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FOHEWORD 

Over t h e  pas t  10 years, the rap id ly  growing capa- 
b i l i t i e s  of d i g i t a l  computers have made it poss ib le  t o  
treat c l a s s i c a l  many-body problems i n  increasingly rea- 
l i s t i c  ways. This c a p a b i l i t y  has encouraged t h e  develop- 
ment of a l a rge  number of special ized techniques f o r  both 
d i r e c t  simulation and more conventional solut ions of such 
sys  tems . 

The purpose of t h i s  symposium i s  t o  provide a sum- 
mary of p a s t  and present  r e su l t s ,  t o  provide a forum f o r  
exchanging cur ren t  techniques and philosophies, and t o  
assess  fu tu re  p o s s i b i l i t i e s .  It is  bel ieved t h a t  these 
proceedings w i l l  also serve as an introduct ion f o r  those 
' s c i e n t i s t s  newly in t e re s t ed  i n  the f i e l d .  Most of t he  
papers included here dea l  with long-range forces  and col-  
l e c t i v e  e f f e c t s ,  such as those t h a t  occur i n  plasmas and 
as t rophys ica l  systems, although seve ra l  neutral-gas prob- 
l e m s  a r e  a l s o  included. 

The panel discussions and audience comments were t r an -  
sc r ibed  and ed i ted  f o r  relevance and cont inui ty;  they have 
been approved i n  t h i s  form by the  members of t he  panels. 
The papers and abs t r ac t s  are presented a s  received from 
t h e  authors.  The views, comments, opinions, and f indings 
expressed herein a r e  not t o  be construed a s  an o f f i c i a l  
pos i t i on  of e i t h e r  t h e  National Aeronautics and Space 
Administration or  the  College of  W i l l i a m  and Mary. 
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Introductory Address  

by 

0. Buneman, Stanford Universi ty  

The Symbiosis of Computers and Theoret ic ians  i n  

Plasma Physics* 

Ideal ly ,  plasma theory should make precise  pred ic t ions  on t h e  b a s i s  of 

p rec i se ly  s t a t e d  i n i t i a l -  and boundary-conditions, and t h e  prec ise ly  known laws 

of i n t e rac t ion .  Fa i lu re s  of t h e  theory, o r  i ts  slowness of progress, cannot 

be excused by lack  of input  da ta  or by na tura l  m y s t e r i e s .  Extreme complica- 

t ion ,  and our  l imited mathematical a b i l i t y  are t o  blame. 

Our m a t h e m a t i c a l  t r a i n i n g  and language a r e  heavi ly  biased toward 

l i n e a r i t y  and our  attempts t o  grapple  w i t h  non- l inear i t ies  employ such l i nea r -  

ized language a s  wave-wave in te rac t ion" .  The philosophy of developing i n  

ascending powers of a "small" quanity has  led t o  misleading answers i n  severa l  

areas  of plasma theory (moment expansions, ad iaba t ic i ty ,  i n t e r a c t i o n  expansions) 

and an expansion i n  wave amplitudes has l i t t l e  chance of accounting properly 

f o r  plasma turbulence.  

I* 

Even i n  t h e  l i n e a r  domain t h e  simple wave d ispers ion  p i c tu re  has  delayed 

progress by decades a s  a r e s u l t  of i t s  non-causal nature,  and urgent l i n e a r  

problems have still remained unsolved f o r  t h i s  very reason. Computer simula- 

t i on  scores  over conventional theory because 

e a r i t y  and (2)  it operates  causal ly ,  sequent ia l ly .  

(1) it does not r e l y  on l i n -  

I t  i s  suggested t h a t  i n  f u t u r e  w e  r e t a in  the  mathematical apparatus of 

conventional theory, i n  p a r t i c u l a r  transforms, for those port ions of our  pro- 

blems which a r e  l i n e a r  and have closed boundaries, and f o r  t h e  c r i t i c a l  

ana lys i s  of computer accuracy, s t a b i l i t y ,  resolut ion,  economy. For an under- 

s tanding of t h e  evolutionary and non-linear processes w e  l e t  t he  computer show 

us the way. Simply watching the movies has already provided much ins igh t  and 

q u a l i t a t i v e  explanat ion of phenomena. In due course it w i l l  lead t o  t h e  b i r t h  

of a new mathematical language with which we can then operate quant i ta t ive ly .  
* 

Supported by NONR 225(83). 
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N67-37738  

i 
--'COMPUTER EXPERIMENTS ON THE MICROSCOPIC 

THEORY OF PLASMAS 

Marc R. Feix,* I' 

d NASA, Langley Research Center and 
The College of William and Mary 

Gary A. Massel. and Richard H. Weinstein 
NASA, Langley Research Center 

The k i n e t i c  theory of homogeneous s t ab le  plasmas w a s  developed around 

1960 by Lenard, Balescu, Rostoker and Rosenbluth. Th i s  theory gives  the  

f luc tua t ions ,  t he  co r re l a t ions  and some of the i r r e v e r s i b l e  coe f f i c i en t s  such 

as the  drag and the  d i f fus ion  f o r  a plasma a t  thermal equilibrium. 

r e s u l t s  are a l s o  appl icable  outs ide  thermal equilibrium provided one can 

def ine  a s t a t iona ry  o r  "metastable" d i s t r ibu t ion  F(v).  I n  both cases,  the 

theory i s  completely described by a d i e l e c t r i c  constant  

well-known r e l a t i o n  

These 

E(k,u) given by the  

I 

Computer experiments have been performed previously by J. Dawson,' '2 and 

0. Eldridge and M. Feix,  3'4 

thermal equilibrium and the  agreement w a s  good. 

I n  references 1, 3 and 4 t he  plasma w a s  i n  

I n  reference 2 a f i r s t  s t e p  

* 
NRC-NAS Senior Postdoctoral  Resident Research Associate 
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w a s  taken t o  check t h e  theory outs ide  thermal equilibrium, wi th  s p e c i a l  

emphasis on checking a predic t ion  concerning the  t i m e  of Maxwellianization. 

It i s  t h e  purpose of t h i s  paper t o  b r i e f l y  sketch some recent  r e s u l t s  

concerning both Maxwellian and non-Maxwellian plasmas. 

given qua l i t a t ive  and quan t i t a t ive  checks wi th  both Vlasov theory and some 

aspec ts  of f i r s t -o rde r  theory. 

The experiments have 

I. COMPUTER PROGRAMS 

The one-dimensional N-body problem w i t h  e l e c t r o s t a t i c  i n t e r a c t i o n s  can 

However, i t  i s  necessary t o  be  solved exac t ly  as described i n  reference 3.  

s top  a t  each crossing i n  order  t o  r eca l cu la t e  the  se l f -cons is ten t  e lectr ic  

f i e l d s .  The computer t i m e  needed t o  t reat  a plasma of length  L wi th  a 

Debye dis tance D and f o r  a t i m e  T i s  

Computer t i m e  = (nDl2 wpT 0 

where 6 i s  the  machine t i m e  pe r  crossing. 

In order t o  study a plasma outs ide  of thermal equi l ibr ium, nD must be  

l a r g e  enough s o  t h a t  t he  d i f f e r e n t  order  t i m e  scales are widely separated and 

one can def ine  a metaequilibrium. I n  order  t o  g e t  reasonable s ta t i s t ica l  

accuracy, i t  is usual ly  necessary to take long time averages and r equ i r e  t h a t  

during t h i s  t i m e  the  phys ica l  quant i ty  of i n t e r e s t  should not  change. 

consequence, 

t he  time f o r  the  exact  program w i l l  be  very long. 

i n  which the  system i s  advanced by f ixed  t i m e  increments has been used. 

equations of motion f o r  t h e  plasma p a r t i c l e s  are 

A s  a 

nD should be  l a r g e  - c e r t a i n l y  20 o r  g rea t e r  - and consequently, 

Thus an  approximate program 

The 
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1 2 
X = X  + ~ ~ A t + ~ y , @ t )  

0 

1 2 
V = V  + y o A t + - q  a t )  

0 2 0  

- and + = E - E-1 . U s e  of t h e  approximate program where yo - Eo o m o  

r e s u l t s  i n  an enormous t i m e  saving because it scales as nD r a t h e r  than 

  ID)^. The conservation of energy i n  the  approximate program,given as the  

f r a c t i o n a l  energy increase  per  w , is shown i n  f i g u r e  1. The necess i ty  of 

including the  E term i s  evident from the f igure .  An important general 

-1 
P 

f e a t u r e  of t he  approximate program is the  increasing accuracy wi th  increas ing  

nD and decreasing AT allowing one t o  provide a good approximation t o  a 

Vlasov ( l a rge  nD) plasma wi th  reasonable computation t i m e s .  

11. THE FOURIER CHARGE DENSITY SPECTRUM 

The f i r s t  series of experiments t o  be considered concerns the  microscopic 

e l e c t r i c  f i e l d ,  derived from the  Fourier charge dens i ty  

The au tocor re l a t ion  of t h i s  quant i ty ,  i. e. ,  

i s  d i r e c t l y  connected t o  the  plasma d i e l e c t r i c  constant 

l a t i n g  

Landau theory) bu t  a l s o  f luc tua t ing  quan t i t i e s  t o  f i r s t  order i n  the plasma 

parameter (nD)-l through the  use of E(k,u) i n  the  dressed p a r t i c l e  p i c t u r e .  

The connection between €(IC,@) and plasma f luc tua t ions  and co r re l a t ions  has 

E(k,u). By calcu- 

E(k,u), one can check not only t h e  l inear ized  Vlasov equation ( t h e  

I 
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been t h e  object of many t h e o r e t i c a l  papers 6 y  '8 and represents  a genera l iza t ion  

of t h e  Nyquist f luc tua t ion-d iss ipa t ion  f o r  c o l l i s i o n l e s s  plasmas. 

The po ten t i a l  energy of t h e  plasma per  degree of freedom ( i .  e. f o r  each 

wave number, i n  t he  Fourier representa t ion)  is  ca lcu la ted  from t h e  Poisson 

l a w  and C(k,-r = 0). 

Eldridge and Feix3 f o r  a Maxwellian plasma; wi th  F(v) = Ae-@ 

energy, normalized t o  u n i t s  of k i n e t i c  energy is  

This has been checked previously by Dawson' and 
2 

t h e  p o t e n t i a l  

The experimental da ta  given i n  f i g u r e  2 agrees f a i r l y  w e l l  wi th  t h e  theory 

except for t h e  long wavelengths, where the  f luc tua t ions  are l a rge .  

Unless i n s t a b i l i t i e s  are present ,  any one-dimensional d i s t r i b u t i o n  

I func t ion  should be s t a t iona ry  i n  t i m e  t o  f i r s t  order i n  

later)  and one may a l s o  c a l c u l a t e  t h e  p o t e n t i a l  energy harmonics f o r  a 

nonequilibrium plasma; f o r  example, t h e  square d i s t r i b u t i o n  

g = - (as  shown nD 

F(v) = 
1 
2a 
- f o r  

f o r  which Dawson s tudied  the  r e l axa t ion .  

t a i l  t o  t h i s  d i s t r i b u t i o n  the re  should be no e x c i t a t i o n  of long wavelengths; 

i. e. 

Because t h e r e  is  no high energy 

< (E(k = 0 , t ) 1 2  > = 0 i n s t ead  of 1 /2  as f o r  t h e  Maxwellian. t 

The experimental r e s u l t s  f o r  t he  square d i s t r i b u t i o n  are shown i n  

f i g u r e  3 .  

predic t ion  of t h e  c o l l i s i o n l e s s  theory. 

The long wavelengths are found t o  be exc i ted  contrary t o  t h e  

It is  necessary t o  take long time 
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averages i n  order t o  ob ta in  any type of a steady r e s u l t  and even then l a r g e  

excursions are noted. The reason f o r  t h i s  lack of agreement is found both 

i n  t h e  l i m i t a t i o n s  of t h e  theory and the  p r a c t i c a l i t i e s  of t h e  experiment. 

I n  p a r t i c u l a r :  

(a) The zero-order k i n e t i c  theory is va l id  a t  long wavelengths only f o r  

1 nD very l a rge ;  mathematically speaking, the l i m i t s  g = + 0 and k + 0 

do not commute. For t h e  case shown, the  co l l i s ion le s s  theory would not  be 

9 appl icable  below kD = 0.6. Kaufman has shown t h a t  as k -+ 0, W(k) should 

go t o  a f i n i t e  l i m i t .  

(b) Once exc i ted ,  t h e  long wavelengths experience l i t t l e  damping and t h e  

averaging t i m e s  necessary f o r  t h e i r  equilibrium i n  t h e  system are long enough 

t o  s t r a i n  t h e  o v e r a l l  accuracy of t h e  problem - both from an e r r o r  standpoint 

and a l s o  the  eventual thermalization of nonequilibrium plasmas. 

(c) The statistical accuracy of t h e  long wavelength r ep resen ta t ion  depends 

L 5 r a t i o  (L = N on t h e  t o t a l  number of p a r t i c l e s  considered both through the  

f o r  n = 1) and t h e  number of p a r t i c l e s  i n  the t a i l  of t h e  d i s t r i b u t i o n  function. 

L A s  t he  5 
each mode grows, thereby improving t h e  representa t ion  of each mode; t h i s  

problem is c r i t i c a l  f o r  t h e  kD < 1 range. Also, s ince  the  e x c i t a t i o n  and 

damping of long wavelengths i s  in t imate ly  t ied  t o  t h e  superthermal p a r t i c l e s ,  

increas ing  t h e  t o t a l  number of p a r t i c l e s  (and thereby t h e  numbers i n  the  high 

v e l o c i t y  t a i l )  should a l s o  he lp  t o  improve the long wavelength energy balance, 

again from a s ta t i s t ica l  po in t  of v i e w .  Increasing the  number of p a r t i c l e s  w e  

can treat i s  the re fo re  a top p r i o r i t y  goal.  

r a t i o  is increased, t h e  number of wavelengths i n  the  system f o r  

7 



111. FLUCTUATIONS ACROSS A PAIR OF GRIDS 

To study t h e  microscopic behavior of t he  plasma, one of t he  most u se fu l  

approaches is t o  immerse a p a i r  of i dea l i zed  g r ids  i n t o  t h e  plasma and e i t h e r  

launch a c. w. s i g n a l  a t  a known frequency o r  t o  record the  f l u c t u a t i o n  

across  the g r ids .  Theore t ica l ly ,  t h e  two problems are very c lose ly  r e l a t e d  

because t h e  so lu t ion  of each requi res  obtaining the  r e s u l t a n t  s i g n a l  of t h e  

e n t i r e  k-spectrum. Thus t h e  r e s u l t  i s  only frequency dependent. 

Derfler and Simonen'O have recent ly  launched s i g n a l s  i n t o  a plasma with 

an  ex terna l ly  dr iven  p a i r  of g r ids  and t h e i r  d a t a  shows exce l l en t  agreement 

wi th  the  Landau d ispers ion  r e l a t i o n .  This represents  one cont r ibu t ion  t o  the  

dynamics of t h e  plasma. Another i s  

o r  d i s t r i b u t i o n  of eigenvalues 

I n  the  computer experiments i t  

passive probe wi th  which t o  observe 

11,12 

t he  cont r ibu t ion  of t h e  continuous 

the  branchline i n t e g r a l .  

i s  easier t o  use t h e  g r id  p a i r  as a 

the  p o t e n t i a l  f l uc tua t ions .  The per iodic  

13 

boundary conditions which are necessary i n  computer simulation of an i n f i n i t e  

plasma introduce u n r e a l i s t i c  feedback ( i n  t h e  computer model) which makes i t  

d i f f i c u l t  t o  simulate launching a s i g n a l  i n  an i n f i n i t e  plasma. 

t he  f luc tua t ions  are an inherent ly  l i n e a r  phenomenon. 

I n  addi t ion ,  

The r e l a t i o n  of t h e  plasma dynamics t o  t h e  f l u c t u a t i o n  is made through 

an analogue of Nyquist 's "Fluctuation-Dissipation Theorem. 'I6 

t he  f i n i t e  sensing device - a g r i d  p a i r  - t h e  analogous r e l a t i o n  can be 

derived d i r e c t l y  from Vlasov theory t o  give 

For the  case of 

S(w) = -- I I ("Re z (0) 
2 n D D  g 4lI w 

P 

(7) 
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where S(W) is t h e  s p e c t r a l  func t ion  defined by 

and z,(w) is  t h e  impedance of t h e  g r i d  p a i r  of separation: 

L .J 

The p rope r t i e s  of t h e  plasma aremanifested i n  t h e  au tocor re l a t ion  function 

of t he  p o t e n t i a l  f l uc tua t ions .  The steady-state plasma p rope r t i e s  gre given 

by T = 0 (i. e. B(A,O) = < l@(t)I2 >). From equation (8) t h i s  is found t o  

be the  area under the  S(W) curve. For the Maxwellian plasma, B ( A , O )  i s  

shown t o  possess two d i s t i n c t  regions: 

A 
(a )  5 < 1 

B ( A , O )  = f (i) . 
These two reg ions  correspond t o  the  dominance of t..e indiv-..clal p a r t i c  2 

behavior f o r  - A < 1 and of t h e  c o l l e c t i v e  e f f e c t s  f o r  A > 1. Figure 4 shows D 
very good agreement between t h e  experiment and theory i n  both regions f o r  

several values of nD. The p o t e n t i a l  @ i s  the  a c t u a l  p o t e n t i a l  normalized 

t o  kT/e  and thus B ( A , O )  scales as kT. 

9 



Turning a t t e n t i o n  t o  t h e  non-Maxwellian d i s t r i b u t i o n ,  one expects t h e  

k-integration t o  improve the  accuracy of t h e  q u a n t i t i e s  which are observed. 

This i s  indeed the  case. 

Von H a g e n ~ w , ~  t h e  theory f o r  an  equilibrium plasma c a r r i e s  over t o  a non- 

As has been shown by Rostolcer6 and Feix and 

equilibrium case i f  a metastable s ta te  e x i s t s .  This occurs f o r  one-dimensional 

plasmas as w i l l  be shown i n  the  next s ec t ion .  Thus f o r  a Druyvesteyn 

d i s t r i b u t i o n ,  t h e  theory again def ines  two regions: 

where a =  1.48 and where the  mean energy of d i s t r i b u t i o n  is  normalized t o  

t h a t  of a Maxwellian. The experimental da t a  is shown i n  f i g u r e  5. Here a 

d i s t i n c t  l eve l ing  i s  seen which w a s  predicted by the  theory and arises as a 

manifestation of the  an t i sh i e ld ing  property of the  Druyvesteyn and the  square 

d i s t r ibu t ions .  The q u a n t i t a t i v e  discrepancy wi th  t h e  theory is due t o  the  

over-excitation of t he  long wavelengths described i n  s e c t i o n  2. 

To study t h e  dynamic behavior of t h e  plasma, one can observe the  

au tocorre la t ion  function defined i n  equation (10). 

A r e s u l t s  for = 2 and - = 10. For T 0,  t h e  continuous spectrum, which is D D 

heavi ly  damped, plays a r o l e .  For - =  10, t h e  i n i t i a l  damping is seen t o  be 

less than f o r  - =  2 because t h e  long wavelengths are more s t rongly  exc i ted .  

Figures 6 and 7 show the  

A 
D 

A 
D 

10 



The behavior f o r  l a rge  T is  dominated by t h e  least damped por t ion  of 

the  spectrum which i s  the  d i s c r e t e  pole,  i. e. the  Landau pole. Thus, 

asymptotically 

B(A,T) = -- cos w T . 
P T + a  

This same behavior has been predicted by Engehnannand Feix14 f o r  t h e  propagation 

of a pulse  i n  a plasma. The T 

d i f f e r e n t  modes. 

is  shown i n  f igu res  6 and 7.  

r e s u l t s  up t o  TU % 40 s ince  beyond there  t h e  accumulation of computer e r r o r  
P 

began t o  destroy the  cor re la t ions .  

By taking the  spectrum of 

damping is  due t o  the  phase-mixing of many -1/2 

The agreement between experimental and theo re t i ca l  r e s u l t s  

It was  only possible  t o  obta in  meaningful 

B(A,T),  i t  is poss ib le  t o  observe both the  

resonance of w = w +and the  continuous d i s t r i b u t i o n  of eigenvalues. Thereby, 

t he  exis tence of t h i s  contr ibut ion is exp l i c i t l y  demonstrated. 
P 

Tv. METAEOUILIBRIUM AND TEST PARTICLE BEHAVIOR 

I n  ca lcu la t ions  involving the  nonequilibrium plasmas, the  exis tence of 

s t a t iona ry  ve loc i ty  d i s t r i b u t i o n  function was taken f o r  granted. The time- 

dependent behavior of both t h e  ove ra l l  veloci ty  d i s t r i b u t i o n  and test  p a r t i c l e  

d i s t r i b u t i o n  can, however, be usefu l  i n  checking the  k i n e t i c  theory - espec ia l ly  

f o r  nonequilibrium plasmas. T e s t  p a r t i c l e  experiments, impossible t o  perform 

i n  a real experiment, are of pa r t i cu la r  i n t e r e s t  i n  one-dimensional plasmas 

f o r  which the  test p a r t i c l e  and ove ra l l  d i s t r ibu t ion  functions behave 

d i f f e r e n t l y .  

11 



The Balescu-Lenard equation, i. e. 

descr ibes  the  thermalization of t h e  one-particle d i s t r i b u t i o n  func t ion  ( fo r  

p a r t i c l e  a) i n  terms of i n t e r a c t i o n s  wi th  f i e l d  p a r t i c l e s  (denoted 1); the  

- -  dl - f i r s t  order i n  the  gra in iness  t i m e  s c a l e  of t h i s  r e l axa t ion  is 
T~ - w 

P 
parameter. 

(i. e. 

may obta in  a one-dimensional analog of equation (16) which may be  obtained 

Because t h e  Fourier transform of the  e l e c t r o s t a t i c  p o t e n t i a l  

$(k)) has t h e  same dependence i n  one and th ree  dimensiona, one 
k 

simply by removing t h e  vec tor  s igns  and changing t h e  m u l t i p l i c a t i v e  constant 

from 16a3 t o  *IT. The Dirac &-function 6p pa - V d )  is nonzero only 

f o r  

+= 

a 

k Va - V1 1 

i n  t h ree  dimensions and 

Thermalization i n  th ree  dimension comes from waves normal t o  pa - ”J 9 

but  there  is no thermalization on the  scale of 

F(Va) = F(V1), t h e  t o t a l  d i s t r i b u t i o n  function. The ex is tence  of t h i s  m e t a -  

equilibrium w a s  pointed ou t  f o r  t h e  f i r s t  t i m e  by Eldridge and Feix4 and 

checked by Dawson 

v e l o c i t y  d i s t r i b u t i o n .  

order  time scale 

-cl i n  one dimension i f  

2 with  a one-species plasma model having an  i n i t i a l l y  square 

Dawson found thermal iza t ion  t o  occur on a second- 

% 10 & . Figure 8 shows a c a l c u l a t i o n  s i m i l a r  t o  w 
P 

T2 



t h a t  of Dawson’s mode wi th  a two-species model a l s o  using a square v e l o c i t y  

d i s t r i b u t i o n .  

nD = 10, 20, 40, 60 

and second order  t i m e  scales increases  (with increas ing  nD), second order 

e f f e c t s  become n e g l i g i b l e  and t h e  o r i g i n a l  shape (indicated by the  o u t l i n e  

The d i s t r i b u t i o n  func t ion  is  shown f o r  four  plasmas with 

T = 4’rl. a t  a scaled time As t h e  separa t ion  of f i r s t  

corners a t  V = * 1.7) i s  c lose ly  maintained; t h e  only prominent change is  

the  development of a s m a l l ,  high-velocity t a i l .  

The absence of thermalization, while expected f o r  a one-dimensional 

system having only s h o r t  range, binary in t e rac t ions ,  is  a t  f i r s t  su rp r i s ing  

f o r  a plasma, where t h e  i n t e r a c t i o n s  a r e  co l l ec t ive .  

found i n  the  test p a r t i c l e  p i c tu re ,  i n  which ind iv idua l  p a r t i c l e s  e m i t  waves 

The explanation is  t o  be 

(p1asmom)which are resonantly absorbed by o ther  p a r t i c l e s .  This process is 

analogous t o  a binary encounter, even though t h e  propagation and damping of 

t h e  waves i s  d e s c r i b e q b y  the  c o l l e c t i v e  proper t ies  of t he  plasma. 

Relaxation e f f e c t s  are found t o  f i r s t  order i f  w e  d i s t i ngu i sh  between a 

test p a r t i c l e  d i s t r i b u t i o n  and t h e  o v e r a l l  d i s t r i b u t i o n  function. Thus, i f  

and va = v1 then a”o+ 0. a t  Equation (16) may then be 

viewed as a Fokker-Planck equation with a t i m e  scale ‘rl - -  - IS) , from which t h e  
w 

P 
drag and d i f f u s i o n  ( i n  v e l o c i t y  space) of t e s t  p a r t i c l e s  can be calculated.  

A t y p i c a l  drag ca l cu la t ion  f o r  a Maxwellian plasma is  shown i n  f i g u r e  9 

giving t h e  average ve loc i ty  of groups of test p a r t i c l e s  as a func t ion  of t h e  

f i r s t - o r d e r  t i m e .  All test p a r t i c l e s  i n i t i a l l y  have v e l o c i t i e s  wi th in  * 10% 

of the  thermal ve loc i ty  and t h e  four sets of d a t a  represent  

60. 

because t h e  fundamental plasma t i m e  ( i n  uni t s  of 

measurements extend changes by a f a c t o r  of s i x  as nD goes from 10 t o  60. 

nD = 10, 20, 40, 

The overlap of t h e  da ta  c l e a r l y  v e r i f i e s  t h e  t i m e  s ca l ing  concept, 

w -I) over which the  
P 
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The i n i t i a l  s lope  of t h e  d a t a  g ives  a drag c o e f f i c i e n t  of w i th in  10% of t h e  

theo re t i ca l  value.  

15 
I n  general, t he  ve loc i ty  d i f fus ion  c o e f f i c i e n t  can be shown t o  be 

It is most convenient t o  examine t h e  d i f fus ion  a t  zero v e l o c i t y ,  f o r  which the  

drag i s  zero and changes i n  the  d i s t r i b u t i o n  func t ion  are e n t i r e l y  due t o  

d i f fus ion ,  Expressing the  d i f fus ion  i n  terms of normalized v e l o c i t y  V = - 
T 

and f i r s t -o rde r  s ca l ing  t i m e  

a t  V = 0 is  

V 

V 

T ~ ,  then the  normalized d i f f u s i o n  c o e f f i c i e n t  

0.40 f o r  F(V) Maxwellian 
$(V = 0) = - d p> - <v>q = 1 

d=l 0.86 f o r  F(V) square 

To obtain a v a l i d  measurement f o r  a nonequilibrium plasma, nD must be 

l a r g e  enough so t h a t  t he  metaequilibrium is  maintained. 

experimental da ta  f o r  Maxwellian and square ve loc i ty  d i s t r i b u t i o n s  wi th  

nD = 60, and the  d i f fus ion  coe f f i c i en t s  given by t h e  s lopes  of t h e  d a t a  are 

.41 and .90 f o r  t he  Maxwellian and square d i s t r i b u t i o n s  respec t ive ly .  This 

agreement is quan t i t a t ive ly  good and re-enforces both the  metaequilibrium and 

t h e  a p p l i c a b i l i t y  of t he  k i n e t i c  theory out  of equilibrium. 

Figure 10 shows 

14 



V . CONCLUSIONS 

Three kinds of problems have been treated: (1) the  Fourier dens i ty  

function; (2) p o t e n t i a l  f l uc tua t ions ;  and (3) r e l axa t ion  e f f e c t s .  For non- 

equilibrium plasmas, a l l  th ree  problems are in t ima te ly  r e l a t e d  t o  t h e  pred ic t ion  

of a metaequilibrium i n  one dimension, i. e. the  pe r s i s t ence  of any s t a b l e  

_02 . This point was  w e l l  es tab l i shed  by t h e  d i s t r i b u t i o n  f o r  t i m e s  T << 

t h i r d  problem, showing not  only t h e  existence of a metaequilibrium but  giving 

good agreement f o r  f i r s t -o rde r  sca l ing  and measurements of the  d i f fus ion  

coe f f i c i en t .  

w 
P 

I n  t h e  f i r s t  type of problem, experimentally observed Fourier dens i ty  

func t ions  f o r  i n f i n i t e  plasmas a t  thermal equilibrium w e r e  w e l l  described by 

the  usua l  l i n e a r i z e d  theory. For nonequilibrium plasmas, only q u a l i t a t i v e  

agreement w a s  found because of long wavelength d i f f i c u l t i e s .  Large f luc tua-  

t i o n s  i n  slowly damped, long wavelength modes are t i e d  t o  the  s c a r c i t y  of 

high-velocity p a r t i c l e s  and would a l s o  requi re  averaging t i m e s  long enough t o  

s t r a i n  t h e  metaequilibrium l i m i t a t i o n  and computer accuracy f o r  t he  s i z e  of 

present  problems. Computer accuracy i n  an  approximate program includes both 

general  cumulative e r r o r s  and e r r o r s  due t o  the  larger number of c ross ings  

made by high-velocity p a r t i c l e s .  

The use  of t h e  g r i d  p a i r  as a probe t o  study plasma f luc tua t ions  i n t r o -  

duces an i n t e r e s t i n g  p o s s i b i l i t y  f o r  plasma diagnostics.  

obtained f o r  bo th  t h e  s t a t i c  and t h e  time-dependent analyses.  

damping propor t iona l  t o  T w a s  observed to  dominate and would thus be 

expected t o  determine t h e  propagation of a p u l s e  i n  t he  plasma. 

Good agreement w a s  

The d i f f u s i o n a l  

Only alluded 

t o  i n  t h i s  paper w a s  t he  ex is tence  of the  contribution of the  continuous 
a 
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d i s t r i b u t i o n  of eigenvalue t o  the  spectrum. This cont r ibu t ion  has been 

e x p l i c i t l y  observed i n  these  computer experiments. 

The experiments a l s o  showed the  l imi t ed  range of v a l i d i t y  of t he  theory 

f o r  f i n i t e  nD. The relative success of equilibrium measurements comes from 

the  f a c t  t h a t  the  r a t i o  of each order of e x c i t a t i o n  and damping mechanisms, 

which determines the  p o t e n t i a l  energy i s  a t  equilibrium; i. e. 

2 e + gel + g e + - * *  
0 2 - 

Ek - 

= - ... = - kT . 0 el e2 
yo y1 y2 

In t roduct ion  of f i r s t -o rde r  e f f e c t s  would n o t ,  
e 

where - -  - - 
2 

therefore ,  change t h e  charac te r  of t he  s m a l l  k r e s u l t  f o r  equilibrium; f o r  

t he  square d i s t r i b u t i o n ,  t he  vanishing zero-order r e s u l t  ( f o r  k -t 0) i s  e a s i l y  

swamped by nonzero higher order e f f e c t s  f o r  f i n i t e  nD. 

Decisive r e s u l t s  f o r  long wavelength phenomena i n  nonequilibrium plasmas 

L can be obtained only f o r  much l a r g e r  values of nD and 5 . The need f o r  

perhaps 10,000 p a r t i c l e s  and 

the  new generation of computers. 

nD > 100 should prove t o  be  a formidable tes t  of 
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Figure 10. - Test p a r t i c l e  diffusion at  metaequilibrium. 
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INVESTIGATIONS OF NONLINEAR BEHAVIOR &6?-37739 
IN ONE-DIMENSIONAL PLASMA MODEL* n ' 4  

J. M. Dawson ! 

Plasma Physics Labor- 
/ Princeton University 

r* 

The results of three experiments on the nonlinear behavior of one- 

dimensional plasmas a r e  presented. 

conjunction with Ramy Shanny of the General Electric Company, Space 

Sciences Laboratory, King of Prussia ,  Pennsylvania. The three experi- 

The calculations were carried out in  

ments were the Landau damping of the large-amplitude plasma oscillation, 

mode coupling between two strongly excited plasma oscillations, and the 

turbulence generated by the passage of a weak beam through a plasma. 

A short summary of the results follows. 

I. LANDAU DAMPING OF A LARGE-AMPLITUDE 
PLASMA OSCILLATION 

The Landau damping of a large-amplitude plasma oscillation was 

investigated. The wave had a phase velocity such that it fell  in  the tail of 

the velocity distribution where very few electrons appear. It was found 

that the damping was much stronger than was predicted by linear theory 

and that the damping increased rapidly with increasing amplitude of the 

wave. 

with velocities considerably less  than its phase velocity up to velocities 

An explanation of these results i s  that the wave accelerates particles 

equal to o r  in  excess of i t s  phase velocity. The Landau damping of such a 
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wave i s  nonlocal, that i s ,  i t  does not depend simply on the derivative of the 

distribution function a t  the phase velocity, but ra ther  depends on the mean 

slope of the distribution function over a range of velocitie's that i s  roughly 

equal to that f o r  which particles would be trapped i f  the wave were 

not damp e d . 
LI. INVESTIGATIONS OF MODE COUPLING ON 

A ONE-DIMENSIONAL PLASMA MODEL 

This experiment sought to verify the theory of mode coupling through 

the mechanism of nonlinear Landau damping. 

ment with the theory within the accuracy of the experiment a s  long a s  

The results a r e  in  agree- 

quasi-trapped particles (particles that would be trapped i f  one of the waves 

existed by itself) a r e  avoided. These quasi-trapped pa-rticles, i f  they exist, 

give r ise  to a strong damping like that observed in the f i r s t  experiment. 

According to theory, two longitudinal modes with frequencies and 

k 9 U2 , k2 should be coupled by the particles wave numbers 0 

traveling at velocity v , v = (0 - W2)/(kl - k2)  , where v i s  roughly 

1 '  1 .  

1 

the group velocity. The pr imary effect i s  to transfer energy f rom the 

short- wavelength, high- frequency mode to  the long- wavelength, low- 

2 2 2  
frequency mode. (The dispersion relation is 0 = 0 t 3k VT 

P 
, where 2 

VT i s  the thermal velocity of the particles. ) The particles ca r ry  off a 

small  amount of the wave energy. 

experiment. 

Figure 1 shows the resul t  of one such 

-i 
Two modes were strongly excited with (kXD) = 3 . 5  and 4.4 . 

The long-wavelength mode grows and t he  growth i s  almost exactly what is 



predicted by theory. The short-wavelength mode decays somewhat more 

rapidly than theory would predict. 

the short-wavelength mode is due to collisions, i. e., because of the 

Ciscrete nature of the model, the collisions between particles result  in  the 

absorption of some of the wave energy. 

I t  appears that some of the damping of 

Although this effect i s  small it i s  

of significance i n  this experiment. 

very'hot plasma and very long wavelengths, it was possible to  reduce this 

effect to about 10 percent of the mode coupling effect. 

By going to a very large system with a 

In order  to obtain the results shown, i t  was found necessary to elimi- 

nate particles that could be accelerated into resonance with a shorter-  

wavelength mode. Therefore, the tail of the Maxwellian velocity dis t r i -  

bution was truncated a t  1.6 times the thermal velocity. Also, the ampli- 

tudes of all  other wavelength modes, except the two that were specifically 

excited, were surpressed. This was done to prevent the diffusion of 

particles to the higher velocities that these modes caused. It was found 

that with these precautions the agreement with theory shown in Fig. 1 

could be obtained. 

III. TURBULENCE PRODUCED BY THE TWO-STREAM 
INSTABILITY IN A ONE-DIMENSIONAL PLASMA 

Some numerical experiments have been carr ied out to investigate the 

turbulence produced in  a one- species, one-dimensional plasma by a bump 

in  the tail of the Maxwellian distribution. The purpose of the experiments 

was to see i f  the results could be explained by means of quasilinear theory. 
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Some  aspec t s  appea r  to a g r e e  with t h i s  theory  but m a n y  do not. The in i t ia l  

ve loc i ty  d is t r ibu t ion  cons is ted  of two components - - the  m a i n  p l a s m a  and the 

b e a m  plasma.  

had a Maxwellian dis t r ibut ion.  

p a r t i c l e s ,  i t  had  a Maxwellian d is t r ibu t ion  whose width was  equal  to  the 

t h e r m a l  veloci ty  of the m a i n  p l a s m a ,  and it had a m e a n  ve loc i ty  which was  

3 . 5  t imes  the t h e r m a l  velocity.  

all, and t h e r e  w e r e  10 s h e e t s  p e r  Debye length.  

10 unstable  modes.  

The ma in  p l a sma  contained 9 5  p e r c e n t  of the p a r t i c l e s  and 

The b e a m  contained 5 p e r c e n t  of the  

The p l a s m a  contained 2 , 0 0 0  p a r t i c l e s  i n  

T h e r e  w e r e  roughly 

The unstable  modes  g rew and s a t u r a t e d  a f t e r  a few e-folding times. 

At the same  time, the bump i n  the tail f la t tened out  a s  p red ic t ed  by theory .  

Af te r  the in i t ia l  growth,  the uns tab le  m o d e s  r ema ined  a t  a r e l a t ive ly  high 

l eve l  of exci ta t ion;  however ,  their ampl i tudes  showed re l a t ive ly  r ap id  t i m e  

f luctuat ions,  growing and dying i n  t i m e s  of the o r d e r  of one p l a s m a  per iod .  

This  i s  c o n t r a r y  to the a s sumpt ions  of quas i l i nea r  t heo ry ,  which a s s u m e s  

tha t  the ampl i tudes  change only s lowly i n  t ime.  Af t e r  the tail f la t tened  out ,  

t h e r e  was  a gradual  diffusion of p a r t i c l e s  to  h igher  ve loc i t i e s  with p a r t i c l e s  

u l t imate ly  reaching  m o r e  than 7 times the  t h e r m a l  ve loc i ty  (and roughly 

3 times the  m a x i m u m  ene rgy  of any  p a r t i c l e  at t i m e  t = 0 ) 

develops into a Maxwellian shape  with a t e m p e r a t u r e  of roughly 10 t i m e s  

the t e m p e r a t u r e  of the m a i n  p l a sma .  

would get i f  one equated the b e a m  e n e r g y  to KT . The ene rgy  of the 

in i t ia l ly  uns tab le  waves i s  on the a v e r a g e  equal  to  the e n e r g y  of a p a r t i c l e  

. The tail 

This  t e m p e r a t u r e  i s  roughly what one 
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.L  

i n  the tail (KT for the tail). Thus, there appears to be a rapid thermali- 

zation of the tail particles among themselves and with the waves they 

interact with. None of this would be predicted by quasilinear theory. I t  

appears that many of these effects may be due to the discrete nature o r  

graininess inherent in  the model. 

longitudinal waves by the particles in the tail,  one finds that they emit a s  

If one computes Cherenkov radiation of 

much energy a s  i s  contained in  the waves in  a time of the order  of a few 

plasma oscillations. 

The waves appear to cause a rapid thermalization of the particles. 

Thus, it appears that this i s  a very important effect. 

This 

thermalization is  much faster  than one would predict f r o m  simple 

collisional calculations. 

for  energetic particles embedded in a cold plasma indicate that these 

Estimates of the importance of such interactions 

effects can also be important in three dimensions. 
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SHOT NOISE IN THE LAGRANGIAN ONE-DIMENSIONAL MODEL+' 

by 
Christopher Barnes and D. A .  Dunn 

I n s t i - M e  f o r  Plasma Research, 
/Stanford University 

Stanford,  Cal i fornia  

SUMMARY 

Presented here  are r e s u l t s  of computer experi-  
ments designed t o  test the e f f ec t s  of coarse  graining 
i n  the  one-dimensional planar Lagrangian computer 
simulation of a one dimensional e l ec t ron  diode. 

I n  recent years many researchers  have made use of the  one-dimensional 

charge sheet  model i n  computer simulations of e l ec t ron  and plasma diodes, 

sometimes r e fe r r ed  t o  a s  a Lagrangian or super-par t ic le  I t  i s  w e l l  

known t h a t  t he  use of many sheets  and small t i m e  s teps  i n  a simulation i s  de- 

s i r a b l e ,  although expense and computer s i z e  l imi t a t ion  place p rac t i ca l  l i m i t s  

on the  u l t i m a t e  gra in iness  of the  model. T h i s  paper examines some of the  ef-  

f e c t s  of t i m e  and space coarse graining on a computer simulation 

diode using t h e  Lagrangian model, 

Fig. 1. One-dimensional 
planar model 

x=-s 1 I I I I I I  
I I I I I I  
l i i l l  
I I I I I I  k 

x=o 
v =o v=v, 

1 
of an e lec t ron  

1 X=D 

v=v, 

The model is,. as shown i n  Fig. 1, a planar, one-dimensional geometry. 

Electron shee ts  are in j ec t ed  a t  x = 0 a s  i f  they had been accelerated from a 

space-charge l imi ted  cathode at x = - S .  The anode is  placed a t  x = D. The 

~ 

'Th is  work was supported by the U . S .  Army Electronics Laboratories under 
Contract DA-28-043 AMC-O0482(E). 



r a t i o  D/S then s p e c i f i e s  t he  r e l a t ionsh ip  between diode spacing, i n j e c t e d  

cur ren t  and DC i n j e c t i o n  po ten t i a l .  

by imagining a l l  the sheets t o  be i n j e c t e d  i n  the fu tu re  as being l i n e d  up 

behind x = 0 w i t h  constant spacing between them (Fig. 1, dashed l i n e s ) .  Each 

t i m e  s t e p  the sheets lying i n  the  next 

( x >  0 )  with  t he  same spacing. 

noninteger number of sheets  per t i m e  s tep .  

c i a l l y  some of t h e  

model. The e l e c t r i c  f i e l d  i n  t h e  diode i s  approximated by ca l cu la t ing  t h e  

f i e l d  a t  a discrete number of po in ts  a t  uniform i n t e r v a l s  across  the  diode. 

The i n j e c t i o n  mechanism can be understood 

Ax = V AT a r e  placed i n s i d e  t h e  diode 
0 

Thus i t  i s  poss ib le  t o  i n j e c t  e f f e c t i v e l y  a 

This allows us t o  induce a r t i f i -  

11 noise" generated by the d i sc re t e  nature  of the computer 

t he  r a t i o  of 
t h y  

The physical parameters of t he  model are D/S and V 

cathode temperature i n  v o l t s  t o  mean DC po ten t i a l  . The  computer parameters 

are 

t i m e  s t e p  i n  t r a n s i t  t i m e s ,  

s t e p ,  and N 

su re  the value of po ten t i a l  minimum and t o t a l  diode cur ren t ,  from which i s  

derived t h e  RMS f luc tua t ion  cur ren t .  

vO 

No = t he  number of shee ts  i n j ec t ed  i n  one t r a n s i t  t i m e ,  A t  = length of 

N A t  = the  number of sheets in j ec t ed  each t i m e  
0 

t h e  number of cells  used i n  t h e  f i e l d  ca lcu la t ion .  W e  m e a -  cell' 

Consider f i r s t  the simulation of a diode below l imi t ing  perveance (D/S < 

2.8). The po ten t i a l  minimum and current  i n  such a sys t em are non-time-varying. 

A non-time-varying r e s u l t  i s  always found from t h e  computer model provided t h a t  

an integer  number of sheets  are i n j e c t e d  each t i m e  s tep .  However, i f  a non- 

in t ege r  number of sheets i s  in j ec t ed  each t i m e  s tep ,  t he  cu r ren t s  and poten- 

t i a l s  w i l l  f l uc tua t e  with amplitudes that  are a funct ion of t h e  number of shee t s  

i n  the  diode and t h e  number in j ec t ed  p e r  t i m e  s t ep .  

f o r  th ree  d i f f e ren t  cases, with various 

of N A t  with t h e  f irst  and las t  segments of each an in t ege r  N o A t .  Two 

Figure 2 i l l u s t r a t e s  t h i s  

Each p lo t  has seve ra l  values N o A t .  
NO , 

0 
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Fig. 2. Time va r i a t ion  of po ten t i a l  minimum (Vmin) and to t a l  
diode current .  
one transit  t i m e .  For a l l  t h r e e  cases, 
Each case has s i x  s l i g h t l y  d i f fe ren t  values of 
f i r s t  and las t  an in teger .  The points a t  which N A t  w a s  
changed s l i g h t l y  are denoted by ve r t i ca l  dashes. 
N o A t  = 8.0, 8.8, 9.6, 10.4, 11.2, 12.0. 
1.2, 1.4, 1.6, 1.8, 2.0. 

Each t i c  on the  horizontal  ax i s  corresponds t o  
D/S = 2.0, V t h  = 0.0. 

N o A t  w i t h  t h e  

?A) No = 32, 
(B) No = 32, NoAt = 1.0, 

(C) No = 256, NoAt  = 8.0, 8.2, 8.4, 
8.6, 8.8, 9.0. 

e f f e c t s  can be seen. 

Although N A t  i s  noninteger, t he  number of shee ts  i n j ec t ed  f o r  any one t i m e  

s t e p  of course i s  i n t e g r a l ;  thus i f  

8 shee t s  and 9 sheets .  The magnitude of the current  f l uc tua t ion  i s  then re- 

l a t e d  t o  t h e  f r a c t i o n a l  change i n  N A t  from one t i m e  s t e p  t o  another. The 

second e f f e c t  i s  t h a t  po ten t i a l  m i n i m u m  f luctuat ions are r e l a t e d  t o  

t h e  po ten t i a l  p r o f i l e  i s  smoother f o r  la rge  This noise  i s  present i n  a l l  

models of t h i s  kind although not e x p l i c i t l y  evident because of t h e  presence of 

o the r  e f f e c t s .  

The current  f luc tua t ions  seem t o  be a funct ion of NoAt .  

0 

NoAt  = 8.5, the  model i n j e c t s  a l t e r n a t e l y  

0 

No, i.e., 

No. 

Now suppose a beam with a f i n i t e  temperature (ha l f  Maxwellian plus  DC com- 

ponent) i s  i n j e c t e d  i n t o  the  diode. The poten t ia l  minimum and cur ren t  i n  t h e  
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diode w i l l  f l uc tua t e  due to  shot noise.  For Lagrangian super p a r t i c l e  models 

t h e  amplitude of the  shot noise  i s  very much g r e a t e r  than i n  real diodesbe- 

c’ause the  charge per  p a r t i c l e  i s  much greater (by many orders  of magnitude). 

This noise can mask c o l l e c t i v e  effects i f  too few p a r t i c l e s  are used i n  a simu- 

l a t i o n .  We present  r e s u l t s  of computer experiments designed t o  measure shot  

noise  under varying conditions i n  a model of an e lec t ron  diode i n  which both 

random veloci ty  and current  f l uc tua t ions  can be introduced i n t o  t h e  i n j e c t e d  

stream. 

each case with four  d i f f e ren t  A t  ranging from 1/4 t o  1/32. A l s o  shown a r e  

curves giving the  dependence of the  R.MS cur ren t  f l uc tua t ions  on l/fio and 

t h e  number of f i e l d  cells used. 

., 

NO’ 
Figure 3 shows three waveforms corresponding t o  th ree  values of 

It  i s  w e l l  known t h a t  i n  an e lec t ron  diode pas t  l imi t ing  perveance, l a rge  

o s c i l l a t i o n s  are present i n  t h e  po ten t i a l  m i n i m u m  and cur ren t .  W e  present the  

r e s u l t s  of computer experiments i n  which a beam i s  in j ec t ed  with a perveance 

beyond l imit ing perveance with a f i n i t e  temperature. 

four cases, f o r  t w o  d i f f e ren t  No and t w o  d i f f e r e n t  temperatures. Again 

severa l  values of A t  are chosen f o r  each run. I t  can be seen t h a t  w i t h  a 

thermal spread on t h e  beam ve loc i t i e s ,  the  o s c i l l a t i o n s  are present with g r e a t l y  

reduced amplitude. 

r a t e l y  t h i s  e f f e c t  i s  an order  of magnitude higher than i s  needed i n  t h e  cold 

case, 32 being s u f f i c i e n t  w i t h  Vth = 

0.1. I f  Vth i s  made smaller t h e  required No i s  even fu r the r  increased. 

Figure 4 shows r e s u l t s  of 

Note t h a t  t h e  number of sheets required t o  measure accu- 

Vth = 0.0 but a t  least 256 needed f o r  

Figure 5 shows r e s u l t s  obtained w i t h  Vth=0.03. With a s  many as No = 2800, 

i t  i s  not clear t h a t  t h e  so lu t ion  i s  constant  with N . 
0 
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// "1 
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I 

Fig.  3. D/S = 2.0, Vt. = 0.1. (A) No = 48, (B) No = 480, (C) No = 2400. 
For each curve there a r e  four  d i f f e r e n t  A t :  
from l e f t  t o  r i g h t ,  I,,, vs 1 / 6  f o r  da ta  shown i n  ( A ) ,  (B) ,  
(C ) .  The three curves show r e s u l t s  for three values of A t :  1/32, 1/16, 
1/8. (E)  P l o t  of t h e  e f f e c t  of changing t h e  number of f i e l d  poin ts  ( N c e l l )  
on t h e  f l u c t u a t i o n  current .  A t  = 1/32. 

1/4, 1/8, 1/16, 1/32, reading 
(D) P lo t  of 
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Fig .  4. D / S  = 4.0, ( A )  No = 32, V t h  = 0 ,  (B) No = 256, V t h  = 0,  (c) No=32, 
V t h  = 0.1, (D)  No = 256, Vth = 0.1. Again A t  va r i e s  between 1/4 and 1/32. 
(E) Plot of vs i/p; for  D/S = 4.0 and D/S = 6.0, V t h  = 0-1= 
(F) P l o t  of I vs N~~~~ f o r  D/S = 6.0, V t h  = 0.1 and t w o  values of 

256 and 102f?s 
NO 
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Fig.  5 .  T i m e  variation of I and Vmin f o r  D/S = 6.0, Vth = 0.03, 
No = 800 and No = 2800. 
number of sheets  i n  the diode is a l s o  plotted. 

A curve showing the variat ions i n  t i m e  of the 
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INVESTIGATIONS O F  A SHEET MODEL FOR A 
.b 

BOUNDED PLASMA WITH MAGNETIC FIELD AND RADIATION*” 

B r u c e  Langdon and John Dawson 

Plasma P h y s i c s  Labora to ry  
P r i n c e t o n  Universi ty  

ABS TRAC T 

A n u m b e r  of ex tens ions  have  been made to the usua l  one-dimensional  

s h e e t  model  f o r  a p la sma .  The s h e e t s ,  which l i e  i n  the y-z p lane ,  a r e  

allowed to  move  i n  the x-y d i r ec t ions ,  pass ing  f r e e l y  through one another .  

The motion i n  the x d i rec t ion  produces  the u s u a l  e l e c t r o s t a t i c  f ie ld  E , 
X 

while the motion i n  the y d i r ec t ion  produces  rad ia t ion  f ie lds  E and B , 

which a r e  included i n  the calculat ion.  

