of the grid method (even over the marching
method in one-dimensional problems) is that it is unnecessary to establish in
advance a catalogue of analytic properties for solutions, as must be done in
the marching method. It is therefore desirable to study grid methods with
regard to accuracy and economy of computing time. The grid method may be
described as follows.

Let a finite region of interest in configurational space be over-
laid by a grid of spatial points. If the values of the potential at the grid
points are considered to be the components of a vector $, the solution of
the Poisson problem is the solution of a set of simultaneous equations of the

form:
L=-0( (1)

where L is a Laplacian matrix operator based on a difference approximation,
and g is a charge density vector whose component Pk at the k-th grid point
depends on the components of g at all of the grid points. (Numerical factors
have been absorbed and it is assumed that an algorithm based on trajectory
calculations is available for computing 3 from a given $ .) A general itera-

tion procedure for solving (1) may be defined by:

—b

L™ = - Z bm‘é"(?&) (2)
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wherezyldenotes the n-th iterate for $ , and the empirical set of coeffi-
cients (bo, bl’ ...,bn) implies that successive density iterates are coupled
in order to promote convergence. 1In direct iteration without coupling, one
has bn=1 and bm=0 for m#n.

The instability referred to above manifests itself as a divergence
in the iterative sequence defined by (2), and depends on the position of the
grid boundary (for a given coupling scheme). Since the instability phenomenon
occurs both in one-dimensional4 problems and in multi—dimensional7-9 problems,
we decided to restrict our study to one-dimensional problems. This would
afford not only a saving in computer time, but also a comparison with accurate
solutions obtainable in other ways. To illustrate the nature of the phenomenon,
calculations were performed on a spherical problem in which the sphere radius
and potential were chosen to be 150 Debye lengths and 10 kT/e, respectively.
The charge density was represented by a reasonable model function to save
computer time. The potential was set equal to zero on the grid boundary, and
the problem was solved for successive boundary positions at intervals of
one Debye length. The iteration scheme chosen was such that two successive
density iterates were coupled, in accord with the experience reported in
References 4, 7, 8, 9, 11, and 12, where the coupling was found to yield an
improvement over direct iteration. When the boundary was at 152, 153, or 154
(in Debye lengths), the values of the potential at points near the sphere
changed noticeably with boundary position. When the boundary was at 155 or
156, the values of the potential at points near the sphere became stationary.
(That is, the infinite boundary condition was well represented as far as these
points were concerned.) However, the number of iterations required for con-

vergence increased as the boundary was moved out. When the boundary was at

9




158, the successive iterates divergedl4,

The instability represents the growth of errors from iteration to
iteration. More analysis is required to clarify this phenomenon, but it is
similar to the growth of the unwanted positive exponential solution which
occurs when the marching method is applied to the equation y''=y. Numerical
experiments run by Prince and Jeffries11 on a plasma diode problem suggest
that the instability is associated with the occurrence of an appreciable
region of nearly-vanishing net charge density. 1In the plasma diode, the net
charge density changes sign in the space between the two electrodes, and the
region of nearly-vanishing net charge density spreads as the electrode spacing
increases. By using a marching integration method with which error propaga-
tion could be carefully controlled, Prince and Jeffries obtained solutions
for electrode spacings up to 100 Debye lengths. By using a grid method and
coupling of two successive iterates, solutions were found to be limited to
electrode spacings of about 20 Debye lengths.

We have run numerical experiments on a plasma diode problem using a
grid method. The goal of these calculations is to develop methods for obtain-
ing solutions in the limit of very large electrode separation, which should
shed light on the infinite-boundary problem. Our results to date have tended
to corroborate the above limitation of 20 Debye lengths. Experience gained
in refinements of the iteration procedure and in the role played by significant
figure accuracy will be reported. Work is in progress to determine the
effects of further refinements, such as the use of an appropriately non-uniform

distribution of grid points.



Further assessments on the efficacy of the grid method are afforded
by application of this method to the perennially interesting spherical probe
problem. Comparisons will be made with existing accurate ambi-monoenergetic

solutions s
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ABSTRACT

In those experiments in controlled-fusion research that employ the in-
jection of energetic neutral atoms, a plasma is formed of initially hot ions and
cold electrons. It is of interest to know the velocity-distribution functions of
the electrons and ions as a function of time during the buildup of the plasma.
The mathematical model for this problem is the Fokker-Planck equation. We
use the form of the equation where the two-body force is an inverse square law
as derived by Rosenbluth, MacDonald, and Judd.1 In this work we have
assumed that the velocity distributions are isotropic. We include a source of

electrons and ions with a given velocity spread. Both species can be lost by

Work performed under the auspices of the U.S. Atomic Energy Commission.
1M. N. Rosenbluth, W. M. MacDonald, and D.L. Judd, Phys. Rev. 107, 1
(1957). Presented at the Symposium on Computer Simulation of Plasmas and

Many-Body Problems, College of William and Mary, Williamsburg, Virginia,
April 19-21, 1967.
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Coulomb scattering into the loss cone, and the ions can be lost by charge ex-

change. The equation for each species is

of

-1 a
(47rl_‘a) ot

o0
f (v! t)v'4dv' + %S‘ fb(v',t)v'dv'jl
\'%

%, |1 m, i 7 2
+ —a—a— = Z[——— S £ (we?s Bt dyt -
v |v m, v oJg b
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v
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S fb(v', t)v' dv!’
0

3y Jg P 3

The summations are taken over all the species being considered, includ-
ing type a, and pa(v) is the probability that particles of type a and velocity v
will be lost. The term for charge-exchange loss must be added to the above
equation for ions. The term Sa(V’ t) represents the source of injected
particles.