Y Z 

A s ta t ic  ex te rna l  magnet ic  f ie ld  i n  

the z d i r e c t i o n  is included,  and the smoothed-out neut ra l iz ing  background 

c h a r g e  dens i ty  n (x) v a r i e s  with x . All quant i t ies  v a r y  only i n  the 
0 

x di rec t ion .  The r e l evan t  Maxwell’s and  Newton’s equat ions a r e  

A = e E  i-0 p - 
d t  x C Y  

( B Z + B  1 e o =  
c m ( v ) c  0 

X 
a E  
- = 477 e[ n(x ,  t )  - no(x) ]  ax 

Z 
a B  a E  1 - - y i - - - = o  . 

ax c a t  

dP 

d t  Y - *CPX 
2 = e E  
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0 .- 

Since v , E , and B a r e  all initially zero,  they remain so. 
z Z Y 

Some things which can be done with the mode are!  

The spectrum of the Poynting flux as a function of x may be measured, 

and indicates where in  the plasma emission originates. 

ditions strong harmonic emission occurs. 

Under some con- 

The drag and diffusion of sheet velocities due to crossings may be 

mea sur ed. 

By reflecting the radiation leaving the system back into i t ,  one can 

watch the radiation field approach thermal equilibrium with the plasma. 

If radiation with a flat spectrum i s  directed into the plasma, the 

reflective and transmissive properties of the plasma may be separated 

f rom the plasma’s spontaneous emission. 

inputs and outputs give the reflective and transmissive impulse responses; 

the cross-power spectra give the usual reflective and transmissive c ros s  

sections a s  functions of frequency. 

The cross-covariances of the 

Results of such experiments will be presented. 

* 
This work was performed under the auspices of the Air Force Office of 

Scientific Research, Contract No. AF49(638)-1555. Use was made of 

computer facilities supported in  par t  by National Science Foundation 

Grant NSF-  GP579. 
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ABSTRACT 

The dynamics of e l e c t r o n s  which f o l l o w  a n  i n i t i a l  displace- 
ment of t h e  e l e c t r o n  cloud i n  a cold plasma s l a b  w i t h  t a p e r e d  

boundar i e s  are p r e s e n t e d .  The behavior  is q u i t e  d i f f e r e n t  i r o m  
t h e  case where t h e  slab has  sharp boundar i e s .  For a tapered 
s l ab ,  t h e  t i m e  of first c r o s s i n g  depends on  t h e  a m p l i t u d e  o f  

t h e  i n i t i a l  d i sp l acemen t  and t h e  o v e r t a k i n g  o c c u r s  for  par- 
t i c les  i n  t h e  tapered r e g i o n .  If t h e  i n i t i a l  d i sp l acemen t  is 
small, o v e r t a k i n g  takes place where w ’ is a maximum and 

t h e  t i m e  a t  which i t  o c c u r s  is i n v e r s e l y  p r o p o r t i o n a l  to t h e  

i n i t i a l  d i sp l acemen t .  

P 

* T h i s  work w a s  s u p p o r t e d  by the  Na t iona l  S c i e n c e  Foundat ion  

(Grant  GK-1165) .  
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I n t r o d u c t i o n  
The o s c i l l a t i o n s  which r e s u l t  f rom a n  i n i t i a l  d i s p l a c e m e n t  

p e r t u r b a t i o n  of a one  d i m e n s i o n a l  s l a b  of cold e l e c t r o n s  n e u t r a l -  
ized by a f i x e d  background of i o n s  have been known for some 
t i m e " ) .  
e l e c t r o n  and  i o n  d i s t r i b u t i o n s  have a s h a r p  boundary w i t h  vacuum, 
t h e  e l e c t r o n s  which were o r i g i n a l l y  d i s p l a c e d  o u t s i d e  t h e  i o n  
background by t h e  p e r t u r b a t i o n  would n o t  move s y n c h r o n o u s l y  and  
a n  o v e r t a k i n g  or "scrambl ing"  of e l e c t r o n  trajectories would t a k e  
p l a c e  ( 2 9 3 ) .  The t i m e  a t  which t h e  f i r s t  o v e r t a k i n g  would o c c u r  
w a s  c a l c u l a t e d  for  a s h a r h l y  bounded plasma s l a b  (4'5). 
r e s u l t  was t h a t  t h e  f i r s t  c r o s s i n g  a lways  takes p l a c e  i n  less 
t h a n  one plasma p e r i o d ,  i ndependen t  of t h e  a m p l i t u d e  o f  t h e  
i n i t i a l  d i s p l a c e m e n t .  Computer expe r imen t s  w i t h  a c h a r g e  sheet 
model for t h e  s l a b  w i t h  a s h a r p  boundary were i n  good agreement  
w i t h  t h i s  a n a l y t i c a l  r e s u l t ( 6 ) .  
expe r imen t s  gave  t h e  dynamics o f  t h e  e l e c t r o n s  a f te r  t h e  first 

o v e r t a k i n g ,  showing t h a t  t h e  c o h e r e n t  o s c i l l a t i o n s  of t h e  s l a b  
were d e s t r o y e d  by a l a y e r  of e l e c t r o n s  hav ing  random mot ions  
which s p r e a d  t o  t h e  c e n t e r  of the  s l a b  a t  a ra te  which w a s  p ro-  
p o r t i o n a l  t o  t h e  a m p l i t u d e  of  t h e  i n i t i a l  p e r t u r b a t i o n  
The d e t a i l s  of these r e s u l t s  are  g i v e n  i n  Appendix I .  

I t  is of i n t e r e s t  t o  g a i n  a n  u n d e r s t a n d i n g  of j u s t  how 
i m p o r t a n t  t h e  a s sumpt ion  of a s h a r p l y  bounded plasma is t o  t h e  

r e s u l t s  o b t a i n e d  i n  t h o s e  c a l c u l a t i o n s .  We w i s h  t o  p r e s e n t  some 
a s p e c t s  of the  o s c i l l a t i o n s  o f  a cold plasma s l a b  which has a 
g r a d u a l  boundary w i t h  vacuum. 

R e c e n t l y ,  i t  w a s  s u g g e s t e d  t h a t  i f  t h e  u n p e r t u r b e d  

The 

I n  a d d i t i o n ,  t h e  computer  

( 6 , 7 , 8 )  

Charge S h e e t  Model C a l c u l a t i o n s  f o r  a Tapered Boundry 

Cons ider  a s l a b  of plasma which is cold and  which i n  
e q u i l i b r i u m  has e l e c t r o n s  and  i o n s  d i s t r i b u t e d  w i t h  t h e  number 
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d e n s i t y  n(x)  o v e r  a t h i c k n e s s  d as is shown i n  F i g .  1. The 
i o n  and e l e c t r o n  d i s t r i b u t i o n s  are r e p r e s e n t e d  by a d i s c r e t e  
number of  c h a r g e  s h e e t s  w i t h  t h e  same c h a r g e  p e r  u n i t  area on 
e a c h  s h e e t  and  t h e  nonuni formi ty  i n  t h e  t a p e r e d  r e g i o n s  (O<x<t 
and ( d - t )  <xed) is modeled by a v a r i a b l e  s h e e t  s p a c i n g .  The 
e l e c t r o n  s h e e t s  w e r e  g i v e n  a uni form d i s p l a c e m e n t  6 i n  t h e  
x - d i r e c t i o n  and  t h e i r  t ra jector ies  were computed, assuming t h a t  
t h e  i o n s  are  immobile ( s e e  Appendix 11). I n  F i g .  2 w e  show t h e  
e l e c t r o n  s h e e t  t rajectories f o r  t h e  case t /d  = and b / d  = .04 

w i t h  t h e  s l a b  modeled by 50 s h e e t s .  Note t h a t  t h e  f i r s t  crossi 'ng 
of' e lec t ron  t r a j e c t o r i e s  occurs i n  l ess  t h a n  one  plasma p e r i o d  
of  t h e  c e n t r a l  e l e c t r o n s .  The new a s p e c t  of t h e s e  r e s u l t s  is 
t h a t  t h e  o v e r t a k i n g  p a r t i c l e s  a re  i n  t h e  t a p e r e d  r e g i o n  and  
were n o t  o r i g i n a l l y  d i s p l a c e d  o u t s i d e  t h e  i o n  background (x  > d ) .  

I n  F i g .  3 w e  g i v e  e l e c t r o n  s h e e t  t ra jector ies  f o r  t h e  case 
t / d  = 4 and 
Here w e  f i n d  t h e  f i r s t  o v e r t a k i n g  o c c u r r i n g  i n  less t h a n  h a l f  of 

a plasma p e r i o d  of t h e  c e n t r a l  e l e c t r o n s .  T h i s  is a s h o r t e r  t i m e  
t h a n  i n  t h e  case of  a s h a r p l y  bounded s l a b .  From F i g s .  2 and 3 
w e  c o n c l u d e  t h a t  f o r  a t a p e r e d  s l a b  t h e  o v e r t a k i n g  t i m e  depends 
on t h e  a m p l i t u d e  of i n i t i a l  d i s p l a c e m e n t ,  whereas  i n  t h e  s h a r p l y  
bounded case t h e  o v e r t a k i n g  t i m e  w a s  i ndependen t  of i n i t i a l  
d i s p l a c e m e n t .  I n  F i g .  3 w e  n o t e  t h a t  t h e  p a r t i c l e s  which f i rs t  
o v e r t a k e  are  l o c a t e d  i n  t h e  t a p e r e d  r e g i o n  a t  t h e  bottom o f  t h e  
s l a b  ( h a v i n g  been d i s p l a c e d  i n t o  t h e  i o n  background) i n  c o n t r a s t  
w i t h  t h e  r e s u l t s  f o r  s h a r p  boundar i e s  where t h e  i n i t i a l  scram- 
b l i n g  a l w a y s  o c c u r s  n e a r  t h e  t o p  ( p a r t i c l e s  d i s p l a c e d  o u t s i d e  
t h e  boundary) .  
pene t l - a t e s  t o  t h e  c e n t e r  of t h e  s l a b  i n  a manner which is s imilar  

o/d = .12,  a larger d i sp lacemen t  t h a n  t h a t  i n  F i g . 2 .  

I n  b o t h  F i g s .  2 and 3 t h e  o v e r t a k i n g  e v e n t u a l l y  
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t o  t h e  r e s u l t s  o b t a i n e d  fo r  s h a r p l y  bounded s l a b s .  The c o h e r e n t  
o s c i l l a t i o n s  of t h e  c e n t r a l  e l e c t r o n s  are d e s t r o y e d  more r a p i d l y  
as t h e  a m p l i t u d e  of t h e  i n i t i a l  p e r t u r b a t i o n  is i n c r e a s e d .  

W e  w i l l  now g i v e  a t h e o r y  based on  a f l u i d  d e s c r i p t i o n  o f  
t h e  i o n s  a n d  e l e c t r o n s  which shows t h a t  o v e r t a k i n g s  w i l l  o c c u r  
i n  t h e  bu lk  of a n  inhomogeneous cold plasma s lab .  

O v e r t a k i n g s  i n  a s l a b  w i t h  Tapered  Boundar ies  

Assume t h a t  t h e  e l e c t r o n s  and  i o n s  i n  a o n e  d i m e n s i o n a l  
plasma s l a b  of t h i c k n e s s  
e q u a l  number d e n s i t y  d i s t r i b u t i o n s  n(x)  where O< x c d .  If 

t h e  i o n s  are immobile,  w e  c a n  e a s i l y  c a l c u l a t e  t h e  e q u a t i o n  of 
mot ion  for  t h e   electron^'^). 
electron whose i n s t a n t a n e o u s  p o s i t i o n  is x and  u n p e r t u r b e d  
p o s i t i o n  is 

d are  c o l d  and  i n  e q u i l i b r i u m  have 

The electric f i e l d  a c t i n g  o n  a n  

xo is g i v e n  i n  t h e  a b s e n c e  of o v e r t a k i n g s  by 

H e r e  e is t h e  magnitude of t h e  c h a r g e  o n  a n  e l e c t r o n .  
(Equat ion  (1) a p p l i e s  t o  e l e c t r o n s  which remain  i n s i d e  t h e  i o n  
background,  which is t h e  g roup  o f  e l e c t r o n s  whose mot ion  w e  w i s h  

t o  f i n d ) .  The i n t e g r a l s  o v e r  x' r e p r e s e n t  t h e  c o n t r i b u t i o n s  
t o  t h e  f i e l d d u e  t o  t h e  f i x e d  i o n s ,  w h i l e  those o v e r  
t h e  f i e l d  due t o  t h e  e l e c t r o n  d e n s i t y .  We n o t e  t h a t  t h e  e q u a t i o n  
of motion o f  a n  e l e c t r o n  may be w r i t t e n  as 

xo ' g i v e  
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H e r e  m is t h e  m a s s  of  a n  electron. 
equa t ion  (2) is a nonl inear  d i f f e r e n t i a l  equa t ion .  I f  t h e  d i s -  
placement from e q u i l i b r i u m  xo is small, w e  may l inear ize  t h i s  
equa t ion  and o b t a i n  

For a nonuniform plasma s l a b ,  

is t h e  local  plasma frequency.  We wish t o  s o l v e  e q u a t i o n  (3) 
s u b j e c t  t o  t h e  i n i t i a l  c o n d i t i o n s  t h a t  a t  t = 0, x = x + 6 

and dx a = 0 ( t h e  i n i t i a l  displacement p e r t u r b a t i o n ) .  The sol-  
u t i o n  of (3) is 

0 

x = xo + 6 cos w (x,) t (5) P 

T h i s  e q u a t i o n  is v a l i d  f o r  par t ic les  which remain i n s i d e  t h e  i o n  - 
background. L e t  us  apply  t h e  ove r t ak ing  c o n d i t i o n  0 (4) dx 

~ 

t o  equa t ion  (5) and c a l l  t h e  t i m e  of o v e r t a k i n g  to. Then w e  
have 

W 
UI (xo) to s i n  w p (xo) to = 5 5 7  (6) 

P P 

where t h e  prime i n d i c a t e s  d i f f e r e n t a t i o n  wi th  r e s p e c t  t o  
This  e q u a t i o n  g i v e s  t h e  ove r t ak ing  t i m e s  
placement 6 as a f u n c t i o n  of xo. To f i n d  t h e  p a r t i c l e s  t h a t  

xo. 
to f o r  a g iven  d i s -  



o v e r t a k e  t h e  ear l ies t  w e  s e t  - Then from e q .  (6) w e  f i n d  

9 

I n  F i g .  4 ,  w e  show a g r a p h i c a l  s o l u t i o n  t o  e q u a t i o n  (6) i f  
and  6 a r e  known. W e  have assumed wp(xo) is s y m m e t r i c a l  
a b o u t  t h e  c e n t e r  o f  t h e  s l a b .  I n  t h i s  case there are t w o  p l a c e s  

5 c o n s t . ;  o n l y  t h e i r  s i g n s  w i l l  be  i n  t h e  s lab  where 
d i f f e r e n t .  For  large i n i t i a l  d i s p l a c e m e n t s ,  a n  o v e r t a k i n g  w i l l  
f i r s t  occu r  where w ' is p o s i t i v e  (xo<d/2) and  t h e n  w i t h i n  
one  plasma p e r i o d  (measured a t  t h e  local plasma f r equency)  where 
w is n e g a t i v e  (xo>d/2). A s  t h e  d i s p l a c e m e n t  6 d e c r e a s e s ,  
a n  o v e r t a k i n g  o c c u r s  first for  xo>d/2 and  t h e n  xo<d/2. The 

o v e r t a k i n g s  are  s t i l l  w i t h i n  one  p e r i o d  ( a t  t h e  l o c a l  plasma 
f requency)  o f  e a c h  o t h e r  and  t h e  l o c a t i o n  of t h e  first one  jumps 
back and f o r t h  as 6 decreases. T h i s  e x p l a i n s  t h e  change  i n  
l o c a t i o n  of t h e  first c r o s s i n g s  as a f u n c t i o n  of i n i t i a l  
a m p l i t u d e  i n d i c a t e d  i n  t h e  charge s h e e t  model c a l c u l a t i o n s  g iven  
i n  F i g s .  2 and  3. 

More g e n e r a l  c o n c l u s i o n s  a b o u t  t h e  t i m e  of first o v e r t a k i n g  
i n  a t a p e r e d  s l a b  c a n  be o b t a i n e d  i f  i t  is assumed t h a t  t h e  

i n i t i a l  d i s p l a c e m e n t  is ve ry  s m a l l .  Then t h e  s o l u t i o n  t o  e q u a t i o n  
(6)  is approx ima te ly  

xo 

' (xo)l IWP 

P 

P 

1 
t o  bw' 

P 
a t O  Applying t h e  c o n d i t i o n  f o r  first o v e r t a k i n g  a = 0 x- t o  e q u a t i o n  

v (8) w e  f i n d  t h a t  

w " (xo) = 0 
P 
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The first ove r t ak ing  occur s  a t  t h e  po in t  where w * is a 
maximum. The t i m e  of ove r t ak ing  is i n v e r s e l y  p r o p o r t i o n a l  t o  
t h e  ampl i tude  of i n i t i a l  displacement.  

P 

An Example 

We wish t o  show t h a t  a s l a b  w i t h  smooth boundaries  has Over- 
t a k i n g s  i n  t h e  r e g i o n  where w ' is a maximum as d i scussed  i n  

P 
t h e  p r e v i o u s  s e c t i o n  by i n t e g r a t i n g  equa t ion  2 f o r  a s imple  
d e n s i t y  d i s t r i b u t i o n .  

Suppose t h e  equ i l ib r ium d e n s i t y  d i s t r i b u t i o n  i n  t h e  s l a b  is 
g iven  by 

n 2nx) 2 
0 n(x) = (1-cos 

so  t h a t  

O<x<d 

2nxo 
UJ ( x  ) = w 3 (1-cos T )  O<xo<d 

P O  PO 

where UI is t h e  plasma frequency i n  t h e  c e n t e r  of t h e  s l a b  
PO 

( s e e  Fig.6) The equa t ion  of motion (eq.  2) for e l e c t r o n s  
i n s i d e  t h e  s l a b  is 

4nxo 
7-11 + d ( s i n  4nx - s i n  - Bn d 

This  equa t ion  w a s  i n t e g r a t e d  numerical ly .  
The r e s u l t s  are shown i n  F i g .  7 for the case where t h e  s l aw  
w a s  g iven  a n  i n i t i a l  displacement  6/d = 0.1. The l i n e s  d r a w n  
i n  F i g .  7 are t h e  i n t e g r a t e d  t r a j e c t o r i e s  x = x ( x o , t )  f o r  
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v a l u e s  of xo/d between 0.0 and  1.0 i n  steps of 

overta, . ing o c c u r s  a t  t h e  bot tom of t h e  s l a b  for 
whose unpe r tu rbed  p o s i t i o n s  were between Q/ lO)d  

d .  The first TO 
he  p a r t i c l e s  
and  (2/10)d.  

( t h e  l i n e a r i z e d  e q u a t i o n s  predict  o v e r t a k i n g  when w '' = 0 which 
f o r  t h i s  d e n s i t y  d i s t r i b u t i o n  (eq.  11) is 

P 
xo = d/4  or xo = 3d/4). 

Summary and Conc lus ions  -- 
The dynamics of e l e c t r o n s  which r e s u l t  f r o m  a n  i n i t i a l  d i e  

placement  p e r t u r b a t i o n  of a s l a b  w i t h  a t a p e r e d  edge are fund- 
amen ta l ly  d i f f e r e n t  f r o m  t h e  case of a s h a r p  boundary.  

For a s h a r p  boundary, t h e  t i m e  o f  o v e r t a k i n g  is i n d e p e n d e n t  
of  t h e  ampl i tude  of i n i t i a l  d i s p l a c e m e n t  and  o c c u r s  fo r  p a r t i c l e s  
which  were d i s p l a c e d  o u t s i d e  t h e  s h a r p  i o n  background. 

t a k i n g  depends on t h e  a m p l i t u d e  of t h e  i n i t i a l  d i s p l a c e m e n t  
p e r t u r b a t i o n .  For small  i n i t i a l  d i s p l a c e m e n t s ,  t h e  o v e r t a k i n g  
o c c u r s  for e l e c t r o n s  i n  t h e  t a p e r e d  r e g i o n  where UJ ' is a 
maximum, and  t h e  t i m e  of o v e r t a k i n g  is i n v e r s e l y  p r o p o r t i o n a l  
t o  t h e  i n i t i a l  d i s p l a c e m e n t .  

f o r  a c o l d  inhomogeneous plasma have s o l u t i o n s  ( f o r  similar 
i n i t i a l  v a l u e  problems t o  t h o s e  g i v e n  here) i n  t h e  f i r s t  o r d e r  
e l e c t r o n  d e n s i t y  which  are s e c u l a r  (of t h e  f o r m  t s i n  w t ) .  
These s o l u t i o n s  may be re la ted  t o  t h e  bunching  a n d  consequen t  
c r o s s i n g  of  t r a j e c t o r i e s  i l l u s t r a t e d  by t h e  Langrangian  a n a l y s i s  
of a nonuniform s l a b  s u c h  as is shown i n  F i g .  7.  These d i f f i c u l -  
t i e s  w i t h  t h e  Lagrang ian  and hydrodynamic d e s c r i p t i o n s  i n d i c a t e  
t h a t  a model i n  which nonlaminar  effects are  i n c l u d e d  i n  a 
s e l f  c o n s i s t e n t  manner (namely t e m p e r a t u r e )  may be r e q u i r e d  
when t h e  plasma is inhomogeneous. 

I n  a s l a b  w i t h  a t a p e r e d  boundary,  t h e  t i m e  of f i r s t  ove r -  

P 

I t  h a s  been n o t e d  t h a t  l i n e a r i z e d  hydrodynamic e q u a t i o n s  

(9) 
P 
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Appendix I - R e s u l t s  for  a S h a r p  Boundary 

I t  has been shown from computer e x p e r i m e n t s  t h a t  t h e  os- 
c i l l a t i o n s  of a plasma s l a b  w i t h  s h a r p  b o u n d a r i e s  are  d e s t r o y e d  

(6) by a s c r a m b l i n g  which o r i g i n a l l y  o c c u r s  nea r  t h e  s u r f a c e .  
For  s m a l l  i n i t i a l  d i s p l a c e m e n t s ,  a l a y e r  of e l e c t r o n s  w i t h  
random motions s p r e a d s  t o  t h e  c e n t e r  of t h e  s l a b  a t  a c o n s t a n t  
r a t e  Rs which is d i r e c t l y  p r o p o r t i o n a l  t o  t h e  a m p l i t u d e  of 
t h e  d i sp lacemen t  6 and g i v e n  by t h e  e q u a t i o n  

= 1.33 f 6 
RS P 13 

is t h e  plasma f requency  i n  c y c l e s  pel. s e c o n d .  (8) The *P 
where 
numer i ca l  f a c t o r  i n  eq. 13 w a s  found from t h e  r e s u l t s  of t h e  

computer e x p e r i m e n t s .  If t h e  plasma s l a b  h a s  t h i c k n e s s  d ,  eq. 13 

i m p l i e s  t h a t  t h e  c o h e r e n t  o s c i l l a t i o n s  are  c o m p l e t e l y  d e s t r o y e d  
i n  a t i m e  Td which is a p p r o x i m a t e l y  

Td c 0.38 (d/fp6)  14  

The v e l o c i t y  d i s t r i b u t i o n  of  t h e  e l e c t r o n  s h e e t s  h a s  a l s o  
been inves t iga t ed .  A f t e r  t h e  s c r a m b l i n g  h a s  made i ts  way t o  
t h e  center of t h e  s l a b ,  a Maxwellian was f i t t e d  t o  t h e  v e l o c i t y  
d i s t r i b u t i o n  of t h e  e l e c t r o n  s h e e t s a n d  a t e m p e r a t u r e  of t h e  
s l a b  was found.  For  example,  w i t h  a n  i n i t i a l  d i s p l a c e m e n t  
6/d = ,018 w e  found a t e m p e r a t u r e  which c o u l d  be e x p r e s s e d  by 

AD = .007d 15 



where  AD is t h e  Debye l e n g t h ,  

2 
P AD2 = kT/mw 16 

From c o n s e r v a t i o n  of e n e r g y ,  a n  upper  bound on  t h e  Debye l e n g t h  
c a n  b e  found.  If a l l  the  i n i t i a l  energy  g i v e n  t o  t h e  s l a b  

by t h e  d i s p l a c e m e n t  p e r t u r b a t i o n  a p p e a r s  a f te r  a l o n g  t i m e  as 
t h e r m a l  e n e r g y ,  the  Debye l e n g t h  w i l l  be j u s t  e q u a l  t o  t h e  
a m p l i t u d e  of t he  i n i t i a l  d i s p l a c e m e n t ,  

AD * b 6<<d .17 



Appendix I1 - C a l c u l a t i o n :  of S h e e t  Trajectories 

The c o n t i n u o u s  e l e c t r o n  and  i o n  d e n s i t y  d i s t r i b u t i o n s  were 
b o t h  modeled by charge sheets. (losll)  

t a k e n  as hav ing  i n f i n i t e  m a s s ,  t h e  i o n  sheets remained  f i x e d  i n  
pos i t ion .  The mot ion  of t h e  e l e c t r o n  s h e e t s  w a s  o b t a i n e d  by 
t h e  so ca l led  llexact*t method which is d e c r i b e d  below. 

S i n c e  t h e  i o n s  were 

An e l e c t r o n  sheet e x p e r i e n c e s  a c o n s t a n t  force as  l o n g  as 
i t  moves i n  t h e  s p a c e  between t w o  o ther  s h e e t s .  The e lectr ic  
f i e l d  which acts  on t h e  s h e e t  is t h e  a v e r a g e  of  t h e  e lectr ic  
f i e l d s  on e i t h e r  s i d e  of  i t .  When a n  e l e c t r o n  sheet a p p r o a c h e s  
a n o t h e r  e l e c t r o n  s h e e t  or a n  i o n  s h e e t ,  it is allowed t o  p a s s  
f r e e l y  th rough  t h e  other sheet. A t  t h i s  t i m e  of c r o s s i n g ,  t h e  

electric f i e l d  a c t i n g  on t h e  e l e c t r o n  s h e e t  changes  and  i t  
obeys  a new e q u a t i o n  of mot ion .  Thus c r o s s i n g  t i m e s  p l a y  a n  
impor t an t  role  i f  t h e  e x a c t  electron t ra jector ies  are  des i r ed .  

I n i t i a l l y ,  a l l  t h e  e l e c t r o n  sheets are g i v e n  a un i fo rm 
d i sp lacemen t  and t h e i r  v e l o c i t i e s  are zero. The c r o s s i n g  t i m e s  
of a l l  t h e  e l e c t r o n  s h e e t s  are  c a l c u l a t e d  and  t h e  smallest  
one  is found.  The mot ion  of a l l  t h e  s h e e t s  is upda ted  t o  t h i s  
f irst  c r o s s i n g  t i m e .  The f i e l d  a c t i n g  on  t h e  c r o s s i n g  sheet 
is corrected t o  its new v a l u e  (a f te r  c r o s s i n g )  and t h e  n e x t  
crossing t i m e  is a g a i n  c a l c u l a t e d .  

t h e  t o t a l  ene rgy  of t h e  s y s t e m  ( t h e  k i n e t i c  ene rgy  of mot ion  of 
t h e  e l e c t r o n  sheets p l u s  t h e  e n e r g y  i n  t h e  e lectr ic  f i e l d )  which 

s h o u l d  be conse rved .  

, 

The a c c u r a c y  of  t h e  computa t ions  w a s  checked by m o n i t o r i n g  
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Figure 1.- Density i n  a tapered slab. 
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Figure 4.- Graphical solution of equation (6) f o r  overtaking time to. 
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Figure 5.- Density function f o r  a slab with smooth boundaries. 
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Figure 6.- Solution of equation (12) for a,n initial displacement 6/d = .1. 
Trajectories for values of xo between 0 and d. 
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N 6 7 - 37 7 4 2 - - 9  
Prel iminary Measurements of Noise 

i n  a Two-dimensional Rod Model of a Plasma 

by 

R .  W. Hockney 

- Insti&&&-& f o r  Plasma Research, Stanford Univers i ty  

Computer models of t h e  supe rpa r t i c l e  t y p e  g r o s s l y  exaggerate t h e  f luctua-  

t i o n s  ( o r  no i se )  i n  a r e a l  plasma because, of necess i ty ,  each s u p e r p a r t i c l e  

c a r r i e s  t h e  charge of 10 o r  more e l ec t rons .  It i s  important,  therefore ,  t o  

be a b l e  'to' estimate t h i s  "computer" noise  i n  o rde r  t o  be su re  t h a t  it does not 

cover-up the ~ a l  physical  phenomina t h a t  t h e  computer model i s  attempting to  simulate. 

6 

A formula has  previously been derived f o r  t h e  mean square f l u c t u a t i n g  

f i e l d  appropr ia te  t o  a p a r t i c u l a r  type of computer model.' 

an a l t e r n a t i v e  d e r i v a t i o n  of t h i s  formula and compare it with t h e  measured 

values  of t h e  f l u c t u a t i o n s .  

We present  here  

I n  t h e  model, space i s  divided i n t o  a square a r r a y  of cel ls  of s i d e  H. 

I n  t h e  c e n t r e  of each the re  i s  a mesh poin t  which i s  used i n  t h e  f i n i t e  

d i f f e rence  so lu t ion  of Poisson 's  equation. In o rde r  t o  ob ta in  t h e  po ten t i a l ,  

a charge d i s t r i b u t i o n  over  t hese  mesh po in t s  i s  found by a s soc ia t ing  t h e  

charge of a l l  t h e  rods i n  a given ce l l  wi th  the  mesh point  a t  t h e  c e n t e r  of 

t h e  cell .  The e f f e c t  of t h i s  coarse-graining i n  space i s  t o  e l imina te  t h e  

f o r c e  of i n t e r a c t i o n  between rods when they a r e  i n  t h e  same ce l l ,  o r  separated 

by less than t h e  mesh d i s t ance  H. 

L e t  t h e r e  be N ion rods and N e lectron rods per  square cent imeter  of 

t h e  model each wi th  a charge p e r  u n i t  l ength  Q. 

t i n g  f i e l d  on a t e s t  charge t o  be due t o  t h e  s t a t i s t i c a l  f l u c t u a t i o n s  of t h e  

charge dens i ty  i n  each of t h e  cells .  This charge f l u c t u a t i o n  being e s t i m a t e d  

simply as t h e  square root  of t h e  number of rods i n  a ce l l .  

L e t  u s  cons ider  t h e  f luc tua -  
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Then t h e  mean square charge f l u c t u a t i o n  i n  a cel l  i s  

( Sq)2 = 2N2Q2 

The cont r ibu t ion  of t h i s  f l u c t u a t i o n  t o  t h e  mean square f l u c t u a t i n g  f i e l d  

on t h e  test charge i s  

where r i s  t h e  d i s t ance  of t h e  c e l l  from t h e  tes t  charge.  Assuming t h a t  

t k s e  f luc tua t ions  a r e  random t h e  t o t a l  mean square f l u c t u a t i n g  f i e l d  i s  

r 
2 -/max ~ ( S S ) ~  . -- 2nrdr  - 165cNQ2 loge (%) 

2 < E2 >=I ( & E )  = 
r 2 

H c e l l s  

where 

The lower l i m i t  of t h e  i n t e g r a t i o n  recognizes t h e  absense of i n t e r a c t i o n  a t  

d i s tances  l e s s  than H. 

rmax i s  t h e  maximum d i s t ance  a t  which t h e  e f f e c t  of a charge is  f e l t .  

In t h e  case of a plasma, Debye sh ie ld ing  makes r = AD. I f  w e  t ake  
max 

t h e  co r re l a t ion  t i m e  t o  be the  t i m e  t aken  f o r  a "thermal" p a r t i c l e  t o  t r a v e l  

a Debye length,  then t h e  c o l l i s i o n  t i m e  can be derived and one obta ins :  

where 

7 i s  t h e  e l e c t r o n  plasma per iod 
Pe 

i s  t h e  c o l l i s i o n  time f o r  e l e c t r o n s  7 c o l l  

i s  t h e  number of rods i n  a Debye square * 2  
AD 

7C 
i s  t h e  c o r r e l a t i o n  t i m e  
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I n  the case of a g r a v i t a t i o n a l  problem where t h e r e  i s  no screening 

r = L t h e  t o t a l  dimension of t he  s ta r  sysl tem.  The plasma per iod  i s  

replaced by t h e  dynamic t i m e  scale. I n  g a l a c t i c  app l i ca t ions  t h i s  i s  t h e  

max 

r o t a t i o n  period of a galaxy i n  which cen t r i fuga l  f o r c e  balances g r a v i t a t i o n a l  

a t t r a c t i o n .  Thus 

where 

i s  t h e  t o t a l  number of stars i n  t h e  sys tem 
N t o t  

'rot t h e  r o t a t i o n  period of t h e  galaxy 

A f u r t h e r  refinement t o  t h e  above formula i s  necessary t o  t a k e  i n t o  account 

t h e  f a c t  t h a t ,  s i n c e  t h e  fo rce  on a rod i s  only computed every t i m e  s t e p  TJT, 

a rod has  a mean f r e e  path of VthDT , where Vth i s  t h e  c h a r a c t e r i s t i c  

thermal ve loc i ty .  Hence t h e  sh ie ld ing  d is tance  cannot be less than t h i s  d i s -  

tance.  To al low f o r  t h i s  e f f e c t  w e  r ep lace  t h e  phys ica l  Debye length  AD, by 

an e f f e c t i v e  Debye l eng th  i n  the  computer model of ().D t- VthDT). Hence 

2 2 < E > = 1 6 n ~ ~  loge 

An a l t e r n a t i v e  expression f o r  the noise  may be obtained from t h e  thermal 

f l u c t u a t i o n  theo ry  expression: 

i n t e g r a t i n g  w e  ob ta in  



Because of the f i n i t e  mesh used i n  the solution of Poisson's equation 

k = sc/H i n  t h e  computer model. max 

In t h e  following table  we compare the measured values of the RMS E-field 

fluctuations o = J< E2 > ' with formulas (1) and (2) .  The Datum case 

re fers  t o  the  scaling used i n  the anomalous diffusion experiment i n  Reference 1, 

f o r  which N = 16,000 rods cm , Q = 2.4 X 10 esu, Vth = 3.9 X 10 cm sec , -2 3 8 -1 

and DT = 4 X sec. The other cases a re  the same except f o r  the change 

in  the variable shown. W e  see t h a t  both noise estimates give v e r y  similar 

resu l t s  and that  both agree v e r y  well w i t h  the measured values. 

Case 

DATUM 

2 x 4; DT X 1/4 

Q X 1/4 

N X 1/4 

DT X 1/4 

Vth x 1/4 

vth x 1/16 

Me a su red 

3.32 

10.5 

0.00 

1.64 

3.20 

2.45 

2.34 

Formula (1) 

3.00 

7.0 

0-93 

1.33 

2.80 

1.75 

1.36 

Measured and Calculated Values of RMS 

E - f i e l d  Fluctuations i n  a Rod-model of 

a Plasma. Units esu of f i e ld .  

Reference 

Formula (2) 

2.46 

9.04 

0.61 

1.23 

2.46 

2.46 

2.46 

1. R. W .  Hockney, "Computer Experiment of Anomalous Diffusion", Phys. 

Fluids - 9, 1826 (1966). 



Micro - reve r s ib i l i t y  i n  Computer Simulat ion * 

by 

0. Buneman, S tanford  Un ive r s i ty  

The computer s imula t ion  of micro-dynamical processes  o f t e n  demands t h a t  

t h e  p r i n c i p l e  of r e v e r s i b i l i t y  b e  observed s t r i c t l y .  F ive  examples a r e  pre- 

sen ted  t o  show how such r e v e r s i b i l i t y  can  be achieved i n  f a s t  i n t e g r a t i o n s ,  i n  

sp i t e  of t h e  presence  of f i r s t - o r d e r  t ime-der iva t ives .  The examples a re :  t he  

Lorentz  equat ion ,  r e l a t i v i s t i c  o r b i t s ,  o r b i t s  i n  c e n t r a l  coord ina te s ,  gyro- 

c e n t e r  motion and c o n t i n u i t y  equat ions .  - ._ * Supported by NSF Grant GK-625. 
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On the Numerical Solution of .Poisson's Equation N67L37743 
I Craig G. Smith I' 

- P l a s m a  Physics  University 
, 

A recur r ing  problem in the computer simulation of plasma is the need 

to repeatedly integrate Poisson 's  equation numerically.  

tained the potential, the solution must  then be differentiated to  calculate the 

Having thus ob- i 
I 

e lec t r ic  field, which in  tu rn  is squared and integrated for  the calculation of 

the energy. As this must  be repeated hundreds of t imes  in the course  of an  

"experiment,  some premium is attached to having a fast-even if at the 

expense of high accuracy-method for  performing this computation. 

The purpose of this note i s  to point out an appealing approach f o r  the 

two-dimensional integration of Poisson 's  equation in a finite c i rcu lar  domain. 

The method is most  appropriate for  fluid o r  guiding-center simulations of 

plasma,  for  which the potential may be expected to be a reasonably smooth 

function of the spatial  coordinates. 

ment  of dynamical sys tems for  which close encounters a r e  important. 

It is not suitable for the exact t r e a t -  

1 
Following Hockney, Poisson 's  equation is t'i rst Four ie r  analyzed with 

respec t  to the azimuthal coordinate. 

the result ing sys t em of ordinary differential equations in the radial  coor-  

dinate, the solution i s  expressed in  t e rms  of integrals  of the charge density 

with kerne ls  which a r e  simple powers of r.  

a representat ion (such a s  by a finite power s e r i e s  in  r ) ,  then the expres-  

sions for  potential, e lec t r ic  field, and energy a r e  immediately obtained 

But ra ther  than numerically integrate  

If  the charge density is given 
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(and would likewise be finite power se r i e s ) .  Fur thermore ,  the e lec t r ic  

field is given a s  a continuous function of r ,  which may be of use  for  the 

integration of the equation of evolution of the simulation. 

The idea thus is to numerically f i t  the data (charge density) globally to 

a function and then to analytically integrate Poisson’s equation and pe r fo rm 

the subsequent differentiations and integrations to obtain the related quan- 

t i t ies .  

squares  technique. 

the representation, then solving for  these unknowns need, in effect ,  be done 

only once; the coefficients a r e  then repeatedly obtained by only matrix 

multiplication. 

The numerical  approximation may be accomplished by the l ea s t -  

If the coefficients describing the f i t  appear  l inearly in 

The crux l ies  i n  selecting the fo rm for  the approximation, and he re  a 

In o r d e r  to  place this discussion vast  number of variations a r e  possible. 

in definite context, the following descr ibes  an example which, in  fact ,  has  

been t r ied successfully in  one application. 
2 

The problem then is to solve Poisson’s  equation, 

3 
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where  r is the dimensionless radial  coordinate measured  in  units of R, 

6 = (n  

length. 

- n )/n 

Four ie r  analysis with respec t  to the azimuthal var iable ,  

is the dimension l e s s  charge density and R is the Debye t - 0  D 



C P = +  0 t 2 ( O i c o s Q $ t i P S s i n P $ ) ,  Q 

reduces the par t ia l  differential equation to  a system of ordinary differential 

equations, whose solutions for  either amplitude a r e  (aside f r o m  the constant 

factor of the right hand side) 

CP 0 = C l t l  ( C 2 t l r 6 0 d r )  

I = C t S r - ' + ' 6  d r ) r  Q t ( C 2 - z  1 1 rp 6Q d r  ) . 
Q ( 1  2Q Q 

The constants of integration, C and C may be used to make the integrals 
1 2' 

definite. Typically, the potential would be approximated by the first L 

modes . 
It i s  now supposed that 6 i s  given a s  a set  of values on a discrete  grid 

in coordinate space. 

is  given by 

Since for cylindrical coordinates the elemental a r e a  

1 2  
2 r d r d $  = - d r  dq 

2 
i t  i s  most  appropriate to use r a s  the variable measuring radial  position. 

This resu l t s  in a nonuniform grid in ( r ,  9) space, but the cells a r e  then of 

2 
equal weight. Thus 6 is  assumed to  be a function of r and in  particular Q 
a power series with a finite number of t e rms  
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M 
2(m- 1) tjQ = r Q C  a r 

Q ,  m 
m= 1 

Q where the r factor i s  added to  in su re  regularity of the solution a t  the origin. 

With the boundary condition, @ (  1, 9) = 0, corresponding to a perfect  

conductor a t  R , the expressions for the Four ie r  amplitudes of the potential, 

e lec t r ic  field component, and energy ( integral  E / 2  E * E over the ent i re  
0 * *  

domain) a r e  simply 
7 M t l  
L 

CP = - "(*) Q e 
rQ 1 b Q , m  r 2(m- 1)  

m= 1 D 

L 
b ~ ,  c 2(m-1)  

r 
Q ,  m 

Q 1 =*+-(e, KT e r 

m= 1 
D '  

M M  
6k 

Q )  maQ,m' 
& = 1.09 * 105(KT)' (8) 1 2 [ ( Q  t m + m ' ) ( Q  t m ) ( Q  t rn ' ) ] - ' a  
Q n L-l 

u c ,  s m = l m ' = l  

with the following definitions 
M t l  a 

- Q ,  m - T  - -  
' bQ, 1 L bQ,m 

- 
bQ, m t l  4(Q t m ) m  

m= 2 

C = ( Q  t 2 m )  b 
Q, m t l  Q, m t l  

Th  plus 

tude of E 

r minus sign applies, respective1 r ,  t the cosine o r  sine ampli-  

. The coefficient of has  the units ( e V  - c m )  , and the 
-1  

9 
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expression for  8 should contain a n  additional factor of two. 
0 

The above expressions a r e  quite easily evaluated,' and the numerical  

problem is that of determining the a ' s .  That i s ,  we must  fit the function 

M 
2(m- 1) 6 ( r )  = rQ C a r m 

m= 1 

(subscript  Q now dropped) to the N data points 6 

r 

given on the grid n 
2 
n = (n - 1/2)/N.  The least  squares  technique chooses the a's so as to 

minimize the expression 

N 
P 

I L ! .  n n 
n= 1 

Experimentally, however, it has been found useful to  add side conditions to 

the fit. 

created m o r e  electric field than what the total charge density can account 

The first is  a normalization requirement insuring that there  is  not I 
for,  

a 
M 

1 2 m t Q  2 N  n 
6 ( r )  r d r  = 

Also, it has been found important to make some specification at the edge of 

the fit, r = 0 and 1, since the least  squares f i t  is unreliable for extrapolat- 

ing data. For  a perfectly absorbing boundary, since 6 must  go to zero,  

I another condition imposed is  

I M 
l - 

a = O  . 
m 

m= 1 

At the origin S ( 0 )  3 0 for Q # 0 . For  Q = 0, an  extra data point is created 



by extrapolating the data at the first two points back to  the origin, 

2 
1 

2 2 6 2  ' r N t l  
2 1  

= o .  
r 

r - r  

2 
2 

2 1  

r 

r - r  
- - - 

2 2 %  N t 1  

Confining ourselves to the case  Q ./ 0, the two side conditions determine 

in t e r m s  of the o thers ,  and thus 
M '  

and a 
M- 1 two of the coefficients, say a 

the f i t  i s  to the function 

N M-2 

n= 1 m= 1 
where 

2 Q t 2 ( M - 2 )  1 4 (2(M-1) t Q)(2M t Q)( l  - r ) r g ( r )  

2 Q t 2 ( M - 2 )  2 d r ) .  Q t 2 ( m - 1 )  1 
- Q t 2 m  h ( r )  G r t ? ( 2 ( M - l )  t Q - ( 2 M t Q ) r  ) r 

m 

The effect of imposing side conditions is  to  complicate the functional 

dependence of the f i t  on r . Minimization of S with respect  to  the a ' s  

resul ts  in a se t  of simultaneous equations determining the first M-2 

coefficients 

M-2 N N N 

m ' = l n = l  n= 1 n t = l  

- where g 

solution may readily be obtained; then a 

combination of the other a ' s .  

further let B ( H * H  ) . Then the coefficients a r e  given by the expression 

= g ( r n )  and h = hm(rn+). As the equations a r e  l inear ,  the 
n m, n 

and a are  given by a l inear  

, and 

M M- 1 

Let H be the M-2 by N matrix h 
m ,  n 

T -1 
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where for m = 1, ..., M-2, 

N 
P 

a m = L c  m , n  6 n 

n=l 

M-2 N 

ml= 1 n l = l  

and for m = M-1, M, 

M-2 

The plus o r  minus sign applies, respectively, to the M-1 or  M equation. 

The treatment of the Q = 0 case, for  which a fictitious N t 1 data point 

was added, proceeds in a similar fashion, and the above formulas may be 

taken over with Q set  to zero. The exceptions a r e  that H i s  now an M-2 

by N t 1  matrix, where h = 1 for m = 1 and i s  zero otherwise, and m, Nt1 

= 0 .  Furthermore, to the expressions for c and c must be 
g N t l  m, 1 m ,  2 

1 
and - -b 

The important point to note is that the inversion of the matrix, and 

3 
2 m, 1 2 m , 1 '  added, respectively, - b 

hence the subsequent calculation of c 

a t  each time step in the integration of the equation of evolution of the simula- 

, need be done only once. Then 
m, n 

tion, when the electric field must be updated, the a ' s  a r e  obtained by simple 

matrix multiplication. 

2 
The choice for the representation in this example, a polynominal in r , 

is the least  sophisticated one from the standpoint of approximation theory, 

69 



but it is the most efficient scheme for machine computations. The sor t  of 

( Q  = 0)  data to  which it has  been applied is  shown in F ig .  1; a fifth-degree 

polynominal in  r 

the charge sheath near the boundary. 

in Fig.  2. In the interest  of high accuracy, one can compromise with the 

execution speed and introduce more  complex functions of r , but it should 

be obvious that it is highly desirable to have the parameters  describing the 

fit appear linearly in the representation. 

extremely useful technique for "doctoring" the f i t  to the application. 

2 
(M = 6,  N = 10) is  adequate to describe the formation of 

The corresponding solution is  shown 

Imposing side conditions is an 

This work was performed under the auspices of the U. S. Atomic 

Energy Commission, Contract No. AT(30-1)-1238, and made use of com- 

puter facilities supported in par t  by National Science Foundation Grant 

NSF- GP579. 
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DRIVEN OSCILLATIONS AND NORMAL MODES OF A NONUNIFORM PLASMA 

by 
William M. Leavens 

Environmental Science Services Administration 
Institute for Telecommunication Sciences and Aeronomy 

/ Boulder, Colorado 

ABSTRACT 

Over the past several years we have accumulated numerical solutions of the 
linearized Vlasov equation, obtained by the conductivity kernel method, for the 
driven oscillations of a realistic plasma model with a sheath. Most of the 
results are well described by a driven normal mode model, with a discrete 
spectrum of normal modes. 

The conductivity kernel equation is: 

r 0 

where E 
is an externally supplied driving field. "he conductivity kernel, h(x;x'), 
is a nonlinear function of W, obtained by a formal solution of the Vlasov 
equation in terms of integrals over unperturbed orbits. For nonzero driving 
field, Eq. (1) has solutions for any real W, the only difficulty being the 
numerical computation of Kw at reasonable cost. 
compute K, is described. 
for certain values of W. Thus far our only successful approach to the free 
oscillation problem has been to assume a normal mode representation of the 
solutions of the driven mode problem, 

is the oscillating electric field due to sources in the plasma and Ed P 

The technique we have used to 
For zero driving field, Eq. (1) has solutions only 

and to identify Wn, E&(x) with the free oscillatic'r-s, or "normal modes". The 
location of the Wn's in the W-plane were first f'cund by searching for the set 
of %Is, with N as small as possible, which would give a good least square fit 
to the @-dependence of Ep. 
analyzing the %dependence of - 

This was an especially successful procedure for 

V, = Ep(x) dx. 

Five distinct poles were able to completely describe V, over the frequency 
range studied. The slowly varying part does not contribute to V, 

73 



. 
Having found'the wnl s, the "eigenfunction" En(x) can be determined by success- 
fully subtracting out the poles from Eq. ( 2 ) ,  in such a way as to maximize the 
"smoothness" of the remainder. This procedure has been carried out for q(x), 
but it is not yet complete for the higher En's. 

The discrete spectrum is an inherent property of the nonuniform plasma; 
it is not introduced by boundary conditions. 
modes which dominate the plasma response opens the possibility of quite another 
kind of plasma simulation, in which the plasma is represented entirely by the 
normal modes; 

The existence of a few normal 

Drummond, J. E., R. A. Gerwin, and G. B. Springer, J. Nucl. Energy, Part C: 
Plasma Phys. - 2 (1961). Formulation. 

Leavens, W. M., dissertation, University of California at San Diego (1964), 
Formulation and 

For application to other problems see 
also J. Res. N.B.S., Part D, Radio Science -7 6 9 ~  1321 (1965). 
solution of the Tonks-Dattner problem. 
Phys. Letter 19 
American Physdl Society, Boston (1966). 

118 (1965), and Meeting of the Division of Plasma Physics, 

Pavkovich, J., Meeting of the Division of Plasma Physics, American Physical 
Society, San Diego (1963), also dissertation, Stanford University (1963). 
Formulation and calculation of sheath oscillations. 
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NUMERICAL STUDIES OF THE STEADY-STATE PLASMA SHEATH PROBLEM 

BY 

Lee W. Parker 
Mt. Auburn Research Associates, Incorporated 

Cambridge, Massachusetts 

and 
-a Edward C. Sullivan / 

Goddard Space Flight Center,'National Aeronautics and Space Administration 

Greenbelt, Maryland 
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1 .  A number of plasma sheath problems where collisions may be neglected 

7- 10 (e.g. , electrostatic plasma  probe^^-^, vehicles moving in the ionosphere , 
11 plasma diodes , and ion engines’’) may be described theoretically in terms of 

solutions of a particular form of the Poisson equation, in which the right- 

hand side (charge density) involves integrals over velocity space, where each 

integrand is in turn a solution of the associated Vlasov equation. This 

Poisson equation is usually a non-linear partial differential equation, and, 

in general, numerical methods are required to obtain solutions. Such solutions 

are beset by two principal difficulties. 

One difficulty is connected with the fact that the charged particle 

density at a point is a functional of the potential distribution; that is, it 

depends not only on the local electrostatic potential, but also on the poten- 

tial distribution elsewhere in space. 

The other difficulty arises in problems comprising a large class 

important in practice where the potential vanishes at infinity. In the pro- 

cess of obtaining a solution by numerical means to such a problem, an inherent 

instability appears which prevents the solution from being carried to indefi- 

nitely large distances. 

the solution were known, as in the case of a spherical 

If the asymptotic behavior (at large distances) of 

it would be 

necessary only to carry the solution to a finite distance where the asymptotic 

condition could be invoked, such that the instability is not manifested. 

Since the asymptotic behavior of the solution is not generally known for the 

Poisson equation, as distinguished from the Laplace equation, a common 

procedure is to invoke an artificial condition (e.g., vanishing potential or 

potential gradient) at a finite boundary7-lo. 

taken sufficiently far out that the solution in the region of interest is 

1 

I 

The boundary must then be 
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13 unaffected by the nature of the assumed boundary condition 

is taken too far out, then, as will be shown, instability sets in and a 

solution cannot be obtained. 

is easily obtained but does not resemble the solution to the infinite-boundary 

p r ob 1 em. 

. If the boundary 

If the boundary is taken too near, the solution 

These numerical aspects have been discussed in regard to special 

4 7 9 10 cases by Laframboise , Parker , Maslennikov and Sigov , and Taylor 
developed their own methods to apply to these cases. 

by Taylor on solutions to a moving cylinder problem, comparisons were made 

between various artificial boundary conditions, but the instability problem 

was not explored. On the other hand, Maslennikov and Sigov were concerned 

with the stability problem, but not generally with its relationship to the 

boundary. Thus, scattered information exists, but such information is not 

yet sufficient to enable a worker, without a great deal of preliminary develop- 

ment, to choose an appropriate method for solving a new problem when it 

, who 

In the recent studies 
10 

9 

involves an infinite boundary condition (or a large electrode separation). 

The investigation reported here is intended to clarify the numerical aspects 

of infinite-boundary problems, so that systematic methods may be developed. 

The previously-mentioned numerical difficulty associated with the non-local 

character of the charge density c a l c u l a t i ~ n ~ - ~ ~ ~ ~ ~  will not be treated here. 

In one-dimensional problems, the solution of the associated ordinary 

differential equation may be computed either by a "marching" (step-by-step) 

method in which the solution is propagated from one point to another , or 

by a "grid" method in which the solution is determined simultaneously at a 

number of points. 

over error propagation. However, in multi-dimensional problems leading to 

2-6 

The marching method has the advantage of affording control 
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non-linear partial differential equations, the grid method appears to be the 

only recourse 7-10912, but little information exists regarding this method. 

possible additional advantage of the grid method (even over the marching 

method in one-dimensional problems) is that it is unnecessary to establish in 

advance a catalogue of analytic properties for solutions, as must be done in 

the marching method. 

regard to accuracy and economy of computing time. 

described as follows. 

A 

It is therefore desirable to study grid methods with 

The grid method may be 

Let a finite region of interest in configurational space be over- 

laid by a grid of spatial points. 

points are considered to be the components of a vector 0, the solution of 

the Poisson problem is the solution of a set of simultaneous equations of the 

form: 

If the values of the potential at the grid 
+ 

where L is a Laplacian matrix operator based on a difference approximation, 

and P is a charge density vector whose component P at the k-th grid point 

depends on the components of $ at all of the grid points. 

+ 
k 

+ 
(Numerical factors 

have been absorbed and it is assumed that an algorithm based on trajectory 

calculations is available for computing P from a given $ .) A general itera- 

tion procedure for solving (1) may be defined by: 

+ -+ 



3n where 4 denotes the n-th iterate for $ , and the empirical set of coeffi- 

cients (b 

in order to promote convergence. In direct iteration without coupling, one 

has b =1 and b =O for m#n. 

..., b ) implies that successive density iterates are coupled 
0’ bl’ n 

n m 

The instability referred to above manifests itself as a divergence 

in the iterative sequence defined by (2), and depends on the position of the 

grid boundary (for a given coupling scheme). Since the instability phenomenon 

occurs both in one-dimensional problems and in multi-dimensional problems, 

we decided to restrict our study to one-dimensional problems. This would 

afford not only a saving in computer time, but also a comparison with accurate 

solutions obtainable in other ways. To illustrate the nature of the phenomenon: 

calculations were performed on a spherical problem in which the sphere radius 

and potential were chosen to be 150 Debye lengths and 10 kT/e, respectively. 

The charge density was represented by a reasonable model function to save 

computer time. The potential was set equal to zero on the grid boundary, and 

the problem was solved for successive boundary positions at intervals of 

one Debye length. The iteration scheme chosen was such that two successive 

density iterates were coupled, in accord with the experience reported in 

References 4 ,  7, 8, 9, 11, and 12, where the coupling W A S  found to yield an 

improvement over direct iteration. When the boundary was at 152, 153, or 154 

(in Debye lengths), the values of the potential at points near the sphere 

changed noticeably with boundary position. 

156, the values of the potential at points near the sphere became stationary. 

(That is, the infinite boundary condition was well represented as far as these 

points were concerned.) However, the number of iterations required for con- 

vergence increased as the boundary was moved out. When the boundary was at 

4 7-9  

When the boundary was at 155 or 
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14 158, the  successive i t e r a t e s  diverged . 
The i n s t a b i l i t y  represents  t h e  growth of e r r o r s  from i t e r a t i o n  t o  

i t e r a t i o n .  More ana lys i s  i s  required t o  c l a r i f y  t h i s  phenomenon, bu t  i t  i s  

s imi l a r  t o  t he  growth of the  unwanted p o s i t i v e  exponent ia l  s o l u t i o n  which 

occurs when the  marching method i s  appl ied t o  the  equat ion y"=y. 

experiments run by Pr ince  and J e f f r i e s "  on a plasma diode problem suggest 

t h a t  t h e  i n s t a b i l i t y  i s  assoc ia ted  with the  occurrence of an apprec iab le  

region of nearly-vanishing n e t  charge densi ty .  I n  the  plasma diode, t he  n e t  

charge densi ty  changes s ign  i n  the  space between the  two e l ec t rodes ,  and the  

region of nearly-vanishing n e t  charge dens i ty  spreads as the  e l ec t rode  spacing 

increases .  

t i o n  could be c a r e f u l l y  con t ro l l ed ,  Pr ince and J e f f r i e s  obtained so lu t ions  

f o r  e lec t rode  spacings up t o  100 Debye lengths .  

coupling o f  two success ive  i t e r a t e s ,  so lu t ions  w e r e  found t o  be l imi ted  t o  

e lec t rode  spacings of about 20 Debye lengths .  

Numerical 

By using a marching i n t e g r a t i o n  method with which e r r o r  propaga- 

By using a g r id  method and 

We have run numerical experiments on a plasma diode problem using a 

g r id  method. The goal of t hese  ca l cu la t ions  i s  t o  develop methods f o r  obtain-  

ing so lu t ions  i n  the  l i m i t  of very l a rge  e l ec t rode  separa t ion ,  which should 

shed l i g h t  on the  inf ini te-boundary problem. 

t o  corroborate the  above l i m i t a t i o n  of 20 Debye lengths .  Experience gained 

i n  refinements of the  i t e r a t i o n  procedure and i n  t h e  r o l e  played by s i g n i f i c a n t  

f i g u r e  accuracy w i l l  be reported.  Work i s  i n  progress  t o  determine the  

e f f e c t s  of f u r t h e r  refinements,  such a s  t h e  use of an appropr ia te ly  non-uniform 

d i s t r i b u t i o n  of g r i d  poin ts .  

Our r e s u l t s  t o  da t e  have tended 



Further assessments on the efficacy of the grid method are afforded 

by application of this method to the perennially interesting spherical probe 

problem. Comparisons will be made with existing accurate ambi-monoenergetic 

5-6 solutions . 
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NUMERICAL SOLUTION OF THE FOKKER-PLANCK 
EQUATIONS FOR A HYDROGEN PLASMA FORMED 

BY NEUTRAL INJECTION* 

John Killeen and Archer H. Futch 

Lawrence Radiation Laboratory, University of California 

Live rmor e, California 

ABSTRACT 

In those experiments in controlled-fusion research that employ the in- 

jection of energetic neutral atoms, a plasma is formed of initially hot ions and 

cold electrons. 

the electrons and ions as a function of time during the buildup of the plasma. 

The mathematical model for this problem is the Fokker-Planck equation. 

use the form of the equation where the two-body force is an inverse square law 

a s  derived by Rosenbluth, MacDonald, and Judd.’ In this work we have 

assumed that the velocity distributions are  isotropic. 

electrons and ions with a given velocity spread. 

It is of interest to know the velocity-distribution functions of 

We 

We include a source of 

I Both species can be lost by 

~ 

.I. *r 
Work performed under the auspices of the U. S. Atomic Energy Commission. 

‘M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 107 1 -’ 
(1957). Presented at the Symposium on Computer Simulation of Plasmas and 

Many-Body Problems, College of William and Mary, Williamsburg, Virginia, 

A.pril 19-21, 1967. 
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Coulomb scattering into the loss  cone, and the ions can be lost by charge ex- 

change. The equation for each species is 

4 fb(vl, t)v' dv' + afa [L I[$ $ l: fb(vt,t)v' 2 dv' - 
3v av v 

b 

- -$- yov fb(vl,t)v' 4 dv' + 3 fb(vl, t)v'dv' 
3v 

The summations are  taken over all the species being considered, includ- 

ing type a, and pa(v) is the probability that particles of type a and velocity v 

wil l  be lost. The term for charge-exchange loss must be added to the above 

equation for ions. The term sa(v, t) represents the source of injected 

particles. 

We consider electrons and ions of Z = 1. We introduce the dimensionless 

variable x = v/v where v is a constant and is a characteristic velocity. Let 

f = (4m0/Ke)fe, where Ke is determined from the equation 

0' 0 

2 ne@) = Ke IoW f(x, 0)x dx; 



i. e. , the constant is determined by the initial conditions with ne(0) equal to 

the initial electron density. Similarly, we let g = ( 4 m  / K  )f where 0 i i’ 

ni(0) = Ki lom g(x, 0)x 2 dx. 

We introduce the dimensionless variable T where T = (i reKe/v;)t. Let 

p = me/mi and K = Ki/Ke. Defining the functionals gives us 

In terms of these new variables, the equation for the electron- 

distribution function becomes 

!?!=AT a2f + B x  af + Cf + D, 
aT ax 

where 

+ M(f) + K T E ( g )  + 
X 1 [: 

and 



1 4 - -E(f) 1 + M(f) 
C = 2 (f  + Kpg) - pe(X) 7 3x I.[’ N(f) 2x 3 

The term D(x, T )  describes the time-dependent source of electrons. 

The equation for the ion-distribution function becomes 

where 

and 

The term H1(xJ T )  contains the charge-exchange-loss term, and L(x, T )  de- 

scribes the time-dependent source of ions. 

We wish to solve nonlinear differential Eqs. (1) and (2)  on the domain 

0 < - x < 03, T 2 0, with the boundary conditions f + 0, g + 0 as x + 00, and 

af/ ax = ag/ ax = 0 at x = 0 for  T > 0. 

a r e  given. 

The initial distributions f(x, 0) and g(x, 0) 
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For the numerical solution we choose the domain 0 2 x 2 xs where xJis  

specified for each problem and is taken large enough to include the high- 

velocity tail of the electron distribution. As the electrons increase in tem- 

perature, the distribution spreads out; thus, the choice of xJ determines when 

the calculation must be stopped in order to preserve accuracy. At x = xJ, we 

take the boundary condition f = g = 0. 

In the domain 0 x 5 xJ, 7 2 0, consider the finite-difference mesh 
n 

= nA7, n = 0, 1, 2, . . .. defined by x = jAx, j = 0, 1, 2, . . . J ,  and by 7 
j 

We define the first and second difference approximations by 

2Ax 

and 

2 n  
( 6  f), = n 

J 

We approximate Eqs. (1) and (2)  by the following implicit difference equations: 

and 

gn+l - gn 
A7 = [m+1(62g)y+1 j + Gn'l(6g)n'' J J + H" J gj 

n+l The terms A , etc., a r e  computed from f" and gn and a re  extrapolated. 
j J J 



2 The above equations are  solved by the algorithm described by Richtmyer. 

The scheme is numerically stable in practice, and there is no restriction on 

the time step. This is an essential part of the calculations because as  the 

electron temperature increases, the transfer rate decreases and the time 

step, At, must be continually increased during the calculation in order to 

progress toward equilibrium in a sensible manner. 

A plasma potential is computed at each time step of the calculation by 

requiring charge neutrality. 

that electrons with v < v 

scattering into the loss  cone. 

compared to the ion density and vc is modified accordingly. 

potential is obtained from e$ = 1 / 2  (mvc . 

A critical velocity, v (t), is determined such 
C 

a re  not lost and that those with v > vc can be lost by 
C 

A t  each time step, the electron density is 

The plasma 

2, 
Numerical results are  presented for a case with a source of 15-keV 

protons and 10-eV electrons. 

from 10 to l o l o  and the electron temperature from 1 0  eV to 200 eV. 

In this case, the particle densities increase 
5 

2R. D. Richtmyer, Difference Methods for Initial Value Problems (John 

Wiley & Sons, New York, 1956), p. 101. 
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ABSTRACT 

Calculations on the "water bag model" of a two stream instability 

have been made by following the motion of the phase space boundaries. A l -  

though the distribution function is locally randomized, a large scale non- 

linear wave is observed. This wave is due to the condensation of holes in 

phase space which formally act as negative mass particles in that like charges 

attract one another. The subsequent development of the system depends on the 

dynamical interaction of the holes with each other and the plasma background. 

This evolution should be studied statistically, and to begin with, computer 

calculations have been made for a two hole collision. 

most probable final state of the simple water bag model is a Fermi distribution 

and it is important to determine to what extent the actual dynamics allows 

the system to relax to this state. 

Statistically, the 
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NONLINEAR STUDY OF VLASOV'S EQUATION FOR A 
SPECIAL CLASS OF DISTRIBUTION FUNCTIONS 

K. V. Roberts and H. L. Berk 
- 

I. Introduction 

The evolution of a c o l l i s i o n l e s s  1-dimensional plasma o r  grav i ta t ion-  

a l  system is described by Vlasov's equation 

3 4  34 - 2i + W a f  0 -  

at ax a x  av 

L L-gether w i t h  Poisson's equation f o r  t h e  po-entia1 energy f u n c t - m  

Although t h e  

Poisson equations have been extensively analyzed, t h e r e  is s t i l l  t h e  need t o  

gain some f u r t h e r  physical  understanding of t h e i r  non-linear solut ions.  

d . 
and quasi-l inear3 ,* so lu t ions  of t h e  coupled Vlasov- 

5 

The d i s t r i b u t i o n  function +(x ,v , t )  can be pictured as t h e  density 

of an incompressible "phase f l u i d "  which moves i n  two-dimensional (IC, v)-space. 

The hydrodynamics, s t a t i s t i c a l  mechanics 6 and thermodynamics7 

f l u i d  are i n t r i n s i c a l l y  w e l l  worth studying, and a s  we s h a l l  show, t h e  detai led 

of t h i s  model 

analysis  of f l u i d  motion i n  phase space emphasizes nonlinear f e a t u r e s  which 
14 

have not  been skressed i n  previous numerical 9-12 o r  t h e o r e t i c a l  

Vlasov equation, o r  on the  exact dynamics o f  an N-particle system. Many of 

these f e a t u r e s  a r e  i n t u i t i v e l y  q u i t e  straightforward, and t h e r e  is a useful  

analogy between a phase f l u i d  and an ordinary incompressible l i q u i d  such a s  

water, although i n  f a c t  it often t u r n s  out  t h a t  numerical o r  a n a l y t i c  calcu- 

l a t i o n s  on phase f l u i d  a r e  simpler t o  perform. 

work on t h e  
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The density of t h e  f l u i d  i n  (Y,V)-space w i l l  usually be inhomogen- 

eo&, although it follows from Liouvi l le ' s  theorem t h a t  t h e  density of each 

individual  moving element must remain constant i n  time. 

hydrodynamics it is convenient and physically obvious t o  work w i t h  a l i q u i d  of 

constant density wherever possible,  s ince t h i s  g rea t ly  s impl i f ies  t h e  equations. 

Such a l iquid may be bounded by a f r e e  surface on which waves can propagate, 

and may a l so  contain c a v i t i e s  of various shapes. I n  a similar way. t o  study 

nonlinear phenomena i n  phase space i n  t h e i r  simplest  form one can assume t h a t  

f = 1 i n  cer ta in  regions,  and+ = 0 elsewhere. 

However, i n  ordinary 

13 
This "water-bag model" was introduced by de Packh , and has s ince 

been employed by a number of workers f o r  ana ly t ic  and numerical ca lcu la t ions  

'*-16. 

t h e  boundary curves C . ( t )  between t h e  f = 0 and f = 1 regions ,  so  t h a t  i t s  

evolution can readi ly  be followed. 

unstable waves, depending on t h e i r  o r ien ta t ion ,  and these  a r e  analogous i n  

some respects t o  g r a v i t a t i o n a l  waves o r  Rayleigh-Taylor i n s t a b i l i t i e s  011 

l i q u i d  surfaces, with t h e  added advantage t h a t  they can b e  followed q u i t e  

accurately i n t o  t h e  fa r  nonlinear regime. 

The s t a t e  of t h e  system a t  time t is completely defined by specifying 

J 
The curves C .  can support s t a b l e  o r  

J 

For both t h e  hydrodynamic and t h e  Vlasov systems, t h e r e  is  a n a t u r a l  

general izat ion t o  t h e  case of severa l  f l u i d s  of d i f f e r e n t  constant dens i t ies ,  

(a  t y p i c a l  example would be o i l  f l o a t i n g  on water), and here again t h e  i n t e r -  

faces  can support s t a b l e  o r  unstable waves. 

computer program, outlined i n  SectionIII,which follows t h e  t i m e  evolution of 

a waterbag system w i t h  any number of closed o r  open boundary curves C 

separating regions Ri i n  which t h e  d i s t r i b u t i o n  function takes  a r b i t r a r y  

We have therefore  develcped a 

j' 
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constant  values fi. 

problems. 

It can be used f o r  a var ie ty  of plasma and g r a v i t a t i o n a l  

One of t h e  examples t o  be discussed here is a two-stream i n s t a b i l i t y ,  

i n  which an electron plasma i s  s l i g h t l y  perturbed a t  t = 0 from an equilibrium 

character ized by four equally-spaced horizontal  s t r a i g h t  l ines :  

There i s  a uniform pos i t ive  neut ra l iz ing  background, and periodic boundary 

conditions a r e  imposed a t  ( X =  0,L). 

l a t i o n ,  i l l u s t r a t e d  i n  Fig. ( 2 )  is t h e  behavior of t h e + =  0 'cavi ty '  which  

i n i t i a l l y  occupies t h e  s t r i p  ( 1st < u./.2) between t h e  two plasma layers .  

m u s t  preserve constant area as it deforms, and it is seen t o  coalesce i n t o  

holes of roughly e l l i p t i c a l  shape so t h a t  a s t a b l e  la rge  amplitude e l e c t r o -  

s t a t i c  wave is se t  up. Superimposed on t h i s  wave are coherent o s c i l l a t i o n s  

and random f luctuat ions.  

The most  s t r i k i n g  fea ture  of t h e  calcu- 

T h i s  

These holes i n  phase space behave i n  a way which a t  first s i g h t  may 

be rather surpr i s ing  s ince although they are  pos i t ive ly  charged they a r e  

evidently a t t r a c t e d  t o  one another and thus behave l i k e  p a r t i c l e s  of negative 

mass. Several  equivalent explanations of t h i s  phenomenon can be given. 

We may note  t h a t  t h e  boundaries of t h e  holes  a r e  determined 

motion of negatively charged electrons,  which a r e  indeed a t t r a c t e d  towards a 

neighboring pos i t ive ly  charged region. 

perhaps easier t o  envisage i f  we invoke a formal  dual i ty  between t h e  two- 

stream plasma problem and an equivalent grav i ta t iona l  problem (Sections V I  and 

by t h e  

Alternatively,  t h e  s i t u a t i o n  is  
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1X)in which t h e  l a w  of force is  a t t r a c t i v e  and t h e  f = 0 and f = 1 regions a r e  

interchanged. 

which a t t r a c t  each other  i n  t h e  usual way. 

In  t h e  transformed system t h e  holes become globular masses 

In a similar vein, has observed t h e  formation of holes  i n  

phase space i n  h i s  numerical ca lcu la t ions  on t h e  negative mass i n s t a b i l i t y  

of c i r c u l a r  acce lera tors ,  

i n s t a b i l i t y  which h e  cal ls  "mass conjugation". 

and has demonstrated a dual i ty  with t h e  two-stream 

The two outer  curves can be seen t o  play only a l imited r o l e  i n  t h e  

two-stream solut ion,  To a good approximation, we show i n  S e c t i o n V I t h a t  they 

merely exert  a screening e f f e c t  on t h e  Coulomb f i e l d s  of t h e  holes, modifying 

t h e  a t t r a c t i o n  by a f a c t o r  exp (-#a. 
dis t r ibu t ion  ( 2 )  can therefore  be rather accurately r e l a t e d  t o  t h a t  of a s ing le  

grav i ta t ing  s t r i p  ( O < l 3 1 (  %), w i t h  Poisson's equation replaced by 

The nonlinear behavior of  t h e  unstable 

2 

The roughly e l l i p t i c a l  c a v i t i e s  correspond t o  t h e  g r a v i t a t i o n a l  e q u i l i b r i a  

found by Hohl, Feix and Staton , and a t h e o r e t i c a l  discussion is  given i n  

SectionVI. We have car r ied  out  some numerical experiments on t h e  dynamical 

in te rac t ion  between holes, and these  a r e  described i n  SectionVIII. If t h e  

interact ion between two col l id ing  holes is weak, they e x c i t e  waves on each 

otherbut  survive t h e  c o l l i s i o n  e s s e n t i a l l y  unscathed. 

t h e  two holes coalesce i n t o  one highly exci ted region. 

ge ts  r i d  o f  excess energy by evaporating off layers  from i ts  boundary. 

evaporated mater ia l  becomes more and more randomized a s  t i m e  goes on, SO t h a t  

1 6  

If it is s t rong enough, 

I n  each case, a hole 

T h i s  
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t h e  system appears t o  exhibit  a two-phase thermodynamic equilibrium. 

This picture certainly suggests that  a new s t a t i s t i c a l  formalism 

should be developed, t o  describe the evolution of the background plasma and 

a l so  of the  holes. 

been worked out by Lynden-Bell , and one o f t h e  most interest ing features is 

tha t  individual f l u i d  elements obey a classical 'exclusion principle ' ,  since no 

two elements can occupy t h e  same region of phase space. If there  a re  only two 

types of region,+ = 0 and .f = 1, t h e  Lynden-Bell dis t r ibut ion is ident ica l  t o  

t h a t  of Fermi 

An appropriate form of s t a t i s t i c a l  mechanics has recently 

6 

Our numerical resu l t s  show however t h a t  a fur ther  extension of t he  

theory i s  required, since i n  many cases it is the  holes t h a t  s e t  up a Lynden- 

Bell dis t r ibut ion,  with the  plasma merely acting a s  a background medium t h a t  

determines t h e  l a w  of force between them. We expect t h i s  d is t r ibut ion t o  be 

metastable, and t o  relax t o  the most probable s t a t e  as  time goes on. 
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11. Evolution of t h e  System 

The instantaneous s ta te  of a system described by t h e  Vlasov equation 

may be represented by a s e t  of contours 

$ (r ,v,  6) = constant 

i n  phase space. 

belonging t o  a given value 

portions. 

contours, and exhib i t s  a number of simplifying features .  

Both closed and open curves a r e  allowed, and t h e  contour 

&( may c o n s i s t  of any number of disconnected 

The evolution of t h e  system is represented by t h e  motion of these  

In t h e  absence of veloci ty  dependent forces ,  each point  on a contour 

moves.accordin.g t o  t h e  c h a r a c t e r i s t i c  equations 

d ? ! ,  v (independent of 2, t ), (5  1 
d t  

dV - = - -  a Q  (independent of V ), ( 6 )  
d t  a x  

so  t h a t  the motion combines a uniform hor izonta l  shear, constant i n  t i m e ,  with 

a non-uniform and var iable  v e r t i c a l  shear. According t o  Liouvi l le ' s  theorem 

t h e  overa l l  system preserves topology, area, energy and momentum. Thus contours 

r e t a i n  t h e i r  r e l a t i v e  ordering and do n o t  appear o r  disappear; they cannot 

cross ,  cut o r  re jo in ,  and t h e  number of separate  pieces of any contour 

((x, V) f $; remains t h e  same. An invar ian t  area funct ion A (  4 ), i s  defined 

by t h e  condition t h a t  

I 4, 
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is t h e  t o t a l  area of t h e  region enclosed by a l l  branches of t h e  contours 

and 4, . 
g8 

A t  each i n s t a n t  of time t h e  p o t e n t i a l  func t ion  requi red  i n  ( 6 )  i s  to 
1 

be ca l cu la t ed  from Poisson's equation, which we take  as 

I t  may be  generalized t o  include t h e  effect of screening if required.  

cons tan t  

The 

is negative f o r  a g r a v i t a t i o n a l  system and p o s i t i v e  f o r  a plasma, 

and t h e  uniform background charge is adjusted so t h a t  

0 

The system possesses an  energy i n t e g r a l  

and a momentum i n t e g r a l  

The f i e l d  energy is negative f o r  a g r a v i t a t i o n a l  system. 

Using t h i s  formulation of t h e  Vlasov equation, we obta in  a model 

t h a t  is  r e a d i l y  t r e a t e d  numerically by taking only a f i n i t e  number of contours. 

Thus phase space c o n s i s t s  of a number of non-overlapping regions; fo r  each 
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t h e  d is t r ibu t ion  function takes  a constant value $;,and only t h e  motion of 

t h e  bounding curves CJ need be computed according t o  equations ( 5 )  and (6).  

I t  follows from Liouvi l le ' s  theorem t h a t  t h e  number of regions, t h e i r  areas 

and t h e  values $; a r e  a l l  invar ian t  with time, together  w i t h  t h e  number and 

topology of t h e  curves. The e q u i l i b r i a ,  s t a b i l i t y  and l i n e a r  oscillations of 

t h e  curves C j  have been s tudied a n a l y t i c a l l y  f o r  a number of plasma, s te l lar  

and electron -b eam problems - 13,14 , 1 6  

Each Cj may be represented e i t h e r  parametrically by a pair of 

functions f X j  (s, t), ) i 5, b ) )  

curve and 'b is  t h e  time, o r  by a s i n g l e  funct ion v; (a ,  k )  

w i l l  be multi-valued,since each C j  may cross  a v e r t i c a l  l i n e  X = constant an 

a r b i t r a r y  number of times. 

where s l a b e l s  t h e  points  on a d i rec ted  

which i n  general  

The so lu t ion  of equations ( 5 )  and ( 6 )  is straightforward, and t h e  

c e n t r a l  problem is  t o  compute t h e  charge d i s t r i b u t i o n  t o  be inser ted i n  (8). 

L e t  t h e  v e r t i c a l  through point  X be in te rsec ted  by curves a t  points  

which divide it i n t o  segments with f -values 

Then apart from a possible  constant charge densi ty  which may be included i n  t h e  

background charge 8 , w e  f i n d  
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T h i s  may be evaluated by a method t o  be discussed i n  Section 111. 

of a 

The motion 

c ;  
J 

is therefore  completely determined by its instantaneous geometry. 

For t h e  waterbag model, t h e  area-function becomes a sum of $ - 
funct ions 

Each d i s t i n c t  +; corresponds t o  a d i f f e r e n t  "fluid". I t  should be noticed 

t h a t  t h e  topology of t h e  curves r e a l l y  exerts no cons t ra in t  on t h e  motion of 

these  f l u i d s .  For example, one region can separate i n t o  two, joined by an 

a r b i t r a r i l y  t h i n  "umbilical cord". S i m i l a r l y ,  two regions can coalesce t o  

form one, provided t h a t  t h i s  is threaded by one o r  more t h i n  s l i v e r s  which 

formally preserve t h e  topology. This s i t u a t i o n  i s  i l l u s t r a t e d ,  f o r  example, 

i n  t h e  numerical results of Fig. 2. Therefore it is  permissible t o  allow 

a r b i t r a r y  d i s t r i b u t i o n s  of f l u i d  i n  working o u t  t h e  s t a t i s t i c a l  mechanics, 

provided t h a t  area conservation and t h e  exclusion pr inc ip le  a r e  s a t i s f i e d .  
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111. Computer Program 

Computers have already been extensively used t o  study c o l l i s i o n l e s s  

systems described by t h e  Vlasov-Poisson equations, e i t h e r  by following t h e  

motion of a la rge  number of  ' p a r t i c l e s '  , o r  by solving t h e  partial  d i f f e r -  

e n t i a 1  equation i t s e l f  

9,lO 

11,D . The p a r t i c l e  method i s  widely appl icable  and fas t ,  

b u t  it leads t o  s t a t i s t i c a l  f luc tua t ions  i n  t h e  charge density which have a 

purely numerical o r ig in ,  and these  give r ise t o  f l u c t u a t i n g  e l e c t r i c  f i e l d s  

and anomalous diffusion e f f e c t s  t h a t  are absent from t h e  exact mathematical 

solut ion,  

meters of t h e  problem. 

ing it as a p a r t i a l  d i f f e r e n t i a l  equation leads t o  a two-dimensional computation 

Whether o r  no t  these  matter i n  prac t ice  w i l l  depend on t h e  para- 

On t h e  other  hand t h e  d i r e c t  so lu t ion  of (1) by t r e a t -  

i n  general, s ince motion i n  an (x,v) phase space must  be described. Because of 

t h e  "free streaming" of p a r t i c l e s  the  so lu t ions  become more and more contorted 

as t i m e  goes on, so t h a t  both Eulerian and Lagrangian mesh techniques give 

t rouble ,  and methods depending on Fourier expansion and orthogonal funct ions 
11, 12 

are often used 

The main problem i s  t o  ca lcu la te  t h e  charge density,  and s ince  t h e  

waterbag model gives t h e  simple representat ion (14) it seems worthwhile t o  

develop a computational method based on d i r e c t  in tegra t ion  of t h e  area between 

t h e  curves. 

by Hohl, Feix, and Staton . 
Calculations using t h e  p a r t i c l e  technique have already been made 

16 

We place enough points  on each curve t o  describe it as accurately as 

required, and s ince  i n  general  each curve becomes longer and more contorted as 

time goes on we arrange t o  add new points  automatically wherever necessary. 

Together w i t h  t h e  coordinates %; , vi  of t h e  L f h  point  we s t o r e  t h e  memory 
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- I  

location of the  next point L on the curve. 

new point 4. between them, we place t h i s  a t  the center of the s t ra ight  segment 

( c, i' ) and adjust  t he  chaining so t h a t  (, i + i"j, A t  present a new 

point i s  added whenever a segment becomes too long, but it would be preferable 

t o  make the  addition of points depend on t h e  curvature. 

If it becomes necessary t o  add a 
- *$ 

i "+ i% 

Points a r e  moved according t o  the leap-frog scheme 

3 4  
where <= - a< is  the  acceleration. 

required, defined at even and odd parity t imes 

Two complete s e t s  of curves a re  therefore 

(odd). 

Each s e t  of curves defines the charge distribution and velocity which govern 

t h e  motion of the other. 

there  is  a weak computational i n s t ab i l i t y  which is  inhibited by bringing t h e  two 

s e t s  of curves into agreement a t  intervals,  (currently every 20 timesteps). 

To calculate  the  charge density, we divide the  X-axis into fixed 

This scheme works very well i n  practice,  although 

'Eulerian' intervals  of equal length A x  . 
by a polygon, the  problem is t o  calculate the area o f  t he  intersection of a 

general polygonal region with the s t r i p  x- 4 
introduce an extra temporary point wherever a segment is  crossed by an in te rva l  

Since each region R; is  represented 

4 x - + A q  To do t h i s ,  



boundary, and consider the  s e t  of sub-segments so formed. 

segment c i ,  i’) l i es  e n t i r e l y  within some i n t e r v a l  M, and separates  two 

regions with f -values t, $L say. 

i n t e r v a l  is 

Each directed sub- 

Then t h e  t o t a l  charge within t h e  

summed over a l l  sub-segments belonging t o  M . 
The program i s  wr i t ten  i n  Fortran I V ,  but  uses fixed-point ar i thmetic  

i n  c r i t i c a l  sect ions i n  order t o  minimize machine time. These could be 

converted t o  machine code t o  produce a f u r t h e r  increase i n  speed, but  a 

t y p i c a l  run only occupies about 5 minutes on a CDC 3600. 

adapted for  a var ie ty  of problems; periodic,  r e f l e c t i n g  o r  open systems, 

e l e c t r i c  o r  g r a v i t a t i o n a l  f i e l d s ,  an a r b i t r a r y  number of regions R; w i t h  d i f -  

f e r e n t  5 -values, a screened o r  unscreened Coulomb l a w  o f  force,  and plane, 

c y l i n d r i c a l  o r  spher ica l  one-dimensional geometry. 

The program can be 
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I V ,  Linear Theory of t he  Two Stream Ins tab i l i ty  

The l i nea r  theory of t he  two stream i n s t a b i l i t y  is now a c l a s s i c  
2 problem , but w e  b r ie f ly  review it here t o  i l l u s t r a t e  applications of t he  

water-bag model. 

i n  Fig. (1) w i t h  Vr= -va 
For the  equilibrium we choose the  d is t r ibu t ion  function shown 

and b?e=-vt , 

The l inear ized equation of motion of a point on a curve ci , f o r  a 

perturbation proportional t o  exp t- i i k x )  is 

(20) 
( , - i u s  + i k V i ) b V i  - - -' - k  9 k  

The normalized poten t ia l  & s a t i s f i e s  Poisson's equation which is  

given by 

(21) 

- CVpL [ t s v ,  -SVJ - 8 JU,- ~v,,J k2L - 2(V , -6V , )  

2-  4snoe'  
and n o  is the mean electron density. Equation (21)  m where u p  - 

gives 

I I.( L 
(22 1 

s v i  = 
W -  k V i  

and subs t i tu t ing  t h i s  in to  ( 2 1 )  and factoring 4&,  w e  obtain the  dispersion 

r e l a  t ion ,  

8 k 
2 1  ( 2 3 )  

v, - 
2 

c4.9 

6 b , L )  1 - cv, 1 8  VL)  E=k'v,L wL- k' Va 

Since the  dispersion re la t ion  can be rewri t ten i n  the  following 

quadratic form, 



0 

t h e  solut ion is 

For b <C, t h i s  can be negative and t h e  system is unstable. 

lower bound f o r  k, t h e  i n s t a b i l i t y  condition is 

If there  i s  no 

The choice of a plus s ign  i n  equation (25) y i e l d s  t h e  mode CON We , 
which i s  the  rapidly o s c i l l a t i n g  wave t h a t  is  present even i n  t h e  absence of a 

depression i n  phase space. 

low frequency mode t h a t  is primarily driven by t h e  depressed phase space region. 

If kv, (( u p  , t h e  dispers ion r e l a t i o n  f o r  t h i s  mode is approxinately 

The choice of t h e  lower s ign  gives r ise t o  t h e  

This mode is  excited by t h e  modulation of t h e  inner surfaoes which causes t h e  

h i g h  velocity streams 

e l e c t r i c  f i e l d  is  ab le  t o  absorb enough p o t e n t i a l  energy t o  balance t h i s  

k i n e t i c  energy and then continue t o  modulate t h e  streams. It is s t a b l e  if t h e  

e l e c t r i c  f i e l d  energy cannot absorb a l l  t h e  k i n e t i c  energy, so  t h a t  t h e  system 

t o -  l o s e  k i n e t i c  energy. The mode is unstable i f  t h e  
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has t o  o s c i l l a t e  i n  a negative energy mode (one can eas i ly  ver i fy  t h a t  t h e  

negative energy c r i t e r i o n  W - .( 0 36 
aw i s  f u l f i l l e d  i n  t h i s  case). 

If V 1 < (  V I ,  an in te res t ing  gravi ta t iona l  analogy resu l t s .  I n  t h i s  

l i m i t ,  the  dispersion r e l a t ion  fo r  t h e  low frequency mode is found from 

(25)  t o  be 

Eq. 

This r e s u l t  can be derived direct ly  from the  equations of motion, i f  

w e  assume ' L &( VI , where L is the  charac te r i s t ic  length of var ia t ion  of 

i n  the  equation of i2v - an excitation. In  t h i s  case w e  can neglect t h e  term 

motion fo r  t h e  outer  curves. We then find t h a t  t he  bounding curves obey the  

r e l a t ion  

After l inear iz ing  t h i s  solut ion w e  f ind  

and subs t i tu t ing  t h i s  in to  Poisson's equation and neglecting c) vk  compared 

with VI , we f ind  

The l e f t  hand s ide  is  Poisson's equation with a shielding term, and 

the  r i g h t  hand s ide  is equivalent t o  the  charge density of a grav i ta t iona l  

f l u i d  of density e(%)in the  inner region o f  phase space. Since a gravi ta t iona l  



f l u i d  is s e l f - a t t r a c t i n g  we expect t h e  system t o  condense t o  a blob. The 

outer  curves sh ie ld  t h e  s t rength of t h e  g r a v i t a t i o n a l  in te rac t ion ,  and if  

is  small enough, t h e  condensation is  prevented. 

t h e  l i n e a r  dispersion r e l a t i o n  derived from (31) is i d e n t i c a l  t o  (28) .  

One can e a s i l y  e s t a b l i s h  t h a t  
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V, Numerical Experiment on t h e  Two Stream I n s t a b i l i t y  

Figure 2 shows some results of a nonlinear ca lcu la t ion  on t h e  two- 

stream problem, i n  which t h e  plasm i s  s l i g h t l y  perturbed a t  &=O from an 

equilibrium characterized by Equation (2) .  

in,  s o  t h a t  t h e  motion of t h e  plasma is  emphasized. 

conditions over a length L, and perturb the i n i t i a l  equilibrium with 1 6  

randomly-chosen amplitudes and phases, i , e .  t h e  4 longest waves on each curve. 

The parameters of t h e  problem are 

The $= I regions have been shaded 

We employ per iodic  boundary 

where A X  is t h e  g r i d  used f o r  evaluating Poisson’s equation, and 

radian plasma frequency. 

is k =  z A r / ~  , and t h e  l i n e a r  growth r a t e s  are xp = 0.30, 0.3l5. 

is  t h e  

The unstable modes are n = 1,2 where t h e  wave-number 

Each of t h e  four  curves is or iginal ly  determined by 64 equally- 

spaced Lagrangian points,  joined by s t r a i g h t - l i n e  segments i n  phase space. 

Because a new point  i s  added a t  t h e  center  of a l i n e  segment whenever it 

becomes t o o  long, many more points  may be needed t o  describe t h e  system a t  

la ter  times, and 1734 points have been used i n  Fig. 2c (with an equal number 

f o r  t h e  curves of opposite par i ty) .  

an increase i n  t h e  complexity of the  d is t r ibu t ion  function 

necessar i ly  of t h e  e l e c t r i c  f i e l d .  

drops o f f  rapidly as n increases and therefore  t h e  number of Eulerian points  

needed t o  represent  t h e  e l e c t r i c  f i e l d  i s  qui te  small and does not  increase 

w i t h  time, 

This contortion of t h e  curves represents  

6 (X, V ) ,  but  no t  

The energy i n  t h e  e l e c t r o s t a t i c  modes 

A ca lcu la t ion  with 4 X  = L/32 gave phase diagrams almost i d e n t i c a l  
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t o  those of Fig. 2.  

The d is t r ibu t ion  function is shown a t  timesteps 250, 350, and 600. 

I n i t i a l l y  the 1 6  modes proceed t o  develop according t o  l i n e a r  theory. 

250 s igni f icant  nonlinear e f f e c t s  have taken place and some of t h e  particles 

have been turned around by t h e  f i e l d .  A t  s t e p  350 t h e  e l e c t r i c  f i e l d  has 

almost reached its maximum (Fig. 3 ) ,  and construct ive interference between t h e  

n = 1 and n = 2 modes causes s i g n i f i c a n t  p a r t i c l e  trapping. 

e l e c t r i c  f i e l d  has decreased somewhat, due t o  t h e  increased f l u x  of negatively 

charged f l u i d  incident on t h e  next pos i t ive ly  charged region. The decrease i n  

f i e l d  enables some of t h e  trapped p a r t i c l e s  t o  escape, and t o  cause f u r t h e r  

' thermalization' of t h e  d i s t r i b u t i o n  function. 

A t  s t e p  

A t  s t e p  450 t h e  

The calculat ion cannot as y e t  be continued much beyond s t e p  600 s ince 

t o o  many points have t o  be added t o  t h e  system, 

accurate  a t  t h i s  s tage; t h e r e  has been negl ig ib le  crossing of t h e  l i n e s ,  and 

area and energy have been conserved t o  within 1.25% and 0.5%, respect ively.  

We a r e  attempting t o  make t h e  program capable of longer runs by t r e a t i n g  t h e  

t h i n  ' s l i v e r s '  and 'sandwiches' of f l u i d  and vacuum t h a t  continually form by 

a l t e r n a t e  methods. 

I t  is s t i l l  reasonably 

The solut ion is dominated by a la rge  amplitude standing wave, on 

The which a r e  superimposed coherent o s c i l l a t i o n s  and random f luc tua t ions .  

formation of  t h i s  wave i s  most apparent from Fig. 4,  which emphasizes t h e  

motion of t h e  cavi ty  r a t h e r  than t h a t  of t h e  plasma. 

250 t h e  cavity has developed i n t o  two holes of roughly e l l i p t i c a l  shape, which 

resemble grav i ta t iona l  e q u i l i b r i a ,  

I t  i s  seen t h a t  by s t e p  

These then a t t r a c t  one another, and coalesce 

i n t o  one large hole which subsequently o s c i l l a t e s ,  Some port ion of t h e  i = 0 
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region is dispersed in to  smaller holes and fine-scale s l ivers ,  which become 

more and more randomized as  time proceeds. 



V I .  Hole Equilibria 

Since the  two stream ins t ab i l i t y  evolves into a s t a t e  containing a 

standing electrostat ic  wave, produced by a hole i n  phase space, we now examine 

the  standing wave equilibrium of the  water-bag model i n  which, f o r  simplicity,  

we choose f = 0 inside the hole. In order f o r  the  dis t r ibut ion function t o  be 

-independent of time, each contour must be a constant energy curve. 

curves, C, and C+ have energies L\cI 2 and iv4 while the  inner curves 

C, and C, being trapped t ra jec tor ies ,  have an energy-Vo/? , Curves ( 2 )  and 

The outer 
f 2 

'Lc 

v' 
2 

( 3 ) ,  which a r e  both on the  energy contour E =03 , have been a r t i f i c i a l l y  

distinguished so tha t  each curve is  a single-valued function of ;X. 

t h i s  system f o r  a single pulse b u t t h e  method can also be used t o  f ind the  

We solve 

where =: (u( +y+)  is the condition necessary f o r  overal l  

\ , z > o  and 8 Cx): 
0 ,  5 4 0  

This equation i s  easily solved by quadrature. The 

charge neutral i ty  

first in tegra l  i s  

Vi*-*,) 

where he = $ C*=O). We solve f o r  v j  from the  condition t h a t  a t  in f in i ty  

$= 0 and 3f t 0 , and f ind 



uc 
Consistency requires t h a t  $,< 0, -2 8 > b’: , and (- v:-2$) 2 6 e 

An examination of (35) establishes these points. In the  l i m i t s  fo4.CrV,, % a  V+ 

we f ind ‘ L z  
or  $e >SK , ~4 

Having established the consistency of  our solution we now integrate  

(34)  again, so t h a t  g(r)is determined by the following quadrature, 

A T  

I x =  - s p { & t u  
Jb a€ 

dx  
where - is obtained from (34). 

(37 1 

The solution may be interpreted quali tatively a s  follows. An 

incompressible hole i n  phase space d i l u t e s  the electron f lu id  density and 

hence a posit ively charged region is  formed. Electrons cannot neutral ize  t h i s  

region, since as they a re  a t t rac ted  towards t h e  center they accelerate,  and 

t h u s  spend l e s s  time i n  the center than a t  the end of t he  hole. Thus a 

solution i n  which the  electron density is less a t  the center is  self-consistent.  

Away from the  center, the  potent ia l  -2 decreases since t h e  electron density 

increases. Outside t h e  hole the electron f l u i d  shields t h e  posit ive charge 
w 1x1 

accumulation i n  the  u s u a l  way and from (37 ) we can show tha t  $4: 

if #LCV:, V: . 
torL] v, v4 

I n  t h e  l i m i t  44 kbL, \G’ w e  again see t h a t  our problem is  

equivalent t o  the  screened gravi ta t ional  problem. In order t o  gain a f e e l  f o r  



t h e  equilibrium, we es tab l i sh  some scal ing re la t ionships  f o r  t h i s  case. 

follows from (29)  and (31) t h a t  t h e  outer  s t r i n g s  behave as instantaneous 

It 

equipotentials,  which sh ie ld  t h e  holes even i f  t h e  l a t t e r  a r e  not  i n  a 

s ta t ionary s t a t e .  
is  given by 

For t h e  s ta t ionary  problem t h e  p o t e n t i a l  outs ide t h e  hole 

Q k e+-XIXI) ( 3 8 )  

near t h e  edge of t h e  
3!E a 3)c 

wp . Thus t h e  e l e c t r i c  f i e l d  E =  - - where K = 
hole is 

r = ‘ =  4 4 ,  

and it decays according t o  t h e  exponential shielding l a w  outside t h e  hole. 

We estimate t h e  s i z e  of t h e  hole by first not ic ing t h a t  t h e  p o t e n t i a l  

difference A d  

A 4 =  

between i ts  end and i ts  center  is  found from Eq. (36a), t o  be 

A lower l i m i t  t o  t h e  spat ia l  extent  of  t h e  hole is  obtained i f  we determine 

t h e  length L, which t h e  bulk of t h e  plasma needs t o  sh ie ld  a p o t e n t i a l  drop 

- 
where we have taken v,* b+ V 

Equation (36a) shows t h a t  a t y p i c a l  veloci ty  of a point on t h e  

d 
P t r  

- 
boundary of t h e  hole sca les  a s  v, @ \ --. 
A -  sca les  a s  A * - 

and t h u s  t h e  area of a hole 

* 

We do not  as y e t  have a rigorous theory f o r  t h e  s t a b i l i t y  of these  

holes,  b u t  semi-quantitative analysis  ind ica tes  t h a t  a s i n g l e  hole i s  a 

s t a b l e  s t ructure .  On t h e  other  hand it is c l e a r  t h a t  a per iodic  se t  of 
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pulses  is  unstable i n  t h e  s t r i c t  sense. 

a t t r a c t e d  towards each other  w i l l  continue t o  d r i f t  towards one another once 

an  i n i t i a l  displacement has been made. 

This is because adjacent holes being 

We can examine t h e  s t a b i l i t y  o f  a s i n g l e  pulse i n  two l i m i t s ,  when 

t h e  p o t e n t i a l  is  ei ther  l a r g e  o r  small compared with t h e  square of t h e  thermal 

ve loc i ty ,  

t h e  g r a v i t a t i o n a l  dual  problem. 

t h e  g r a v i t a t i o n a l  equilibrium blob is s table ,  it follows t h a t  i n  t h e  plasma 

problem a small hole i n  phase space is a l s o  s t a b l e ,  

I n  t h e  first case, t h e  resul ts  m u s t  be i d e n t i c a l  with those of 
1 6  

Since Feix, Hohl and Staton have found t h a t  

t L  
I n  t h e  opposite l i m i t ,  -ax, .7 Vc a v4 t h e  d i s t r i b u t i o n  function 

ins ide  a hole resembles two counter-streaming beams and w e  therefore  i n v e s t i -  

ga te  whether t h e  two stream i n s t a b i l i t y  can occur. 

i n s t a b i l i t y  is  much less than t h e  hole s i z e ,  then t h e  configuration is  cer ta in-  

l y  unstable. 

g r e a t e r  than t h e  hole s ize ,  t h e  two stream i n s t a b i l i t y  cannot occur and t h e  

configuration should be s tab le .  

If t h e  wavelength of t h e  

On t h e  other  hand, i f  t h e  shor tes t  unstable wavelength i s  much 

For simplicity we s h a l l  take v, =b4 . 
2 

Since - Z*,, )) V, inside t h e  hole, t h e  two streams a r e  very t h i n  

and widely separated from each other ,  Each stream's f lux is determined 

by i t s  v a l u e  a t  t h e  point  w h e r e  the bola pinches, i .e.  where 

-24% v, . 
of each stream is 

'1 L z From (36b) we f i n d  tha t  v,'=(-'$e) % and hence t h e  f l u x ,  F, 

where n o  is  t h e  mean charge density over a l l  space. 

Ins ide  t h e  hole t h e  p o t e n t i a l  governing t h e  motion of t h e  e lec t rons  

can be approximately calculated by neglecting t h e  e lec t ron  density,  Hence, 



2 t L  
where W Q  L *-Lh. Since -2ge.> v1 

stream near t h e  hole center is  VLL) 2 

s i z e  of the hole. 

, t he  velocity vcL) of the  

L and L is a l so  the  approximate 

From f lux  conservation, we f ind  t h a t  t he  electron density, 

n (L) near t h e  center of the  hole is h 1L) n o  - 
2 

Now t h e  unstable mode with the  l a rges t  wavenumber, kc , f o r  two t h i n  
w L U  counterstreaming beams is kc - and therefore,  
t u-) 

(43 1 

Thus an unstable wavelength cannot f i t  inside t h e  hole and therefore  

a hole appears t o  be s table .  
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V I I ,  Interaction between Holes 

The next important s tep i s  t o  understand how holes in te rac t  w i t h  one 

another. The theory of hole-hole coll isions is a complicated nonlinear 

mechanism f o r  which we a r e  currently seeking a theore t ica l  description. 

We can describe part of the motion of a two hole interaction precise- 

l y  i n  one l imiting case. If two holes a r e  small compared t o  a Debye length, 

but do not overlap, then u n t i l  the  moment of overlap, t h e  shape of each hole 

remains invariant as  they a re  a t t rac ted  toward one another. This  is because 

the  e l ec t r i c  f i e l d  produced by one hole is essentially constant over the 

region occupied by the  other. Thus each hole l ies i n  a uniform f i e l d  and is  

consequently displaced a s  a r i g i d  body, whose effect ive mass is  the negative 

of  the  t o t a l  mass of the  displaced f luid.  

a t  the moment of overlap of the  holes. 

This simple description breaks down 

In the  next section, two numerical experiments a re  described. In 

the  first experiment, two large holes coll ide,  and the  resul t ing accumulation 

of posit ive charge produces a surge of electron f lux  which causes the  two 

holes t o  coalesce and t o  throw off a significant f ract ion of t h e i r  t o t a l  area, 

which subsequently becomes randomized. 

holes move rapidly through each other. 

en t i t i e s  but there  a re  severe t i d a l  distortions t h a t  cause rapid pulsations 

of t he  holes. With a continuous distribution function, it is  probable tha t  

the  e lec t ros ta t ic  f i e l d s  produced by these pulsations would undergo Landau 

damping, 

In the other experiment, two smaller 

In t h i s  case the  holes remain coherent 

117 



VIII. Numerical Experiments on Hole-Hole Coll is ions 

We now discuss some numerical experiments on t h e  i n t e r a c t i o n  of two 

holes i n  the water-bag model, 

each other  with equal and opposite ve loc i t ies .  

chosen s o  t h a t  v is t h e  minimum separation of the  upper and lower s t r i n g s  i n  

t h e  i n i t i a l  s t a t e  and A v i s  t h e  mean hole  speed. 