We consider electrons and ions of Z = 1. We introduce the dimensionless
variable x = v/vo, where Vo is a constant and is a characteristic velocity. Let

f = (47rvO/Ke)fe, where Ke is determined from the equation

® 2
ne(O) = K S\ f(x, 0)x"dx;
€ Jo



|

i. e., the constant is determined by the initial conditions with ne(O) equal to

the initial electron density. Similarly, we let g = (47rv0/ Ki)fi, where

® 2
n.(0) = K, S\ g(x, 0)x"dx.
i iJg

1

We introduce the dimensionless variable T where 7 = (— r Ke/vg)t. Let

2 e

u = rne/mj and K = Ki/Ke' Defining the functionals gives us

0
M() - S iy, T)ydy,
X
% g
N(f) = go iy, 7)y2dy,
and
X 4
E(f) = g f(y, 7)y “dy.
0

In terms of these new variables, the equation for the electron-

distribution function becomes

2
Z.aZl s icrrp,
T 2 ox
ox
where
_ 21 1
X X
_ 4 3 1 3 1
B = oy [2—§N(f) = —2X3 E(f) + M(f)] + Kliuz—X-N(g) = ;E(g) + M(g):“’
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G = Z(f +Kug) - pe(x) —:4—2—
3x

ol 3 1
2 [ﬁ N(f) - ;S‘E(f) + M(f)j|

+ R+ u)[%N(g) - LE( + M(g}

2%

The term D(x, T) describes the time-dependent source of electrons.

The equation for the ion-distribution function becomes

% | 0% , ol
oy ~ T3 TG THETL, (2)
X
where
F = %“2 [_%E(f) + M(f)] + K[—%E(g) + M(g)] 3
X X
_ .4 2||1 3 1 3 1
G = 3 M {[ﬁ_«; -Z—EN(f) _;Z_X?’-E(f) 2 M(f)} + K[-Z—EN(g) . 2—X§E(g) + M(g)} j
and

21 ) 2 4
H=2u (M £+ Kg) Hl(x, T) - M p-i(x) 3X2

1 1\l 3 1
-2—(1 + E)|:-2—XN(f) - ;E(f) + M(f)}

3 1
* K[—Z;N(g) - ;E(g) + M(g)}

The term Hl(x, 7) contains the charge-exchange-loss term, and L(x, 7) de-
scribes the time-dependent source of ions.

We wish to solve nonlinear differential Egs. (1) and (2) on the domain
0 < x <o, 7> 0, with the boundary conditions f —~ 0, g~ 0as x—> o, and
8f/0x = 8g/dx = 0 at x = 0 for 7 > 0. The initial distributions f(x, 0) and g(x, 0)
are given,
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For the numerical solution we choose the domain 0 < x < X 1o where x; is
specified for each problem and is taken large enough to include the high-
velocity tail of the electron distribution. As the electrons increase in tem-
perature, the distribution spreads out; thus, the choice of xy determines when
the calculation must be stopped in order to preserve accuracy. At x = Xp, we
take the boundary condition f = g = 0,

In the domain 0 < x < Xp, T2 0, consider the finite-difference mesh
defined by x; = jAx, j = 0, 1,2, ...J, andby 7 =nAT, n=0, 1, 2, ...,

n n, n n n n n n n n n
Let £ = f(x., 77 &% = glx., T ,A.=A(fr.‘, 3 7) B.=B(f., 1 7) etc.

j =i h ey = el ), Ay = Al g x j 8% ©
We define the first and second difference approximations by

fI'1+1 - £ 1
(D = =S
j 2Ax
and
£ - o 4 1
(62f)1j1= j+1 i J—l.
j (Ax)?

We approximate Eqgs. (1) and (2) by the following implicit difference equations:

+1 n
s pallal .
i I H /R Pt Bt L (5pntl 4 ontlmtl pitl

AT J J J il J
and
gn+1 _ gn

- : +1 n+ +
N R {le(ézg)gﬁl +G§1+1(6g)§1+1 +H§1 1g§1 1, L? 1]

The terms A?H, etc., are computed from f;l and ggl and are extrapolated.
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The above equations are solved by the algorithm described by Richtmyer.
The scheme is numerically stable in practice, and there is no restriction on
the time step. This is an essential part of the calculations because as the
electron temperature increases, the transfer rate decreases and the time
step, At, must be continually increased during the calculation in order to
progress toward equilibrium in a sensible manner,

A plasma potential is computed at each time step of the calculation by
requiring charge neutrality. A critical velocity, vc(t), is determined such
that electrons with v < v, are not lost and that those with v > v, can be lost by
scattering into the loss cone. At each time step, the electron density is
compared to the ion density and v, is modified accordingly. The plasma
potential is obtained from e¢ = 1/2 (mvi).

Numerical results are presented for a case with a source of 15-keV
protons and 10-eV electrons. In this case, the particle densities increase

10

from 105 to 107~ and the electron temperature from 10 eV to 200 eV.

2 . . ;
R. D. Richtmyer, Difference Methods for Initial Value Problems (John

Wiley & Sons, New York, 1956), p. 101.
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ABSTRACT

Calculations on the '"water bag model" of a two stream instability
have been made by following the motion of the phase space boundaries. Al-
though the distribution function is locally randomized, a large scale non-
linear wave is observed. This wave is due to the condensation of holes in
phase space which formally act as negative mass particles in that like<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>