. Eo AV 
denoted by U= - V 

ized poten t ia l  a t  t h a t  point  5s denoted by 

a r e  suf f ic ien t ly  separated so t h a t  t h e  shielding clouds do n o t  i n t e r a c t .  

Two i d e n t i c a l  holes are assumed t o  approach 

The veloci ty  parameters a r e  

The normalized speed is  

i s  t h e  p o t e n t i a l  a t  tk hole center  and t h e  normal- 
‘L f, *=-- I n i t i a l l y  t h e  holes \Iz e 

The parameters of t h e  first run are, 

The r e s u l t i n g  evolution of t h e  phase space f l u i d  is  shown i n  Fig. 

( 6 )  and the e l e c t r i c  f i e l d  f luc tua t ions  a r e  tabulated i n  Table 1. 

From s teps  0 t o  300 t h e  holes move f r e e l y  towards one another with 

negl igible  in te rac t ion .  The f luc tua t ions  which can be seen i n  t h e  e l e c t r i c  

f i e l d  a re  due t o  an i n i t i a l  mismatch of our i n i t i a l  conditions t o  t h e  exact 

equilibrium. 

t h e  e l e c t r i c  f i e l d  somewhat as t h e  negative charge clouds p a r t i a l l y  n e u t r a l i z e  

t h e  posit ively charged region. 

t h e  two holes 

region and a s i g n i f i c a n t  increase i n  t h e  e l e c t r i c  f i e l d .  

e lectron f l u i d  i n t o  t h e  region, as seen from s teps  650-750. 

t o  neutral ize  t h e  pos i t ive ly  charged region b u t  overshoots s ign i f icant ly ,  

From s t e p s  350 t o  450 t h e  shielding clouds i n t e r a c t  and reduce 

However, from s teps  500 t o  550, w e  see t h a t  

coincide i n  space, thus  producing a l a r g e  pos i t ive ly  charged 

This f i e l d  sucks t h e  

The  f l u i d  attempts 

T h i s  
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surge of electron f lux destroys the  distinctness of t h e  two holes. 

t h e  neutralizing f lux ultimately saturates,  and there  is  s t i l l  enough posit ive 

charge present t o  maintain a hole structure. 

the  system successfully reforms a so l i ta ry  hole. 

and the  e l ec t r i c  f i e l d  energy is  on the  average l e s s  than the  or ig ina l  f i e l d  

energy. 

f rac t ion  of t h e  area is l o s t  a s  thermal agitation. 

However, 

From steps 800-1000 we see t h a t  

The hole continues t o  pulsate, 

However, most of t he  hole area is  s t i l l  trapped and only a small 

In t h e  second run, i l l u s t r a t ed  in Fig. ( 7 )  and tabulated i n  Table 

1, we consider two holes tha t  have a weaker poten t ia l  and approach each other 

fas te r .  The parameters defining t h i s  run are, 

In  t h i s  case the  potent ia ls  associated with the  holes a re  too weak 

and pass each other too quickly t o  produce a violent  nonlinear interaction. 

One can see t h a t  a s  a r e s u l t  of three successive col l is ions,  the  holes undergo 

severe t i d a l  dis tor t ions,  but a r e  s t i l l  able t o  keep t h e i r  ident i ty  and pulsate 

about t h e i r  equilibrium shape. 

the  hole area l o s t  over t h e  en t i r e  run is very small. 

Some evaporization occurs a f t e r  s t ep  450, but 

In  the e l ec t r i c  f i e l d  

data, we a r e  unable t o  detect  any systemmatic damping. However, it is 

possible t h a t  w i t h  a continuous dis t r ibut ion function, t he  pulsation energy 

would be removed by Landau damping which could perhaps cause a depression i n  
I 

~ ' phase space t o  thermalize completely, 



I X .  Energy and Duality 

To ge t  a f u r t h e r  understanding of t h e  so lu t ion  described i n  Section 

V. w e  must develop some of t h e  concepts mentioned i n  Section I. The t o t a l  

energy consis ts  of two parts, k i n e t i c  and p o t e n t i a l  as indicated i n  Equation 

(10).  

i s  posit ive f o r  a plasma and negative f o r  a g r a v i t a t i o n a l  system. I n  t h e  case 

of a periodic plasma w i t h  momentum P = 0 and uniform background charge density 

B, t h e r e  is  a unique s t a t e  of  minimum energy Eo 
a x i s  i n  phase space, i n  w h i c h  t h e  " f l u i d "  regions are  ordered i n  such a 

The k i n e t i c  energy is  always pos i t ive  ( i f  ), while t h e  f i e l d  energy 

symmetrical about t h e  x- 

way t h a t  t h e  more dense f l u i d s  is always nearer  t o  t h e  a x i s  and a l l  e l e c t r i c  

f i e l d s  a re  zero. If A (fi d$ i s  t h e  area per un i t  length between &, f t di 

Any other s t a t e  must have energy 6 > &e 
s t a t e  & t  has a "free energy" e p  Z &&-&ewhich is  ava i lab le  t o  dr ive i n s t a b i l -  

i t i e s .  

r ' f a l l "  towards t h e  x-axis, reducing i ts  k i n e t i c  energy h $ V a  while displacing 

l i g h t  f l u i d  which "rises". Such a process re leases  energy which can e i ther  go 

and i n  pr inc ip le  each i n i t i a l  

5 6 This  point has been emphasized by Gardner and Fowler . Dense f l u i d  can 

i n t o  t h e  e l e c t r i c  f i e l d ,  o r  can be used t o  raise o ther  portions of t h e  f l u i d  

t o  higher ve loc i t ies .  

r i s i n g  just a s  i n  a Rayleigh-Taylor i n s t a b i l i t y .  

Fig. 2a shows tongues of heavy f l u i d  f a l l i n g  and bubbles 

There are t h r e e  cons t ra in ts  on the  system, namely t h a t  P and t h e  

6 
function A (f) remain invariant .  The Lynden-Be11 d i s t r i b u t i o n  is  obtained 
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by considering a l l  possible re-arrangements of the  f lu id ,  subject t o  these 

constraints.  However, it turns out t h a t  the s t a t i s t i c a l l y  most favorable 

s t a t e  t h a t  s a t i s f i e s  the constraints does not necessarily evolve and three  

examples may be given. 

{a)  Free streaming. In the l i m i t  of low density, as  

no e l ec t r i c  f i e l d s  and hence no acceleration, and each f l u i d  element moves 

with uniform velocity (x = v t ,  v = constant). 

function 

x+O , there can be 

The averaged dis t r ibut ion 

(47 

remains constant. 

(b )  Isotropic 3-dimensional distribution. It i s  known t h a t  the  3-dimensional 

analogue of t h e  dis t r ibut ion (2 )  is  l inearly s table ,  and i n  f a c t  any isotropic 

dis t r ibut ion $iV'+ V: t V>) has t h i s  property . 
I C )  Three stream distribution. If ( 2 )  i s  modified t o  

18 

the  system is l inear ly  s tab le  if  o <  $. 

Since the  t o t a l  energy is constant, the  system w i l l  only be unstable 

if there  is  some specif ic  coupling mechanism by which kinet ic  energy released 

by "dense f l u i d  f a l l i ng  toward the  x-axis" can e i ther  be given t o  the e l ec t r i c  

f ie ld ,  o r  can be used t o  "raise the  height" of other f l u i d  elsewhere. 

case of our numerical experiment with t h e  two stream ins t ab i l i t y  by the  time 

In the  



t h a t  Fig. 2c has been reached the e l e c t r i c  f i e l d  has already absorbed about a s  

much energy a s  it can, and fur ther  rapid degeneration of t he  i n i t i a l  s t a t e  

can only take place if  large amplitude waves can be excited on the  two outer 

surfaces. However, these waves have a dispersion re la t ion  

and therefore a minimum phase velocity 

be excited by disturbances i n  the  f l u i d  which move more slowly. 

has therefore reached a metastable s ta te .  

s U. , and hence cannot readily 
k 

The system 

To make the correspondence between plasma and gravi ta t ional  problems 

more formal we introduce two invariance principles. 

depends only on the time evolution of the contours c j  , and t h i s  remains 

unchanged under two elementary transformations: 

The computer solution 

A * =  A 

Here c is an absolute constant, independent of (x,v,t). 

I1 must be supplemented by the  addition of an in f in i t e  constant t o  the  

background charge density 8 , and a l so  t o  the  energy and momentum integrals.  

The transformation 

These transformations a re  unphysicalas they stand, but they may be 

For example, it is meaningful t o  combined together t o  give physical resu l t s .  

discuss the interaction of a f i n i t e  number of holes f = 0 i n  an i n f i n i t e  

electron sea $ = 1. 

we obtain the  equivalent grav i ta t iona l  - dual problem of the  interact ion of a 

Making the transformation I, followed by I1 with c = 1, 



f i n i t e  number of 4 = 1 regions i n  a vacuum ( f  = 0). This has already been 

studied by Hohl, Feix, and Staton16, who demonstrate t h a t  an isolated f = 1 

region takes up a s tab le  equilibrium, roughly e l l i p t i c a l  i n  shape. 

t i on  of small amplitude waves on such an equilibrium has been discussed by 

Ehrman . 
sea. 

The excita- 

14 A similar s t a b i l i t y  must therefore be shown by holes i n  an electron 

The gravi ta t ional  dual of the  two stream problem has 

'1 
By arguments equivalent t o  those of Section V,  it may be shown t h a t  t he  main 

influence of the  two semi-infinite regions with Iv( > ve is t o  screen the  

e f fec t  of disturbances on t h e  inner s t r i p ,  so t h a t  t he  problem is s i m i l a r  t o  

t h a t  of a s ingle  gravitating s t r i p  \Vi (  v0/2 

modified t o  

, with Poisson's equation 



X ,  S t a t i s t i c s  

I t  is interest ing t o  make some conjectures about the f inal  s t a t e  of 

the system. 

studied by D. Lynden-Bell and R.M. Lynden-Bell6 and applied t o  a gravi ta t ional  

problem. 

t i c s ,  which in  general is  different from those of Boltzmann, Fermi o r  Bose. 

The s t a t i s t i c a l  mechanics of col l is ionless  phase f l u i d  has been 

They show t h a t  such a f l u i d  ought t o  obey a fourth type of s t a t i s -  

The Lynden-Bell dis t r ibut ion function is obtained by evaluating the  most 

probable par t i t ion  of energy between the  gravi ta t ional  o r  e lec t ros ta t ic  f ie ld ,  

and a large number of incompressible elements of phase f l u i d  with different 

densit ies $4 which a l l  exclude one another. 

only two values (0,  

In the special  case when f has 

l), the  dis t r ibut ion reduces t o  t h a t  of Fermi: 

where the parameters EF and Y a re  determined by the t o t a l  energy and area, 

and E= 4 + is the sum of the  poten t ia l  and kinet ic  energies per uni t  

mass. 
2 

In t h e  more general problem, where $ i can take on several  values, 

The parameter 7' IC 6 a correspondingly more general expression f o r  t.fi exis t s  . 
plays the par t  of a "temperature" and measures the  random excitation of the 

system above t h e  minimum energy s t a t e y  = 0. The zero temperature equilibrium 

i s  the  one i n  which each region has a specified area and the  t o t a l  energy of 

the system i s  assigned i ts  l e a s t  possible value. 

equilibrium represents a system with more energy but with the  in tegra l  of 

The f i n i t e  temperature 



$ ( v )equal t o  the  in tegra l  of & vso) . Note t h a t  cf i s  not 

immediately related t o  t h e  temperature of the par t ic les ,  and would be zero 

f o r  any unperturbed s t ab le  s t a t e  with 4 0 , such a s  a Maxwellian. For 3 f  
the  two stream problem calculated i n  Section V. the  zero temperature s t a t e  

would be g= 1 f o r  l V \  4 2 and zero elsewhere. 

Near zero temperature w e  can expl ic i t ly  r e l a t e  v p  and y t o  the 

t o t a l  energy and density of a system described by (54) if no e lec t ros ta t ic  

potentials a r e  present. 

dis t r ibuted i n  velocity space i n  the  region 

A t  zero temperature the phase f lu id  is uniformly 

- V k  4 Vs < VC, and 

. The t o t a l  energy, \N , of t h i s  system is then A v q  3 E, (Y - )  2 

where i n  the  normalization we s e t  . 
We now imagine t h a t  we excite e lec t r ic  f i e l d  osc i l la t ions  i n  t h i s  

system which causes the  t o t a l  energy t o  increase by bw where 5 w (( €6'. 

After a suf f ic ien t ly  long time t h e  dis t r ibut ion function w i l l  r e lax  t o  a 

Lynden-Bell dis t r ibut ion,  given by ( 5 4 ) .  From the  normalization and the  

conservation of energy, w e  find the  following relat ions by using the  standard 

methods of integrat ing degenerate Fermi dis t r ibut ions 19 . 



We have attempted 

ing a stable plasma defined 

t o  a t t a i n  these parameters numerically by perturb- 

by two horizontal  curves. However, since the  

water-bag model does not contain any l inear  damping mechanism, the e l ec t r i c  

f i e ld  osci l la t ion persisted over the length of the  calculations and we were 

unable t o  f i l t e r  the equilibrium dis t r ibut ion function from the osci l la tory 

motion. 

Returning t o  our consideration of the two stream problem, we f ind 

t h a t  on a shorter tirnescale, an ent i re ly  d i f fe ren t  type of dis t r ibut ion i s  

observed. 

we f irst  get an i n i t i a l  metastable dis t r ibut ion (54) f o r  the  -9 holes i n  which 

potent ia l  energy must be taken into account. 

only a s  a background medium, which governs the  l a w  of force by determining 

the  screening length K . 

Because the  problem is equivalent t o  tha t  of a gravi ta t ional  s t r ip ,  

A t  t h i s  stage the plasma a c t s  

The s tab le  largeamplitude wave t h a t  dominates our numerical 

solution corresponds t o  a "degenerate" Fermi-like dis t r ibut ion f o r  the  holes, 

and i s  a par t icular  case of a Bemstein, Greene, Kruskalmode. Superimposed 

on t h i s  basic wave are  regular osci l la t ions and random small-scale fluctuations,  

and these a r i s e  from the energy difference between the  basic equilibrium and 

the i n i t i a l  s t a t e  (2  ). 

i n  which part of t h e  hole f l u i d  has "evaporated". 

5 

They approximate a f i n i t e  temperature Fermi dis t r ibut ion 

If the dis t r ibut ion function (54) is t o  be s e t  up i n  rea l i ty ,  it is 

necessary f o r  suf f ic ien t  s t i r r i n g  t o  take place so t h a t  t he  phase f l u i d  becomes 

broken up in to  a large number of small elements which diffuse about a t  random 

and gradually accommodate themselves t o  the  most probable distribution. 

f a r  and how quickly t h i s  happens i n  practice is  a matter f o r  fur ther  invest i -  

How 
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gat ion which we a r e  now current ly  undertaking. 
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EVOLUTION OF T O T A L  FIELD ENERGY 
C UNITS A R B I T R A R Y )  

T A B L E  I 
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Figure 1.- Equilibrium dis t r ibut ion function f o r  two stream ins t ab i l i t y .  
Figure (a) shows F as a function of V and (b) shows the occupied 
regions of phase space. 



TIME STEP 250 

Figure 2.- Development of two stream ins tab i l i ty  i n  phase space. The 
horizontal  and v e r t i c a l  coordinates are x, v, respectively. Regions 
occupied by the upper and lower streams are indicated by the  shading. 
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Figure 3 . -  Fraction of t o t a l  energy i n  e k c t r i c  f ie ld  as a function of t i m e .  
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Figure 4.- Time evolution of the phase space holes from the or iginal  two 
stream distribution. 



Figure 4.- Concluded. 
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Figure 5.- Schematic picture of equilibrium hole derived from simplest 
water-bag model. 

Figure 6 .- Collision of two slow phase space holes. 
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Figure 7.- Collision of two fas t  phase space holes. 



NONLINEAR SOLUTIONS OF THE VLASOV EQUATION BY VELOCITY 

SPACE EXPANSION IN LAG- POLYNOMIALS* 

R. J. L o w  

Electron physics Laboratory, The University of Michigan 

Ann Arbor, .Michigan 
.-,A. 

If convective in s t ab i l i t i e s  i n  a plasma are  of in te res t  and a closed 
system i s  being considered it i s  not possible t o  impose spa t ia l ly  periodic 
boundary conditions. It therefore becomes of in te res t  t o  attempt t o  solve 
the Vlasov equation without t h i s  res t r ic t ion.  

When there i s  no s t a t i c  magnetic f i e ld  and longitudinal waves i n  a 
one-dimensional system are  considered, the Vlasov equation for  the electrons 
and ions respectively i s  

af afe i afe i = 0 9 

where 

e e 
e m , ai - m - - E ,  a = - - E  

i e 

The e l ec t r i c  f i e l d  E i s  derived from Poisson's equation 

m 

e ( f i  - f e )  dv , a E  a x = €  
O -00 

which, on integrating, gives 

- 
* 

This work was supported by USAEC, Fort Monmouth, N. J. on Contract N o .  
DA-36-039 mc-02269(~)  and RADC, Griffiss A i r  Force Base, N.  Y .  on 
Contract No. AF30 (602) -3569. 
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e f f y  (fi - fe)  dvdxdx" - 'd - 
E(x, t )  = f[ (fi  - fe)  dvdx' - r 0 

0 -03 

d *  
0 0 -m 

0 

(4) 
< <  It i s  assumed t h a t  the plasma occupies the  region 0 = x = d and t h a t  there  

i s  a poten t ia l  Vd between x = 0 and x = d .  

V 

c i r c u i t  could e a s i l y  be taken i n t o  account. 

It w i l l  be assumed here t h a t  

i s  maintained a t  a constant value (a-c short  c i r c u i t )  bu t  an ex terna l  d 

Because of the assumption of a diode-like region, the  boundary 
conditions a re  

v > O  , a t  x = 0 

v < O  , a t  x = d 
P 

( 5 )  

f (x,v,t)  = a given function f o r  e, i 

and, since the  d i s t r i b u t i o n  functions are specif ied only over h a l f  t h e  
veloci ty  range, it i s  convenient t o  introduce half-range ve loc i ty  moments 
defined by: 

m 0 

0 -CQ 

It can be seen by taking corresponding moments of t h e  Vlasov equation, Eq. 1, 
t h a t  the moments s a t i s f y  

where 6 i s  the Kronecker d e l t a .  i k  

In order t o  solve Eq. 7 it w i l l  be assumed t h a t  a f i n i t e  nth order 
polynomial expansion i n  veloci ty  space can be made ( the  e f f e c t  of t h i s  
on Landau damping w i l l  not be discussed here) :  



+ 
where the poiynomials p i  are  orthonormal w i t h  respect t o  the weighting 
function w;t(v), i .e . ,  

f. w ~ ( v ) P ~ ( v ) ~ ~ ( v )  dv = 6 i j  
0 

and 

m=o 

It follows immediately from Eq. 81y2j3 that  

2 c&& = 0 

( 9 )  

m=o 

and 

C - c  
C 

(Cn,k+i n-i,o n-i,k+i n,o 
k=o n,n 

(=I  
Equations 10 and 11 allow the s e t  of moment equations, Eq. 7, t o  be closed 
at  any order. By considering the subsequent motion of par t ic les  having 
almost zero velocity, it can be seen’ tha t  the choice of sign i n  Eq. 12 i s  
sgn( -a). 
equations (Eq. 7) .  

I 
I 

This introduces coupling between the posit ive and negative moment 

A l inear  transformation’ can be made of the form 
j 

I which reduces Eqs. 7, 11 and 12 t o  
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k = 0,1,2 ,... n-1 , (14) 
where ho, X1,... X 

For simplicity Laguerre polynomials have been used in actual 
numerical calculation4. 
in an electron-ion diode are shown in Figs. 1 to 3 .  In these figures, 
the electrons are emitted from x = 0 and the ions are emitted from x = d 
with Maxwellian distributions at temperature Te, T. respectively. 

is normalized essentially to the transit time of an electron having the 
average thermal velocity, and the current density is normalized to the 
current which would flow in a single-species Child diode under otherwise 
identical conditions. Figure 1 shows the electron current density and 
Fig. 2 the ion current density at various planes when mi/me = 1000, 

Te/Ti = 3 ,  Je/Jed = Ji/Jid = 0.3536 and eVd/kTe = 2. 
electron current density for mi = m 
eVd/kTe = 20. 

are the zeros of p (v). n-1 n 

Plots of the current density as a function of time 

The time 
1 

Figure 3 shows the 
T = T i' Je/Jed = Ji/Jed = 4 C a n d  e' e 

Ions and electrons behave symmetrically. 

When the particles have a streaming or drift velocity vo superimposed 
on their velocity distribution, it is convenient to modify the equations to 
prevent the velocity-distribution effects from being swamped5. 
done by redefining the velocity moments as 

This is 

(15) 
k < = (V - v0) f(x,v,t) dv , 

V 
0 

which leads only to a modification of the left-hand side of Eq. 14 to 
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The periodic s i tua t ion  can be treated by making a ( f in i t e )  harmonic 
expan ion i n  time. 
by retaining only the same number of harmonics as appear i n  the or iginal  
expansion of the  moments. 

The nonlinear term involving the acceleration i s  handled 

1. 

2. 

3. 

4. 

5. 

6. 
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ASYMPTCTIC STATE OF THE TWO-,TLTEAM INSTABILITY* 

By Thomas P. Armstrong 

University of Iowa 

VC 
af - =  
at 

ABSTRACT I 

+ a2f (dimensionless units) 
&J2 

The nonlinear Vlasov equation for a one-dimensional electron plasma with 

periodic initial conditions is integrated numerically. Initial conditions of 

the form f(x,v,O) = *exp(-+/2)(1 + E cos k~)/(2n)~/~, E << 1, which are 

unstable to growing electrostatic waves(lj2), are used. 

of the plasma is computed using a doubly expanded representation of 

The resulting motion 

f (x,v,t) 

of the form: 
m M 

U U 

n- m=O 

The spatial dependence is represented as a Fourier series and the velocity 

dependence as a Gram-Charlier series similar to that used previously by 

Wei~glas(~), Englanan et al. (4), and Grant and Feix (5 ,6) .  Details of the 

expansion and numerical integration of the Vlasov and Poisson equations in this 

representation are given elsewhere ( 7 9 8 )  and w i l l  not be discussed here. 

The difficulty of secularly increasing velocity derivatives of 

f (x,v,t 1 (g910y11) is avoided by introducing a small collision term of the form 

L J 

which bounds the velocity derivatives, as discussed by Grant and Fei~(~). The 

thermalization time due to the collision term used is ten times longer than 
~ * University of Iowa Preprint 67-11. 



the maximum times of interest here in the development of the two stream insta- 

bility (collision frequency/growth rate = 0.01) , so the numerical results 

obtained effectively apply to collisionless plasma. 

is regarded only as a numerical convenience and is not thought to play any sig- 

nificant part in limiting the growth of the electrostatic field. 

field amplitude is shown numerically to be independent of the presence of a 

small collision term. 

Thus the collision term 

The maximum 

The solution of the nonlinear Vlasov equation with unstable initial con- 

ditions (k = 0.6k~ and E = 0.05) was computed from t = 0 to l35(u+)-'. In 

the linearized theory, k is unstable, but 2k, 3k, . . . are all stable. 

The n = 1 Fourier component of the electric field, El, was observed to grow 

to its limiting amplitude at 

variations in magnitude. The second Fourier component, Q, of the electric 

field was always smaller than by about a factor of 10, indicating rapid 

convergence of the Fourier series. By the time t = 100 to l33(9)-', E1 

had become constant to within +lo$, strongly suggesting that the asymptotic 

(t +m) state of the unstable plasma is, in the absence of collisions, an 

inhomogeneous equilibrium of the Bernstein, Greene, and Kruskal (12) type. 

Further investigation of the distribution function for long times t >, lOO(u+)-' 

shows it to satisfy approximately the time independent Vlasov equation through- 

out velocity space. 

Arm~trong(7,~) that inhomogeneous equilibria may be approached as the limit of 

the two stream instability. 

t = 2 0 ( 9 ) - l  and thereafter to undergo very slow 

El 

These results reinforce an earlier speculation made by 
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ON SOME ASPECTS OF THE EIGENFUNCTION EXPANSION OF THE 

SOLUTION OF TRE NONLINEAR v w o v   EQUATION^ 
By W. L. Sadowski 

National Bureau of Standards 

ABSTRACT 

Solution of the nonlinear Vlasov equation was obtained for various values 

of nonlinearity parameters a and various values of the wave vector k. 

An initial distribution function was assumed of the form: 
2 V - -  

2 4(x,v) = (1 + a cos -)e 

The boundary conditions were assumed to be periodic. The distribution function 

was expanded into a set of polynomials in Fourier-Hermite spa&. The time 

behavior of the resultant matrix of coefficients gave the time behavior of the 

distribution function. 

Truncation of the matrix both in Fourier and Hermite space was investigated. 

The solution of the equation was quite sensitive to this type of truncation 

error. When the truncation error exceeded certain limits, nonlinear damping 

was distorted.to such an extent that a reappearance of damped harmonics was 

observed. This is a result also reported by Knorr but is believed by the author 

to be due to numerical errors. 

A small damping term was included in the calculation to prevent an inordi- 

nate buildup of numerical errors. Nonlinear dispersion relations were obtained. 

Nonlinear damping by each harmonic was calculated. 

A film showing the solution will be presented. 

’The complete article prepared by the author was received after printing 
of this compilation was partly completed, and it is therefore placed at the 
end of the report (pages 433-440). 
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FOURIER-KERMITE EXPANSION OF THE VLASOV EQUATION 

By Marc R. Feix* 

NASA Langley Research Center 

and the College of W i l l i a m  and Mary 

and Frederick C. Grant 

NASA Langley Research Center 

ABSTRACT 

This d i f fe ren t  numerical a t tack on the one-dimensional, one-species Vlasov 

equation involves a double transform. Usually a box of length L with periodic 

boundary conditions i s  considered and a Fourier transform on space i s  introduced. 

T h i s  i s  adequate t o  study s l igh t ly  nonlinear problems where the  interact ion 

between t h e  d i f fe ren t  wave numbers i s  small. 

a l so  used by Armstrongl, i s  preferred t o  the Fourier i n t eg ra l  expansion pro- 

posed by K n o r s  f o r  two d i f fe ren t  reasons. 

A Hermite se r i e s  on veloci ty  space, 

1. The behavior of the long wavelengths i s  connected t o  moments of low 

order of t he  d is t r ibu t ion  function and consequently the  small 

i n  f a c t  i s )  described by a small amount of terms. 

k should (and 

2. It i s  more p rac t i ca l  t o  deal  with a s e t  of ordinary d i f f e r e n t i a l  equa- 

-&ions than t o  consider a s e t  of p a r t i a l  d i f f e ren t i a l  equations i n  the  h space 

(A being the Fourier conjugate of v). 

Having delineated a K x N matrix, the game consis ts  of watching how f a s t  

t he  neglected term propagates in to  the matrix and t r y  t o  keep the associated 

e r ro r  small. Two main propagations take place. 

* NRC-NAS Senior Resident Research Associate on leave of absence from 

Euratom. 



Along a given l i n e  (i.e., f o r  a given k) the  kinet ic  character of the  

problem introduces a cutoff error  which already appears i n  the  l inear  problem 

and which i s  due t o  the streaming term v af/ax. 

the t i m e  of va l id i ty  of the solution. 

"his puts a l i m i t  @/kD t o  

This problem has been taken care of by the introduction of a small but 

f i n i t e  Fokker-Planck term characterized by a frequency 

taneously N + w and v + 0 with the product Nv > 1. Different Fokker- 

Planck terms are  discussed. 

considering the  l inearized problem. 

the Landau treatment i s  established i n  this double l i m i t .  

v where we l e t  simul- 

A good insight in to  t h i s  problem i s  obtained by 

A connection between the Van Kampen and 

The second cutoff error  propagation i s  due t o  the  nonlinear term. This 

problem i s  not too severe f o r  small nonlinearity but no solution has ye t  been 

found f o r  large nonlinearity. 

independent 

In  such a case the wave concept (quasi- 

k components) i s  l o s t  and we may have t o  use other representations. 

Two ser ies  of results a re  f ina l ly  presented: (1) Problem of long wave- 

lengths. Characterized by a < kD < 0.1: kD i s  the fundamental wave number 

and a the depth of the i n i t i a l  density modulation. 

- 1/2 
f (x ,v , t  = 0) = n(1  + a cos k ~ ) ( 2 i i  vT2) exp - 3 / 2  vT2 

We recover i n  the l i m i t  

by Kalman2 but the l i m i t  i s  f a r  from trivial. The f a c t  that kD i s  not 

s t r i c t l y  zero obliges t o  use up t o  30 H e r m i t e  polynomials. 

we can see how the thermal e f fec t  destroys the s t r i c t  periodicity of the cold 

plasma solution and how harmonics i n  t i m e  appear. (2) Kinetic Regime - Small 
Nonlinearity kD = 0.5. 

sion frequency (v/% = 0.005) and K up t o  5 are  used t o  study the nonlinear 

kD + O  the  results of the  cold plasma case obtained 

J 

On the  other hand, 

High number of Hermite Polynomials (450) small col l i -  
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to disregard it in the damping case in agreement with the numerical results. 
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NUMERICAL SOLUTION OF THE VLASOV EQUATION 

IN A FOUR-DIMENSIONAL PHASE SPACE* 

John Killeen 

Lawrence Radiation Laboratory, University of California 

Livermore, California 

ABSTRACT 

In the Lawrence Radiation Laboratory1 s controlled-fusion experiment, 

A stron, relativistic 

containing an applied magnetic field. 

cylindrical layer  of electrons - so  that the self-field exceeds the applied field. 

The resulting configuration is intended to  be axially symmetric with no 

azimuthal component 01 the magnetic field. 

electrons are injected into a cylindrical region 

The object is to  form an E-layer - a 

The mathematical model for the build-up of the electron layer  and the 

self-field is the time-dependent Vlasov equation coupled with Maxwellls 

equations. 

particularly in the ear ly  stages of formation and near the injection point, 

these a r e  assumed to be small compared to the azimuthal current. 

components Br and B 

canonical angular momentum, p is a constant of the motion, and we 

assume that all electrons a r e  injected with the same value of pee 

can consider an electron-distribution function, f ,  defined in a four-dimensional 

Although transient radial and axial currents  exist in this model, 

Field 

can be derived from stream function @(r, z, t). The 
Z 

e, 
Hence, we  

%ork performed under the auspices of the U. S. Atomic Energy Commission. 
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phase space (r, z, pr, pz). 

at every point. 

assumed t o  be present, providing charge neutralization of the layer.  

We assume that the system is electrically neutral 

The ion distribution is not solved explicitly, but ions a r e  

We specify the magnetic field by the single component of the vector 

potential, Ae(r,  z, t). The equation for Ae is 

The canonical angular momentum may be expressed as p e = moY rve +(erAe/c), 

withy = [l - ( v / c ) ~ ] - ~ ' ~ .  It is convenient to  introduce the function $(r, z, t), 

defined by 

s o  that 

Pe e 
@ = - - -  2 rAe- 

mO m O C  

Since all the electrons have the same pe, we can use $ in place of Ae to  

determine the field.  F r o m  Eqs. (1) and (3), we have 

and 

n n 

(3) 

We introduce a dimensionless velocity, = ?x/ C, SO that Eq. (2) becomes 
2 112 

rue = $. In t e r m s  of 2, we have y = (1 +u ) or  



Y = [1 + u t  + u2 Z +(9y2. 
Let f ( r ,  z, ur, uzJ t) be the electron-distribution function in phase space, 

so that f(r, z, ur, uzJ t)drdzdurdu is the number of electrons in the element 

drdzdurduz at the point (r, z, ur, uz) at  time t. 

number of electrons per square centimeter, 

Z 

The dimensions of f are the 

The equation governing f is 

- af +--  af d r  + - - + - -  af dz af dur af duZ 
+ - - = S(r, z, ur, uZJ t), at a r  dt az  dt aur dt auz dt 

where S expresses  the source of electrons injected into the phase space, and 

cu cu dz - z r d r = -  and - dt Y dt y ' 

We determine dur/dt and duz/dt f rom the relativistic equations of motion of 

the electrons. Using Eqs. (2), (5), and ( 8 ) ,  w e  obtain 

dur - c a 11/ - dt - 

and 

The equation for  f can now be written 

The azimuthal current density, j,, may be written 

Equation (4) becomes 
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2 where r = e /mOc2 is the classical electron radius. Equations (6) ,  ( lo) ,  

and (12) a r e  the self-consistent set of equations that describe the formation 

of the E-layer. 

e 

It is useful in a numerical computation of this type to  introduce 

dimensionless variables. In place of @ we use the variable = moc@/pe. In 

order  to evaluate pe, we consider an equilibrium orbit in the vacuum field. 

At the midplane (z = 0) the end fields are assumed to be negligible, so  that 

A (r, 0) = Bor/2,  where Bo is a constant determined by the injection energy 

and radius and the desired pitch angle. 

ro is the radius of the equilibrium orbit at z = 0. 

it follows that 

e 
2 We find po = -(eBoro /2c ) ,  where 

F r o m  the definition of p, 

2 - p = -(2rnOc @/.Bo.:). 

W e  introduce the following dimensionless quantities: 

It is convenient to  let 7 = p c  + p ,  where p represents  the vacuum field 
C 

and p is the contribution from the electron layer. 

function w e  use the dimensionless quantity p = rerof, introduce the parameter 

C = -(r r B /2e) = -(2.93 X 10-4)B0r0, and define the function P(R, Z, t) so 

that 

F o r  the electron distribution 

1 -  e 0  0 

(14) 2 - 2  2 P = C l p  /2R . 
This is the potential function for  the electron motion, and the equations of 

motion in these variables become Ydu /d7 = - 8 P / a R  andYduz/dT = -8P/8Z. r 



W e  can now give the complete set of equations in dimensionless form. 

Equation (12) becomes 

and Eq. (10) becomes 

2 1 /2  
where cr = r r S/c, Pr = a P / a R ,  Pz = aP/aZ,  and^ = (1 + u2 + uz + 2P) e 0  r . 

W e  shall now consider the solution of Eq. (16) by finite-dlfference 

methods. To  illustrate the problem, consider the one-dimensional equation 

where u is a constant. The simplest two-level approximation would be 

n+l =pn - y ( P n  1 P .  
J - p n  ), J J+1 3 - 1  

where a = uA7/Ax. 

simplest alternative is 

This scheme is unstable no matter how small AT is. The 

P"+l = p n  - a(PJ" - lP1) 
J J 

when u 20,  o r  

P"+l = pn  - a(P;+l - pn) 
J j J 

when u < 0. 

this to  Eq. (16) is straightforward and leads to the stability conditions 

This scheme is stable so long as / a [  = 1. The generalization of 
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The first  version of the LRL Layer computer code employed this scheme as 

well as an explicit approximation to  Eq. (1 5). Unfortunately, the above 

scheme introduces an artificial diffusion that spoils the resul ts  after a 

short time. 

We can consider a space- and time-centered three-level approximation 

to  Eq. (17), 

p"l = pn-l  J - a(PJP+l - PJP-l), J 

that is stable if I c y 1  I 1. 

immediate, leading to the stability conditions in Eq. (18). 

The extension to  more than one dimension is again 

The second version 

of the Layer code used this scheme. 

with this method and fair ly  satisfactory resul ts  have been obtained, but with 

the crude mesh employed in this problem it is sti l l  not accurate enough for 

extremely long running times. Furthermore,  it has the disadvantage of being 

a three-level formula, and when the t ime step must be decreased for  stability 

reasons, it is quite awkward. 

Considerable computation has been done 

The third version of Layer uses  a three-point approximation to  the 

advective term.  For Eq. (17), this becomes 

This scheme is stable if 1.1 zs 1. 

quantities UAT and Ax, and has the convenience of being a two-level formula. 

The extension to more than one dimension is not straightforward and can lead 

to  an unstable method if it is not done correctly. 

n approximation in matrix form as Pn" = (I +A)P . 
two-dimensional equation and take the approximation given by the equation 

Pn+' = (I + A  +B)pn, where B is the advective difference operator in the other 

It is accurate to  the second order  in the 

We can write the above 

If we consider a 



direction, the scheme is unstable. 

pn+' = (I +A) (I +B) Pn, the scheme is stable. 

in the third version of Layer. 

pn+l 

However, if w e  use the operator equation 

This is the scheme that is used 

The difference equation can be represented by 

= (I +A) (I +B) (I +C) (I +D)P". 

I cycles. 

advection in the R direction using the results of the f i r s t  cycle, then 

advection in the u direction using the results of the second cycle, and, 

finally, advection in the u direction using the resul ts  of the third cycle. r 
mesh currently being used for  this problem is 51 in z, 8 in r, 1 9  in u z' 

9 in ur, or a total of 69,768 points. We solve Eq. (15) by an alternating 

dire  ct ion- implicit met hod. 

In the f i r s t  cycle we calculate advection in the z direction, then 

2 

The 

and 

A program of this type is meant to be used for  extensive parameter 

studies. 

be varied, as can the method of injection. 

quantities that can be printed out or plotted at any given t ime step. Usually, 

we  concentrate on dependent variables, such a s  the current density, that are 

functions of the spatial coordinates r and z. This, together with the magnetic 

field, descr ibes  the solution to  the self-consistent field problem. 

In particular, the form and time behavior of the vacuum fields can 

There is a great  variety of 

The boundary conditions, other computational details, and sample 
1 resul ts  a r e  contained in a recently published paper. 





. . Magnetohydrodynamic Plasma Calculations 

K. V. Roberts* 

Univemity of California, S a n  Diego 

ABSTRACT 

Some of the problems which are encountered in simulating 
the behaviour of plasma devices on the computer are briefly 
outlined. Most of them only become serious when two- or three- 
dimensiond calculations are attempted, and one of the critical 
problems lies i n  the treatment of the advective term. The 
paper describes how a conservative Eulerian difference scheme 
may be constructed. The MHD conservation laws can be given an 
integral, space-time representation, which is reflected in 
the mesh to be used, and in the definition of the variables to 
be stored in the machine. The advective term in each equation I 
is handled by a fourth-order method 2 . 

*On leave of absence from Culham Laboratory, Abingdon, England 
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1. II?TRODUCTION 

One of the aims of PWD plasma calculations is to simulate 
the behaviour of an actual plasma machine by solving a set of 
partial differential equations on a computer, taking into 
account as many as possible of the basic physical phenomena 
that are expected to occur in the machine itself. 
has been effective in several other fields of physics and 
engineering, for example in calculations on nuclear reactors 
and other devices, or on the global atmospheric circulation. 
It has worked rather well in 1-dimensional plasma calculations . 
But any real. plasma apparatus which involves a magnetic field 
must be at least 2-dimensional, and so it is necessary to 
develop practical difference schemes2 for solving the MHD 
equations in 2 and +dimensional geometry. This proves 
surprisingly difficult, and it raises a number of interesting 
problems in numerical analysis. I shall outline briefly what 
some of these problems are, and then work one of them out in 
detail by showing how to construct a conservative Eulerian 
difference scheme. 

This approach 

1 

Mathematically, the problem is to solve a set of mixed 
hyperbolic and parabolic equations in a space-time region, 
bounded by the plane t=O and by the walls and ends of the 
apparatus. Hyperbolic properties of the equations correspond 
to the propagation of various types of plasma wave, while 
parabolic features are related to diffusive processes such as 
field mixing and heat conduction. 

By comparison with a typical large hydrodynamic calculat- 
ion, one of the difficulties we find is that the dependent 
variables, coefficients and propagation velocities can change 
by several orders of magnitude from one part of the solution 
to another, often quite rapidly. The character of the equations 
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also changes; they may be hyperbolic in the main body of the 
plasma, and effectively elliptic in the outer regions new the 
wall where the density is low and the Alfven propagation speed 
(B2/4~~)* correspondingly high. (This difficulty does not occur 
in gaseous flow problems in hydrodynamics, since the sound 
speed is proportional to T' and is independent of density). 
The magnetic field also introduces a marked directional aniso- 

larger along the field than across it. The usual difference 
formulation of the diffusion equation then breaks down, and it 
may be necessary to use the field lines themselves as coordin-. 
ates for this term, even though their topology may be changing 
with time. 

trppy in the electronic heat conduction, which may be 10 3 times 

From the point of view of numerical analysis, the most 
difficult problem lies in the treatment of the advective term 

that occurs in each equation (Table 1). Physical variables tend 
to be advected by the plasma and only to diffuse slowly through 
it, but it is often this slow diffusion that is physically 
important, e.g. in determining the stability of the plasma, 
rather than the rap'id bulk oscillations. Unless the advective 
term can be handled accurately, it may introduce errors that 
entirely mask the physics. 

In one dimension the advective term can be transformed away 
altogether by choosing a Lagrangian mesh that moves with the 
plasma, and this is now usually done. If it is necessary to 
follow the behaviour of plasma which is being generated at the 

1 wall as the field lines move in , one citn readily arrange to add 
new points, and to remove them as the plasma moves out and is 
absorbed. In two dimensions however, a Lagrangian mesh becomes 
distorted as the calculation proceeds. Apart from the loss of 
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accuracy which this entails, it leads t o  an awkward and ine f f i c i en t  
program, s o  that purely Lagrangian methods are rarely used. 

Two different approaches are being tried out by the writer 
at the present time. One is to use a 'rectangular' Eulerian 
scheme, which is kept as simple as possible in order to save 
machine time, storage space and programming effort. Accuracy is 
retained by using a 4th order treatment for the advective terms, 
(see 66). The other is to use an orthogonal curvilinear mesh, 
which is constantly adjusted to fit the moving plasma boundary 
and to be as Lagrangian as possible. It is hoped to make a 
critical comparison of the two methods for a range of MHD 
problems. 

It is characteristic of plasmas that very sharp spatial 
variations can arise, for example at boundaries, shocka and 
current sheets. The temperature, density and magnetic field 
can vary across the plasma by several powers of ten. Therefore 
a uniform mesh is unlikely to use the available points in the 
most economical way, and in l-dimensional calculations the mesh 
is automatically adjusted from time to time in order to give as 
good a representation as possible. It is difficult to see how 
to do this in two dimensions, because the regions where extra 
points are required are unlikely to conform to the global 
geometry and topology of the mesh. 
optimization can be found, it may be best to carry this out by 
manual intervention at an on-line visual console, rather than 
to do it completely automatically. 

If some method of mesh 

The method of calculation may be implicit or explicit. 
An implicit method is required whenever the timestepht, 
determined by explicit stability criteria would be too small, 
usually because of a high Alfven speed, a small mesh spacing or 
a long time scale. An implicit method enables A t  to be 
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increased, but it runs several times slower and is more difficult 
to program. Since a t e  is a rapidly-varying function of position 
and time, a versatile program ought to be able to determine 
automatically which type of method t o  select, independently for 
each region of space-time, by examining the solution itself. 
This ideal has not yet been attained, although such a program 
could undoubtedly save a factor ten in machine time. At present 
1-dimensional programs are often made implicit so that they can 
be as general as possible, while 2-dimensional programs are 
made explicit to simplify the difference schemes. 

The plasma energy is often o n l y  a small fraction, say 1 - 
576, of the total energy of the system, which resides mainly in 
the magnetic field, so that there is good reason t o  use 
conservative difference schemes in order to preserve accuracy. 
The conservation of linear quantities such as mass, momentum 
and magnetic flux can be given a precise physical interpretation 
which helps to determine the difference scheme, and which will 
be explored in detail in this paper. These laws can be repres- 
ented by exact difference identities. For this purpose it is 
appropriate to replace the differential equations by integral 
conservation laws, (from which they are customarily derived!), 
and to interpret each variable in a manner that is guided by 
the physics. 
+dimensional box, while each component of the magnetic field 
is related to the flux through one of the faces, and the 
magnetic vector potential to line integrals along the edges. 
There appears to be no exact expression for the energy integral, 
and perhaps the conservation of energy is best left as a check 
on the accuracy of the calculat'ion. 

Thus, density is related to the mass inside a 

In order to have a well-defined problem it is necessary to 
impose initial and boundary conditions. These are often hard 
to determine experimentally. The initial conditions can be 



found in principle by accurate measurement of the plasma density, 
temperature and degree of pre-ionization at t=O. In general 
there are no precise boundaries at all; the field lines simply 
leave the plasma at the ends, or through the walls, and expand 
into the space outside. 
v2B=0 - in an infinite region, some form of cut-off is therefore 
required. 
device such as a &pinch 
heat and tying of field lines to the walls. 
gas may a l s o  be absorbed and emitted in unpredictable amounts 
at the walls. 

Since it is impracticable to solve 

Other processes which occur at the ends of a linear 
include escape of plasma, loss of 

Plasma and neutral 

Several versions of the hEID equations, of increasing 
complexity, can be and have been used. These include various 
physical effects such as ionization, radiation l o s s  by impurit- 
ies, Hall effect, finite Larmor radiue and so on, and involve 
no new points of principle. There are, however, two places 
where the consistency of the MHD equations themselves may be 
questioned . 

One occurs at the plasma boundary, where the MHD approx- 
imation breaks down, and leads formally to a singularity in the 
electron temperature. 
accidentally, by numerical truncation errors, but it is 
preferable to make a physical modification in the differential 
equations, analogous to the artificial Von Neumann viscosity 
used for shocks. 

This is in fact usually suppressed 

3 

The other place is at the shock front, where the solution 
becomes indeterminate because the Rankine-Hugoniot or de Hoffman 
-Teller relations do not give enough information to determine 
the proper division of energy between electron and ion heating. 
Strictly therefore, an exact set of equations should be integ- 
rated through the shock t o  give the physical conditions on the 
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downstream side, but this is not yet possible and some ad hoc 
assumption must be made. This contrasts with the situation in 
ordinary hydrodynamics, where any entropy-generating scheme 
that preserves energy, momentum and mass will give the correct 
solution outside the shock front, so that an enhanced artificial 
viscosity is commonly employed. 

2.INTERLACED MESH LATTICES IN 2 AND 3 DIMENSIONS 

It will now be shown how the Eulerim mesh can be determkn- 
ed, in a methodical way, from the requirements of exact mass, 
momentum and flux conservation, and second order accuracy. In 
this section the continuity equation is taken as an example. 
We shall find that conserved variables are to be defined as 
spatial averages, and that in p dimensions there are 2p 
interlaced mesh lattices, each satisfying its own independent 
conservation law. 

The basic differential equations of WID are expressed in 
conservative form in Table 2. Associated with these are the 
integral conservation laws of Table 3 .  It is well known that 
either set of equations can be given a relativistic formulation, 
so that the continuity equation becomes 

o r  

Although the concept of relativistic invariance seems to play 
no obvious role in o u r  difference schemes, it is advantageous to 
think of the Eulerian net as a space-time structure, rather like 
a crystal lattice, constructed out of 4-dimensional fundamental 
'mesh boxes'. In the following discussion it will be assumed 



for simplicity that an orthogonal Cartesian system is used. We 
obtain the difference scheme by applying integral formulae such 
as (2) t o  each box. This is illustrated in Fig.1 for the 
continuity equation in 1 and 2 dimensions. See also Fig.2. 

In the 2-dimensional case (2) can be written as 

where the 4 time-like faces of the box have been labelled 
(ET,S,E,W) respectively, and the two space-like faces at tl and 
t2 have been labelled (1,2). The individual terms of ( 3 )  
represent 2-dimensional mass flow integrals over the various 
faces1 e.g. 

Equation ( 3 )  signifies that the total directed flux of the 
vector pv' through the faces of any fundamental mesh box is 
zero 

Each face of the mesh belongs to 2 boxes, and the corres- 
ponding flux appears in ( 3 )  with a positive sign for one of 
these boxes and a negative sign for the other. Therefore, if 
precisely the same difference expression is used in each case, 
the conservation law ( 2 )  will be satisfied identically when 
applied to the surface of any space-time volume that is 
cclllstmcted out of complete mesh boxes. In particular 

tl 



Mesh Points 

It is convenient to associate each mass flux with the 
central point of the corresponding face, thus defining (p+l.) 
distinct types of mesh point. The coordinate system is now 
chosen so that a fundamental mesh box has sides (2At,2dx,dy,ZAz), 
asd unit bWi8 vectors are denoted by (e e e ). Then mesh 
points w e  located at positions 

-x 9-y '-z 92% 

3 
1 

= UX,, + &e + ndze -2 + YAte -t ' 
plIKm -Y 

the various type being distinguished by whether the integers 
(l,m,n,Y) are even or odd. 

We shall start with Lattice 0, defined so that the points 
(1,2) have Y even and (l,m, ...) odd. 
define p 'oddc lattices as indicated in Table 4. These are 
denoted by labels (1,3,...2p-l). 

Then the space-like faces 

Definition of the Variables 

The next step is to set up a relation between the fluxes, 
and the density and velocity variables to be used in the calc- 
ulation. The usual mathematical convention is solving 
differential equations by numerical methods is to treat each 
variable value as a point function. We shall assume instead that 
each stored density value represents a spatial average, and 

It is therefore defined as an integral over denote it by f 
a space-like surface at a particular instant of time, the mass 
within a box of 3-volume 8dxdybe at time ty being 

-Y 

- 7 
Mlmn - (7) 



+ - where x =xttax etc. Velocity variables are defined in 
terms of momentwn averages in a similar way (f3). 

All the inaccuracy and complexity of the difference scheme 
is now t o  be attributed to the fact, that we also require mass 
fluxes ( and other types of flux) across time-like faces, which 
correspond to averaQes A - f  . . . of a different type, e.g. 

First Approximation 

In the first approximation we treat the space-like averages 
m / v  p, (pi), ... as if they were point functions, and use them to 
construct the required time-like averages (fnr,), (pvivj ) , . . . 
But these A -averages are needed at odd times, and in order to 
achieve second-order accuracy it is necessary 
N-averages which are centered at precisely the same points. We 
must in fact introduce cp sets of 'odd' fundamental mesh boxes, 
each set having its space-like faces centered at the midpoints 
of one of the p sets of time-like faces of the original 
Lattice 0, i.e. at the points of Lattices 1,3,...(2p-l). 

0 n - 

to introduce 

The same process must now be repeated for each of the odd 
sets of boxes, so that these too have /v -averages at the points 
where fluxes are required. In 2 dimensions this just brings i n  
Lattice 2, whose points lie at the corners of the fundamental 
mesh box of Lattice 0, and the mesh is then complete. 
dimensions it brings in the midpoints of the spatial edges, and 
1 further stage is needed to bring in the corners. 
we obtain 2' sets of points, boxes and variables, one half 

In 3 

Eventually 



defined at even times and the other half at odd times. Each set 
satisfies an independent conservation law, and the basic 
difference equation represents a relation, such as equation ( 3 ) ,  
between (p+l) distinct types of point. 

Second Approximation 

The essence of the second approximation, which has been 
described in a paper' with N.O.Weiss, is to get a more exact 
expression for time-like integrals such as ( 8 ) ,  by making use 
of further space-like averages p,  (pi) which are available at 
neighbowing mesh points. The main incentive to do this comes 
from the need for a more accurate treatlr;ent of the advective 
term, and a brief discussion is given in $6 . 

.- A J  

3.EQUATIONS OF MOTION AND ENERGY 

The analysis of 5 2  may be repeated for the equation of 
motion, and for the heat equation. Since momentum is a conserved 
quantity while velocity is not, it is preferable to solve the 
equation of motion in the form (2.2) or (3.2). However it is 
convenient to store the velocity in the machine, so we define 

Similarly for the temperature, 



To solve the equation of motion, we require average fluxes 
of pvivj and of the total _stress tensor Ptotover the time-like 13 
faces of the fundamental mesh box. Some of the terms in the 
material stress tensor, (namely those concerned with viscosity 
and finite Larmor radius), depend on velocity derivatives. 
These require special treatment and are not dealt with in this 
section. All the remaining terms can be evaluated, in first 
approximation, br using the variables p, vi, T which are 
already available at the midpoints of these faces, together with 
the magnetic field Bi to be discussed in 
centering of the field is determined f r o m  the equation of 
mot ion . 
energy equation, so we now go on to discuss the magnetic field. 

W A A  N 

9 nJ  

4. Thus the correct 

No very useful information is gained by examining the 

4.MAGNETIC FIELD AND VECTOR POTENTIAL 

The basic differential conservation law to be satisfied by 
the magnetic field is 

which holds at each instant of time. We caa secure this 
automatically by writing 

- B = curl A, (12) 

where - A is the vector potentid. In integral form (11) becomes 

n 4  

Therefore each component of - B is to be defined as a 2-dimension- 
a1 average over a space-like region at axt instant of time, e.g. 



lu 
while each component of - A is a 1-dimensional space average, e.g. 

q X 9 Ym, znty) dx ( 1 5 )  
2 b r  

- 
.-i - - f i Y  

Ax,lmn ' 

N 
The relation (13) between - B and 2, and the conservation'law 
( 3 . 4 ) ,  are then exact difference identities (see Fig. 3) . It is 
convenient to choose - to be the basic variable to be stored 
in the machine, and to derive - 8 by (for example) 

2Az 

hJ 

Since - B is required at the existing mesh points in order to 
compute the stress tensor, equation (16) implies that z - must 
be defined at 2p new lattices of points, not used for any other 
variable, which are just the midpoints of the space-like edges 
of the fundamental mesh boxes. 

We have now placed all the variables at their appropriate 
mesh points, and used the full set of 2 (P+l) lattices defined 
by ( 6 )  to do so. 
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The equation satisfied by - A is 

at 

where (b is any scalar. Assuming that 

- E + I&! = l i  
for simplicity, where 

and choosing the gauge so that 

4 = 7 div4 
we obtain the equation 

- = - x  v curlA - + i v * ~  + divAgrad - 
at 

The accuracy of the calculation depends mainly on the treatment 
of the first term, which is of advective type ($6). The 
diffusive term will be discussed in 45, while the third term 
is to be regarded as a small correction, 



5.DIFFUSION TERMS AND LATTICE COUPLING 

We have so far introduced 2' independent lattices for each 
variable, and it is necessary to couple these together if 
unphysical computational modes a r e  to be avoided. For most of 
the variable6 this can be achieved very conveniently, by a 
suitable difference representation of the physical diffusion 
terms that already exist, namely electrical resistivity, heat 
conduction and viscosity. 
term of this kind, and it may be necessary to perform a smoothing 
operation on the density from time t o  time in order to keep the 
various lattices in step with one another. 

Only the continuity equation has no 

The simplest diffusion equation is 

which does not leBd to a conservation law if the diffusion 
coefficient is a function of position D(x,y,z). This is 
actually the situation for the vector potential A. Conservation 
of magnetic flux is guaranteed by (16), and is independent of 
the way in which (21) is solved. This is a principal reason for 
choosing the vector potent5al representation. 

- 

For momentum and energy we do require a conservation law, 
and (22) must be replaced by 

4. A 

We use the Wort-Frankel scheme3 for this equation; it is 
given in Fig.4. This is stable for allat, and couples together 



(ptl) lattices for each fundamental mesh box. 
we represent the r.h.s. as the sum of 4p f l u & ,  defined at 
half-integral spacetime points as indicated in Fig.4. 
typical example is 

For equation (23) 

A 

As in 42 each flux occurs twice with opposite signs, once in 
the diffusion equation for an even-time lattice, and once in 
the equation for an odd-time lattice, and this enables a formal 
conservation law to be set up. 

Conservation Law 

At present we have 2p sets of overlapping boxes in space- 
We now halve time, with a separate conservation law for each. 

each space-like edge, so that the smaller boxes fit together 
exactly with no overlapping as indicated in Fig.5. 

The best approximation to a complete space-like surface Sk 
is obtained by taking the set of p-dimensional space-like faces 
at time t=2kAt, and the adjacent set at tue slightly earlier 
time t=( Zk-l)nt, and then connecting these together by 'vertical' 
time-like faces,(Fig.5). It then follows from the basic differ- 
ence equations that the total f lux  of a conserved quantity 
through any such Sk is the same. This may be seen by dividia 
the spacetime region between two such surfaces sk, Sk, into 
boxes and applying the conservative difference equations to each 
box in t u rn ,  when all contributions except those from Sk, Sk, 
cancel one another in pairs. 



6.FOURTH ORDER TREA!TMEI?T OF THE ADVECTIVE TERhlS 

It has been explained in j l  that some of the most serious 

In the cons- 
errors in MHD computation6 may be expected to arise from 
inaccurate representation of the advective terms. 
ervative difference scheme that has been outlined in ff 2-5, 
this corresponds to maltreatment of time averages such as 

# w t u ? u / v  
v, T, 4 The first approximation treats the space averages p 

as point functions, and then replaces the required time average 
by products of these functions. 

- 

It has been shown by Roberts and Weiss' that function values 
which are available at neighbouring mesh points may be used to 
obtain a better approximation to the advective terms without too 
much extra computation. They discussed only the cases of 
advection of a scalar p or vector B by a time-independent 
velocity field in 2 dimensions, and further analysis is therefore 
needed. 

- 

It is not appropriate to attempt to get an exact expression 
for the complete time average, since there w i l l  be errors of 
similar order in other parts of the difference scheme which 
cannot be corrected in this way. 
assumed to be dominant, and since this involves the velocity 
rather than its derivatives, we assume that v can be taken out 
of the averages (25)  wherever convenient. We therefore have to 
evaluate 

The advective contribution is 

- 

J\ f i  P A (pi>, (fV5)Vj, (pOv,, p x (curl - A )  (26) 



The treatment of the first three terms is now the same as in the 
earlier paper. For example, we require an A -average ,fj$dydzdt 

d 

centered on the point Pirn, and have available /v -averages 
?+I -f Y- I In symbolic terms {$dxdydz at P (t-1)m.n’ Plmn’ p(t+l)mn* 

we write 

which ensures 4th order accuracy in A x .  
vector potential is essentially the same; for example we require 
to solve 

Treatment of the 

(curl A ) z  - vz (curl A )  + ... - Y  - Y = v  2% 
at 

with the 2-dimensional averages indicated in brackets. A 
y-averaging must be removed from the first term, and a 
z-averaging from the second, and this is done by formulae such 
as (27). Since each component of - A(t2) occurs in the equation 
for the other two components, a (3 X 3) matrix must be inverted, 
using Cramers rule. 

7 .CONCLUDING RErvlARKS 

We have outlined 
conservative Eulerian 

injj 2 - 6 the logical steps by which a 
difference scheme may be constru-cted for 

the MHD equations. Each physical variable is defined in a 
precise way as a space average at a particular instant of time, 
the number of dimensions in the averaging integral depending on 
the variable concerned; 3 for the densityp , momentum. pv and 
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thermal energy P T / ( $ - l ) ;  2 for the magnetic field - B; aad 1 for 
the vector potential& 
appear as surface integrals over the boundaries of rectangular 
regions in space-time, (or in 3-dimensional space, for the 
equation div - B = 0), and are represented by exact difference 
identities. In order to maintain second order accuracy, it is 
necessary to introduce a mesh point at the center of each time- 
like face of each 'fundamental mesh box' .  For a 3-dimensional 
set of equations this leads to 8 interlaced lattices for each 
variable, 4 at even times and 4 at odd times. It turns out that 
the variables p , 1, T, ,B 
A has a set of its own. 

The physical conservation laws then 

share a common set of lattices, while 
- 

In the absence of diffusion, each of the 8 lattices has its 
own independent conservation law, so that computational modes 
may therefore arise. The lattices may be brought into line by 
using the Dufort-Franlre13 scheme for the physical diffusion 
terms, since this couples lattices together in groups. A n  exact 
conservation law still exists, and can be given a space-time 
interpretation, but it now applies to the entire mesh. 

The energy equation has not been discussed in any detail, 
and it is not yet known whether an exact conservation l a w  can 
be set up. The difficulty is that ali the variables that occur 
in the energy integral 

I 

2 
( $2 + + p& )dxdydz m 

have been given a formal meaning, in terms of different types 
of averaging process, and it is not easy to give a similar 
meaning to their products. This applies for example to the 
first and third terms of (Zg), which one would like to interpret 
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as spatial averages. It also applies forcibly to cross terms 
representing energy exchange between kinetic, thermal, and 
magnetic forms, which must cancel in pairs by exact difference 
identities if conservation is to be achieved. 
be best to regard conservation of energy as a measure of the 
numerical accuracy of the difference scheme. 

It may therefore 

The approach adopted throughout this paper has been 
Eulerian, and we have indicated in56 how errors in the treatment 
of the advective terms, which may be quite serious in MHD, may 
be minimized by a 4th order treatment. 

Stability conditions have not been touched on, although 
2 they have been discussed in some detail in an earlier paper . 

Since the scheme is explicit throughout, the Courant-Friedrichs- 
Lewy 3 condition will apply (except for the diffusion terms). 

In conclusion, what we have done is to explore, in depth, 
one possible approach to the solution of the MHD equations. 
contrast to what one might term the 'mathematical' interpretation 
of a difference scheme, in which each stored variable is thought 
of as a point function, we have adopted a 'physical' point of 
view in which the status of each variable is deduced from its 
transformation properties, (scalar, vector, tensor etc.), and 
f r o m  the conservation law which it satisfies. By following 
thia physical approach one is led naturally to a unique mesh, 
and to a particular difference representation of the equations. 

In 

The ultimate aim is to attain the most accurate solution 
possible for a given amount of resources, which will include 
machine time, storage space and programming effort. This implies 
that several different techniques should be developed in detail, 
and compared with one another both theoretically and empirically. 
the approach described in this paper is intended in this spirit; 
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it is certainly not the only scheme, and we have not proved yet 
that it is the best. 
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TABLE 10 

CONTINUITY 

VELOCITY 

ENERGY 

FIELD 

ADVECTIVE TERMS I N  B A S I C  EQUATIONS 
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MASS - 

TABLE 2. BASIC EQUATIONS IN CONSERVATIVE FORM 

MOMENTUM 

HEAT 
ENERGY 
- 

FIELD 

FIELD 
ENERGY 

(a i) 

(a-3) 



MASS - 

MOMENTUM 

TABLE 3. INTEGRAL CONSERVATION LAWS 

FIELD - 6 .dS=  - -  0 % 



TABLE 4. LATTICES FOR ALL VARIABLES EXCEPT A 

Lattice Description 
Number - 

0 

1 

2 

3 

4 

5 

6 

7 

Center 

yz-face 

z-edge 

ex-f ace 

x-edge 

xy-f ace 

y-edge 

Corner  

Y e m n 

E 

0 

E 

0 

E 

0 

E 

0 

0 

E 

E 

0 

0 

0 

E 

E 

0 

0 

E 

E 

E 

0 

0 

E 

0 

0 

0 

0 

E 

E 

E 

E 

Notes 

1. E = 'even', 0 = 'odd'.  
2. The parity product f o r  a l l  these l a t t i c e s  i s  'odd'.  
3. Change the parity of r* t o  get the l a t t i c e s  f o r  A. - 
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COMPUTER SIMULATION OF THE THETA PINCH 

/Thomas A. Oliphant 
'Los Alamos S c i e n t i f i c  Laboratory 

Universi ty  of Cal i forn ia  

A bas i c  numerical program f o r  t h e  computer s imulat ion of  t h e  s t r a i g h t  

cy l inder  t h e t a  pinch has been w r i t t e n  and i s  i n  operat ion.  A good q u a l i t a t i v e  

r e s u l t  has been obtained f o r  t h e  i n i t i a l  pinch compression and t h e  e a r l y  phase 

of end l o s s .  

w i l l  have t o  be done on improved parameterizations,  f i n e r  meshing, and machine 

e f f i c i e n c y  . 

Before making d e t a i l e d  comparisons with experiments some work 

The geometry of t h e  model i s  ind ica ted  schematical ly  i n  f i g u r e  1. The 

plasma is  i n i t i a l l y  confined within a specular ly  r e f l e c t i n g  cy l inde r  (a). 

Scy l l a  c o i l  (b) which i s  a conducting cyl inder  c a r r i e s  t h e  @-di rec ted  dr iv ing  

cu r ren t .  Coi l s  (c) have been included to  give a mirror effect t o  i n h i b i t  t h e  

end lo s ses .  

w e  have introduced a p e r i o d i c i t y  of length 

t o  our ac tua l  phys ica l  system i s  located i n  the  range 

A 
6 

To faci l i ta te  t h e  mathematical handling o f  t h e  boundary condi t ions  

2L.  The region which corresponds 

-L < - -  z < L .  

The i n e r t i a l  motion o f  t h e  plasma is dominated by t h e  more massive ions.  

The motion of t h e  ions is descr ibed by a Lagrangian t r anspor t  theory.  

mass po in t  c a r r i e s  some l a r g e  number of ions,  say  lo1'. 
10 

Each 

There w i l l  be about 
3 

Lagrangian mass po in t s  i n  t h e  system. 

The macroscopic cur ren t  carrying proper t ies  of t h e  system are dominated 

by t h e  less massive e l ec t rons .  

as a f l u i d  which on t h e  average follows t h e  ion component i n  such a way as t o  

We assume tha t  t h e  e l ec t ron  component moves 



maintain charge neutrality. 

to take place in accordance with Spitzer's formula for electrical resistivity. 

This carries with it the assumption of electron equilibrium. 

The electromagnetic field penetration is assumed 

The electromagnetic fields are determined by the vector potential 2 
which satisfies the equation 

-? The current density J is made up of two parts, 

t t  3 
3 = IC + I s  

-). The current density jC is the contribution from the external coils (c). The 

current density J is the shielding current which develops within the plasma. -t 

S 

Equation (1) is solved in the entire space within the conducting coil 

The current density j S  is given by 

(b). 
-). 

' S  
17 n 

(3) 

where 

the plasma and r( is the electron resistivity. u is the plasma velocity de- 

termined by the ion motion and E and zf are the lab frame electromagnetic 

fields . 

is the effective electric field in a frame of reference moving with 
-f 

+- 

-+ A 

From the symmetry of the system we see that B will have no 8-component 

and that the fields will have no 8-dependence. Thus, (3)  becomes 

where 



The cur ren t  dens i ty  j i s  given by 
C 

Thus, (1) becomes 

J 

Writing out  t h e  Laplacian and l e t t i n g  

I $ = r A  

we obta in  

where 

4T F = -  

(9) 

I > r l  

Here 5 i s  simply s e t  equal t o  zero i n  t h e  vacuum region.  In terms of J ,  t h e  



The boundary conditions on JI are as follows: 

on the outer conductor where V(t) is an arbitrarily programmed emf on 

the Scy1)a coil. Since Br will be zero on the symmetry planes at z = 0 

and z = L we there set 

a4J - =  0. 
az (35) 

Since A must remain finite as r -+ 0, we have on the axis, 

4J = 0; (16) 

The direct effect of the electromagnetic field on the ions comes through 

the Lorentz force. There will also be a j x B force acting on the current 

carrying electrons which in our model transfers itself directly to the ions by 

charge neutralization. 

mass point is given by 

The net acceleration per ion and hence per Lagrangian 

Using Ampere's law on the second term we obtain 

+- + - + -  1 a = 9  [ $ + v x B ]  + - ( O X ~ )  x S  m 4 w  

Writing out the components, we have 



Although the Lagrangian mass points move in three dimensions, an average 

temperature and density are taken over 8 for computing rl so that the field 

dependences are two dimensional. 

To get valid computations of electron and ion temperatures it will be 

necessary to include the effects of Joule heating and shock heating. 

late shock heating it will be necessary to include ion-ion collision effects. 

To get a qualitative representation of collision effects we have included a 

Monte Carlo ion-ion collision mechanism. 

collision device in give good qualitative results although some refinement 

will be necessary before we can expect to get a good estimate of shock heating. 

To calcu- 

Preliminary calculations with this 

In particular we have run a calculation just past the first pinch com- 

pression in a plasma 8 cm long of initial radius 1 cm with and without a 

mirror coil. 

of ion density 1014 per cm3. Without the mirror coil we lost 99 of the 500 

mass points and with the mirror coil we lost 76 out of the 500 mass points. 

We used 500 Lagrangian mass points to represent a neutral plasma 

In summary, we feel that as it stands now our numerical program has all 

the essential elements in it and will be capable of good comparisons with ex- 

periment after some routine refinements. 
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* 
Computer Sbmlation of Beam Bunching 

KO R. CrandaJl 
u s  Alamos Scientific Laboratory, Los Alamos, New Mexico 

Before injecting a charged-particle beam into an accelerator it is desir- 
able t o  1ongitudimU.y bunch the beam so that a larger percentage of the 
particles will be accelerated. 
one or  roore buncher cavities that break a nearly monoenergetic, continuous 
beam into separate bunches of length L, where L = uo/f, the velocity of the 
p z t i c l e s  divided by the frequency at w h i c h  the first buncher i s  operated. 
EPficient bunching cantheoretically be achieved if the space-charge forces 
are negligible. 
w h a t  effect they have on bunching. 
i s  by numerical simulation. 

This may be done by passing the beam through 

If they are not negligible, then one would  l i k e  to  find out 
One means of studying space-charge effects 

For simplicity, the beam is asswned t o  be cylindrically symmetric and 
traveling i n  free space (the surrounillng cyl indrical  conductor i s  ignored). 
A bunch is simulated by specimng initm values for  r, z, r', and z' for  N 
particles, where PT i s  typically 2000. 
the longitudinal coordinate relative t o  the t ra i l ing edge of the bunch. 
prime denotes differentiation with respect t o  5 ,  where 
the first cavity t o  the center of the bunch. As the center of the bunch rooms 
a distance Ag along the axis, the r, z, r', and z' of each particle is 
modified, taking into account the radial andlongitudinal space-charge electr ic  
fields as well as the inqnxlses received by each particle as it passes a 
buncher cavity or  a focusing lens. 

r i s  the radial coordinate and z is 
The 

i s  the distance f r o m  

A rectangular mesh is  superimposed on t h e  r-z space of the bunch. A t  

each step i n  Ag, space-charge electr ic  f'ields are c o m t e d  at the mesh points. 
The f i e ld  felt  by a particle inside any redargular box i s  obtained by a 
linear interpolation of the fields at  the four surrounding mesh points. 

The fields are computed directly from the charge distribution. The 
number of particles i n  a rectangular box determines the amunt of charge that 

i s  In a toruid whose cross section i s  the box. This &arge is assumed t o  be 



4 . 

concentrated In a unifonoly charged circular ring located at the center of 
volume of the toroid. The electr ic  field at a point produced by a r ing  of 
charge i s  a function of the r ing radius and of the position of the point 
relative to the source ring. Since these remain fixed, the electr ic  field 

components produced by a source r ing containing l / N t h  of the t o t a l  charge 
i n  the bunch can be tabulated at every mesh point. 
necessasy to  construct these tables for  only those boxes (source rings) along 
the trailing edge of the bunch; the contribution t o  the f i e ld  at arTy mesh 
point produced by the charge i n  any box can then be obtained by multiplying 
the  proper tabular value by the number of particles i n  the box. 

Furthemre, it is  

The electric f ie ld  produced by any number of neighboring bunches can 
easily be considered if these bunches are assumed t o  have the same charge 
distribution as the bunch being sjmulated. 
the source i s  considered t o  be, instead of only one ring, a series of r i n g s  

separated by a dif3tanCe L. 
computer time used i n  constntcting the tables. 

When the tables are constructed, 

The o m  extra cost is the small  additional 

The amunt of computer t i m e  used per step depends l inearly on the  number 
of particles and approximately on the square of the number of mesh points at 
which the f ie lds  are computed. 
available, then the electr ic  f ield should be computed at only those mesh 

points where there are one or  more particles i n  a neighboring box. 

Consequently, if a simple testing procedure i s  

~ _ _  

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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NONLINEAR HIGH FREQUENCY-PLASMA INTERACTION 

IN A MAGNETIC MIRROR 

E. CANOBBIO*and R. COLLET 

- S e r v i c e  d ' I o n i q u e  G 6 n B r a l e  

Dgpartement de Physique du Plasma et  de la Fusion ContrtSl6e 

Centre d'Etudes Nucleaires de Saclay 
B.P. no 2 - 91 - Gif-sur-Yvette 

F r a n c e  

Abstract. - --------- 
A large amplitude electromagnetic field accelerates the electrons of 

a beam injected in a mi r ro r  region. 

The ion motion is produced by the self consistent axial space charge 

field. 

When the electron velocity exceeds a critical value, steady electro- 

static shock waves appear. 

Analytical and numerical computations a re  presentedl 

* On leave of absence from EURATOM. 
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1. Some aspects of resonant wave-plasma interaction 

The theory of the coupling between a magnetoplasma and an electro- 

magnetic field at a frequency close to the gyrofrequency of one species of 

particle i s  well established only in the case of 
4 

strictly uniform Bo field [ 11 . 
Actually, in most i h r e s t i n g  cases  the magnetic field is basically 

space dependent. F o r  instance the high frequency axial plasma acceleration, 

injection and reflection in a m i r r o r  region is mainly due to the Bo gradient 

[ 2 ]  . Since the gyroresonance is compatible with a large c lass  of magnetic 

4 

configurations, this wave-plasma interaction plays an important role in 

different fields like Fusion, Propulsion,Space-and Astrophysics. 

In the following we present an analytical method to approximate 

particle trajectories, which is  neither based on the adiabatical assumption 

nor on the t ime averaged Miller's force and we show a number of exact 

numerical t es t s  i n  typical situations [3 I. 

The analytical expressions we find allow a collective description of 

the plasma behaviour in a high frequency accelerating device [ 4 ]  . 
The configuration we consider, in the simplest  case, is  the follow- 

ing (see fig. 1). A space independent e lectr ic  field EL (approximation valid 

when the particle acceleration takes place in a volume which is small compa- 

red to h3 ) rotates around the symmetry axis of a m i r r o r  w k e t h e  magnetic 

field is linearly dependent on space (expansion valid near  the axis). A cold ion 

and electron beam is injected along z . The EL rotation frequency, 0 , 
is equal to the electron-(ion) gyrofrequency on the plane z = 0, UJ8o . The 

injected particle density i s  supposed to be so low that the oscillating par t  of 

the selfconsistent field is  negligeable as compared to  ??A 

t rary,  the steady axial component of the space charge field is  taken into 

-a 

4 

141. On the con- 



account, because it is responsible for the axial acceleration of the ions 

(electrons). 

purposes [ 5 ]  . 
The effect of the radial component is less important for our 

Actually, when the external field is in resonance with the ions, we 

neglect the electrons throughout the calculations. As a consequence of the 

axial electrostatic field, the electrons follow closely the ions, Vee e vie . 
In the opposite case ( W  = U90e ) a simplified approach has to be found, 

since the heavy particle acceleration by the electrons is a rather involved 

process. In this paper we first calculate the motion of a single electron 

either by neglecting the electrostatic interaction o r  by supposing that it is 

so strong that the electron and ion axial velocities a re  equal. In the last 

case a tensorial mass can be attributed to the electron (mL = m , mil = M 

[ 6 ]  ). Then we consider the Poisson equation for a steady onedimensional 

cold ion and electron beam and set  an external t e rm in the electron velocity 

to represent the action of the high frequency-and Bo field a s  calculated in 

the first part. We shall see that according to the density and injection velo- 

city values, the solution of the Poisson equation is consistent with one o r  

the other of the two limiting assumptions made in deriving the electron t ra -  

jectories [ i r ]  . 

-* 

2. Particle trajectories 

The main characteristics of the acceleration process appear in 

their simplest form when the electrons start  with vanishing kinetic energy 

at  the intersection on the magnetic axis with the resonance plane 

where UJ = c"'ao 5 e8,/m. 
motion i s  

z = 0 , 
We suppose that the electron mass  in the axial 

M and write the external fields in the form 
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It has been shown [3] that, if XZ, si (< 1 (as in all practical cases  [2]) 

the nonrelativistic motion equation can be approximated to 

and 

The results of the numerical integration of the exact equations indi- 

cate (fig. 2) that there are two distinct time intervals in which the accelera- 

tion process i s  basically different and correspond to the transit of the particle 

through a resonance region and an adiabatic region. In the first one, the ma- 

gnetic moment 

just  as in  the Bo 

oscillated around the constant asymptotic value, pa, that ,u would take if  in 

this region EL = 0 .  These two intervals a r e  separated by the transit  time 

z 2  , grows in time according to the simple law 

uniform case. On the contrary, in the second region r/ 
/cc = 3 Z 

-D 

--3 

TT obtained by setting $~~'./uh: 
'1: 

According to eq. (l), the axial velocity is proportional to 

It follows that in the resonance region (actually until the time 'Z',,,,) 'ZT where 

/Lc i s  maximum) the axial acceleration is not zero a s  in the d = 0 case, but 

it is equal to 4 2  &&/M) 3. In the adiabatic region 2 = d/% s(-/M)Pa. The 

expressions of /".-, Za, ? f ~  and YJM , within a constant factor of the order of 

unity are  found analytically by putting either 2 - o r  5 - 'Y3 in the 

expression of the phase angle between and EL (the argument of expi in 

eq. (2) ) 
dependence of/U upon Z and that both preceding positions yeld the same 

functional structure forYa. 

example : 

&%' . 
O P  

2 

4 

and calculating the asymptotic limit for  x+ 00 . It is typical of the 

The constant factor can be found in a numerical 
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The asymptotic value of the magnetic moment which is  the main characteris- 

tics of the acceleration, does not depend very critically on the injection posi- 

tion of the particles before the resonance plane. The functions p.,( 75) and 

2 ( 7 ) 
figs. (3)  and (4) . One sees that the maximum energy gain corresponds to 

Z (t = 0) # 0 .  As b grows, before the resonance several oscillations 

appear produced by an alternating energy exchange between field and particle. 

If we plot /.LcLcb) (fig. 5) we find a number of oscillations resulting from 

the variation of the phase between 3 and EL at the resonance plane : 

the number of oscillations of ,4..ba(b) contained in the interval (1, d) a re  

equal to the number of oscillations o f P ( T )  before the resonance in the case 

b = o(, . W e  have shown analytically that the ratio R f ,U-aCb)/ficb=4) 

depends only on the quantity Q = 12 (M/m) (b-l)5 ( b  8 9) ) , which is 

a function of (b-1) ‘ZR. The resonance time 7~ is defined a s  the time at 

which the argument of dy/dZ is stationary. 

a r e  plotted for some values of the parameter b = U20/W 3 1 in 

+ 

2 z 2 - 1  

The depmdence of R = f (Q) i s  tested in fig. 6, where the diffe- 

rent points ( Q , 13 , A ) has been computed numerically. R ss 1,  2 at 

Z = 0,87 (m/M) (g2/ 6 3 )  and the mean value i s  close to unity 

(E =s 0,86). 

max 

In all preceding -cases, the relativistic effects have been neglected, 

even if  they may actually be important a l s o  at low power regime, because 

they modify the phase between 3 and EL , and the energy transfer from 

the field to the particle (see figs. (7) and (8) ). 

4 

When g x 1 the equations ( 1 )  and (2) a r e  still  valid provided e Y 
that the phase in eq. (2) is substituted by 4/2J ~WC)’d,Z’ + d l  
It has been found 

dz’ 
0 e 

[3  J that the relativistic t e rm predominates on the second 



when 

This threshold separates  the region where the functional dependence - (g)6/5 is classic  f rom the region where the kinetic energy has  the relati- 

vistic form mo(g)2/3 (see fig. 9 ) .  

1/2m%Z 

The resul ts  obtained in all the discussed cases hold even if  the 

initial kinetic energy do&s not vanish, provided that the increase of axial 

velocity in the resonance region is much l a r g e r  than the injection velocity (a 

similar condition on the perpendicular en ergy is  always largely satisfied). 

However, the increase of axial velocity in the resonance region is in general  

a small quantity which can be smal le r  than the injection velocity. 

When the axial electron velocity is roughly constant, we may se t  

< 7, , since the ion acceleration takes place mainly in  mil = m for  

the adiabatic region. 

quantities) is  simple also for  nonvanishing axial wave numbers : El= E expi 

In this case  the analytical derivation of pa. (and related 
4 

One finds thatp. is given in t e r m s  of F resne l  integrals. )La takes different 

fo rms  according as the phase between 2 
effect of the m i r r o r ,  by relativity o r  by the Doppler effect. Approximated 

expressions of pa and of the width of the resonance region in  these three 

cases  a re  given in the following table together with the validity conditions. 

and $ is determined by the 
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The maximum energy transfer takes place when the Doppler shift of the 

external frequency is compensated by the relativistic shift of the electron 

gyrofrequency. 

3. The electrostatic interaction 

In this section we study the axial space charge field in the reso- 

nance region [ 7 ]  

considered in another paper [81). 
electron mass  we may define a potential 

the external field on the axial electron motion. in the case that vee(Z =TW) 
>>vze( % =0)  (we note that the effect of the high frequency field on the ions  

is negligeable). If we suppose that the axial electron and ion flux is sta- 

tionary, conservatiwand monokinetic, the Poisson equation can be written 

(the corresponding problem for the adiabatic zone is 

Using the hypothesis of the tensorial 

@ (Z) representing the effect of 

where 

kinetic energy 112 m v: 

is  the electronic potential energy - eV normalized to the initial 

and 

The assumption @ = A 2  3/2 for  the external force requires that under the 

influence of both the external and the electrostatic field the electron motion 

is such that in almost all the resonance region at  least the average of vz- 2 

over a few oscillations is proportional to Z 3/2 
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When the numerical integration of eq. (3)  shows that for some A and Zm 

values, the ions a re  not accelerated, we must set m/m,, = 1 in the expres- 

sions of A and Zm , in order to make the problem self consistent. 

In the case of large injection electron velocity, the result is con- 

sistent with the assumption 

tions is constant in the resonance region. 

@ =  0 when vSe averaged over a few oscilla- 

When one finds <W2=> - Z p with 0 c 2, only the order 

of magnitude of the potential i s  significant. 

The results of the numerical integration for equal initial ion and 

electron velocities a re  plotted in figs. ( lo ) ,  (11) and (12). 

The curves of fig. (10) a re  typical of low A values (A 6 0, 3). 

V z e  oscillates around vei and lvae / vzi - 11 << 1 . In this 

case the ion acceleration is optimum (proof of the validity of the tensorial 

mass-assumption). The oscillations a r e  quasi-harmonic and )c 

Z312)3''! After a transition zone, where Z s Z a  , v z e e  2 vr; !L N Z  3'2. At 

( 4  + dx 

the point 

energy : .c'rq NX.1 , 
selfconsistent when Zm>> Za . 

2, the total energy gained by the ions is equal to their initial 

0) , ~~25(cQ-A) - *~~ .  The calculations a re  

The case A >1 i s  shown in fig. (11). The ions a re  not accelera- 

ted in the resonance region. The electrostatic reaction i s  negligeable in 

comparison with the external field and v& N Z3/' . In the adiabatic 

region ( Z  >Z,) v- 

discontinuous one can speak of a (steady) shock wave. 

vanishes abruptly. Since the electrostatic field is 

When the coefficient A approaches unity, several shock fronts 
2 appear in the resonance region (fig. 12). If Z m 4  2, < VSZ> is 

almost constant and there is self consistency at large injection velocity. If 
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Z&’> Za 
solutions become quasi-harmonic waves at large 

there is selfconsistency in the opposite case. The discontinuous 

Z . 

I axial accelerating force may be neglected i8]. 

We will point out explicitly that standard integration subroutines 

(e. g. the Runge-Kutta-Gill method) have been used throughout with the only 

exception of the case where the solution of eq. (3) has a discontinuous deri- 

vative. In this case an exact relation is found between the slope of on the 

right of a discontinuity and that on the left . When the numerical calculation 

approaches such a point (vte 

on the left a r e  carefully determined to obtain the new initial conditions for 

the integration after the discontinuity. 

c 1 - 9 t 4 = 0 ) the abscissa and the slope 
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Figure 1.- A high frequency accelerating device. 

Figure 2.- The time evolution of the magnetic moment and a x i  
resonant particle.  
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Computer Simulation of the  Beam-Plasma In t e rac t ion*  

J. A .  Davis and A. Be r s  
Depart twit  of E l e c t r i c a l  Engineering and 

Research Laboratory of E l e c t r o n i c s  
/ Massachusetts I n s t i t u t e  of Technology 

Cambridge, Massachusetts 

ABSTRACT 

We are studying the  effects of l o n g i t u d i n a l  plasma dens i ty  
g r a d i e n t s  on the  s teady-s ta te  nonl inear  beam-plasma i n t e r -  
a c t i o n ,  by computer modeling with a f i n i t e  diameter beam 
i n  a n  i n f i n i t e  plasma. 
diameter seem necessary t o  exp la in  the r e l a t i v e l y  narrow 
c o l l e c t e d  beam v e l o c i t y  d i s t r i b u t i o n  observed experimen- 
t a l l y .  
the  i n t e r a c t i o n  becomes less in tense  as t h e  t o t a l  plasma 
d e n s i t y  increases .  

The gradients and f i n i t e  beam 

For a given plasma d e n s i t y  p r o f i l e  and beam dens i ty ,  

*This work was supported by the Nat ional  Science 
Foundation (Grant GK-1165)  . 



INTRODUCTION 

We are s tudying the steady-state nonl inear  beam-plasma 
i n t e r a c t i o n  6 Our  g o a l  i s  t o  exp la in  experimental  measure- 
ments of the c o l l e c t e d  beam v e l o c i t y  d i s t r i b u t i o n  by 
computer modeling. 
by an  e l e c t r o n  beam d i sk  model i n j e c t e d  i n t o  an i n f i n i t e  
plasma whose response remains l i n e a r .  Attempts t o  model 
the i n t e r a c t i o n  w i t h  a homogeneous plasma produced much 
wider v e l o c i t y  spreads than  observed. The in t roduc t ion  of 
l ong i tud ina l  (i.e. along the beam flow d i r e c t i o n )  dens i ty  
grad ien ts  i n t o  the  model has allowed considerably bet ter  
agreement wi th  experiment. 

Helmholtz c o i l  generated magnetic f i e ld  i s  mi r ro r  shaped 
wi th  a mi r ro r  r a t i o  of three. We t y p i c a l l y  use a pressure  
of lom4 Tor r  of H2, which g i v e s  an  e l ec t ron -neu t r a l  co l -  
l i s i o n  frequency v of about 10 /sec. The plasma is  
generated by the  unmadulated e l e c t r o n  beam. 

The experimental  parameters are: 

The beam-plasma system is  represented  

The experimental  appara tus  i s  descr ibed  i n  R e f .  1. The 

6 

cu = 2.rr x 1.5 x lo lo  rad/sec 
P 

Pb 
cu = 2-r x 1.25 x 10 9 rad/sec 

o = 2.rr x 1 . 4  x 10 9 rad/sec 
C 

VB = 7 kV 
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IB = .6 amps 

b = .125 cm 

L = 40 cm 

u) i s  t h e  e l e e t r o n  plasma frequency, cu is  the  beam 
plasma frequency, uC t h e  e l e c t r o n  cyc lo t ron .  frequency, 
VB t he  beam vol tage ,  IB the  beam cur ren t ,  T t h e  
plasma e l e c t r o n  temperature, b t h e  beam rad ius ,  and L 
the i n t e r a c t i o n  length.  
shown i n  Fig. 1, w e  obtained t h e  co l l ec t ed  beam v e l o c i t y  
d i s t r i b u t i o n  shown i n  Fig. 2. 

P Pb 

- 
By us ing  the  v e l o c i t y  ana lyzer  

HOMOGENEOUS PLASMA AND ONE-DIMENSIONAL B E A M  

We first attempted t o  model t h e  beam wi th  sheets, bu t  
the  plasma was assumed cold  and l inear ,  and hence was 
treated a n a l y t i c a l l y .  A sheet w i t h  charge per u n i t  area Q 
moving through the  plasma creates a wake g iven  by 

2 2  

t l ( z )  = 
where uDl i s  t h e  u n i t  step function, w0 = u) Jl - v /4cuP, P 
v = the e l e c t r o n - n e u t r a l  c o l l i s i o n  frequency, and 
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the time the sheet c ros ses  the plane Z .  Since the  plasma 
is  assumed l i n e a r ,  the wakes can be superposed. The details 
of the model are given i n  Appendix 11. The f i rs t  computer 
experiments ignoring c o l l i s i o n s  showed unreasonably large 
beam-velocity spreads and f ie lds  f o r  which the plasma 
o s c i l l a t i o n s  were nonl inear .  
frequency (v  = .2 ao), reduced the magnitude of t h e  e l e c t r i c  
fields. The r e s u l t s  are shown i n  Fig. 3. Even under 
these condi t ions  t h e  f ie lds  (Fig. 3)  are large enough t o  
cause a beam v e l o c i t y  spread far exceeding the  exper i -  
mentally observed one. 
modulated a t  oo, a t  i n j e c t i o n .  A large charge bunch 
forms a t  the p o s i t i o n  (150) of i n i t i a l  beam overtaking 
tha t  i s  synchronous w i t h  t h e  t r a v e l i n g  e l e c t r i c  f i e l d  i n  
such a manner as t o  maximally decelerate the beam. 
overtaking two waves are clearly seen. 
v e l o c i t y  about equal  t o  that  of the wave before  overtaking. 
The o the r  wave is  synchronous w i t h  clumps of beam charge 
a t  low v e l o c i t y ,  and i s  very effective a t  slowing these 
clumps u n t i l  downstream the beam is  highly dispersed i n  
v e l o c i t y  . 

I f  t h e  plasma had a l o n g i t u d i n a l  plasma d e n s i t y  
grad ien t ,  the  large beam charge bunch formed a t  the  po in t  
of overtaking would d r i v e  the  plasma a t  o t h e r  than the  
l o c a l  plasma frequency, i.e. o f f  resonance. Hence the 
e lectr ic  f i e l d  there would be much less than  i n  the  uniform 
case. 
d i s r u p t  t h e  slow phase v e l o c i t y  wave t h a t  formed beyond 
overtaking and dispersed the beam i n  ve loc i ty .  

Introducing a large c o l l i s i o n  

The beam was 2 O/o v e l o c i t y  

Beyond 
One has a phase 

An inhomogeneous plasma would a l s o  be expected t o  

This wave 
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formed because the wakes of clumps of beam charge that pass 
a plane a t  times 27r/uP apart add coherently,  If coo i s  
a funct ion of dis tance,  t h i s  condition cannot be maintained 
over an appreciable  dis tance,  and the  wave w i l l  be broken 
UP, 

Om-DIMENSIONAL BEAM A N D  PLASMA W I T H  DENSITY GRADIENTS ALONG 
THE BEAM 

We introduce a l i n e a r  longi tudinal  plasma densi ty  
gradient ,  described by 

mp(z) 2 = co 2 + az, 

The plasma is  now assumed lossless ( V  = 0). ''a" i s  chosen 
t o  be m2 /L, where UI corresponds t o  t he  peak densi ty  
of a s inusoida l  densi ty  d is t r ibu t ion  i n  2. W e  assume a 
f ixed frequency of exc i t a t ion  
t o  the plasma frequency a t  the posi t ion of beam inject ion.  
The plasma is  cold, loss less ,  l inear  and treated analyt-  
i c a l l y ,  The beam is  0.1 90 veloci ty  modulated a t  a. I n  
the  appendix w e  derive the  l inear ized theory f o r  a beam- 
plasma in t e rac t ion  with a gradient  descrlbed by Eq. (2 ) .  

PO PO 

co 2 = 0.15 CD * corresponding PO' 

I We f ind  the  first order  beam veloci ty  grows as 1 (Bz 1/2 ) J 

and the e l e c t r i c  f ie ld  i s  proportional t o  11(B2192)/z1/2 9 

where Io and I1 are modified Bessel funct ions,  
B - 2 m  / v a  and vo is the  beam veloci ty .  This l inear  
theory i s  w e l l  matched by t h e  r e s u l t s  of the computer 
experiments shown i n  Figs. 4 and 5, where the l i n e a r  theory 

Pb 0 
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r e s u l t s  are shown by the curves labeled V b I I I / V o b  and 

qEIII/m. 
dens i ty  g rad ien t  the variables can only grow beyond t h e  

plane where o = ap(z) .  
the  beam f i n d s  i t se l f  i n  a r eg ion  where 
l a r g e  (beam chargebunches formed a t  the plane of overtaking 
(Figs. 4 and 5 i n  the  v i c i n i t y  of 150 d i s t a n c e  u n i t s )  drive 
the plasma o f f  resonance, so the  response is q u i t e  f i n i t e ,  

I n  these r e s u l t s  t he  e l e c t r i c  f ie lds  remain q u i t e  
f i n i t e ,  bu t  the assumption of plasma l i n e a r i t y  i s  only 
marginally satisfied ( v  /v fil .18), and the  beam v e l o c i t y  
spread s t i l l  exceeds that of the experiment. 

We note  (see Appendix I) t h a t  f o r  a p o s i t i v e  

Hence by the t i m e  over taking occurs,  
03 c o ( z ) .  The 

P 

P O  

FINITE DIArslETER BEAM A N D  ONE-DIMENSIONAL PLASMA WITH DENSITY 
GRADIENT 

To ob ta in  be t te r  q u a n t i t a t i v e  agreement w i t h  experiment, 
w e  introduce d i s k s  t o  r ep resen t  the  beam, The f ie lds  
generated by a d i sk  moving through a plasma have been 
found293 f o r  a uniform plasma and a cons tan t  v e l o c i t y  disk.  
There a r e  two f ie lds ,  a wake f i e l d  and a nonosc i l l a to ry  
f i e l d .  The a c c e l e r a t i o n  on another  d i sk  due t o  the  wake 
f i e l d  is: 
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where M is  the  d i s k  sur face  mass (kg/m2), a = copb/vo, 
and K1 is  the modified Bessel funct ion of second kind. 
The a c c e l e r a t i o n  on another  disk due t o  the  nonosc i l l a to ry  
f i e l d  ahead of the d isk  I s :  

A 

43 dx x J:(x) exp [-x~z/b] 
2 9 (4) x + a2 

a ( z , t )  = - 

where bz is t h e  d i sk  separat ion.  The nonosc i l la tory  
f i e l d  behind the disk is the mirror image of t h e  f i e l d  ahead. 

and d i s k  
P 

ve loc i ty .  We do t h i s  approximately as follows. To calcu-  
late the  wake f i e l d  a t  a plane z we use Eq. (3), w i t h  
t h e  l o c a l  w ( z )  and the ve loc i ty  the d i sk  has when it 
passes 2. To c a l c u l a t e  the  nonosc i l la tory  f i e l d  a t  a 
plane z ,  w e  use the  l o c a l  w (z) and t h e  present  
v e l o c i t y  of the  disk. The computer r e s u l t s  are shown i n  
Fig. 6.? The beam is v e l o c i t y  modulated a t  z = 0 over 

This s imula tes  t he  effects of plasma f l u c t u a t i o n s  of energy 
dens i ty  nxT. The plasma frequency i n  t h i s  case v a r i e s  
s p a t i a l l y  as 

W e  want t o  allow f o r  v a r i a t i o n s  i n  w (2) 

P 

P 

a frequency band extending from (.15)1/2 w t o  05 wp0. 
P O  

(5 )  2 up(”) = u2 sin (.15 + az). 
P O  

The plasma remains q u i t e  l i n e a r  (vp/vo zz pp,/pop x 0.03). 



The veloci ty  spread 
but  t h e  in te rac t ion  
the  experiment. 

shown is  comparable wi th  experiment, 
length shown i s  only 20 90 t h a t  of 

DISCUSS I O N  

We have found t h a t  t he  introduct ion of a longi tudinal  
density gradient  enables us  t o  obtain the r e l a t i v e l y  narrow 
beam veloci ty  spread observed experimentally, and allows us  
t o  j u s t i f y  t h e  assumption of plasma l inea r i ty .  

We can obtain estimates of the l i n e a r i t y  condi t ions by 
manipulation of the  one-dimensional equations i n  the 
appendix. Near overtaking, 

Near overtaking, pb/pob exceeds one. Then, f o r  our 

and the beam veloci ty  has a r e l a t i v e l y  small spread. 
From Eq. (g), w e  note t ha t  as the plasma densi ty  

increases,  the e l e c t r i c  f i e l d  becomes weaker a t  t h e  point  
of overtaking (a2 and "a" increase,  but  u2/a is  

and v /v are only a f e w  per cent ,  parameters 9 Pp/Pop P ob 
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constant  if t he  densi ty  p r o f i l e  is constant) .  
overtaking, t he  beam nonl inear i t ies  seem t o  keep the  
e l e c t r i c  f i e l d  from growing appreciably (Fig. 6). 
a beam generated plasma the  ionizat ion is  done primarily 
by plasma  electron^,^' which obtain t h e i r  energy from the  

confinement scheme, t h i s  weakening of the  in t e rac t ion  
may determine the  f i n a l  plasma density.  These details  
of t he  beam generated plasma w i l l  r equi re  fu r the r  study 
of the energy t r a n s f e r  mechanisms from the beam t o  the 
plasma electrons.  

Beyond 

I n  

~ e l e c t r i c  field. Hence, f o r  a given beam densi ty  and 

I 
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APPENDIX I: LINEARIZED BEAM-PLASMA INTERACTION WITH A LINEAR 
PLASMA DENSITY GRADIENT 

We cons ider  a cold,  l o s s l e s s ,  one-dimensional plasma 
w i t h  no magnetic f i e l d ,  whose dens i ty  i s  given by 

We do a Four i e r  transform I n  t i m e ,  but  not i n  space, on 
the l i n e a r i z e d  force ,  conservation, and Poisson's equat ions,  
and obtain:  

j c o  m vb + m vo - avb - - qE 
aZ 

These equat ions  can be combined t o  give a form of Besse l ' s  
equation, 



a2vb avb + [avo + j2cuazI - 
a Z  

For z < 0 

and f o r  z > 0 

where 

If I1  I1  a < 0 (a decreasing dens i ty  g r a d i e n t )  the  so lu t ions  
f o r  z > 0 and z < 0 are interchanged. The remaining 
va r i ab le s  can be found from Eqs. ( ~ 2 . ~ 6 ) .  I n  p a r t i c u l a r  

EIII - ( B  mvo/2qz ’I2) exp (-jcoz/vo)Il(Bz1/2) (A13) 
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The physical significance of mode I1 is unknown, since 
we have not been able to excite it in computer experiments. 
With the addition of collisions the resonance in vbII 
washes out as ln(v), but EII varies only as 1/'. 

I 



APPENDIX 11: DETAILS OF THE COMPUTER MODEL 

. The wake due t o  a sheet moving through a cold plasma 
i s  given i n  Eq. (1). We note  t h a t  the wake a t  any plane 
z i s  cos inusoida l  i n  time, wi th  a phase determined only 
by the t i m e  t he  sheet passed Z. Since the wakes are a l l  
cos inusoida l  a t  the same frequency, they  can be combined 
i n t o  one cosine.  We c a l c u l a t e  the  magnitude and phase of 
o s c i l l a t i o n s  a t  d i s c r e t e  p o s i t i o n s  def ined  by c e l l  p o i n t s  
0.2 vO/u apart, which g ives  u s  about 30 c e l l  p o i n t s  per  
wavelength. We i n t e r p o l a t e  w i t h  a second o rde r  polynomial 
the f i e lds  between three c e l l  p o i n t s  a t  a time. I n  i n t e r -  
po la t ion ,  w e  include only the f ie lds  of those sheets which 
have passed a l l  three c e l l  points .  The f ie lds  due t o  sheets 
w i t h i n  t h e  c e l l  po in t s  are c a l c u l a t e d  separately, s i n c e  the 
f i e l d  d i s c o n t i n u i t i e s  caused by the sheets would i n v a l i d a t e  
the  in t e rpo la t ion .  This involves  keeping t r a c k  of th ree  
sepa ra t e  sets of magnitudes and phases per  c e l l  point .  
One s e t  inc ludes  t h e  f ie lds  of a l l  the sheets t h a t  have 
passed t h e  c e l l  po in t ,  another  set  inc ludes  the  f ie lds  of 
only those sheets t h a t  have passed the c e l l  po in t  one beyond 
the  considered c e l l  po in t ,  and t h e  t h i r d  stet inc ludes  only 
those f i e l d s  due t o  sheets which have passed the  second 
c e l l  point  beyond the considered c e l l  point .  Since w e  only 
need t o  know when the sheet passed a plane t o  determine 
the  f ie lds ,  w e  i n t e r p o l a t e  pass ing  times from the  sheet 
pos i t i ons  a t  the last  three incrementat ion times. 

f a r t h e s t  from the  gun f irst .  When c ross ings  occur, the  

P O  

We s ta r t  c a l c u l a t i n g  the  t r a j e c t o r y  of the sheet 



pos i t ions  and v e l o c i t i e s  are corrected by approximating the 
cosine i n  the wake term as one, and est imat ing the crossing 
t i m e  from the uncorrected t r a j ec to r i e s .  

the  t r a j e c t o r i e s  and obtained energy conservation within 5 90. 
Later w e  used the  Runge-Kutta method and obtained energy 
conservation within 0.5 90. 

In  t h e  early runs we used the Mllne method t o  ca l cu la t e  

. 
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NUMERICAL SOLUTION FOR 1.5-DIMENSIONAL, TIME-DEPENDENT 

MAGNETOHYDRODYNAMIC PROBLEMS 

by 

Klaus Hain 

Laboratory for Theoretical Studies 
NASA Goddard Space Flight Center 

Greenbelt, Maryland 

In some important problems such as 8-Pinches with para l le l  f i e l d s  (after 

the  first phases of implosion or solar  flares), the overall  s t ructure  is 

governed by a strong magnetic f ie ld .  The Alf& speed V, across the  f i e l d  l i nes  

is so high t h a t  the  transversal  time t = R/VA, where the  radius 

plasma i s  small compared with a characterist ic time 

a quasiequilibrium can be reached i n  the time interval  tC. The dimension 

perpendicular t o  the  f i e l d  i s  therefore counted as .5 dimension. 

the f 'ull  magnetohydrodynamic equations apply pa ra l l e l  t o  the f i e l d  l i nes .  

par t icular  t he  behavior of shockwaves paral le l  t o  the megnetic f i e l d  

studied here under various conditions. 

The geometry is as follows: 

l i nes  with a boundary for  t = 0 a t  Ro. 

an equilibrium. 

f i e l d  a t  the plasma boundary with time and as a function of z. 

Two cases a re  studied here: 

R of the  

tC of the system, so tha t  

In contrast, 

In 

is 

ax ia l  symmetry perpendicular t o  the  f ie ld-  

The i n i t i a l  conditions for  t = 0 define 

The time dependence is  brought in  by varying the magnetic 

1. 8 Pinch. A conducting w a l l  i s  assumed a t  R = R The magnetic i s  C '  

then compressed a t  one end w i t h  strength 6B and a frequency u). Also B 
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a damping time 7 is  specified such tha t  B .V e' t/T. 

2. Simulation of the behavior of so la r  f lares ,  which a re  assumed t o  have 

the structure of arcs  consisting of magnetic f ie ldl ines ,  produced by 

ring currents a t  the bottom. The following approximations are made: 

i n i t i a l l y  a constant magnetic f i e l d  is  assumed. The time dependent 

behavior i s  simulated by compressing the magnetic f i e l d .  The f ie ld-  

l ines  become weaker i f  one assumes that the flux containing walls t o  

recede fur ther  as they are  further away from the current carrying 

coils.  

To give a good indication of how the plasma behaves under those condi- 

t ions  the  r e su l t s  w i l l  be shown i n  movies. 

The computations for  the 8 pinch show tha t  no strong shock waves (Mach 

number <2) are  produced by compressing the f ie ld ,  unless the f i e l d  becomes s o  

strong as t o  confine the plasma very strongly or i f  the distance t o  the w a l l  

becomes very small. 

As f o r  the second case, the  solar  f la res ,  it shows tha t  a strong and long 

l a s t ing  f ie ld  i s  required t o  achieve an appreciable amount of change i n  the 

geometry. 

In a forthcoming paper the properties of inject ion of plasma and the 

eventual reaching of a steady state including gravity w i l l  be studied. 



IN’lX ODU CTION 

Ln many problems the magnetic field determines the main structure of the 

plasma. 

perpendicular to the magnetic field, or expressed in another way: the time 

tA = R/vA, where R is the extent of the plasma perpendicular to the field lines, 

and vA, the Alfen velocity, is small compared to the transversal time 

(or another characteristic time) ; i. e. 

Dynamics in these cases can be studied by assuming quasistationarity 

+ 

tC 

t, = L/G >>+A 

where L is the length of the cylinder and C the velocity of sound parallel 

the magnetic field. 

to 

Here for the numerical computation axial symmetry is assumed. The magnetic 

field is initially parallel to the axis. The main advantage of the assumption 

of quasistationarity and axial symmetry is that one needs on ly  relatively few 

spce points in r - direction, so that the computation is reasonably fast, but 

the computer program can be extended to take into account any shape perpendicular 

to the field lines. 

A s  the magnetic field is very strong, the field lines are taken as one set 

of (moving) coordinates. 

of zero magnetic fields. 

This excludes antiparallel field lines with points 

In the following the magnetohydrodynamic equations are set up in a moving 

The general coordinate system. 

results show how the strength of shock waves parallel to the magnetic field 

depends on the mirror ratio and the compression ratio. The results of the nu- 

merical computations are also represented in a movie to give an indication of 

the dynamical processes which may occur in a plasma. 

Then the numeric scheme is discussed briefly. 
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MAGNETOHYDRO~AMIC EQUATIONS IN A MOVING COORDINAa SYSTEM 

The following assumptions are made here: 

1. Assumption of quasistationarity across the field lines. 

2 .  Lnfinite electrical conductivity is assumed, heat conductivity is neglected. 

(But it would not be diffucult to introduce heat conductivity parallel to 

the magnetic field). 

Shocks parallel to the magnetic field are treated by the method of 3 .  

v .  Neumann. 

Axial symmetry perpendicular to the magnetic field lines, finite cylinder 

of length L. 

T. = Te 

This implies that the plasma 

tion time is short compared to t 

4. 

5 .  The electron temperature is set equal to the ion temperature. 
1 

ig so dense that the temperature equaliza- 

C' 
- % 7 +  6. Coordinate system: Unit vectors e , ,  e, for the coordinates 7 0% 

such that 

43 + 
el is the unit vector along the magnetic field, e2 

cular to el. Coordinates are 7, in field direction, perpendicular to 

it, with the corresponding distances hl , h,. 

is the unit vector - perpendi- 
+ 

The magnetohydrodynamical equations are then developed in covariant form, 
3 

where v is the covariant differential operator. 
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with 

+ 
where 3 
of the spec i f ic  heats 

is  t h e  density, v the velocity, p the  pressure and 

( 9 )  

/ t h e  r a t i o  

(p = I + 2 / t  

where f i s  the  number of degrees of freedom. f = 3 or  g =  5/3  i s  assumed 

here, which is  consistent with the assumption ( 5 )  fo r  a dense plasma. 

For t he  coordinate system specified, 
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Therefore, i f  one defines 

I 
k,= yB 

the eq. (11) is automatically f’ulfilled. 

that = const. characterizes the flux tubes. 

Substituting 

i s  then the magnetic flux so 

-9 -> 
8 f e, & in to  eq. ( 6 )  gives the two eqs. : 

3 

for  flux conservation, and 

f o r  the  change of the direction of the magnetic f ie ld ,  which depends only on 

the change of v2 i n  the direction &. 
With the def ini t ion of the operator 

( cis the covariant operator using eq. (12) .) 

the form 

Eq. (13) can be rewrit ten i n  

and eq. (14) then becomes 

;3 
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With the def ini t ion (15) one obtains 

where 

Along the  uni t  axes of the velocity vector, the time changes can be 

writ ten as 

By neglecting small terms of order 

momentum eq. 

47.b i n  the eq. for  v1 one finds fo r  the 
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BCUXDA.RY CONDmIOn AND INITIAL C O ~ ~ I O N S  

I n i t i a l l y  a cylinder f i l l e d  with plasma of the density p and w i t h  the 

temperature T i s  assumed t o  be i n  equilibrium, such tha t  

[p + -1 ' I ins ide = pouts ide  

Furthermore, ref lect ion symmetry is  assumed a t  z = 0, therefore 

and 

Two se t s  of boundary conditions whose parameters depend on time are taken. 

As the conductivity i s  inf in i te ,  a sharp boundary between plasma and vacuum 

can be defined. This moving boundary i s  determined by the  condition 

I I .  I I  I I  1 1  
where 1 designates inside and 0- outside ( i n  y2 direct ion) .  

One has t o  f ind  the velocity 

boundary between plasma and vacuum. 

a t  the Yr 
(Yt' 'L) , because b, i s  
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One differentiates eq. (25) with respect to the time and finds 

S/$$is the differentiation in the moving coordinate system. Using eq. (18) 

and (16), this equation gives 

as the boundary condition for v2. 

Four different sets of boundary conditions have been used so far 

1. 

with 

-2. 



Where BI has the  same form as above with SI, 

conducting w a l l  is placed a t  r = Rb, so that the f l u x  F 

s{= 0 .  But it is assumed that a 

is  a constant, but F = Fo e' t / T  

3. For t = 0 a homogeneous magnetic f i e l d  Bo = const. i s  assumed. 

The magnetic f i e ld  of solar  f la res  originates from r ing currents. The 

magnetic f ie lds  from such r ing currents (magnetic dipoles) f a l l  off 

d3 (d >> a ) .  

w a i l  is  assumed t o  be of the following form. 

with 

In order t o  simulate t h i s  behavior, a shape of the conducting 

2 

with 

where F(z) is kept const. i n  time. The t i m e  variation is  brought i n  by l e t t i n g  
- 
Rb depend on t i m e  and keeping F ( t )  const.. 

- Rb = R b  ( I t  SR s c ' c - t )  

where 6R is the re la t ive  amplitude of the change. 

(33) 

B = const. i s  assumed. 4. A s  before, f o r  t = 0, a homogeneous magnetic f-e 

Expressed as a function of t and z ,  the outside pressure has the following form: 

- fi-e- 
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This boundary condijAon is  used t o  study the approach t o  a steady state. 

CUTLINE OF THE C(l@u"ING TECHNIQUES. 

The computation employed a mesh which usually had 10 points i n  the  

%-direction and 50 points i n  %-direction. 

polation fo r  the convective terms i n  the V,-direction was used. To compute 

the shock pa ra l l e l  t o  the magnetic f ie ld ,  the von Neumann shock term with.the 

constant is  the approximate number of 

mesh points, through which the shock i s  extended. 

is  moving, one has t o  compute the coordinates i n  every t i m e  step. 

The simplest method f o r  in te r -  

&HOCK = Ns2 was used, where Ns 

As the  coordinate system 

I I  L e t  A" define the new quantit ies at the t i m e  t + 6 t ,  " K "  the 

index for 7 (the direction perpendicular t o  the f i e l d  l i nes ) ,  3 the f irst  

index for  7 parallel t o  the field. With help of these def ini t ions the re- 

sul t ing difference equations may be writ ten in  the following way: 

second 
I I  0 . 1  

f 

f 

I t  - I t  
The nmconvective change of new quantit ies a re  given by 
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where Qj,k is the v. Reumann term 

quantities have to be corrected by the convection term to I I  - I I  Furthermore 

the quantities : I l b  I I  
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The difference eqs. for d/ are second order i n  t i m e ;  i.e.: 

Eq. (39) was solved implici t ly .  The subscript  m e a n s  t he  number of V t he  

i t e r a t ions  for Y =  0 



Usually eq. (38) was iterated twice. 

sary; otherwise the results may become unstable, or else one has to use smaller 

time steps. 

+t becomes 

The computations show this to be neces- 

Taking the last part of eq. (21) in difference form, the eq. for 



The factor two in the first tgrm comes from the fact that the coordinate system 

is a l s o  moving. 

These eqs. were solved completely and implicitly, aa indicated, to obtain 
\ 

stability. The coefficient in the last term is so big as to force the second 

derivative to become zero. 

ary condition for *&, gives an almost uniform contraction. The last term 

This, together with the proper perpendicular bound- 

with - v i a  is the centrif'ugal force. 

The eq. for the mesh 

is again solved implicitly; then 

4 
The mesh is cmputed in the following way. Let e/ be 



Then 

2 

AS eq. (311 requires f l u x  conservation, an adjustment is  made t o  eq. (44) t o  

assure th i s .  The correction fac tor  

where 

Neglecting 6 

6 i s  of the  order 10-3 f o r  each t i m e  s tep  and i s  of variable  s ign.  

may lead t o  an error  of t he  order 10%. 



RESULTS 

The r e s u l t s  a r e  given i n  dimensionless form. L e t  lo, to, no be the  basic  

un i t s  fo r  length, time, density. Then 

1 L e t ,  f o r  example, 

Then 

A s  there  are no diss ipat ive processes i n  the present computation, a l l  r e s u l t s  are 

invariant under a length and time scale transformation. 

A l l  cases computed here have the same i n i t i a l  conditions f o r  t = 0 

The frequency of change (eq. 2 7 )  

In  the series of Fig. 1 t o  4 the  horizontal  l i nes  are the f i e l d  l ines .  

v e r t i c a l  l i n e s  represent the density, so that  t he  area between those two l ines  

and f i e l d  l i n e s  is  inversely proportional t o  the  density. 

i s  shown i n  Fig.  1. 

Fig. 1 represents:  

Fig. 2 

= 1.0 

The 

The i n i t i a l  state 

($7 = 40  at i! = 10. o ye .= 3.g 2 s  5 . 0  
I 1  
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A t  the first maximum compression(t = 1.5 

pression i s  roughly 

and temperature dis t r ibut ion.  

$/w), the  radius a t  the com- 

0.3, and a weak SHOCK is  developing a t  z = 5.0 i n  the density 

The higher compression for the cases (2)  and (3) 

compared t o  (1) are  largely compensated by higher s t i f fnes s  of the f i e l d  or igi-  

nating from the nearby co i l .  

At the  time t = 3.0 v/N, as the compression f ie lds  move through zero 

there is  a shock moving toward z = 0 (M 3 1.3), and the density has a minimum a t  

z = 7. The Mach number is  higher for case ( 3 )  where compression occurs at z = 0.0. 

The last  two graphs of cases ( 2 )  and (3) show the dis t r ibut ion a t  the time 

. Whereas the Mach number i n  case t = 4.5 * 3rr and t = 6.0 Z t T / W  

( 3 )  remains below 2, in case (4)  the Mach number gets t o  be of the order of 
-/w R, 

bl=3 4 -  

For laboratory plasma the last  case is  not interesting, but i n  the dynamics a t  

the sun surface these results may have some bearing. 

The shape of the plasma surface as shown i n  Fig. I d  shortly a f t e r  the  re- 

f lec t ion  of the shock a t  z = 0 i s  quite typical;  the shock wave i s  now approxi- 

mately a t  z = 3 ,  and a t  t h i s  higher pressure the plasma i s  pushed aside. 

Other computer runs have shown tha t  it has been not possible t o  get higher 

Mach numbers than approximately 1.7. 

times. The conclusion i s  that in medium .P range 6 2 0.1, one can not produce 

strong shock waves (in z-direction).  

quency is  comparable t o  transversal  time of a sound wave along the f i e l d  l ines ,  

one can increase the pressure by a factor  of about 4. The next three graphs show the 

change in  the geometry with the second set of boundary conditions. 

The temperature increases approximately 2-3 

With magnetic f i e l d  changes whose f re -  



For ~ 4 3  = 10.0, as the frequency is  very low, the changes are very slow. Never- 

theless ,  the differences i n  Pressure maybe a factor ,  too. As it w a s  proposed 

that the breaking up of solar  f l a r e s  may be due t o  r e s i s t i ve  in s t ab i l i t i e s ,  it 

i s  planned t o  extend the calculation SO t o  take in to  account the asymmetry 

around the axis, in  order t o  see if a geometry develops which allows an insta-  

b i l i t y .  

Figs. 5a, 5b show an equilibrium situation, where a source is  on the 

bottom, which e j ec t s  plasma. As a boundary condition a t  z = ze, v/ = . 

{sound speed) w s  assumed. 

i f  the f i e l d  lines which form the boundary no longer come back t o  the sun. 

These kihds of si tuations could occur in  sun spots., 
1 

The pressure and density then follow approximately the adiabatic l a w ,  which 

means that the entropy i s  approximately a constant along the  f i e l d  l i nes .  

Different runs were made f o r  varying 

fo r  a greater  radius ra, as indicated i n  Fig. 5a, there appears a hump i n  the 

magnetic fdeld strength. 

ra. The r e su l t s  are almost identical ,  except 

In Fig. Fb, the deviations indicated, ( near z = 8.0) 

show the influence of the boundary condition for  z = 10.0.. 

point the  dis t r ibut ions are identical .  A t  z = 15.0 the &/I max is  

Before reaching t h i s  

a b i t  higher than thermal speed. 

The author would l i k e  t o  thank A.  Jaggi f o r  suggesting the equilibrium 

Also he wuuld l i k e  t o  thank the Culham Laboratories ( U . K . A . E . A . ) ,  problem. 

England, where part of the work was performed. 

E. Monasterski of the Theoretical Division, GSFC, who did most of the programming. 

Special thanks go t o  
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CALCULATION OF HIGHLY DISTORTED PLASMA INTERCHANGE MOTIONS 

W I T H  A NONLINEAR TWO-DIMENSIONAL TWO-FLUID 

COMPUTER MODEL* 

J. A. Byers 

Lawrence Radiation Laboratory, University of Ca l i fo rn ia  

Livermore, Cal i forn ia  

ABSTRACT 

Summary 

The type  of motions considered here  a re  two dimensional low b e t a  i n t e r -  

I 
I change motions perpendicular t o  a s t rong  uniform magnetic f i e l d ,  B. A 

g r a v i t a t i o n a l  f i e l d  g (perpendicular t o  B) is used t o  s imula te  e f f e c t s  of 

B f i e l d  curvature.  The model used i s  a f l u i d  type model where t h e  motion 

of a p o s i t i v e l y  charged f l u i d  and a negat ively charged f l u i d  is c a r r i e d  

forward i n  time by a f i n i t e  d i f f e rence  so lu t ion  of the  Euler ian equat ions of 

cont inui ty .  

cen te r  d r i f t  velocities. 

f i n i t e  d i f f e r e n c e  so lu t ion  of Poisson 's  equation. 

computational model are i n  Ref. 1. 

The f l u i d  v e l o c i t i e s  are assumed t o  be given by t h e  guiding 

The e l e c t r i c  f i e l d  is  obtained each t i m e  s t e p  by a 
I 

I More d e t a i l s  of t he  

1 
It is  clear t h a t  f i n i t e  d i f f e rence  models are extremely l imi t ed  f o r  t h e  

purpose of observing highly d i s t o r t e d  motions because such motion r ap id ly  

produces s h o r t  wavelengths t h a t  t h e  s p a t i a l  g r i d  cannot accura te ly  represent .  

The v a l i d i t y  of f i n i t e  d i f f e rence  approaches t o  nonl inear  flows which become 

severe ly  d i s t o r t e d  rests upon sometimes a r b i t r a r y  cri teria such as: 

1. s h o r t  time r e s u l t s  - where one i s  s a t i s f i e d  with t h e  answer obtained 

before  t h e  flow becomes too d i s to r t ed .  

long time r e s u l t s  f o r  t h e  larger length s c a l e s  - where one argues 

t h a t  one can put up with severe  e r r o r s  i n  the  s h o r t e r  length  scales 

so long as such e r r o r s  do not  d i r e c t l y  a f f e c t  t h e  longer  length  

scales . 

2. 



Several successful ca l cu la t ions  with our model f o r  var ious  interchange 

The primary aim i n  these  ca l cu la t ions  modes have been reported earlier. 2'3 
w a s  t o  follow t h e  motions of uns tab le  plasmas, exc i ted  i n i t i a l l y  a t  small 

amplitudes, f o r  s u f f i c i e n t l y  long times i n  order t o  determine t h e  f i n a l  

plasma state, Thus, as reported i n  Ref. 2, a g rav i ty  driven f l u t e  i n  t h e  

"one fluid" regime (mode A) w a s  followed u n t i l  t h e  outward f l u x  of t h e  

plasma was stopped by a confining w a l l .  

physical  b a r r i e r  i n  a rapid d i r e c t  path so t h a t  t h e  " f i n a l  state" is 

determined before extreme d i s t o r t i o n s  of t h e  f l u i d  occur. The s p a t i a l  

differencing procedure thus  encounters no d i f f i c u l t i e s .  

The plasma i n  t h i s  case reaches a 

Also as reported i n  Ref. 2, a Kelvin-Helmholtz o r  diocotron i n s t a b i l i t y ,  

with g = 0 and a s l i g h t  charge imbalance t o  g ive  an E/B ve loc i ty  shear 

(mode B), w a s  followed u n t i l  t h e  boundary l aye r  deformed i n t o  l a r g e  amplitude 

charge bunches or vor t ices .  

w a l l  and t h e  growth has apparently stopped. 

extreme f l u i d  d i s t o r t i o n ,  but t he  long time behavior of t h e  l a r g e r  length 

scales seems adequately represented d e s p i t e  t h e  c e r t a i n  misrepresenta t ion  of 

t h e  smaller length  scales, 
t o  rest upon t h e  circumstance t h a t  t h e r e  is no energy transformation process 

which depends on t h e  sho r t  wavelengths. 

The v o r t i c e s  form w e l l  away from t h e  confining 

The vortex formation involves 

The v a l i d i t y  of t h e  long time r e s u l t s  seems 

Nonlinear s t a b i l i z a t i o n  of t h e  type r e s u l t i n g  from mode B is c l e a r l y  

due t o  the t o t a l  d i s rup t ion  of t h e  growth mechanism which f o r  mode B is t h e  

loca l i za t ion  i n  space of t he  ne t  charge. I n  Ref. 3, another type  of non- 

l i n e a r  s t a b i l i z a t i o n  w a s  reported. I n  t h i s  case, (mode C) an uns tab le  

g rav i ty  driven f l u t e  i n  t h e  "two f lu id"  regime, not too  f a r  away from a 

marginal s t a b i l i t y  point,  reached a l a r g e  amplitude s t a b l e  s ta te  w e l l  away 

from a confining w a l l .  The l a rge  amplitude s t a b l e  wave which r e s u l t s  does 

not involve extreme f l u i d  d i s t o r t i o n s ,  and thus  t h e  spat ia l  d i f fe renc ing  

encounters no se r ious  d i f f i c u l t i e s .  The s t a b i l i z a t i o n  seems t o  have occured 

when nonlinear e f f e c t s  reduced the  growth mechanism t o  a s u f f i c i e n t  degree 

so t h a t  t h e  o r i g i n a l l y  weaker "two f l u i d "  effects were a b l e  t o  e f f e c t i v e l y  

compete with t h e  growth and s t a b i l i z e  t h e  system. It i s  clear t h a t  t h i s  
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c . 
a 

nonlinear s t a b i l i z a t i o n  process does not require t o t a l  disrupt ion of t he  

growth mechanism. 

is  a f a i r l y  general  one; i.e., whenever conditions are not too f a r  from a 

marginal s t a b i l i t y  point, nonlinear e f fec ts  might be expected t o  reduce the  

growth mechanism su f f i c i en t ly  so t ha t  t he  competing processes can s t a b i l i z e  

the  system a t  la rge  amplitudes. It was the aim of the  present calculat ions 

t o  test t h i s  concept on a d i f f e ren t  mode. 

It is plausible tha t  t h i s  type of nonlinear s t ab i l i za t ion  

The par t icu lar  interchange mode here (mode D)is combination of mode A 
and mode B discribed above. 

veloci ty  shear mode (mode B) is s table .  

su f f i c i en t ly  la rge  such tha t  the  combination of unstable mode A and s t ab le  

mode B is unstable although not f a r  from t h e  marginal s t a b i l i t y  condition 

predictable from l inea r  theory. The ensuing motion f o r  t h i s  case becomes 

highly d i s to r t ed  a f t e r  a re la t ive ly  short  time. 

of the  veloci ty  shear and severely limits the f i n i t e  difference approach. 

In  contrast  to the  calculations f o r  mode B where similar f l u i d  d i s to r t ions  

occured, there  is here an energy transformation process (due t o  the g f i e l d )  

which is d i rec t ly  dependent on the  short wavelengths, and thus the  

calculat ion w i l l  break down when a s ignif icant  amount of the  energy appears 

i n  the  shor t  wavelengths. The ne t  e f f ec t  is tha t  with the present s p a t i a l  

resolut ion only short  t i m e  results have been obtained, and the  question of 

whether or not  the  gravity driven f l u t e  coupled with veloci ty  shear has 

a l a rge  amplitude s t ab le  state is  not y e t  answered. 

f l u t ing  motion can, so t o  speak, break through the  shearing notion and 

continue its growth, but t h i s  is only tentative.  

Conditions are chosen such t h a t  i f  g = 0 the  

The magnitude of g is chosen 

This is a d i r e c t  r e su l t  

Indications are t h a t  the  

Examples of the computet output f o r  mode D w i l l -be  shown, and d i f fe ren t  

methods of differencing compared. 

decidedly improved when differencing scheme has some means f o r  imposing 

control  on the  e r ro r s  i n  t h e  short  wavelengths ( z  4 A x ) .  

one example, i t  is seen preferable t o  use a lower order scheme which includes 

short  wavelength control  ra ther  than a higher order scheme which includes no 

shor t  wavelength control. 

It w i l l  b e  seen t h a t  calculat ions can be 

In  par t icu lar ,  i n  



The time decay of a c e r t a i n  c l a s s  of per turba t ions  of a s t a b l e  shear ing 
4 

l a y e r  is a lso  of i n t e r e s t .  Case has shown, f o r  p a r t i c u l a r  s t a b l e  shear  

flows, t ha t  small amplitude per turba t ions  corresponding t o  the  continua 

s ingu la r  normal modes w i l l  damp with an asymptotic time v a r i a t i o n  propor t iona l  

t o  l / t .  

computer model. 

as s m a l l  amplitude per turba t ions .  

d e s p i t e  t h e  f a c t  t h a t  t h e  amplitude of t h e  motion does not  grow, can also 

cause extreme d i s t o r t i o n  and thus severe ly  l i m i t  t h e  f i n i t e  d i f f e r e n c e  model. 

I n  f a c t ,  observing a s t a b l e  shear ing l a y e r  f o r  too long a t i m e  can produce a 

f a l s e  re turn  of a damped per turbat ion.  This  e f f e c t  is due e n t i r e l y  t o  

exceeding t h e  l i m i t a t i o n s  of t h e  s p a t i a l  f i n i t e  d i f f e rence  g r id .  

time which one must w a i t  f o r  t h e  v a l i d i t y  of t he  asymptotic l i m i t  is 

r e l a t i v e l y  long, and a r e l a t i v e l y  f i n e  s p a t i a l  r e so lu t ion  would be requi red  

i n  order  f o r  the  damped motion t o  be observed f o r  such times. 

time decay, however, can e a s i l y  be followed on a r e l a t i v e l y  coarse  g r id .  

The r e s u l t s  obtained here  ind ica t e  t h a t  most of t h e  energy of t h e  pe r tu rba t ion  

decays during t h i s  i n i t i a l  t r a n s i e n t  t i m e ,  and thus  the  r e l a t i v e l y  slow 

asymptotic decay would appear t o  have l i t t l e  phys ica l  s ign i f icance .  

The time decay of such per turba t ions  can a l s o  be followed with t h e  

The camputer model is  of course appl icable  t o  l a r g e  as w e l l  

The shear ing motion of s t a b l e  flow, 

Also, t h e  

The i n i t i a l  
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ABSTRACT 

Computations describing the implosion phase of high voltage 
low density theta-pinches are carried out by using the co l l i s ion-  
less Vlasov equation fo r  the ions, and using the f l u i d  equation 
f o r  adiabatic electrons. 
compared t o  the electron cyclotron t i m e ,  but short  compared t'o the 
ion cyclotron t i m e .  
valent cy l indr ica l  plasma sheets. The calculations show tha t  the 
non-adiabatic ion heating i n  very l o w  bias ,  negative bias ,  and 
posi t ive bias theta  pinches r e su l t s  from ion in te rac t ion  with 
rapidly f luctuat ing e l e c t r i c  and magnetic f i e l d s  ins ide  the plasma, 
and with the  rapidly converging outside surface of the plasma. The 
mean ion energy w a s  1 keV a t  two microseconds f o r  very l o w  bias and 
negative 1.5 kG bias ,  while i t  w a s  only 0.6 keV f o r  posi t ive 1.5 
kG. 
Prr>> Pee,  and the density tends t o  peak on the axis .  
do not occur for  +1.5 kG and -1.5 kG bias.  A l l  three cases show 
plasma mass rotat ion,  with the outside portion counter-rotating 
with respect t o  the inner portion i n  order t o  conserve over-all  
zero angular momentum. This rotation appears t o  be re la ted  t o  
f i n i t e  Larmor e f fec ts .  Comparisons are  made with experimental 
r e su l t s .  

The calculations a r e  on a time sca le  long 

The equations are reduced t o  a set  of equi- 

For very low bias  the ion pressure i s  non-isotropic with 
These e f fec ts  

1. Introduction 

The purpose of these calculations w a s  t o  describe the non- 
adiabatic implosion phase of low density, high voltage theta  
pinches. 
a r e  heated t o w  1 keV and the electrons t o -  0.15 keV when no i n i -  
t i a l  bias  f i e lds  are applied. Thus the ions a r e  found t o  be much 
more non-adiabatic than the electrons during the implosion phase. 
A physical basis fo r  expecting the electrons t o  behave more adia- 
ba t i ca l ly  than the ions i s  tha t  for  an i n i t i a l  bias  magnetic f i e l d  
of a few hundred gauss the electron cyclotron t i m e  i s  approximately 
a nanosecond, whereas the ion cyclotron t i m e  i s  roughly a micro- 
second. The poss ib i l i t y  of high frequency i n s t a b i l i t i e s  i s  ignored 
here. Since the implosion front  travels transverse t o  the magnetic 

I n  the f i r s t  two microseconds of the GE theta-pinch ions 



field, one expects Adlam-Allen 
scale of 1/&- and a length 

magnetic wavesY2 which have a time 
scale of C/O Pe' 

We therefore propose to study in detail the non-adiabatic ion 
motion in low density, high voltage theta-pinches by use of the 
collisionless Vlasov equation for the ions, but use an adiabatic 
fluid description for the electrons. This allows the numerical 
integration to be carried out on the time scale of l/&q . If the 
Vlasov equation were used €or the electrons also, it would be 
necessary to compute on the time scale of l / o  
extremely long computer runs to find the motigE'corresponding to 
the first two microseconds of the experiments. 

which then requires 

The model described below is an adaptation to cylindrical co- 
ordinates of our previous work3 y 4  on planar collision-free plasma 
shock waves. Using an extension of our codes, W. P. Jones and 
V. J. Rossow5 have taken into account initial thermal ion motions. 
Rossow6 has done computations employing the Vlasov model for the 
electrons, and found no major change in the ion behavior for the 
plasma parameters of interest here. Rossow7 has also considered 
oblique planar shock waves. 

Extensive MHD calculations have been carried out for cylindri- 
cal theta pinches, especially in the high density regime. These 
calculations generally assumed isotropic ion and electron pressures, 
and used a Richtmyer-von Neuman8 artificial shock dissipative 
mechanism when necessary. 
taken into account. 
and K~ppendorfer.~ Further studies were made by Hain and Kolb,l0 
and Niblett and Fisher. 
Oliphant.12 p e  effect of initial partial ionization was studied 
by Duchs. I3y1 
was considered by Kolb and McWhirter. l5 Duchs and Griem16 made a 
detailed study of ionization and radiation effects using a three- 
fluid model. 

Heat conduction and resistivity were 
The pioneering work was done by Hain, Roberts, 

Lagrangian coordinates were employed by 

The effect of high-Z impurities and radiation l o s s  

In the work reported here, the Vlasov equation is used to study 
the non-adiabatic ion motion, which is simulated in the previous 
MHD studies 9-16 by the Richtmyer-von Neuman approximation. For 
low or zero initial magnetic field bias, we find that the plasma- 
vacuum boundary is involved in the ion thermalization, and that the 
ion pressure is not isotropic (pr3 pee) .  Finite Larmor effects 
are also important for the ions. Our model does not include resis- 
tivity, heat conduction, radiation, or neutral gas effects. The 
finite electron mass is taken into account. 



2. Ion Equations of Motion 

We consider an infinitely long and cylindrically symmetric 
theta-pinch. Thus all fields and velocities depend only on the 
radial coordinate and time. The electric field has the components 
- E =@,,Ee,O), and the magnetic field has B = (O,O,B,). Velocities 
in the z-direction are therefore invarian: and will be ignored. 
The ion Vlasov equation is reduced to a cylindrical sheet model by 
replacing the distribution function by a sum of N 6-functions: 

k 

Let dV be the volume element in the ion phase space. Then by 
Liouville's theorem fidV is constant along the phase space path. 
Since we may ignore z and vz coordinates, the volume element is 
r dr de dvr dve. Integrating Eq.(l) over a region enclosing one 
ion sheet, we obtain by Liouville's theorem 2nrkns(rk,t) = 
2nr~ns(r~,0). The latter quantity is simply the total number of 
io s per unit z-length of the ion cylindrical sheet, which is 

original ion volume density. Therefore the instantaneous surface 
density of ions on sheet k is given by: 

nRo s no/N, where Rb is the original plasma radius and no is the 

3 

ns(rkyt) = R', no/2Nrk 

The equations of motion along the ion phase space path may be 
derived from the Hamiltonian in cylindrical coordinates: 

r A(r,t) + eiP(r,t) l2 H = -  1 2  1 
2M 2Mr 

(3) 

where A(r,t) is the 8-component of the magnetic vector potential, 
and @(r,t) the electric potential. 

Essentially, we are sampling segments of the ion distribution, 
and computing how these segments move about in phase space. 
sampling is sufficiently dense, a good description of the Vlasov 
equation is obtained. 

If the 

Because of the assumed cylindrical symmetry it follows from the 
Hamiltonian that the theta-momentum pe is a constant of the motion 
Pi: for each ion sheet: 
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+ e Pk E Mr v" + - r A(rk,t) k 8 k  c k  ( 4 )  

+ This expresses V@k(rk,t) in terms of the magnetic field B(rk,t) 
and the constant Pg, which is set by the initial 8-velocity and 
fields B(r,O). Here we make use of the definition: 

k r 
'k A(rk,t) r B(r,t) dr 

0 

(5) 

The radial equation of motion also follows from the Hamiltonian: 

Equations ( 4 )  and (6) are, of course, simply the equation of 
motion of an ion in given axisymmetric fields Er(r,t) and B,(r,t). 
The central problem is to eliminate Er(r,t) and obtain a difference 
equation for Bz(r,t). 
equations for the electrons, and Maxwell's equations. 

This is accomplished by using the fluid 

3 .  Electron Equations of Motion 

The fluid equation of motion for the electrons is given in 
Eulerian coordinates by 

We convert this equation to Lagrangian fluid coordinates. The 
8-component of Eq. (7) may be integrated once if we observe that the 
full time derivative of rA(r,t) along the Lagrangian fluid coordi- 
nate is given by: 

r 

aO+v r ==[ ar at r - d r + v r s  aB at a [ j r  B dr] 
0 0 

= -r c E8 + r vr BZ 



Using Eq.(8) i n  the  6-component of Eq.(7) yields:  

d -  e d  
c d t  m =(me) = - -(rA) 

which in tegra tes  to:  

- e  P-(ro,O) = m r  v - - r A( r , t )  e c  

(9) 

where P-(ro,O) is  the  in tegra t ion  constant dewermined by the  i n i t i a l  
e lec t ron  f l u i d  ve loc i ty  and i n i t i a l  magnetic f i e l d s .  It i s  clear 
t h a t  Eqs. (4) and (10) are q u i t e  analogous, but  i t  i s  important t o  
remember t h a t  Eq.(3) appl ies  t o  an ion sheet  i n  phase space, whereas 
Eq. (7) appl ies  along the Lagrangian coordinate of the e lec t ron  
f l u i d .  
"orb i t  cross",  while the electron sheets are required t o  remain i n  
t h e i r  o r ig ina l  sequence. M. N. Rosenbluth f i r s t  pointed out t o  us 
the need f o r  not  allowing the  electrons t o  o r b i t  cross .  

This d i s t i n c t i o n  i s  the basis f o r  allowing ion sheets  t o  

Note t h a t  t he  f i n i t e  m a s s  of the e lec t ron  i s  retained i n  Eq.(9), 
which means t h a t  the  e lec t ron  f l u i d  does n o t  conserve loca l  magne- 
t i c  f lux.  
f o r  pe r f ec t ly  conducting f lu ids  which general ly  neglect  the  e lec t ron  
mass. 

This i s  t o  be contrasted with the usual  MHD equations 

The r a d i a l  component of Eq. (7) i s  reduced b assuming t h a t  the 
- e lec t ron  pressure varies ad iaba t ica l ly ,  pe= poB 3 2  /Bo. Using c u r l  B 

= 47rJ/c, - one f inds from Eq.(7): 

(11) 
e -  + - 2  - 

mf = -eEr(r , t ) -  c Ve B(r , t )+  :(ve- v i )  Be B( r , t )+  :(ve) 

2 where Be i 8n po/Bo. 
very c lose ly  t o  the  ion charge densi ty ,  because the Debye length of 
non- re l a t iv i s t i c  e lectrons,  (vih>/cdpe, i s  s m a l l  compared t o  our 
f i e l d  s c a l e  length c/w . 
N sheets  correspondingPfo the N ion phase space sheets ,  and the 
e lec t ron  and ion sheets  may be assumed t o  move together i n  t h e i r  
r a d i a l  motions. 

W e  now observe t h a t  the electron f l u i d  i s  t i e d  

Thus the electron f l u i d  may be s p l i t  i n t o  

4. Cyl indrical  Sheet Equations 

The electric f i e l d  Er(r,  t )  i s  eliminated by adding E q s .  (6) and 
(11) and assuming rc = r$ : 
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We also add Eqs. (4) and (10) to eliminate A(r,t) : 

- + -  
= Pk+ Pk + 

Mrk VOk + mrk VOk 

+ where pk and P i  are the constant canonical momenta determined by 
the initial conditions. 
set of N cylindrical sheets. 
thin sheets, resulting in a step increase of the magnetic field as 
one crosses the plasma sheet, and the magnetic field is constant in 
the space between adjacent sheets. 
just outside cylindrical sheet k is labeled Bk, and the field just 
inside by Bk- . 
sheet k, one finds: 

The plasma has now been represented by a 
The 0-currents flow in these idealized 

As shown in Fig. 1, the field 

The surface ion density on sheet k is ns(rk,t) 
given by Eq. ( 3 ) . By integrating curl - B = 4n - J/c across plasma 

- + 
Bk-l - Bk = a(Vek' Vek /rk 

2 where a E 4ne n R /2Nc. 
(14) : 0 0  

We solve for 

k m r  
r v+ = k 0k a(M+m) [Bk-l- + 

These equations may 
equation of motion. 

(14) 

- 
and vek by Eqs. (13) and + 

VOk 

- 
P t -  Pk 
M+m 

PC- Pk 
a (M+m) rk [%-l- %]+ M+m 

- + be used to eliminate vek and vek in the radial 

To obtain a recursion formula for the magnetic field, substi- 
tute Eqs. (4) and (10) into Eq. (14) : 

Set the index k+k-l and subtract the resulting equation from Eq. 
(17). Observing that 



rk A(rk,t)- rk-l A(rk,lYt) = 

w e  find the basic recursion re la t ion  for  N >/ k >/ 3: 

-@- ri-l)]B - r2 B = 
2cmM k-1 k k 

For k = 2 ,  w e  find from Eq.(17): 

2cmM 

For k = N+1, w e  must allow fo r  an electron pressure current sheath, 
which reduces the e f fec t ive  f i e l d  j u s t  outside the rN+l sheet t o  
B N + l / ( I I - .  Therefore for  k = N + l  we use Eq. (19) with B N + ~  re- 
placed by B N + l / K  * 

The f i n a l  equation f o r  k = N+2 links the magnetic f i e l d  t o  the 
r a t e  of increase of magnetic f lux i n  the c o i l  which i s  the time 
in tegra l  of the voltage applied t o  the c o i l .  Observing tha t :  

- +-k 1 2  - r 2  ) 
N+1 AN+l  2 N+2 N+1 BN+l - rN+2 %+2 r 

t 

= V(t ' )d t '  + rN+2 A(rN+2y0) 
0 

we subs t i t u t e  Eq.(21) i n t o  Eq.(17) t o  f ind for  k = N+2: 

a a -  BN+l' P+ N+1- GpN+l  2 

t 

r 

0 
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The coil voltage V(t) is determined by the circuit parameters 

Then the coil current and voltage is: 
in conjunction with the coil current. 
length. 

Let 4 be the effective coil 

t 

V(t) = v(0) - L - d1 - - I dt - IR - K I I I o o Z 5  (24) dt C 
0 

where V(0) is the initial capacitor bank voltage, and the other 
terms are the voltage drops because of the bank leads, the capaci- 
tor discharge, the bank resistance, and Thyrite damping. The V(t) 
is roughly constant during the initial implosion phase. 

Equations (19), (20), and (22) are (N+l) linear equations for 
the unknown %, 
diagonal, and thus the & can be found by continued fractions. 
Using the Bk found from Eqs.(19-22), one may then integrate forward 
the radial sheet motion by Eq.(12). 

The form of the (N+l) x (N+1) matrix is tri- 
17 

Equation (12) and the field matrix Eqs.(19-22) are considered 
to be the fundamental equations of our sheet model. One may derive 
from them rigorous energy and momentum conservation laws which 
serve as a check on the accuracy of the numerical calculations even 
when the sheet spacing is not small. 
of this sheet model to the difference equations representing the 
Vlasov equation is given in Reference 4 .  

A discussion of the relation 

In the results reported below 320 plasma sheets were used, and 
the iondelectron mass ratio was taken as 100 to reduce the computa- 
tion time. The integration step was 0 . 3 4  nanoseconds. The bank 
parameters were V(O)= 50 kV, C = 220 pF, L = 27.6 nH, R = 1.1 ma, 
K = 8 kV at one megamp, and 4 = 5 5 . 3  cm. 
9.84 cm, the initial D2 
radius of 7.2 cm, and the initial Tg was about 1 eV. 
check on the computations agreed to better than 5 parts in 1000 
throughout the computations. 

N+2 was The coil radius r 
density was 10 mTorr and had an initial 

The energy 

5 .  Results for Very Low Bias Fields 

computed corresponding to the first !? Fsec of the theta-pinch 
Using +0.2 kG initial bias and f3 = 0.2, the plasma motion was 



Experimentally, it is found that the plasma with zero initial bias 
is quite similar to that with +0.2 kG initial bias. True zero bias 
calculations were not carried out because the ion motion is then 
essentially radial, and the electrons cannot be expected to undergo 
cyclotron motion. 
tic field leaks into the plasma in the zero bias experiment, thus 
justifying the use of our electron fluid model. 

It seems possible that a small amount of magne- 

Figure 2 shows the time variation of the plasma radius and the 
mean ion random energy. Qualitatively these agree with experiment 
and MHD calculations, but the amplitude of the radius fluctuations 
is perhaps larger than observed. Experimentally, we found a mean 
ion energy1 of 1.4 - 1.85 keV at 2 ysec which is somewhat higher 
than the computed value of 1 keV. This deviation may reflect- the 
large particle loss occurring in the experimentl, which under some 
conditions can lead to further compression and ion heating. 18 
Relaxation of the ion distribution from 2-dimensions to 3-dimensions 
would also lead to further compression and heating. 

Figure 3 shows the radial variation of the magnetic field at 
successive times from 0 to 2 ysec. For this low bias case, a 
single magnetic pulse is launched into the plasma. 
microsecond, the field profile is quasi-static and shows a peaking 
toward the axis. This peaking is associated with the density peak 
near the axis (discussed below), and indicates a tendency toward 
local flux conservation despite the use of the finite electron mass 
in Eq.(9). 

After the first 

Figure 4 shows the plasma density profile at successive times. 
Note the correlation of the density wave with the magnetic wave in 
Fig. 3 during the first 0.6 ysec. again showing approximate flux 
conservation. After the first microsecond, the density shows a 
peaking near the axis. This can be understood by the following 
very simple model. 
plasma-vacuum boundary. Then the ions are accelerated only by the 
sheath radial electric field and therefore have a purely radial 
motion. Thus the only non-zero component of the pressure tensor is 
Prr. 

Consider a true zero bias pinch with a sharp 

In the quasi-steady state occurring after the first micro- 
second one then must have zero divergence of the pressure tensor: 19 

- i a  - (rprr) = 0 
r br 

Therefore rPrr is a constant, and since Prr= 2n(vr) 2 with (vr) 2 
roughly independent of radius, one then obtains n cc l/r. For low 
bias calculations we expect a similar density variation if the ion 
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Larmor radius i n  the i n t e r n a l  magnetic f i e l d  i s  l a rge r  than the  
plasma diameter, which occurs i n  our case.  
t ions  a re  t h a t  Prr>Pee and Prr>B / 8 ~  i n  the plasma. 
densi ty  near the  ax 
GarchingY20 Culhaq," and Los Alarnosz2 the ta  pinch groups. An 
a l t e rna t ive  explanation of t h i s  peaking has been given by Morse,23 
which involves the  col lapse of the r a d i a l  electric f i e l d .  

The e s s e n t i a l  condi- 
2 The peaking of 

has been observed i n  zero bias  pinches by the 

Figure 5 shows the mass 8-veloci ty  p ro f i l e s  a t  successive 
t i m e s .  The outs ide rotates i n  the s a m e  d i r ec t ion  as an ion i n  
cyclotron motion, and the ins ide  counter-rotates  t o  conserve momen- 
t u m .  T o t a l  cannonical momentum i s  s t r i c t l y  conserved throughout 
the computations because of the use of E q s .  (4 )  and (10). This type 
of counter-rotat ion cannot occur i n  the usual MHD ca lcu la t ions ,  and 
appears  t o  be r e l a t ed  t o  f i n i t e  Larmor e f f ec t s .  Spa t i a l ly  resolved 
plasma ro ta t ion  experiments fo r  low b ias  conditions have not  been 
reported,  but  i t  i s  known t h a t  d i s to r t ions  on the  outs ide surface 
of the plasma r o t a t e  i n  the ion cyclotron d i r ec t ion  with v e l o c i t i e s  
-107 cm/sec. 
involves non-conservation of angular momentum. 

Morse's theory23 a l s o  y ie lds  plasma ro t a t ion ,  but  

Figures 6 and 7 show an end v i e w  of the t ransverse motion of 
f i v e  ions. Note the predominantly r a d i a l  motion which i s  r e f l ec t ed  
i n  Prr>Pee. Ions 321 and 240 c l e a r l y  have cyclotron r a d i i  much 
g rea t e r  than the plasma radius ,  and are contained by the sheath E,. 
Ions 80 and 2 have cyclotron r a d i i  somewhat smaller than the  plasma 
rad ius ,  but  t h e i r  cyclotron motion i s  very d i s to r t ed  because of the  
e l e c t r i c  f i e l d  and f i e l d  gradients .  

Figures 8 and 9 give ion phase space project ions onto the  
planes vr-r ,  ve-r, and ve-v . The v e l o c i t i e s  and r a d i a l  posi t ions 
of the  320 ion sheets  are p lo t ted  a t  successive t i m e s .  
0.5 wsec the d i s t r ibu t ions  remain loca l ly  continuous. During t h i s  
t i m e  w e  believe the sheet  model represents  the Vlasov equation 
q u i t e  accurately,  and i t  indica tes  t h a t  the ion  d i s t r i b u t i o n  func- 
t i o n  i s  an extremely r idge-l ike,  tor tuous funct ion,  with knobby 
growths, d i scont inui t ies  and b i furca t ions  .4 
following the  f i r s t  r a d i a l  cont rac t ion) ,  the ion phase space loses  
i t s  detai led s t ruc tu re ,  and takes on a "thermalized" d i s t r ibu t ion .  
Previous experience with planar  shock ca lcu la t ions4  lead us t o  
bel ieve tha t  the  r a the r  random appearance of t h e  d i s t r i b u t i o n  a t  
1.05 wsec r e s u l t s  i n  p a r t  from the  f i n i t e  number of sheets  used i n  
the  calculat ions,  and therefore  t h e  exact Vlasov equation i s  not  
well-represented a t  l a te  t i m e s ,  unless  many more plasma sheets  are 
employed. However, the gross proper t ies  are s t i l l  well-represented, 
s ince  t o t a l  energy and momentum are conserved. 

From 0 t o  

Af te r  0.6 wsec ( i . e ,  

Thus w e  be l ieve  the  
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sheet  ca lcu la t ions  af ter  the f i r s t  microsecond, have about t he  
s a m e  v a l i d i t y  as MHD calculat ions employing the Richtmyer-Von Neuman 
v iscos i ty .8  
bottom of Fig. 9 i s  very e l l i p t i c a l .  
t o  2 psec, and shows t h a t  Pr>Pee i n  the  low b ias  ca lcu la t ions .  

Note t h a t  a t  1.05 psec, the  ve-Vr project ion a t  the 
This e l l i p t i c i t y  persists out  

6 .  Results f o r  Posi t ive Bias Fields 

A computer run with +1.5 kG bias ,  pe=0.O2, and 320 sheets  w a s  
made corresponding t o  the  f i r s t  1.5 psec of the experiment. Fig- 
u re  2 shows t h a t  the plasma radius  contracts  s l i g h t l y  f a s t e r  than 
i n  the  low b ias  case. 
i s  somewhat l a rge r  than f o r  low bias .  The mean ion random energy 
i s  d e f i n i t e l y  lower f o r  pos i t i ve  bias ,  i n  agreement with MHD calcu- 

Because of the  t r apped  f i e l d ,  the mean radius  

la t ions12 and experiment. 1 

Figure 10 shows the  r a d i a l  var ia t ion  of the magnetic f i e l d .  A 
sequence of Adlam-Allen waves i s  launched i n t o  the plasma a t  0.2 - 
0.3 psec. 
Alfven Mach number planar shocks.3 The spacing of the  waves shown 
i n  Fig. 10 a t  0.3 psec i s  a r t i f i c i a l l y  l a rge  because w e  used M/m = 
100. 
e lec t ron  plasma would have a wave densi ty  s i x  t i m e s  g rea te r  than 
t h a t  shown a t  0.3 psec. 
1 psec may r e s u l t  i n  pa r t  from the  f i n i t e  number of plasma sheets  
used. 
t i m e s ,  and does not  exhibi t  the  ax ia l  peaking occurring i n  the  low 
bias  case.  
f i r s t  microsecond. 

These waves are analogous t o  those we found i n  low 

Since the spacing should be roughly 10 c / % ~ ,  a t r u e  deutron- 

The sharp s p a t i a l  f i e l d  f luc tua t ions  a f t e r  

The f i e l d  tends t o  become uniform i n  the  plasma a t  l a te  

The densi ty  p ro f i l e s  a l so  are q u i t e  f l a t  af ter  the  

Figures 11 and 12 show an end view of the t ransverse motion of 
f i v e  ions.  
diameter. The ions show d i s to r t ed  cyclotron motions plus circum- 
f e r e n t i a l  d r i f t  a r i s i n g  from the  inward E, f i e l d .  Ion 321 a t  the 
top of Fig. 12 show 
re f l ec t ed  p a r t i c  le.  ' 4  I n  our case the " w a l l "  i s  the  s t rong E, of 
the  plasma-vacuum sheath. 

The cyclotron r a d i i  are c l e a r l y  smaller than the  plasma 

a curious s imi l a r i t y  t o  Sp i t ze r ' s  w a l l  

Figure 13 shows the ion phase space d i s t r i b u t i o n  of the 320 ion 
sheets .  A t  0 .2  - 0.4 psec one can see the  organized ion motion 
associated with the Adlam-Allen waves. 
breaks up because of the cy l ind r i ca l  convergence and disappears 
a f t e r  the  f i rs t  plasma pinch. 
ve-v 
Pee Tor high bias .  
densi ty  in s ide  the plasma a f t e r  the f i r s t  microsecond. 

This organized motion 

A t  t i m e s  later than 1 psec, the 
d i s t r i b u t i o n  becomes q u i t e  symmetrical, showing t h a t  P r r  w 

This i s  a l s o  re f lec ted  i n  the  near ly  uniform 
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7 .  Results for  Negative B i a s  Fields  

A computer run w a s  made with -1.5 kG b i a s ,  pe=0.02, and 320 
sheets .  
because of an i n i t i a l  outward motion as the dr iving f i e l d  reverses. 
This i s  i n  agreemint with MHD ca lcu la t ions  and experiment. 
mean ion random energy i s  approximately the  same as fo r  very low 
b ias .  
pos i t i ve  b i a s  appears t o  be associated with the l a rge  E, occurring 
a t  the  magnetic f i e l d  reversal point .  The f i e l d  reversal point  i s  
located very near  the plasma-vacuum boundary s ince  plasma res is t i -  
v i t y  i s  not included i n  our model. 
t h a t  reverse b ias  gives higher energies  than even zero b ias .  Pos- 
s i b l y  t h i s  i s  a r e s u l t  of addi t iona l  heat ing from a x i a l  contract ion 
not included i n  our model. 

Figure 2 shows tha t  the f i r s t  plasma contract ion i s  delayed 

The 

The g rea t e r  ion  energy f o r  reverse  b ias  as contrasted with 

Experiments1 general ly  show 

Figure 14 shows r a d i a l  p ro f i l e s  of the  magnetic f i e l d  a t  succes- 
s i v e  times. 
a t  0.4 and 0.5 psec are much broader than the Adlam-Allen type 
waves i n  the pos i t i ve  bias  case.  
s ta t ic  tendency t o  peak near the ax is .  
psec are of the  dynamic type. 
1 psec may r e s u l t  i n  p a r t  from the f i n i t e  number of plasma sheets .  
The density d i s t r i b u t i o n  is  q u i t e  f l a t  a f t e r  the f i r s t  0.5 psec. 
This i s  i n  agreement with densi ty  p r o f i l e s  of Sawyer, e t  a l . ,  who 
foundz2 the p r o f i l e  t o  be s ign i f i can t ly  f l a t t e r  with negat ive b i a s  
than with zero b ias .  

Note t h a t  the  magnetic waves launched i n t o  the  plasma 

The magnetic f i e l d  shows no quasi-  
The peaks a t  0.6 and 1.5 

The sharp s p a t i a l  f luctuat ions a f t e r  

Figure 15 shows the mass 8-veloci ty  p r o f i l e s  a t  successive 
t i m e s .  Note t h a t  fo r  negative b ias  t he  in s ide  and outs ide r o t a t i o n  
i s  j u s t  the opposite from t h a t  occurring i n  the low b ia s  case (Fig. 
5 ) .  This i s  because the  ro t a t ion  i s  control led by the  trapped 
magnetic f i e l d ,  which here  i s  i n  the negat ive d i r ec t ion  ( i . e .  i n t o  
the paper). Keilhacker, e t  a l . ,  have ca r r i ed  out experiments 
with reversed bias  f i e l d s  from which they conclude t h a t  a counter- 
ro t a t ing  p lasma i s  unl ikely,  although not  completely ruled out .  

25 

Figures 16 and 1 7  show the t ransverse motion of f i v e  ions.  
ions show d i s to r t ed  cyclotron motions plus c i rcumferent ia l  d r i f t .  
Note tha t  t h i s  d r i f t  i s  i n  the opposite d i r ec t ion  from t h a t  i n  
Figs.  11 and 1 2 ,  s ince  the i n t e r n a l  magnetic f i e l d  i s  i n t o  paper 

24 here .  Ion 321 again shows the Spi tzer- type bouncing. 

The 

Figure 18 shows the ion phase d i s t r i b u t i o n  of the  320 ion  
sheets .  
d i s t r ibu t ion  shows marked b i furca t ions  and d i scon t inu i t i e s  as ea r ly  

No Adlam-Allen type organized motion i s  seen, and the 
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1 

as 0 . 3  psec. These d i s to r t ions  are associated with the  s p a t i a l  
f i e l d  reversal. 
symmetrical, which i s  re f lec ted  i n  PrpPeO and a near ly  uniform 
densi ty  p r o f i l e .  

After  1 psec the Ve-Vr d i s t r i b u t i o n  becomes q u i t e  

8. Conclusions 

Our Vlasov equation calculat ions show t h a t  one should not  
general ly  assume t h a t  the ion pressure tensor  has Pr = Pee during 
the i n i t i a l  implosion of low densi ty ,  high vol tage t i e t a  pinches. 
The low b ia s ,  pos i t ive  b ias ,  and negative bias  cases a l l  showed 
P >Pee during the f i r s t  and second p l a s m a  contract ion (Figs. 8, 
l!irand 18). Af te r  the  second contract ion ( i . e . ,  af ter  1 psec) ,  
the pos i t i ve  and negative bias  cases do have PrJyPee because the 
ion cyclotron radius  i n  the plasma i s  s m a l l  compared t o  the plasma 
diameter. However, i n  the  low b ias  case, Pr remained s i g n i f i -  
can t ly  l a rge r  than Pee throughout the f i r s t  L o  microseconds (seven 
plasma contract ions) .  Of course,  one may invoke i n s t a b i l i t i e s  o r  

peaking of t he  plasma densi ty  near  the ax i s  may be in te rpre ted  as 
evidence f o r  Prr>Pee i n  zero bias  pinches. 

co l l i s ions  t o  obtain PrpPee,  but  the experimentally observed 20J1,22 

Our ca lcu la t ions  a l s o  pred ic t  counter-rotating plasmas. 
usual MHD ca lcu la t ions  do not show t h i s  phenomena because i t  i s  
imp l i c i t l y  assumed t h a t  the ion cyclotron radius  i s  extremely s m a l l  
compared t o  the  plasma radius .  
power the ta  pinches. 
Larmor terms i n  the MHD e q u a t i 0 n s ~ 6 , ~ ~  would y ie ld  counter-rotat ing 
plasmas. 

The 

This i s  c l e a r l y  untrue i n  high 
W e  speculate  t h a t  the  inclusion of f i n i t e  

W e  a l s o  found Adlam-Allen magnetic waves before  the  f i r s t  con- 
These are  not  seen i n  the MHD t r a c t i o n  i n  the pos i t ive  bias  case. 

ca lcu la t ions  because the e lec t ron  i n e r t i a  i s  omitted i n  the  usual 
generalized Ohm's l a w  ( the  i n e r t i a  term i s  the l e f t  s i d e  of Eq.2-12 
i n  S p i t ~ e r ~ ~ ) .  
magnetic waves i n  the  reverse b ias  case t o  be much broader than 
Ad lam-Allen waves . 

It i s  a l s o  noteworthy t h a t  w e  f ind the i n i t i a l  

Our model does not  include r e s i s t i v i t y  o r  e lec t ron  heat  con- 
duc t iv i ty  which may be important i n  ac tua l  experimental conditions.  
It might be possible  t o  include these e f f e c t s  i n  our model by using 
more general  Lagrangian f l u i d  equations12 f o r  the  e lec t ron  f lu id .  
The d i f fe rence  form of these equations i s  e s s e n t i a l l y  a sheet  repre- 
sen ta t ion ,  which could be combined with our Vlasov ion sheets .  
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Figure 1.- Sheet and f i e l d  labeling scheme. Note the axis i s  labeled rl, the 
f i r s t  sheet 1-2, the Nth sheet rN+l, and the fixed c o i l  surface rN+*. 

Bo =1.5KG -.------- 
--- Bo I -1.5 KG 

Bo z . 2  K G  

- 

- 

W 

I I I I 
. 5  I 1.5 2 

T I M E  IN p s e c  

Figure 2.- Plasma radius and mean ion random energy versus time f o r  posit ive 
bias,  negative bias, and l o w  bias. I 
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F I E L D  PROFILES 

Figure 3 . -  Magnetic f i e l d  prof i les  from axis t o  c o i l  surface at  successive times 
from 0 t o  2 psec. I n i t i a l  bias  magnetic f i e l d  of 0.2 kG. 
boundary occurs at the radius where the f i e l d  r i s e s  sharply. 

The plasma-vacuum 



r = . 5  T Z . 8  r = 1.1 r = 1.4 r z.2 4 -  

2 -  

0- 

4 -  

2-  

J L  ICI 

.55 .e5 1.15 I .45 .25 

't 
n o  

P 4 -  

0 2-  

A 4 fl - 
.6 . 9  1.2 1.5 - . 3  

E O  A 
- 

> b- 

a! ;i 4 -  .35 .65 .95 I .25 1.55 
E 2 -  

p 0- - 4 -L, 

= 
z 4 -  . 4  .r 1.0 1.3 1.6 

Figure 4.- Plasma density prof i les  for  i n i t i a l  bias  of 0.2 kG. 

r = 1.7 

% 

1.75 

I .8 

1.85 

\ 

I .9 

I 85 "1 10 
.25 h .55 

n 

2 -  

O L  A 

O L '  I 

\ - 
4 -  .45 .75 I .05 I .35 
2- 

Y I  - 1  I 
2 4 6  0 2 4  0 2 4  0 2 4  

h 

I .65 1.95 

I I I  
0 2 4  0 2 4  

0 A I "I I \  

;o#> , .; L , l . 7 5  b. 
2 4 6  0 2 4  0 2 4  -10 

r =i.io r= 1.40 

\ 

1.15 1.45 I .75 

1.25 1.55 1.85 

1.30 

L \ 

\ 2 4  0 2 4  0 2 4  

RADIUS IN CM 

Figure 5.- Mass 6-velocity prof i les  fo r  i n i t i a l  bias  of 0.2 kG. The outside 
portion rotates i n  the same direction as an ion, and the inside counter- 
rotates t o  conserve overall  momentum. 

286 



0 * 
N 

i 
E 

0 
2 
E! 
z 

0 
a3 

0 
i 
w 

N 

i 
E! 

0 s 
N 

i 
2 

‘r -?  

? ? 

0 
Q) 

i 

7 
H r’ 

.. W 

7 

7 0 

0 
0 
0 

X 

H 

? 
I 

X O W 3  NI 31tjNItlLl003-A 



co 

t 



I I I t  I 
0 - 10 . Llo k- 
W 
2 0  1.00 1.30 
c3 

E -10 

- 2c 

~ 

a 

: Y ~ O Z Y O ~ Y O ? L ~ O Z L ~  
RRDIUS- IN- c M ,  - 

Figure 10.- Magnetic field profiles at successive times. Initial 
of +l.5 kG. 

Y- ION 321 

1 
-8 -9 9 e 

T:O TO I MUSEC 

Y -  ION 290 

r -8 Y Y e 
0 

z Y -  
H 

e. 
LI -e - 9  9 a 
a 

a 

O e  

I- 

z 
0 

0 

>- 

H 9 -  

0 & - 
-9 9 a 

I 

4 -  

e Lt e 9 
a 

X - C O O R D I N R ~ E  IN CM. 

Figure 11.- End view of transverse motion for five ions during the 
The magnetic field is upward, and the initial bias was second. 

289 

ION 180 

ION 80 

ION 2 

bias field 

first micro- 
+l.5 kG. 



t. 
I 

rn 
I 

‘W3 N I  31tjNTW003-A 
X 



20 

10 T=O. 20 ,50 

z 

0 
-I 
w 
L L  

0 

I- 
W 
Z 
c3 

z- 

- 101 .30 .6O 

H 

H 

a 

0 

20 

1c 

0. 

.10 

I 1 i 

1 I 2 L I u 2 L ) i 1 2 L f  I 

RFlClIUS I N  CM, 

Figure 14.- Magnetic f i e l d  prof i les  a t  successive times. I n i t i a l  bias  f i e l d s  
of -1.5 kG. 

t = . 5  r = . e o /  lo 
t =.2 

0 - v  
- 

0 .  

-10- 

IO 

f l  I v 

.4 .70 1.00 - 
0 / 2 

- 10- 

-10 t2rkik 
2 4 6  0 2 4  0 2 4  

RADIUS IN CY 

1.4: 

+-I+- 

+ 
+-I-- - 

2 4  0 2 4  

Figure 15.- Mass 8-velocity prof i les  fo r  i n i t i a l  bias  f i e l d  of -1.5 kG. The 
outside portion rotates  i n  the same direction as  an ion i n  the in te rna l  
f i e l d  (which i s  into the paper), and the inside counter-rotates t o  conserve 
overal l  momentum. 

291 



N 

i 
E! 

'W3 

0 
=I- 
N 

I" 

N I  31HNTOkI003-A 

0 
05 

zi 
U 

X 



9 
RRD I US 

'T. VS. R VT VS. VR. 

Lt -50 0 50 
RRD I us RFlDIAl VELOCITY 

Figure 18.- Ion phase-space distribution during 0 - 0.5 psec, projected onto the 
planes vr - r, ve - r, and ve - vr. Initial bias of -1.5 kG. 

293 





MONTE C W  METHODS I N  S T E m  DYNAMICS 

Michel H&on 

C.N.R.S., I n s t i t u t  d'Astrophysique, Paris 

There are two fundamental time scales in  a s t e l l a r  system. 

scale i s  associated with collective motions and i s  often called the "crossing 

time" 

side t o  side.  

second time scale is the ?relaxation time" 

e f fec t  of binary interactions.  

The first time 

t, because it is roughly the t i m e  a star takes t o  cross the system from 

(The corresponding time i n  a plasma is  the plasma period.) The 

tr which i s  associated with the  

It can be shown (Chandrasekhar, 1942) tha t :  

where N i s  the  t o t a l  number of stars i n  the system. For most actual  systems 

the relat ion t r  >> t, holds. Thus, there a re  two quite different  phases i n  

the evolution of the system: 

ciated with 

sumably die out after some time ( t h i s  corresponds t o  Landau damping i n  a 

plasma); and a second, much longer relaxation phase, associated with 

which there is  a slow change of the structure of the system under the e f fec t  of 

binary encounters. 

It  thermalizat ion. ) 

first, a comparatively short mixing phase, asso- 

tc, and characterized by violent collective motions which pre- 

t,, i n  

( In  plasma physics t h i s  i s  sometimes called "diffusion" o r  

This f i r s t  paper w i l l  be devoted t o  the second phase, or relaxation phase. 

Thus it is  assumed tha t  collective motions have already died out and tha t  the 

system i s  now i n  a quasi-steady s ta te ,  changing only under the effect  of 

encounters. 

two quite different  methods. 

The evolution of such a system has been studied, u n t i l  now, by 

The f i r s t  one is  the method of pure numerical 
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experiments: 

dimensional space. 

pr inciple  and it does not involve any a rb i t r a ry  assumption. 

the computing time gr6ws as N7/2 approximately. Thus there  i s  a p rac t i ca l  

upper l i m i t  f o r  N, which i s  presently about N = 100. This is  unsatisfactory,  

because for t h i s  value of N, t r  and tc are  of the  same order (see formula 

above), s o  t h a t  the  two phases a re  not separated and there  is at  the  same time 

mixing and relaxation. 

ac tua l  clusters or galaxies. We would l i k e  t o  have N = 1000 at  l e a s t  t o  be 

on the safe s ide.  Perhaps t h i s  w i l l  be possible i n  the  future .  

one computes exactly the motions of a l l  stars i n  t he  three- 

This approach i s  very a t t r ac t ive  because it i s  simple i n  

But unfortunately 

Thus the physical s i tua t ion  is  not the  same as i n  a 

The second c l a s s i ca l  method is  the s t a t i s t i c a l  approach. I n  t h i s  approach 

the system is represented by a d is t r ibu t ion  function, which i n  general is  a 

function of eight arguments: f(x,y,z,u,v,w,m,t), where x,y,z a re  the coordi- 

nates of position, u,v,w a re  the coordinates of velocity,  m is  the  mass of 

a star, and t i s  the time. The change of f with time i s  given by a 

Fokker-Planck equation, which can be writ ten i n  pr inciple  (Rosenbluth, 

MacDonald, and Judd, 1937), but which cannot be solved i n  pract ice ,  except i n  

very par t icular  cases, because it i s  much too complicated. I n  order t o  reduce 

the Fokker-Planck equation t o  a manageable form, one has t o  make a number of 

more o r  less arb i t ra ry  simplifying assumptions. 

We present here a t h i r d  approach, based on the  Monte Carlo technique, 

which seem t o  of fe r  some advantages. The basic idea is  that during one time 

step,  one does not compute a l l  the interact ions between the  stars, but only one 

of them, chosen at random. This approach has been t e s t e d  i n  the case of a sys- 

tem homogeneous and i n f i n i t e  i n  space, with various s t a r t i n g  conditions: 



1. I n i t i a l  veloci t ies  having a l l  the  same modulus, and isotropical ly  Idis- 

t r ibuted.  This case has been numerically solved by MacDonald, Rosenbluth, and 

Wong Chuck (1957), using the Fokker-Planck equation. 

reproduced with the Monte Carlo method, and the  need of an analyt ical  approxima- 

t i on  f o r  the i n i t i a l  phase i s  eliminated. 

Their resu l t s  are exactly 

2. Velocities i n i t i a l l y  i n  a plane. Diffusion i n  the perpendicular direc- 

t ion  i s  then observed: the dis t r ibut ion tends towards isotropy. A new relaxa- 

t ion  time, associated with t h i s  process, can be defined, and is  found t o  be of 

the same order as the usual relaxation time. 

3 .  Velocities i n i t i a l l y  pa ra l l e l  t o  a given direction. There is  then dif-  

fusion i n  the two perpendicular directions.  

4. Stars  of different  masses (range 1 to  100) and i n i t i a l  veloci t ies  not 

The system tends t o w a r d s  equiparti t ion of energy and correlated with masses. 

l i gh te r  stars are  accelerated at  the expense of heavier ones. 

The advantages of the Monte Carlo method are  discussed. It i s  very fast. 

The computing time i s  proportional t o  N only,  and systems of several  thousand 

stars can eas i ly  be considered. Also it does not presuppose any r e s t r i c t ion  on 

the shape of t he  dis t r ibut ion function. On the  other hand, it res t s ,  as the 

Fokker-Planck equation i t s e l f ,  on the  assumption t h a t  the system is adequately 

described by the one-particle dis t r ibut ion function; t h i s  excludes a l l  e f fec ts  

involving correlations between stars, such as the formation of binaries or m u l -  

t i p l e  subsystems. 

the exact N-body computations. 

In  t h a t  respect the Monte Carlo approach cannot supersede 

The Monte Carlo method can also be app l i ed to  the more r e a l i s t i c  case of a 

Some t r ia l  computations f i n i t e  and inhomogeneous s t e l l a r .  system (Hgnon, 1966). 

have been made fo r  t h i s  case and are discussed br ie f ly .  
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(The full text of t h i s  paper w i l l  appear in:  Bulletin Astronomique, 1967, 

3e s&rie, vol. 2, pp. 91-105.) 
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REXAXATION OF A ONE-DIMENSIONAL SELF-GRAVITATING GAS . - . - -  
Myron Lecar ~ 6 7 - 3 7 7 5 3  

Smithsonian Astrophysical Observatory 
Harvard College Observatory 

Leon Cohen 

Hunter College of the City University of New York 
Smithsonian Astrophysical Observatory 

On a suggestion by Prendergast, one of us (Lecar, 1964) began exploi t ing 

the  one-dimensional ("sheet") model t o  study t h e  relaxat ion of a self- 

grav i ta t ing  gas. This model describes with f a i r  accuracy (-1$) t he  motions of 

stars i n  the  s o l a r  neighborhood i n  a direct ion perpendicular t o  the  plane of 

t he  Galaxy. 

To e s t ab l i sh  a common language, l e t  us point out t h a t  i n  analogy with the  

- n(eym), t h e  frequency of t he  free osc i l l a t ion  of a self- "p plasma frequency 

gravi ta t ing  gas is  u? - n(Gm), where G i s  t he  grav i ta t iona l  constant and, i n  

one dimension, m is  the  mass per un i t  area. Likewise, i n  analogy with the  

Debye length A: - mc2/n(e2), the  radius of a se l f -grav i ta t ing  system i s  

A2 - mc2/n(Gm2), where c i s  the  thermal velocity.  In  contrast  t o  a plasma, 

s t ab le  se l f -grav i ta t ing  systems have strong density and pressure gradients .  

Also, t he  t o t a l  extent  of t he  system i s  A. 

E l d r i d g e  and Feix (1963) and Dawson (1964) have shown t h a t  f o r  a one- 

dimensional plasma consisting of N sheets,  two-particle "encounters'' (i .e., 

cor re la t ions)  can be neglected f o r  times < N  2 u+ -1 . One of us (Lecar, 1966) 

obtained s i m i l a r  results f o r  t he  one-dimensional se l f -grav i ta t ing  gas. 

f a c t ,  we suspect (see appendix) t h a t  two-particle correlat ions can be neglected 

In 

f o r  times < N  3 1  co' . For galaxies where N - loll, two-particle correlat ions 
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a r e  negligible f o r  times >> t h e  l i fe t ime of the  universe, and we are l e d  t o  

ask what form f (x ,v , t )  w i l l  be driven t o  by co l lec t ive  in te rac t ions .  The most 

i m e d i a t e  question is:  Does f go t o  a function of t he  energy or a re  there  

addi t ional  (co l lec t ive)  in tegra ls?  For example, Ford (1961; Ford and Waters, 

1963; Waters and Ford, 1966), i n  h i s  invest igat ion of nonlinearly coupled 

osc i l l a to r s ,  found t h a t  t he  normal modes were e s sen t i a l ly  in tegra ls  of t he  

mot ion. 

Since the  energy i s  symmetric i n  x and v, the  most obvious experiment 

i s  t o  start with an asymmetric d i s t r ibu t ion  and t o  see i f  it becomes symmetric. 

A 1000-sheet model w a s  in tegrated with the  i n i t i a l  conditions 

p ( x )  = 0.223, 0 5 x S 8 / 3  

p ( x )  = 0.100, -4 I x I o  

The velocity d is t r ibu t ion  w a s  Gaussian, with G2> = 1 f o r  a l l  x. I n i t i a l l y ,  

twice t h e  k ine t i c  energy divided by the  po ten t i a l  energy was 0.9. This quan- 

t i t y  (2  K.E./P.E.) is  p lo t ted  versus time i n  Figure 1. The r a t i o  

i s  plot ted versus time i n  Figure 2. 

A more accurate measure of t he  asymmetry i s  the  quant i ty  

Values of a at three d i f fe ren t  times are shown below: 



tw-1  - 
0 

12 

24 

0.47 

0.003 

0.002 

A measure of the constancy of p i s  

n-kn 

at  t = 1%- 1 , T = 12uY1, P = 0.01. A s  i s  shown i n  Figures 3 and 4, the dis- 

t r ibut ion of energies, 

goes t o  a steady state (the time labels 5000, etc . ,  are  i n  uni ts  of 1/2O&u; 

5000 = 2 h - I ) .  

had gone t o  f ( E ) .  

N ( E )  = Number of sheets w i t h  E < E '  < E + 0.2, a l so  

We were surprised by the valley i n  N ( E )  and wondered i f  f ( x )  

We checked t h i s  point i n  the following way: 

1. The s t a t i s t i c a l  weight (phase space volume) of an "energy s t a t e "  i s  

g ( E )  = A(€  + A€)  - A ( € )  

2 .  f(E)g(Ej = N ( E ) .  

3 .  If p is  generated by an f t h a t  is  a function of E only, then 

The p obtained from equation 3 i s  compared with the experimental value of p 

i n  Figure 5 .  



Alternatively, equation 3 considered as an in tegra l  equation for f ( E ) 

can be inverted t o  give 

From the experimental values of py an f is generated tha t  is  compared with 

the experimental values of f i n  Figure 6. 

There seems t o  be l i t t l e  doubt t ha t  the system has se t t l ed  down t o  an 

f(E). But it i s  an f ( E )  that  no current s t a t i s t i c a l  theory (e.g., t ha t  of 

Lynden-Bell) would predict .  

d ic t  an f ( E )  monotonically decreasing with E .  O u r  next s tep must be t o  

investigate a wide class of i n i t i a l  conditions t o  see i f  such cases are  typ ica l  

or  pathological. 

It i s  clear  t ha t  any s t a t i s t i c a l  theory w i l l  pre- 



mmIX 

RELAXATION TIME 

If the system i s  continuous (N + m), the  acceleration i s  

a(x) = -4zG rx P(Y) dY 

where fo r  simplicity we have assumed p(x) = P(-x).  Hence, 

a(x'  5 x 4 x' + Ax) = a(x ' )  - 4zGp(x')(x - x ' )  

On the other hand, i f  the system i s  discrete, the acceleration is  constant 

between sheets. So-, if  there is no sheet between x'  and x '  + Ax, then - 

a(x' 6 x 5 x '  + AX) = a ( x f )  

Thus, 

Av ha = 4 ~ G p  AX = - 
At  

Since At - (Ax/v), 

Av - 'y 4 ~ G p ( A x ) ~  
V2 V 

From the V i r i a l  Theorem (2 K.E. = P.E. ) we can estimate tha t  

where 2 is  the  length of the  system. Thus, 
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Since the number of "collisions" per period -Z/aX, 

(')per period -(?P-$ 

This gives the second-order effect of two-particle correlations. 

found that T - which he attributed t o  three-particle correlations. 

Dawson (1964) 
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RELAXATION OF A TWO-COMPONENT 

SELF -GRAVITATING GAS 

LeonCohen , 

Hunter College of the City University of New York 
p Smithsonian Astrophysical Observatory 

Myron Lecar 

Smiths onian Astrophysical Obs e rvatory 
Ha rva rd C olle g e Observatory 

For self-gravitating systems, the Vlasov equation predicts that the 

Hence one can check distribution function evolves independent of mass. 

whether the use of the Vlasov equation is valid by observing certain quanti- 

ties that would normally be mass dependent. 

of energy among the lighter and heavier masses should not hold. 
In particular, equipartition 

A numerical experiment was performed on the one-dimensional "sheet" 

model to verify the above. 

500 of mass 10, was integrated for about 20 dynamical periods. 

and 2 show the number density for each mass at  the beginning and after 

20 periods. 
time coordinate is so chosen that 1. 5 units of time correspond to one period. 

The words fflowll and "high" refer to the lighter and heavier masses, 

respectively. 
particles to concentrate near the center as would be the case if relaxation 

by collisions were dominant. 

of the total mass density, illustrate the same effect - that the steady state 
approached is independent of mass. 

A system of 1000 particles, 500 of unit m a s s  and 

Figures 1 

Figure 3 shows the evolution of the total number density. The 

It is clear that there is no tendency for the higher mass 

Figures 4 and 5, which show the evolution 

I That equipartitiofi of energy is not obeyed is clearly seen when one 
I follows the time development of the energies possessed by the lighter and 

heavier masses. ' Figure 6 shows the time evolution of the average velocity 



squared, i.e., kinetic energy per  unit mass. 

chosen s o  that the heavy-mass system had considerably more  kinetic 

energy per unit m a s s  than the light-mass system. 

the kinetic energies per unit mass  for both subsystems tend to approach 

the same value. The same resul t  should, of course, hold for the total 

energy per unit mass .  

The initial conditions were 

But a s  the system evolves, 

This is illustrated in Figure 7.  
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THE N-BODY GRAVITATIONAL PROBLEM 

AND THE SIMULATION OF GALACTIC CLUsllERS 

; By A. HAYLI 1 I n s t i t u t  d fhtrophysique: and Facult6 ites Sciences 
PARIS . 

SUMMARY 

We s h a l l  review rapidly the results obtained by different  authors i n  the  
integration of the  N-body problem both i n  the absence and i n  the  presence of an 
external field. The problem of simulating galactic c lusters  w i l l  then be dis- 
cussed and the  equations of motion and the  first integrals  writ ten darn. The 
principle of a new method f o r  integrating the problem is introduced. Finally 
some results w i l l  be given obtained fo r  clusters w i t h  25,  31, 32 and 48 stars 
w i t h  and without a galact ic  field. 

IN!lXODUCTION 

The numerical investigation of t he  N-body problem i n  the  absence of an 
external f ie ld  was  first investigated by Von Hoerner [l] , [21 
by Aarseth [3] , p] 
w i t h  Chandrasekhar's formula [6] .  A density peak is  observed at the center 
the  systems; binar ies  axe not formed at a very high rate but they are stable 
especially when they involve massive stars. The velocity dis t r ibut ion is  not 
Mexwellian and shows an excess, for  low velocit ies due t o  high energy stars 
close t o  t h e i r  apocenter, and fo r  high veloci t ies  due t o  close binar ies  and 
stars of t he  dense central  nucleus. The escape rate depends on the mass d i s t r i -  
bution; it is re la t ive ly  s m a l l  i n  the case of equal masses and the d e s i n t e g r e  
t i o n  of such systems due t o  internal  energy exchanges is  slow. 

masses evolving i n  the  galact ic  f i e l d  near  the galact ic  plane. Here also the 
formation of binar ies  i s  observed. The escape rate w a s  greater when the  stars 
involved had unequal masses and when a galactic f ie ld  w a s  present; the  escapes 
took place i n  directions which made a small angle with the galact ic  plane. 

and continued 

I 
and Wielen [5]. The experimental relaxation times agree 

of 

The author [T] has studied systems with 15 stars of equal and unequal 

1 
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SYMBOLS 

E : number of stars. 

In. : mass of the i-th star. 
1 

xis yis zi : coordinates of the i-th star in the Qxyz frame. 

k, fi, ti : canpcments of the i-th star velocity. 

EgS gi, ki : coplponenfs of the i-th star  acceleration. 

r.. 
1J 

2 
V. 
1 

2 r. 
1 

RO 

vO 

(0 

2 k z  

2 2 
(x. - xi)2 + (yj - yi) + (zj  - zi) is the distance bet- : 

1J J 
ween the i-th and j-th stars. 

2 2 2 2 : v, - fEi + fi + ti 
1 

2 2 2 : r. - x. + yi 
1 1 

: Sun's distance fran the galactic center. Ro = 10 pc. 

: rotational velocity of the Galaxy in the galactic plane at dis- 
tance Ro from the center. Vo = 250 lan/sec. 

: w - -  025 x l~-~~aa/sec.pc. 
RO 

: component of the force perpendicular t o  the galactic plane in the  
Vicinity o f t h e  Sun at the distance z fromthe galactic plane. 

: oort constants 
A - 15 EEm/sec.kpc ; B - - 10 h/sec.kpc. 



1 

G : Gravitatiannal constaat. 

:A - - 2 ~  ( A + B + @  ). 

STATEMEIVT OF THE PROBm 

The ar t i f ical  clusters were placed on a circular orbit (C)  of ,radius Ro 
i n  the galactic plane, R beeingthe Sun's distance f ran the  galactic center. 
The galactic potential wh choosem t o  have both axial synunetry and synnnetry 
with respect t o  the galactic plene. Since the stars do nut go very far frau the 
circonference of the rlrdius R , we w i l l  use a Taylor development of t h e  poten- 
tial in the vicinity of the lgtter; the galactic potential in the Sun's neie-  
borhood is  determined by the Oort constants end the ccmpanent of the force 
perpendicular t o  the galactic plane. 

the circonference (C)  with the constant angular velocity LO . Fig. 1 
The stars w i l l  be referred t o  a rotating frame whose origin 0 describer 

TEE EQUATIONS OF MCSTIOIV AIVD THE FIRS!l m G R A , L S .  

I n  the Sbcya frame the e q u a t h s  Or motion of the i-th star can be written 

*i 
j=l 

m. m. 

r.. 
1J 

G (xj - xi) 

m. m. 

r.. 
1J 

0 (a j  - ai) 



In order t o  know at each instant  the  posi t ions and the  ve loc i t ies  of all 
t he  stars, we thus have t o  integrate  a system of 6 N  d i f f e r e n t i a l  equations of 
t he  first order. 

r e s t  i n  the Qxyz frame i f  i t s  velocity w a s  zero at t = 0. 

three-body problem can be found, which,in the  absence of an external  f ield,  
reduces toothe energy integral .  This first in t eg ra l  can be wri t ten 

It can be shown that the  center of m a s s  of the  stellar system remains at 

On t he  other hand a first in tegra l  s imilar  t o  the  Jacol i  i n t e r n a l i n  t h e  

We thus have seven quant i t ies  which should remain constant i n  the course 
of time and which a l l o w  us t o  control t h e  integration. However the  "energy" 
in tegra l  i s  by f o r  t he  most sensi t ive t o  e r ro r s  i n  the integration and thus  
defines the precision. 

THE METHOD OF INTEGRATION 

In general, the  integration of t h i s  kind of problem is very long and the  
use of an individual and variable s tep  becomes indispensable. 

Computing time can fur ther  be saved by calculat ing at each integrat ion 
s tep  not all t h e  forces which ac t  on a star but only those which have varied 
appreciably. We are thus lead t o  introduce f o r  each force a t h e  scale  which i s  
the  time a f t e r  which t h i s  force i s  recalculated. 

t h e  scales pertaining t o  the  different  calculated forces may not have any 
value but only cer ta in  determined values which form a geometrical progression 

In order t o  achieve t h i s ,  we "quantify" the  t i m e  by deciding tha t  t h e  

where to is a uni t  time and b an integer  grea te r  than 1 ; - to must be of 
b 

the order of the  la rges t  possible time scale. 

with each categoryt having a determined time scale;  t h e  category corresponding 
t o  t h e  t h e  scale  2 w i l l  be cal led category m. 

In  t h i s  manner, the  forces are arranged i n  a cer ta in  number of categories 

bm 

The stars themselves are  grouped i n  categories; the category order t o  



which a star belongs is  tha t  of the highest category t o  which one o r  more of 
t he  forces acting on the  star under consideration belong. 

increasing order corresponds roughly t o  a decreasing distance from the  central  
region; however, t h i s  localization is  only approximative as the  two ccanponents 
of a close binary s i tuated far from the  central region w i l l  belong t o  a high 
order category. 

Physically, we w i l l  thus have a s m a l l  central  nucleus i n  the cluster  whose 
stars belong t o  the  highest appearing category and i n  which the  forces W i l l  very 
often be recalculated; we then have a larger nucleus containing the stars of 
the  two highest categories and i n  which the  forces W i l l  be recalculated b times 
less, and so on. 

only the  stars of one nucleus. The effect  on the nucleus of the external stars 
is  represented by a time polynomial which i s  reajusted at the  end of the  inte- 
gration step. 

category. Each time tha t  it is  reconsidered in  the  integration process, it m q r  
be able t o  pass t o  a different category depending on i ts  s i tuat ion re la t ive  t o  
the other stars. Thus categories can appear which have an order higher than the 
ones used at the  beginning of the calculation. However a l i m i t  i s  fixed fo r  the 
highest order w h i c h  can appear. The method is described with more de ta i l s  i n  [+I . 
saving calculation time. T i l l  now only integration formulae of t he  first order 
have been used. However the u t i l i za t ion  of higher  order formulae w i l l  probably 
increase t h e  precision without an exagereted increase of computing t h e ,  i.e, 
the efficiency of the method w i l l  be increased. 

As far as the  stars are concerned, t h i s  c lass i f icat ion i n  categories of 

Thus at any given morment w e  integrate the equations of motion considering 

Finally, it is  obvious tha t  a star w i l l  not always belong t o  t h e  same 

This integration method has prooved t o  be useful from the  Viewpoint of 

THE INITIAL CONDITIONS 

Similar i n i t i a l  conditions were used in  all cases, viz,a constant density 
stellar dis t r ibut ion within a sphere of 1 p c  radius and an isotropic and uni- 
form velocity distribution; at t = O  
t h e  velocity magnitudes such tha t  the vir% theorem is  satisfied and t h e  center 
of m a s s  remains at rest at t he  origin. 

cases N = 3 1  there is  
t o t a l  m a s s  of 80 . 

a suitable transformation i s  applied t o  

For N=25, 32 and 48, the  stars all have masses equal t o  1 Mo . In the  
1 star of 16 Ma, 8 stars of 2 Ma and so on yielding a 

RESULTS 

The investigation of sy tems with 25. 31, 32 and 48 stars during a time 8 6 in te rva l  varying from 30 x 10 years t o  90 x 10 years leads t o  the following 
general results . 



1) The cent ra l  density increases i n  s p i t e  of s ign i f icant  f luctuat ions 
whether the c lus te r  i s  i so la ted  o r  evolves i n  t he  ga lac t ic  f i e l d  o r  whether i f  
contains stars of different  masses or  not. For t he  e amples calculated,  the 
density a t ta ins  mean values greater  than 2500 bb /peg i n  the  cent ra l  nucleus. 
The number of stars making up the  cent ra l  peak diminishes w i t h  time. It is 
re la t ive ly  s m a l l  when the  c lus te r  contains stars of d i f fe ren t  masses; i n  t h i s  
case it i s  t h e  more m a s s i r  

2) The escape rate depends largely on t h e  mass d is t r ibu t ion  whether the 
c lus t e r  i s  i so la ted  o r  not; it i s  much higher when the c lus t e r  contains stars 
of different masses; i n  t he  examples here considered t h e  rate does not seem t o  
increase i n  t h e  presence of a ga lac t ic  field. 

Their number is not b ig  and they are more stable when they contain one very 
m a s s i v e  star. In  the  case of c lus te rs  w i t h  stars of equal masses, it may happen 
tha t  one member of the  binary changes i ts  companion star, the  new canpanion al- 
ways already belonging t o  the  cent ra l  nucleus. 

t i on ,  t he  velocity d is t r ibu t ion  shows a s ignif icant  deviation from the  
Maxwellian distribution. 

the  vicini ty  of t he  ga lac t ic  plane is  the i r  f la t tening.  This f la t ten ing  is not 
due t o  s t a r s  which have escaped; i n  fac t ,  it is  found tha t  the  c lus te rs  l e f t  
behind are s t i l l  s ign i f icant ly  f la t tened  i n  a direct ion normal t o  t h e  ga lac t ic  
plane. Due t o  t h i s  reason the  remaining c lus te rs  have a la rge  extension i n  the  
ga lac t ic  plane. This fac t  might be important from the  observational viewpoint; 
hence, when a ga lac t ic  c lus te r  i s  observed, it is possible tha t  i t s  cent ra l  
region - which is la rger  than t h e  s m a l l  cen t ra l  dense nucleus - i s  taken t o  be 
the  whole c lus te r ,  t he  stars which a re  f a re r  away beeing held f o r  f i e l d  stars. 
The fac t  t ha t  t he  calculations show i n  which direct ion the  f la t ten ing  occurs 
and give an idea of i t s  magnitude could help i n  looking f o r  stars which belong 
t o  a galact ic  c lus te r  but a re  faz from t h e  cent ra l  region. 

stars which contribute t o  the  cent ra l  density peak. 

3 )  A formation of close binar ies  i s  observed i n  the  s m d l l  cen t ra l  nucleus. 

4 )  As we may expect on account of the  reasons discussed i n  the  introduc- 

5 )  Finally, t h e  result which spec i f ica l ly  applies t o  c lus te rs  evolving i n  

FUTURE RESEARCH I 
We intend t o  continue t h e  simulation of ga lac t ic  c lus te rs  w i t h  IJ of the  

order of 100, us ing  a more powerful computer than t h e  one used fo r  the  preceding 
investigations ( IBM 7040 ) . 

The cent ra l  regions of c lus te rs  should be investigated more carefully 
during larger  physical times. In  par t icu lar ,  it would be interesting to know 
t h e  r a t e  of formation of binar ies  w i t h  more precision and to compare with 
observations. This  r a t e  might lead t o  a dynamical determination of t he  ages of 
c lus te rs  if t he  existence of or ig ina l  b inar ies  i s  excluded, i.e., of b inar ies  
ex is t ing  since the  b i r t h  of t he  c lus te rs  and issuing from a condensation of 
t he  gaz into two very close stars. On t h e  same plan, t h e  evolution of such 

i 



I .  . 
binaries  i n  an a r t i f i c i a l  c luster  could also be investigated. 

integration method. This also is  a point which w i l l  be developed. 
The execution of these projects necessitates a higher precision i n  the  
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ONE- h D  TWO-DIMENSIONAL MODELS TO STUDY 

THE EVOLUTION OF STELLAR SYSTEMS 

by Frank Hohl 

Langley Research Center I 1 > I  I 1 .  

A variational principle has been applied to one-dimensional stellar 

systems to show that stationary distribution functions which are always de- 

creasing in going outward from the center of the system are stable. 

stationary distributions may be unstable as is illustrated by means of com- 

puter experiments. 

Numerical experiments with a simple two-dimensional rod model show that 

Other 

the spiral structure and other filamentary structure of galaxies may result 

from purely gravitational effects. 

It will now be shown that the minimum energy property which has been ob- 

tained by Hohl and Feix (ref. 1) for a special distribution can be extended to 

arbitrary distribution functions. The water-bag model illustrated in figure 1 

is used in the analysis. The contours vjk)(x,t) 

surfaces of constant distribution function 

and ~(~)(x,t) describe - 
f = fk. According to the 

Liouville theorem the phase space bounded by the contours is incompressible 

so-that the area bounded by the contours is conserved. 

large number of contours the water-bag model can be used to construct arbi- 

trary distribution functions. 

In the limit of a very 

(k) =v (k) =v (k) - To simplify the equations we assume symmetric contours v+ 

It is easily shown (ref. 2)  that the equations which stationary contours v (k) 
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must s a t i s f y  a r e  

E i s  given by 

E(x) = 4rGm (s -21 Ak (x)) 
k 

where G is t h e  g r a v i t a t i o n a l  cons tan t ,  N i s  t h e  number of  mass shee t s ,  

each of mass m pe r  u n i t  a r e a ,  i n  t h e  system. 

Ak i s  defined by t h e  d i s t r i b u t i o n  func t ion  

f = 1 Ak [6-1 (v-v ( k ) )  - 6 , (v-vjk)) l  

Z 

with 6 - ( z )  =Im 6(C)dr;. The va r i ab le  used i n  equation (2)  is  

where x (k) i s  the  end po in t  of t h e  contour k. The t o t a l  energy of t h e  
S 

system i s  

Extremizing the  i n t e g r a l  f o r  W r equ i r e s  t h a t  g s a t i s f y  t h e  Euler-Lagrange 

equation 
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or 

which are the equations for the stationary contours. 

If equations ( 6 )  are to represent a minimum energy configuration then 

Legendre's criterion of the second variation of g must be satisfied. That 

is, the quadratic form whose coefficient matrix has the elements 

must not be negative. Since only the diagonal elements 

are nonzero, the Legendre condition requires that 

Ak > 0 (9) 

for all k .  Equation (9) is equivalent to stating that the distribution 

function must always decrease in going outward from the center of the system 

where f = f must be the largest, If equation (9) is satisfied the system 

is a minimum energy configuration and is always stable. 

is not satisfied for all 

The system may then be unstable since the contours 

1 

\'O However, if 

k the system is not a minimum energy configuration. 

v (k)  can now be deformed 

while keeping the total system energy constant. Numerical experiments with a 

I 
one-dimensional model have been performed f o r  two contour systems to illus- 

trate the interchange instability which destroys the stationary state. For the 



two systems investigated 

contours for four values of 

energy. 

In the first case shown in figure 3 the ratio of the minimum to maximum star 

energy is 0 .4 .  

system are quickly distorted while the heavier outer water bag tries to dis- 

place the inner bag. 

ratio of minimum to maximum star energy equal to 0.25. 

stability is now much slower because the central water bag or hole is much 

smaller . 

A1 = -A 

u, the ratio of the minimum to maximum star 

Figure 2 shows the normalized stationary 2 '  

The results of  the computer experiments are shown in figures 3 and 4. 

The figure shows that the stationary contours of the 2000 star 

Figure 4 shows the results for a 2000 star system with a 

The growth of the in- 

Results of additional computer experiments have shown that certain dis- 

tribution functions, E ( U ) ,  that are not always decreasing with increasing 

energy, U, remain stable over many periods, ZIT/-, where p is the mass 

density of the sheets per unit area. For such distribution functions the bulk 

of the "stars" are in a region where F(U) 

F(U) 

develop in the two-dimensional phase space (ref. 2). 

is monotonically decreasing but 

has a high energy bump corresponding to particles in the spiral arm that 

The evolution of two-dimensional stellar systems made up of mass rods 

that are of infinite extent in the z-direction has also been investigated for 

400 and 500 rod systems. 

tained by summing directly over the l/r force from each mass rod. 

time-consuming process and the application of fast methods of solving the 

Poisson equation would speed up the calculations. 

size which would be required by the method of solving the Poisson equation 

will smooth the force due to the near neighbors of the particles and will 

The force acting on a particular mass rod is ob- 

This is a 

The relatively large grid 



affect t h e  evolut ion of t h e  system. The e f f ec t  of t h e  near  neighbors i s  i n -  

cluded i f  t h e  f o r c e  ac t ing  on a mass rod i s  obtained by summing d i r e c t l y  t h e  

l/r 

study t h e  evolut ion of a system of mass poin ts  moving i n  a plane.  

a l s o  be done by simply summing t h e  l/r2 force from each mass po in t .  However, 

t h e  more r a p i d  divergence of t h e  force f o r  near  neighbors now requ i r e s  

t h a t  a much smaller time s t e p  be used i n  the  computations r e s u l t i n g  i n  a con- 

s ide rab le  inc rease  i n  computer time. 

f o r c e  from each p a r t i c l e  i n  t h e  system. I t  would be more d e s i r a b l e  t o  

This  can 

l/r2 

The system is  advanced i n  time i n  t h e  following manner. F i r s t ,  t h e  fo rce  

ac t ing  on a l l  p a r t i c l e s  is  computed by summing t h e  

p a r t i c l e s .  Second, t h e  system is  advanced for  a small t i m e  s t e p  A t  and the  

process is repeated.  

coordinate  space.  

momentum i s  computed t o  check on t h e  accuracy of t h e  computations. 

i z a t i o n s  ~ I T G  = 1 and m = 1 have been used f o r  a l l  t h e  ca l cu la t ions .  

l/r f o r c e  f o r  a l l  

The r e s u l t s  of t h e  ca lcu la t ions  are displayed i n  x-y 

During t h e  ca l cu la t ions  the  t o t a l  energy and angular  

The normal- 

Figure 5 shows t h e  time development of a system of 400 mass rods which 

has an i n i t i a l l y  rec tangular  d i s t r i b u t i o n  o f  uniform dens i ty  i n  

The system has  an i n i t i a l  thermal energy equal t o  1/5 of t he  i n i t i a l  p o t e n t i a l  

energy p lus  an  i n i t i a l  s o l i d  body r o t a t i o n  equal t o  near ly  twice t h a t  required 

t o  oppose t h e  g r a v i t a t i o n a l  fo rce  towards the  cen te r  of t h e  system. I t  can be 

seen from f i g u r e  5 t h a t  t h e  system quickly  develops i n t o  a barred s p i r a l .  

However, a t  a later time t h e  s p i r a l  s t r u c t u r e  has almost completely disappeared 

and t h e  system approaches a configurat ion similar t o  an e l l i p t i c a l  galaxy. 

x-y space. 

-1 The time has been normalized t o  

r o t a t i o n .  

wr , t h e  inverse of t h e  frequency of 
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The remaining 

systems which have 

two-dimensional ca l cu la t ions  were performed f o r  500 p a r t i c l e  

an i n i t i a l l y  uniform c i r c u l a r  d i s t r i b u t i o n  i n  x-y space 

and zero thermal ve loc i ty .  

var ious values o f  i n i t i a l  s o l i d  body r o t a t i o n .  

t a ined  by using a random number generator  which gives  a nea r ly  uniform d i s t r i -  

but ion over a c i r c u l a r  reg ion-of  t h e  x-y plane.  

The evolut ion o f  such systems i s  then s tudied  f o r  

The i n i t i a l  p o s i t i o n s  a r e  ob- 

We now present  t h e  r e s u l t s  f o r  t h e  case where the  frequency of  r o t a t i o n ,  

w equals w t h e  frequency required such t h a t  t he  cen t r i fuga l  f o r c e  ba l -  

ances t h e  g rav i t a t iona l  force .  Thus, 
r’ g’ 

where p 

evolut ion of t he  system i s  shown i n  f i g u r e  6 .  

i s  the  mass dens i ty  of t h e  rods p e r  u n i t  length.  

The time has  

-1 o . Figure 6 shows t h a t  t h e  system i s  r e l a t i v e l y  s t a b l e .  
g 

The r e s u l t i n g  

been normalized t o  

-1 A t  t = 6 . 3 2 ~  
g 

t h e r e  appear four  i r r e g u l a r  s p i r a l  arms. 

arms almost completely disappear and t h e  system takes an appearance remin- 

i s cen t  of an e l l i p t i c a l  galaxy. 

However, a t  a la ter  time t h e  s p i r a l  

The r e s u l t s  f o r  t he  case of  zero i n i t i a l  r o t a t i o n  a r e  presented next .  

Figure 7 shows t h a t  a f t e r  an i n i t i a l  implosion t h e  system expands again and 

p resen t s  some highly i r r e g u l a r  f i lamentary s t r u c t u r e .  

t h e  temperature o f  t he  system increases  due t o  t h e  randomness of  t h e  i n i t i a l  

pos i t i ons .  

o s c i l l a t i o n s  and t h e  system again takes  a form similar t o  an e l l i p t i c a l  galaxy. 

After a second implosion 

The pressure  due t o  the  temperature then tends t o  reduce t h e  

J. For w = - w 
r * g  

again.  The r e s u l t s  

t h e  system again c o n t r a c t s  i n i t i a l l y  and then expands 

a r e  shown i n  f i g u r e  8. An i r r e g u l a r  s t r u c t u r e  appears 



-1 
8 i n i t i a l l y  which tends t o  disappear  a t  a l a t e r  time. 

t h e  system i s  c lus t e red  i n t o  two aggregates which combined again a t  a la ter  

t i m e .  

Also a t  t i m e  t = 4 . 2 0 ~  

In f i g u r e  9 t h e  r e s u l t s  f o r  t h e  case w = 1.3 w are shown. The system 
r g 

pu l sa t e s  and shows some i r r e g u l a r  s t ruc tu re .  

similar t o  t h a t  of t h e  previous case f o r  w = - w . 
The general  behavior i s  very 

1 
* 2 g  

The simple two-dimensional model f o r  a s te l la r  system showed t h a t  s p i r a l  

and o the r  f i lamentary s t r u c t u r e  can r e s u l t  from pure ly  g r a v i t a t i o n a l  effects. 

Since t h e  s p i r a l  s t r u c t u r e  and o t h e r  f i lamentary s t r u c t u r e  tend t o  disappear  

i n  time one would conclude t h a t  t h e  s p i r a l  ga lax ies  a r e  young ga lax ies  which 

la te r  develop i n t o  e l l i p t i c a l  ga lax ies .  However, t hese  r e s u l t s  should be con- 

firmed with a computer model using po in t  masses t h a t  are confined t o  move i n  a 

plane.  
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Figure 1.- Illustration of a multiple contour water-bag distribution. 
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Figure 2.- Stationary contours for two-contour water-bag distributions. 
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Gravi ta t ional  Experiments with a 

Cy1 ind r i ca l  Galaxy? 

by 

R. W .  Hockne 
I n s t i t u t e  f o r  Plasma R e s e a r c q d t a n f o r d  Universi ty  

A computer model i s  used t o  perform g rav i t a t iona l  experiments on the  

evolution of a two-dimensional galaxy. The motion of 2000 rod-stars  i s  com- 

puted step-wise i n  t i m e  as they move according t o  Newton's l a w  of motion i n  

t h e i r  mutual g rav i t a t iona l  f i e l d .  

The e f f e c t  of c o l l i s i o n s  between stars may be estimated from t h e  

formula* 

'rot 1 

'coll  
- = -  

N loge (k) 
where 

- t h e  c o l l i s i o n  t i m e  T c o l l  

- t h e  r o t a t i o n  t i m e  of the galaxy 'rot 

N - t o t a l  number of s t a r s  i n  t h e  galaxy 

L - diameter of galaxy 

H - mesh spacing used i n  solution of Poisson's equation. 

= 630 Trot. W e  are s tudHng below phenomina %oil In the  cases  described below 

over a t i m e  span between 1 and 10 g a l a c t i c  ro ta t ions  and f o r  thebe i n t e r v a l s  

t h e  computer model does represent  a co l l i s ion le s s  s t a r  system, and i s  thus a 

good model of a real galaxy. 

A. THE: STABILITY OF A BALANCED ROTATING CYLINDER 

Figure 1 shows t h e  t i m e  development of a r o t a t i n g  c y l i n d r i c a l  galaxy of 

stars i n  which t h e  i n i t i a l  ro t a t ion  i s  such a s  t o  balance the  g rav i t a t iona l  

a t t r a c t i o n .  For  t h e  case of constant density, t h i s  

'The f u l l  paper w i l l  appear i n  t he  Astrophysical Journal .  

See t h e  e a r l i e r  paper i n  t h i s  symposium "Preliminary Measurements of Noise 
i n  a Two-dimensional Rod Model of a Plasma" 

* 

337 



condi t ion  is  s a t i s f i e d  i f  t he  c y l i n d e r  i s  g iven  a solid-body r o t a t i o n  

w i t h  angular frequency: 

where p i s  t h e  cons t an t  mass d e n s i t y  of the c y l i n d e r .  A c h a r a c t e r -  

i s t i c  t i m e  of t h e  problem i s  t hen  the r o t a t i o n  per iod:  

which is used a s  the  u n i t  f o r  t i m e  measurements. The t ime-step i s  

t aken  t o  be approximately one hundredth of t h i s  pe r iod .  I n  the  i n i t i a l  

cond i t ion  

and given an angular  r o t a t i o n  of 

cons tan t  densi ty ,  due t o  t h e  random d i s t r i b u t i o n  of d i s c r e t e  rods, pro- 

( t  = 0 )  mass rods a r e  d i s t r i b u t e d  a t  random wi th in  a c i rc le  

The smal l  d e v i a t i o n s  from a * 
t 

v i d e  small i n i t i a l  d i s tu rbances  t o  a p e r f e c t l y  balanced s t a t e  from which 

i n s t a b i l i t i e s  may grow. Between t = 0 and t = 0.8 s u r f a c e  waves 

grow, l ead ing  t o  a d i s t i n c t l y  f l u t e d  shape a t  t = 0.8 . I f  w e  d e s c r i b e  

t h e  sur face  p e r t u r b a t i o n  i n  r a d i a l  coord ina te s  a s  a cos  kQ , where 

8 is t h e  azimuthal angle ,  t h e n  t h e s e  f l u t e s  correspond t o  a wave number 

k , of f o u r  o r  f i v e .  A f t e r  t = 1.0 the  wave number k = 2 begins  

t o  dominate t h e  d i s tu rbance .  The c y l i n d e r  now resembles an egg r o t a t i n g  

a t  CD 

r e s u l t i n g  i n  the  galaxy having  maximum e c c e n t r i c i t y  a t  

* 
The amplitude of t h e  k = 2 mode v a r i e s  p e r i o d i c a l l y ,  ro t  

t z 3.0 and 

t 25 7.0 , and becoming almost c i r c u l a r  aga in  a t  t Z 5.0 and t = 9.0 . 
Measurements a r e  made of t he  ampli tude and phase of t h e  f i r s t  4 

harmonics of p o t e n t i a l .  The k = 1 harmonic remains a t  cons t an t  

amplitude s i n c e  t h i s  fo l lows  from t h e  absence of l i n e a r  momentum i n  



t h e  i n i t i a l  cond i t ion .  Harmonic k = 2 appears a s  a s tanding  wave 

w i t h  r e spec t  t o  a frame r o t a t i n g  with angular v e l o c i t y  cu 

harmonics k = 3 and 4 behave a s  s tanding waves wi th  r e spec t  t o  f rames 

* r e spec t ive ly .  The f requencies  of t h e  r o t a t i n g  a t  

s t and ing  waves are such t h a t  they  can be represented approximately by 

the d i s p e r s i o n  r e l a t i o n s h i p  

S i m i l  a r l  y * 
r o t  ' 

* 
2umt and %rot  

The balanced r o t a t i n g  c y l i n d e r  i s  thus  uns tab le ,  bu t  non-l inear  

e f f e c t s  l i m i t  t h e  ampli tudes of t h e  d is turbances  to  about a f i f t h  of 

t h e  i n i t i a l  r a d i u s .  There i s  no evidence ( a t  l e a s t  over  t h e  t i m e  s c a l e  

of 10 r o t a t i o n s )  of any tendency f o r  t h e  cy l inde r  t o  f i s s i o n  and d i v i d e  

i n t o  t w o  lumps. Th i s  confirms, i n  two-dimensions, t h e  f ind ings  of 

L y t t l e t o n  (1953) who concltides t h a t  such a f i s s i o n  process  w i l l  no t  

occur  i n  a r o t a t i n g  g r a v i t a t i n g  f l u i d  and t h e r e f o r e  cannot be t h e  o r i g i n  

of double s tars ,  a s  was proposed by Jeans  (1919, Page 102) and o t h e r s .  

B. THE CASE OF ZERO ROTATION 

F igure  2 shows t h e  t i m e  development of the c o l l a p s e  of a c y l i n d r i c a l  

galaxy of s t a r s  w i th  no i n i t i a l  angular  momentum. Between t = 0 and 

t = 0.2 t h e r e  i s  a r a d i a l l y  d i r e c t e d  implosion. The c o l l i s i o n l e s s  

n a t u r e  of t h e  model however a l lows t h e  s t a r s  t o  pass  through each o t h e r  

and expand a g a i n  t o  about t h e  i n i t i a l  radius ,  dur ing  which t i m e  condensa- 

t i o n  occurs .  A t  t = 0.4 f i v e  d i s t i n c t  condensations a r e  v i s i b l e  

which a f t e r  a f u r t h e r  implosion and expansion have, a t  t = 0.8, become 

concent ra ted  i n t o  t h r e e  g lobu la r  lumps. By t @ 2.0 t h e s e  t h r e e  
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lumps have become fused  i n t o  a single condensat ion which r e p r e s e n t s  a 

s t eady  s t a t e .  Th i s  s t a t e  i s  one i n  which t h e  g r a v i t a t i o n a l  a t t r a c t i o n  

i s  balanced by the  temperature  ( o r  random motion of t h e  s t a r s  about 

t h e  c e n t e r ) .  

The vast  ma jo r i ty  of  the s t a r s  a r e  d e s c r i b i n g  o s c i l l a t o r y  motion wi th  

a sho r t  per iod i n  t h e  main mass of t he  condensat ion,  or nuc leus .  Some 

30, which might be descr ibed  a s  t h e  h a l o  s t a r s ,  have a h ighe r  energy 

and desc r ibe  o s c i l l a t o r y  motion out  t o  about f o u r  o r  f i v e  t i m e s  the 

r ad ius  of t h e  nuc leus .  The per iod  of  o s c i l l a t i o n  of t h e  h a l o  s t a r s  i s  

some 10 t i m e s  t h a t  of the s t a r s  i n  t h e  nuc leus .  The s e p a r a t i o n  of the 

s t a r s  i n t o  two c l a s s e s  i s  c l e a r l y  seen  even a s  e a r l y  a s  

t h e  major i ty  of s t a r s  have imploded f o r  t h e  second t i m e  i n t o  a small  

r a d i u s  w h i l s t  t h e  h a l o  s t a r s  a r e  l e f t  s c a t t e r e d  o u t  a s  f a r  a s  twice the  

r ad ius  of  t h e  i n i t i a l  c y l i n d e r .  

I n  the movie one can d i s t i n g u i s h  two c l a s s e s  of s t a r s .  

t = 0.6, when 

C . TOO LITTLE ROTATION 

Figure 3 shows the c o l l a p s e  of a c y l i n d r i c a l  ga laxy  which has  

i n i t i a l l y  ha l f  t h e  angular  v e l o c i t y  necessary  t o  ba lance  g r a v i t a t i o n a l  

a t t r a c t i o n .  In  t h e  t i m e  development w e  see a mixture  of the  e f f e c t s  

noted i n  XIIA and f I I B .  There i s  now a tendency f o r  t h e  c y l i n d e r  t o  

p u l s a t e  between a maximum and minimum r a d i u s  a s  seen  a t  

t = 0.8  r e s p e c t i v e l y .  

i s  most pronounced when t h e  maximum rad ius  i s  reached and the v e l o c i t i e s  

a r e  small .  These s u b s i d i a r y  condensa t ions  a s  seen  a t  t = 0.6 and 

t = 1.0 a r e  f i l amen ta ry  i n  shape r a t h e r  t han  t h e  g l o b u l a r  condensa t ions  

seen  i n  t h e  absence of r o t a t i o n .  Between t = 1.4 and t = 1.8 ba r red  

s p i r a l  s t r u c t u r e s  a r e  ev iden t  bu t  these seem t o  be s h o r t l i v e d  and from 

t = 0.4 and 

The tendency t o  condense i n t o  s m a l l e r  p i e c e s  
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t = 2.0 

s teady  s t a t e  seems t o  have been set up which i s  roughly c i r c u l a r  and i s  

the  two-dimensional analogue of an e l l i p t i c a l  galaxy, 

t o  t = 4.4 t h e r e  i s  no evidence of s p i r a l  s t r u c t u r e  and a 

I n  order  to  show t h e  s t r u c t u r e s  i n  more d e t a i l  we have performed 

t h e  case  of ha l f  t he  necessary r o t a t i o n  with twice the  r e so lu t ion  i n  

space ( t h e r e  a r e  now 32 space cells  across  t h e  cy l inde r  a s  compared w i t h  

16 previously)  and with ha l f  t h e  time-step. 

The motion i s  followed from t = 0.0 t o  t = 2.4 and follows t h e  same 

general  development a s  t h a t  of Fig.  3 but t h e  g r e a t e r  space r e so lu t ion  

enables  more subs id ia ry  condensations t o  occur;  about 10  a t  

and t h e  s p i r a l  s t r u c t u r e s  a re  more pronounced. T h i s  i s  because t h e  

model d iv ides  t h e  square region i n t o  a 48 x 48 mesh o r  2304 space-cel ls  

and i s  such t h a t  t he  fo rce  between mass-rods vanishes i f  both rods a r e  

i n  t h e  same space-cel l .  Thus no condensation can be held toge ther  t h a t  

i s  smaller  than t h r e e  or  f o u r  cells  i n  diameter which i s  about t he  s i z e  

of t h e  smal le r  condensations a t  t = 0.6 . The f i lamentary na ture  of 

these  condensations appears t o  i n d i c a t e  t h e  presence of s i g n i f i c a n t  

r o t a t i o n  and i s  reminiscent of t he  condensations seen i n  red- l igh t  

photographs of t h e  Crab Nebula, NGCl952. Filamentary condensations a r e  

a l s o  seen i n  some pecu l i a r  ga lax ies ,  f o r  example compare Fig.  4 a t  

t = 1.1 o r  F ig .  3 a t  with the galaxy NGC1741 ( A r p  1966 

number 259 p l a t e  44). 

This  i s  shown i n  F ig .  4. 

t = 0.6 

t = 1.0 

Between t = 2.0 and t = 2.2 one can see t h e  evolut ion of a 

s p i r a l  s t r u c t u r e  i n t o  a barred s t r u c t u r e  by purely g r a v i t a t i o n a l  e f f e c t s .  

The s t r u c t u r e  a t  t = 2.0 resembles f o r  example t h e  Sc galaxy 

NGC5457 ( M 1 0 1 ,  Sandage 1961 p l a t e  27) and t h a t  a t  t = 2.2 t h e  SBb 



galaxy ~ ~ 5 8 5 0  ( f r o n t i s p i e c e  of Chandrasekhar 1942, p l a t e  I1 Hubble 

1936). Examination of the  movie shows t h a t  t h e  motion of t h e  s t a r s  

i n  t h e  s p i r a l  arms a t  

t h e  arm, from t h e  ou t s ide  inwards. Thus t h e  a m  is roughly the o r b i t  

of t h e  s t a r s  which compose t h e  arm. One can a l s o  d i s t i n g u i s h  a 'ha lo  

of s t a r s '  which execute e c c e n t r i c  o r b i t s  with a long per iod.  These 

o r b i t s  pass c l o s e  t o  the  cen te r  of the nucleus and reach out  t o  the 

edge of t h e  square region. The major i ty  of the s t a r s  move i n  much more 

c i r c u l a r  o r b i t s  i n  t h e  nucleus of t he  condensation. 

t = 2.0 i s  predominatly long i tud ina l ly  along 

D. TOO MUCH ROTATION 

Figure 5 shows t h e  case of a small  cy l inde r  which i s  given i n i t i a l l y  

1.5 times the  angular ve loc i ty  necessary to  balance g rav i ty .  This  i s  

s imi l a r  t o  t h e  case  of F ig .  3 i f  we t ake  t = 0.2 a s  t h e  o r i g i n  of 

t i m e ,  and shows the  same general  evolu t ion  from f i lamentary  condensa- 

t i o n s ,  through s p i r a l s  and barred s p i r a l s  t o  an e l l i p t i c a l  s teady  s t a t e .  

One can see  a resemblance between t h e  S shaped condensation a t  

t = 4.8 

p l a t e  11) or NE3359 (Sandage 1961, p l a t e  49). 

i n  Fig. 3 a t  t = 1.4.  

and t h e  SBc galaxy NGC7479 (Chandrasekhar f ron t i sp i ece ,  Hubble 

This  form i s  a l s o  seen 

The normalized time measurements change r ap id ly  i n  t h i s  ca se  due 

t o  the  h igher  dens i ty  i n  t h e  i n i t i a l  s t a t e ,  and the  r e s u l t i n g  small 

u n i t  of t i m e .  
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N 6 7 - ; 7 7 5 8  - 
COLLECTIVE MOTTONS IN A SPIWICAL STAR CrrJsTElR 

Michel €&on ' 

C .N .R .S .  ,lInstitut d'Astrophysique, Paris 

In contrast to my previous paper (see above: "Monte Carlo methods in 

stellar dynamics"), I shall consider here the first phase of evolution of a 

stellar system, i.e., the mixing phase. 

crossing time tc, which is short compared to the relaxation time tr, so that 

the effect of encounters can be neglected. The mechanism of the evolution is 

then completely different, and also the numerical technique used will be com- 

pletely different. 

The associated time scale is the 
I 

Let us consider the usual picture of the formation of a star cluster. We 

consider a gas cloud in hydrostatic equilibrium and we assume that at a given 

time, for some reason, this cloud condenses into a nurriber of stars. We shall 

not be interested hefe in the mechanism of star formation, but in what happens 

just after the stars are formed. 

between the gravitational force, directed inwards, and the pressure force, 

directed outwards. When the stars are formed, the pressure force suddenly 

vanishes, and the stars fall towards the center. 

Of the star cluster w i l l  begin with a general inward motion. 

For each piece of gas there was a balance 

Thus the dynamical evolution 

On the other hand, as soon as the cluster is condensed into stars, the 

total energy: E = T + Sl, becomes constant. T is the kinetic energy, and S l  

is the potential energy. 

lowed by an expansion: 

its motion on the other side. 

there will be a new contraction, and so on. 

tion of the cluster. Now what will happen in the end? 

Thus we can expect that the collapse will be fol- 

each star will pass near the center, and will continue 

After some time, the expansion will stop and 

We have thus a collective oscilla- 

Will these oscillations 



continue indefinitely,  or w i l l  they be damped, so t h a t  the system w i l l  reach a 

steady state? 

c lus te rs  . 
This i s  of course a very important question i n  re la t ion  t o  actual  

A first  possible numerical approach t o  th i s  problem i s  the exact n-body 

computation. But then, as we have seen (see first paper) n i s  of the order 

of 100 only and the two phases of evolution are  not separated. 

fore not dist inguish between the e f fec ts  of mixing and the e f fec ts  of encounters. 

One can there- 

Another possible approach i s  the representation of the system by a d i s t r i -  

One must then solve the Liouville-Boltzmann equation (also bution function f .  

called Vlasov equation i n  plasma physics), without the col l is ion term, since the 

e f fec t  of encounters can be neglected. 

Fokker-Planck equation, but it i s  s t i l l  a p a r t i a l  d i f f e ren t i a l  equation with 

This i s  much simpler than the f u l l  

seven independent variables i n  the general case. If we assume spherical  sym- 

metry, the number of independent variables can be reduced t o  four: time, t; 

distance t o  the center, 
0 

r; and r ad ia l  and tangential  components of the veloc- 

i t y ,  u and v. This i s  s t i l l  a very d i f f i c u l t  problem f o r  a numerical 

treatment. 

We sha l l  use here a t h i r d  method, which w a s  f irst  described by Campbell 

(1962, 1966). It i s  specially adapted t o  the problem, and it turns out t o  work 

qui te  well. 

metry. 

From now on, we shall assume tha t  the c lus te r  has spherical  sym- 

Then a star is  subject only t o  a cent ra l  force, and i t s  angular momentum 

with respect t o  the center of the cluster  i s  a constant: 

r v  = A = Constant 

and we have the equations of motion: 

i = U  
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and 

where M ( r )  i s  the  mass contained inside the  sphere o f  radius r. These 

equations show that the variation i n  t i m e  of the three quant i t ies  r, u, and 

v i s  completely determined if we know the  i n i t i a l  values of these quantit ies.  

It i s  not necessary t o  know the three other coordinates which would determine 

completely the posit ion and the velocity of t he  star i n  space. 

quence of the spherical  symmetry. 

This i s  a conse- 

In  order t o  take advantage of t h i s  fact ,  we sha l l  col lect  together all the  

stars which have the  same values of r, u, and v. These stars form a spheri- 

ca l  she l l  of radius r. This she l l  expands or contracts with the r ad ia l  veloc- 

i t y  u. The s h e l l  i s  not r igid.  The stars which make up the shel ls  a re  moving 

on the surface of the shells,  with velocity v, i n  a l l  directions. 

The c lus te r  i s  thus made of a number of concentric shells, whose r ad i i  are 

The she l l s  can of course cross each other, since they con- changing with t i m e .  

sist of stars. Each she l l  i s  characterizedby a constant value of A. 

This model i s  very similar t o  the "sheet model" which has been used by 

Lecar and Cohen and by Hohl (see communications i n  the present volume) f o r  

gravi ta t ional  s t r a t i f i e d  systems, and which i s  a l so  widely used i n  plasma 

models. Only the geometry of the problem i s  different :  

plane sheets, we have here concentric spherical shel ls .  

variables instead of two. 

instead of p a r a l l e l  

Also there are three 

A f i r s t  advantage of this method as compared t o  the exact n-body integra- 

t ion,  i s  t h a t  the number of bodies t o  be considered has been very much reduced 

since many stars have been grouped i n  one shell. A second advantage i s  tha t  
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the  computation of the forces i s  very easy. 

t e m s  of 1000 shells, which w i l l  be equivalent t o  physical systems with much 

more than 1000 stars. The two t i m e  scales t, and tr are then w e l l  sepa- 

rated, and the effect  of encounters i s  negligible. 

Thus, one can eas i ly  consider sys- 

In  a f i r s t  computation, a homogeneous spherical c luster  with a Maxwellian 

distribution of veloci t ies  was taken f o r  the i n i t i a l  s ta te .  The quantity 

a = -2T/Q, which according t o  the v i r i a l  theorem should be equal t o  1 f o r  the 
I 

I steady state,  w a s  i n i t i a l l y  equal t o  0.5, so that the veloci t ies  are  too small 
~ 

for  equilibrium and the cluster  s t a r t s  contracting. 

taking: G = 1, M = 1 ( t o t a l  mass), and R = 2 ( i n i t i a l  radius). The num- I 
ber  of shells was 1000. Figure 1 represents the evolution of the space struc- I 

tu re  of the cluster  w i t h  time. 

which contain 1/10, 2/10, . . . of the t o t a l  mass, plotted against time. The 

i n i t i a l  collapse o f  the  cluster  and the subsequent expansion are apparent on 

the l e f t  of t h e  diagram. 

the cluster reaches a steady s t a t e  qui te  rapidly. 

horizontal l i n e s .  

fluctuations ("noise") : 

The f i n a l  structure i s  very different  from the i n i t i a l  structure. 

which contains 1/10 of the t o t a l  mass i s  now much smaller, indicating a much 

greater central density. Also the sphere which contains 9/10 of the mass i s  

greater, indicating the  formation of a halo. 

Units were normalized by 

I 
The curves represent the r ad i i  of the spheres 

After t ha t  the  osci l la t ions are  strongly damped and 

The curves then become 

The smal l  irregular waves  which subsist  are j u s t  s t a t i s t i c a l  

This has been checked by varying the number of shel ls .  

The sphere 

The damping of the osci l la t ions i s  due t o  the different  periods of the 

Stars. 

she l l s  as functions of time. 

There i s  obviously a great difference of period. 

This is  i l l u s t r a t ed  i n  figure 2, which shows the  radii of two par%icukr 

(This i s  taken from a computation with 50 she l l s . )  

I n  general, she l l s  with a 
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greater amplitude i n  r have a longer period. For great amplitudes, Kepler's 

l a w  is approximately obeyed and the  period is proportional t o  r3/2. 

spread of periods explains the  fast damping. 

This 

Figure 3 represents the f l n a l  structure i n  a different  way with the  space 

density plotted against radius. 

state, and the iIiclined curve represents the final steady state. 

are logarithmic. 

The rectangular curve represents the  i n i t i a l  

Both scales 

Figure 4 shuws the dis t r ibut ion of velocit ies i n  the f i n a l  state: The 

mean square of the  tangential  velocity, and twice the mean square of the radial. 

velocity, are plotted against radius. In the i n i t i a l  s ta te ,  these t w o  quanti- 

t i es  would have been represented by the  same horizontal l ine,  because the i n i -  

tial cluster  was  isothermal. The f i n a l  s ta te  i s  far f r o m  isothermal and the 

veloci t ies  decrease outwards. 

the center, and elongated i n  the r ad ia l  direction i n  the  outer regions. 

The astronomical implications of these results have been discussed else- 

Also the velocity dis t r ibut ion i s  f la t tened near 

where (Hgnon, 1964, 1966). 

Other experiments have been made with the purpose, not so much of gaining 

detailed information about actual  stellar systems, but ra ther  of understanding 

collective motions i n  a general way. 

given a theory o r  the  mixing phase, which uses the methods of s t a t i s t i c a l  

Lynden-Bell (1966, 1967) has recently 

mechanics and predicts a def in i te  form f o r  the dis t r ibut ion function 

the f i n a l  steady s ta te .  

of 

In  t he  simple case where the i n i t i a l  dis t r ibut ion 

function f i s  equal t o  a constarit value 7 i n  some region of the phase space 

and t o  0 outside, the  f i n a l  distribution function should be: 
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u2 -I- v2 i s  the t o t a l  energy of a star. U is  the gravitational where E = U + 
potential, and p and p are  two constants, determined by the conditions that 

the t o t a l  mass and the t o t a l  energy of the system must be conserved. 

formally ident ical  w i t h  the c lass ica l  Fenni-Dirac distribution. 

case where f i s  arbitrary,  I; i s  given by a more complicated expression. 

2 

This i s  

In the general 

- In  order t o  test th i s  theory with the shell model, it i s  necessary f irst  

Then each she l l  t o  assume that a l l  shells have the same angular momentum A. 

i s  completely defined by a point i n  a (r ,u) plane, and we have i n  f a c t  a one- 

dimensional problem i n  r. 

the  evolution of the system i n  the  phase plane (r,u) . 
s i t y  of the points i s  constant inside the rectangle 

and the constant A i s  equal t o  0.4. As evolution proceeds, the  rectangle i s  

distorted (b); but it still has a well-defined boundary, with a constant den- 

s i t y  inside, in  accordance w i t h  the property of conservation of density i n  

phase space along the motion. 

period of osci l la t ion of a shel l  i s  shorter f o r  small amplitudes. 

i n s t ab i l i t i e s  appear and tend t o  break the regular pattern (a). 
becomes more and more t i gh t ly  wound (e).  

arms cannot be distinguished any more ( f ) .  

ment of a steady state. 

and if we looked a t  figure 5(f)  on a suff ic ient ly  small scale, we would s t i l l  

see very thin sp i r a l  arms, w i t h  a density equal t o  inside the arms and t o  

0 between them. But  i n  pract ice  we observe a smoothed-out density F. Since 

it results from the mixing of pieces of phase space w i t h  densit ies q and 0, 

0 <_ T 5 q j  th i s  i s  i n  agreement w i t h  

f i s  not constant i n  the  plane, but decreases 

Figure 5 shows, fo r  one of the  cmputed examples, 

I n i t i a l l y  (a), the den- 

1 < r < 2, -0.5 < u < 0.5, 

A sp i r a l  pattern develops (c) ,  because the 

Some loca l  

The sp i r a l  

Final ly  a state is  reached where the 

This corresponds t o  the establish- 

In principle, i f  the number of points w a s  much greater 

q 

Can Only have values i n  the interval  
- 

the  theoretical  equation (1). 
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continuously f r o m  a value close t o  q 

very smal l  values outside. 

i n  the central region (fig. 5(f)) t o  

In order t o  obtain a quantitative check on the theoretical formula, the 

phase plane was divided into a nrmiber of cells. 

figure 5(f), corresponding to di-erent times, were superimposed i n  order t o  

increase the accuracy. 

energy E w e r e  computed. Figure 6 shows the result. Each point corresponds 

t o  one cell .  The abscissa is  the energy E. The ordinate i s  the quantity 

y = Ln 

relation: This i s  q d t e  well verified i n  the l e f t  upper part  

of the diagram, corresponding t o  lox energies. The dotted l ine  represents an 

approximate l inear relationship, which is obeyed by 75 percent of' the mass of 

the cluster. In the right lower par&, th i s  relationship i s  no longer obeyed. 

Lynden-Bell (1967) suggests the explanation that s tars  with great amplitudes 

and long periods go far aut of the cluster and when they come back, the main 

body of the cluster has already sett led into a steady state, so that there i s  

no longer an opportunity fo r  the operation of the mixing mechanism. 

A nuniber of diagrams such as 

Then i n  each cell the ntrmber of points and the m e a  

i= 
q - f '  

If the theoretical relation (I) holds, there should be a l inear 

y = +(E - p) . 

In order t o  avoid th i s  effect, a reflecting sphere was introduced around 

the cluster, with a radius R = 3. 

on th i s  sphere. 

it hits the sphere, and decreases afterwards. 

evolution of the cluster. 

Unexpectedly, instead of the usual fast damping of the oscillations, we observe 

a large collective oscillation which does not seem t o  damp at a l l .  

tude is  an order of magnitude too great t o  be explained by s t a t i s t i c d  

fluctutations. 

Stars are supposed t o  bounce elast ical ly  

The period of a shell  then increases with the amplitude unt i l  

Figure 7 shows the resulting 

The meaning o f  the curves i s  the same as for  f'igure 1. 

Its ampli-  
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This phenomenon can be explained, i n  fac t ,  by a curious phase-locking 

mechanism. 

and which has, at some t i m e ,  a period T somewhat greater than the col lect ive 

period To. It w i l l  soon lag  with respect t o  the general osci l la t ion.  Then 

i t s  energy w i l l  increase, because when it moves inwards the  mass inside it and 

the force acting upon it are  greater than when it moves outwards. 

assuming tha t  the she l l  h i t s  the ref lect ing sphere, an increase of energy means 

a decrease of period. Thus the she l l  w i l l  again catch up with the  others and 

i s  automatically kept i n  phase with the  general motion. 

Consider a she l l  which par t ic ipates  i n  the  collective osc i l la t ion  

But, 

Two conditions are  necessary f o r  the existence of t h i s  mechanism. F i r s t ,  

the  collective osci l la t ion must be started; this was provided by the i n i t i a l  

collapse of the cluster.  Second, the period must be, a t  least i n  some range, a 

decreasing function of the energy; this  was provided by the introduction of a 

ref lect ing sphere. 

Finally, another experiment was  made, without a ref lect ing sphere, and 

with very small i n i t i a l  radial veloci.ties: 

that a very strong collective osci l la t ion resul ts ,  i n  which most she l l s  par t ic i -  

pate. The mechanism cannot be the same as  i n  the previous case. In  fact ,  it i s  

simply an ef fec t  of gravitational ins tab i l i ty .  I n i t i a l l y  the she l l s  have very 

small re lat ive velocit ies,  and under the e f fec t  of t h e i r  mutual a t t rac t ion  they 

f a l l  towards one another, as can be seen on the l e f t  of figure 8. 

then a tight clump which osc i l la tes  j u s t  as one large shel l .  

-0.005 < u < 0.005. Figure 8 shows 

They form 

These various r e su l t s  indicate tha t  the general theory of collective 

motions in  a gravitational system may be rather  complex. 

def ini te  conclusion can be drawn regarding the f i n a l  state of the system. 

are mechanisms which can prevent the establishment of a steady s t a t e  and lead 

In particular,  no 

There 

356 



instead to permanent oscillations. 

rather artifical; but we Cannot be sure that similar mechanism6 do not operate 

in actual clusters. 

lems are clarified. 

O f  course the models considered here were 

Apparently much work remains to be done before these prob- 
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Figure 1.- Structure of the cluster ,  as a function of time. The curves 
represent the r ad i i  of the  spheres which contain 1/10, 2/10, 3/10 ... of 
t he  t o t a l  m a s s .  
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Figure 2.- Motion of two particular shells. 
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Figure 3. -  Spat ia l  density of the cluster,  as a function of distance t o  centre. 
Rectangular curve: i n i t i a l  s ta te .  Inclined curve: f inal  s t a t e .  
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Figure 4.- Radial and tangential  velocity dispersions, as a function of distance 
t o  centre, i n  the f inal  s t a t e .  - 
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STABILITY OF IKJMEEUCAL INTEGRATION AND REx3uLARIZATION 

IN TIB N-BODY PROBLEM 

By V. G. Szebehely, E. M. Standish, 

and C. Frederick Peters 

Yale University 

It is known that the microscopic reversibility of the gravitational n-body 

problem cannot be produced numerically because of the macroscopic irreversibility 

of such a system. 

a computer, and the analyses of individual particle behaviors indicate that this 

effect through caused primarily by two-body encounters, is amplified by cooper- 

ative phenomena. Gross quantities, such as density distribution, moment of 

inertia, etc., as opposed to the microscopic motions of single particles, are 

seen to be well produced when integrated in the forward sense of evolutionary 

time. These same quantities, however, are l ess  accurately represented when the 

integration goes from a later stage of evolution backward toward some set of 

arbitrary initial conditions. 

calculations are discussed. 

Numerical studies of this dynamical effect are performed on 

Implications concerning the reliability of n-body 

Regularization of isolated binary collisions in the planar n-body problem 

can be treated in a manner similar to that used by Levi-CiSita for the restricted 

problem. 

transformation by Kustaanheimo and Stiefelmay be used. 

presented for the planar three-body problem. 

For three-dimensional motion the generalization of the Levi-Civita 

Numerical results are 





VELOCITY AUTOCORRELATIONS FOR HARD SPHERES* 

B. J. Alder and T. E. Wainwright 

Lawrence Radiation Laboratory, University of California 
Livermore, California 

A study of the velocity autocorrelation function for hard spheres 

over the entire f l u i d  density region has shown tha t  deviations from 

exponential behavior are  small. A t  very low density a small positive 

deviation is found which is  accounted for i n  the Boltzmann theory of 

the self-diffusion coefficient by the Sonine polynomial corrections. 

The f i rs t -order  density dependent correction t o  the diffusion coef- 

ficient is given numerically. 

non-Markovian process is identified w i t h  the surprisingly long 

persistence of velocity currents. A t  s t i l l  higher  densi t ies ,  near 

sol i d i  f i ca t i  on , the anticorrel a t i  ng backscattering events predominate. 

A t  higher densities the principle 

.k Published i n  Physical Review Letters, v o l .  18,  no. 23,  June 1967, 
pp. 988-990; work performed under the  auspices of the  U . S .  Atomic Energy 
Commission. 





structure of a 

equation by an 

shock wave by first replacing the steady (time-independent) Kkook 

integral equation, and solving the integral equation by itera- 

tions. The Navier-Stokes solution is taken as a first iterate, and the macro- 

scopic variables (moments of the distribution mction) are obtained at each 

point in space by numerical integration over the velocity space. Convergence 

was rather slow, and many modifications were subsequently employed to improve 

the accuracy. The f ina l  results (ref. 3) were very satisfactory and agree with 

experimental measurements. A similar approach using Gauss-Hermite integration 

and Chebyshev integration, instead of straightforward trapezoidal or Simpson's 

rule, was made by Anderson in 1965. 

gence, and gave high accuracy (refs. 4 and 5 ) .  

the singularity in the time-independent differential operator at 

special procedures were required to treat the kernel of the integral equation 

near this point. 

"his vastly increased the speed of conver- 

3.1 both approaches, because of 

vx = 0, 

A considerable effort is going on in obtaining shock wave structure by 

evaluating the collision integral (in most cases, the actual Boltzmann collision 

integral) by Monte-Carlo methods. Early attempts by Bird and Havilland (ref. 6) 

resulted in a shock profile which was not smooth and had large spacewise oscil- 

lations. 

Hicks, Nordsieck, Yen, etc., at the University of Illinois, and they have 

reported on the "pseudo-shock" problem (spacewise uniform distribution with 

A systematic approach has been made over the past several years by 

discontinuity in velocity space), with careful estimates of errors (ref. 7); 

thus far, however, no accurate structure of an actual shock wave has yet been 

reported. 

A fruitful line of attack using the so-called discrete ordinate method 

has been initiated by Broadwell (ref. 8), Hamel and Wachman (ref. 9), and 



H u g  and Giddens (ref. 10). 

well as to steady problems- 

the moments of f are replaced by sums involving the values fi of f at 

certain discrete points vi - as determined by, say, Gauss-Hermite integration, 

and the Book equation is replaced by a system of' differential equations for 

the fi, which are in turn solved numerically. 

works very well. 

(except again the pseudo-shock (ref. 9)) have been reported yet, although pre- 

liminary indications are encouraging (ref. LL) . 

The method is applicable to unsteady problems 88 

Essentially, the integrations in velocity space of 

For linear problems, the nlethod 

For nonlinear problems involving shock waves, no results 

The author has successfully employed a direct numerical method for the 

Krook equation in one-dimensianalunsteady problems. 

(ref. 1) for the distribution function f(x,3t) 

three (depending on the concrete problem) simultaneous Krook equations, each 

for a fwlction of x, vX, and t. This reduction, resulting from integrating 

out the velocity campollents in the ignorable directions, permits us to deal 

with two or three functions of three arguments, rather than one function of 

five arguments, thus rendering feasible computing storage. The left-hand side 

of the Krook equation is then interpreted as a directional derivative along the 

particle path, and regarding vx 

along each characteristic corresponding to the value of 

in velocity space is carried out numerically by trapezoidal or Simpson's rule. 

This method has been employed to treat the formation of a shock in a conven- 

tional shock tube (ref. l2), and also to study the flow with shock induced by 

the shearing motion of a flat plate (ref. 13) .  

of a steady shock wave was a l s o  obtained merely by resolving an initial dis- 

continuity. 

The Rrook equation 

is first replaced by two or 

as a parameter, the equation is integrated 

vx. The integration 

In reference 12, the structure 

Ih this case, no special treatment was needed for vx = 0, since 



there is no singuhPity corresponding to this point in the time-dependent 

operator. The results 8xe in excellent agreement with those of Chahine. 

These different approaches have given valuable experience and insight to 

the numerical treatment of kinetic equations, and have paved the way to numeri- 

c a l  solution of the actual Boltzniann equation for shuck problems. 

liminary attempts have been reported already (e.g., ref. 14). 

Some pre- 
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COMPUTER EXPERDENTS I N  ELFCTRONICS 

Charles K. B i r d s a l l  

Department of E l e c t r i c a l  Engineering and Computer Sciences 
and Electronics Research Laboratory 

University of California, Berkeley, Cal i fornia  94720 

I 
I AEGTRACT 

Nonlinear and many-body problems i n  e lectron and ion stream devices 
have been s tudied using computers f o r  about 20 years. 

obtain la rge  amplitude response, or noise output spectrum, o r  i n s t a b i l i t y  
f i n a l  s t a t e  and so  on. Pa r t i c l e  models have included sheet, block, disk, 
r ing,  rod, she l l ,  point,  with and without s e l f  f ie lds .  The distinguishing 
fea tures  from plasma problems are: concern with only one species generally; 
in te rac t ion  with applied dc o r  a c  f i e l d s  from nearby electrodes or wave C i r -  
cu i t s .  The answers obtained have ranged from ve r i f i ca t ion  of theory (e. g . ,  
shot noise  from space charge l imited emitter)  t o  device design, t o  yes-no 
answers i n  s t a b i l i z a t i o n  s tudies .  

Pa r t i c l e - in -ce l l  and 
I 

I 
I continuous f l u i d  models have been used i n  init ial-boundary value problems t o  

' 

' T i s  c l ea r  t h a t  there  i s  a great  deal i n  common i n  methods and models. 

The research reported herein was supported i n  pa r t  by Atomic Energy 
Commission under Contract AT( 11-1) -34, Project 128. 
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Computer Expertments of Electronics 

I. Introduction 

The need for knowledge of noise properties and of large amplitude 
response long ago led engineers into use of computer experiments. Noise is 
unwanted random fluctuations about a mean voltage or current, usually rela- 
tively small, due to either the particle nature of electron or ion streams 
(shot noise) o r  thermal fluctuations (velocity noise). The large amplitude 
or large signal response is simply the device output when driven hard, such 
as saturation of an amplifier or limiting amplitude of an oscillator. The 
noise Dro-oerties are mmv bodv in nature, and not necessarily nonlinear; the 

. L A  

large amplitude behavior" is nLnlinear, b;t not necessarily ;any body. 
two areas exist at the two ends of the power spectrum, one at 'microwatts, the 

These 

other at megawatts. 

of state, or where there are no wholly time-independent states. Instabilities, 
of course, affect device behavior and must be understood so as to effect cures 
or adaptations. This area of use of computer experTments has much in common 
with plasmas. 

some rather obvious ways. Devices use streams, usually electrons only, with 
no collisions, with strong interaction between particles and grids or cylin- 
ders or  wave circuits, with stream injected at a definite place, collected at 
another. There generally are applied dc and ac electric and magnetic fields. 
The time or frequency response at device terminals. is generally more 
interesting than spatial behavior. 

The third area of interest is in instabilities, as at critical changes 

Charge motion in electronic devices differs from that in plasmas in 

11. Classification of Computer Experiments in Electronics by Application 

Magnetron : Yu, Looyers and Buneman (1965) 
Hull and Kooyers (1960) 

Traveling-wave tube : Nordsieck (1953) 
Tien, Walker and Woluntis (1955) 
Tien (1956) 
Poulter (199) 
Rowe (1965 a) 
Sauseng (1964) 
Hess (1961) 
Webber (1960) 
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Double stream amplifier: 
Diode noise: 

Diode stability: 

Triode stability: 
Thermionic converter: 

Plasma probe resonance: 
Ion propulsion: 

Mihran (1966) 
Tien and Moshman (1956) 
Wadhwa and Rowe (1963) 
Dayem (1960) 
Pollack (1962) 
Lambert (1960) 
Bridges and Birdsall (1960, 1961, 1962, 1963, 1966) 
Lomax (1960) 
Hartree (1950) 
Twombly and Lauer (1960, 1966) 
Burger (1964 a, b, 1965 a, b) 
Cutler and Burger (1966) 

Goldstein (1965) 
Goldstein and Goldstein (1965) 
Hellberg (1965) 
Dunn and Ho (1963 a, c) 
Wadwha and Brauch (1965) 
Buneman and Kooyers (1963) 
Wadhwa, Buneman and Brauch (1965) 
Brauch,Buneman and Wadhwa (1963, 1966) 
Wadwha and Kooyers (1964) 

L O ~ ~ X  (1966) 

Electron stream with velocity distribution: 

Beam-plasma interaction: 
Beam generated plasma: 

Klystron : 

Drift tube stability: 
Centrifbgal-electrostatic flow stability: 

Yu and Mihran (1963( 2)) 
Rowe (1964, 1965 b) 
Dunn and Ho (1963 b) 
Halsted (1965) 
Webber (1958 a, b, 1959) 
Mihran (1959 a, b, 1965) 
Twombly (1963, 1966) 

Lundgren (1965) 

. 

111. Classification of Computer Experiments by Charged Particle Model 

Superparticles, with the same charge-to-mass ratio as electrons or ions 
but zero thickness, are self-evident choices for particle models. 
disks, blocks, rings and rods have allbeen used as superparticles in computer 
experiments, with and without applied electric and magnetic fields, with and 
without collisions. Cylindrical and spherical shells are additional candidates. 

Sheets, 

3 



I n  most models, each pa r t i c l e  i s  ident i f ied by numbered and followed 
exactly, using the Lorentz equation of motion, through the interact ion space, 
from creation t o  annihilation; no equation of continuity i s  needed. In  a few 
models, the self f i e l d s  a re  obtained by counting par t ic les  i n  a ce l l ,  an 
averaging process. 
e i ther  making the number of crossovers per s tep s m a l l  or by using correction 
terms; i n  a few, exact crossing times are  calculated, producing exact 
t ra jec tor ies .  

Hence, the hydrodynamic equations of motion a re  generally Lagrangian 
and the f ie lds  are  generally calculated exactly. 
problems i n  numerical methods having t o  do with accuracy or s t a b i l i t y .  

w a s  widely used i n  the 1930's fo r  electrons i n  planar devices, primarily i n  
l inear  analysis. 

In most, changes of forces a t  crossovers a re  ignored by 

There a re  few i f  any serious 

Incidentally, the idea of sheets dates back a t  l ea s t  t o  the 1920's and 

The l i s t i n g  here includes electronics and plasmas. - 
Electron Sheets e l e c t r i c  forces, motion and f i e lds  i n  one dimension ( 1 D )  

Hartree (1950) 
Tien and Moshman (1956) 
Dayem (1960) 
Lambert (1960) 
Bridges and Birdsal l  (1960, 1961, 1962, 1963, 1966) 
Lomax (1960) 
Twombly and Lauer (1960) 
Twombly and Cerviera (1966) 
Pollack (1962) 

Buneman (1959, 1961) 
Hartman, Colgate and Kellogg (1961) 
Dunn and Ho (1963 a, by c y  1965) 
Smith and Dawson (1963) 
Burger (1964 a, by cy 1965) 
Halsted (1965) (includes ionization) 
Buneman and Kooyers (1963) 
Cutler and Burger (1966) 

Electron Sheets i n  an Ion Sea e l e c t r i c  forces, motion and f i e lds  i n  ID 
Dawson (1960, 1962 a, by 1964) 
Eldridge and Feix (1962 a, by 1963) 
Hellberg (1965) 
Shanny, Dawson and Greene (1966) 

Electron and Ion Sheets e l ec t r i c  forces, motion and f i e l d  i n  1 D  

Electron Disks e l ec t r i c  forces, motion i n  l D ,  f i e l d s  i n  2D (r, z), no shear 
i n  z 

Tien, Walker and Woluntis (1955) 
Tien (1956) 
Hess (1961) 
Bridges and Bi rdsa l l  (1962, 1963) 
Webber (1958 a, by 1959, 1960) 
Yu and Mihran (1963 a, b )  
Mihran (1966, 1959 a, b )  
Sauseng (1964) 
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Electron Blocks Hess (1961) 
Electron Rings e l ec t r i c  forces, motion i n  lD, f i e l d s  i n  2D (r, z), allows 
shear along z Rowe (1965 a) 

Sauseng (1964) 
Electron Sheets i n  Crossed E, B Fields e lec t r ic  and magnetic forces, motion 
i n  2D, f i e l d s  i n  ID, sheets shear 

Wadwha and Rowe ( 1963) 
Pollack (1962) 

Ion Sheets with Transverse Motion also (Current), i n  an Electron Sea i n  dc 
Magnetic Field magnetic and e l ec t r i c  forces, motion i n  3D (c i rcular  + 
t ranslat ion) ,  f i e lds  i n  ID 

Auer, Hurwitz  and Kilb (1961, 1962) 
Rasegawa and Birdsal l  (1964) 
Hasegawa and Kamimra (1965) 
Tsuda and Obayashi (1965) 
Kilb (1962) 
Jones and Rossow (1965) 
ROSSOW (1965) 

Electron Rods i n  dc Elec t r ic  Fields, e lec t r ic  forces, motion i n  2D, f i e l d s  i n  
2D 

Electron and Ion Rods, e l ec t r i c  forces, motion i n  2D (x, y),  f i e lds  i n  2D 
Lundgren (1965) (r, 0 )  

' 

Wadwha, Buneman and Brauch (1965) 
Wadwha and Kooyers (1964) 
Brauch, Buneman and Wadwha (1965) 
Wadwha and Brauch (1965) 

(x, Y) 

Electron Rods i n  dc Electr ic  and Magnetic Fields e l ec t r i c  and magnetic forces, 
f i e l d s  i n  2D (x, y), motion i n  2D (x, y)  

Electron Rods 

Hull and Kooyers (1960) 
Yu, Kooyers and Buneman (1965) 
Hockney (1966 a, b) (x, y) 

Twambly ( i n  x, y)  (1963, 1966) 
e lec t r i c  forces, motion i n  2D, f i e lds  i n  2D 

IV. Some Milestones , 

Confronted with these l i s t s ,  you may be confused or bored, but hopefil ly 
impressed tha t  engineers have been active with computer experiments. 
l e t ' s  jump t o  looking a t  a few of the more s ignif icant  milestones, at  least as 

Hence, 

recalled by t h i s  observer. . 
Nordsieck ( i n  1947, published i n  1953) chased 

wave c i r cu i t  i n  order t o  predict traveling wave tube 
dis tor t ion,  harmonic generation). H i s  electrons had 
gration of the continuity equation used the klystron 

electrons through a slow 
efficiency (also s ignal  
no se l f  f ie ld ;  h i s  in te -  
t r i c k  (Webster, 1939) of 
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avoiding multivalued departure times ( f o r  a given arr ival  t i m e )  by switching 
t o  integrat ion over entrance t i m e s .  Tien e t  a1 (1955) added t h e  self f i e l d s  
of t he  electrons by approximating t h e  stream as a set of disks, with axial 
f i e l d  decaying exponentially from t h e  disks;  t he  e-folding length (range) w a s  
d i r e c t l y  re la ted  the  e f f ec t ive  plasma frequency of a cy l ind r i ca l  stream par- 
t i a l l y  f i l l i n g  a conducting cylinder.  The r e s u l t s  showed break-up of bunches 
due t o  large repulsive self f ie lds .  Tien next (1956) included stronger coupl- 
ing t o  the c i r c u i t  f ields.  Tien 's  calculat ions used 24 disks  per wavelength, 
on an IBM 701. 

outstanding i n i t i a l l y .  However, a t  present, several t rave l ing  wave tube mmu- 
fac turers  use computer experiments fed  by laboratory measurements t o  a id  i n  
new device development and improvement; fo r  example, see Hughes programs a t  
end of biography. 

Noise i n  a space-charge l imited,  short  c i rcu i ted  diode w a s  obtained by 
Tien ( l m  H e  used e lec t ron  sheets emitted randomly i n  t i m e  with a 
Maxwellian ve loc i ty  d is t r ibu t ion ,  kTc = 0.leV. The average number of sheets 

i n  the diode w a s  363, with 165 between cathode and po ten t i a l  m i n i m  ( v i r t u a l  
cathode) a distance of about a Debye length (as referenced t o  the  densi ty  a t  
the minimum). 
distances i n  f ront  of the  emitter t o  appear as if emitted at  d i f f e ren t  t i m e s  
during A t .  f A t  = 0.0076. An average-velocity sheet goes cathode-to-mini,-wn 

i n  20 A t ,  and crosses the  whole diode i n  142 A t .  

took 25 t o  40 seconds o f  computing and 3000 A t  were run, or about 24 plasma 
cycles taking 25 hours of computing. For t he  f i rs t  120 A t ,  t h e  a c t u a l  f ie lds  
were used; t h e  next s t e p  w a s  t = 0 for  t he  noise s tudies .  

CD = 0 . h  minimum with a Beak above pure shot noise a t  w s  w 

fill shot noise a t  l a rger  CD. 
experimentally. 
open-circuited models, with somewhat d i f f e ren t  r e s u l t s .  

time-independent theory, a pleasant comfort. However, perhaps more sheets 
could have been used, as the  mean square f luc tua t ions  i n  current are not small 
compared with the  average current squared, due t o  use of a small number of 
sheets . 

I n s t a b i l i t i e s  i n  diodes have become qui te  w e l l  known i n  a var ie ty  of 
ways. L o m a x  ( 1960) and ourselves [Bridges and Bi rdsa l l  (1960) ] discovered 
t h a t  beyond the wel l  known diode l imi t ing  current,  t h e  v i r t u a l  cathode so lu t ion  
w a s  never reached and instead an o s c i l l a t i n g  state a t  about plasma frequency 
w a s  set up. 
computer and laboratory experiments [Cutler and Burger (1966)l a t  e lec t ron  and 
ion plasma frequencies. A s  a fu r the r  r e s u l t  a plasma diode, with steady crea- 
t i o n  of electron-ion pa i rs ,  bu t  no co l l i s ions ,  i s  shown [Burger e t  a1 (1965)l 
a l s o  t o  have no wholly dc state, with rf f luctuat ions randomizing the  e lec t ron  
ve loc i t ies  (ac t ing  as e l a s t i c  co l l i s ions )  and producing t h e  high energy p a r t i -  
c l e s  known as the  "Langmuir paradox." None of these e l e c t r o s t a t i c  type 
f luctuat ions i s  a two-stream i n s t a b i l i t y .  

The check between computer and laboratory experiments w a s  not exact ly  

About 8 sheets are emitted each A t  , created i n  space short  

P 

The computation w a s  done on Univac I with 1000 word memory. One A t  

The r e s u l t s  showed space charge smoothing of shot noise up t o  about 
then re turn  t o  P Pm' 

The de ta i led  shape predicted has not been seen 
Dayem (1960) and Lambert (1960) continued the  simulation f o r  

The time averaged r e s u l t s  check very wel l  with the  Langmuir (1923) 

This w a s  then predicted for  plasma diodes and later seen both i n  

. 
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Two dimensional i n s t a b i l i t i e s  which a r e  self s t ab i l i z ing  a t  la rge  ampli- 
tude have been found i n  our group, with accompanying sa t i s f ac t ion  tha t  some 
s m a l l  amplitude growths s t i l l  allow confined plasmas. The f i r s t  was by 
Lundgren (1965) f o r  a hollow cyl indr ica l  electron stream, focused by the bal- 
ance between r a d i a l  E with cent r i fuga l  acceleration. A bunching per turbat ion 
s e t s  up an S shaped deformation which then becomes a s p i r a l  (or vortex) and 
then radial growth stops; the  f i n a l  result i s  a shearing stream. 
with a plasma with an excess charge larger  has seen the  same general e f f ec t ,  
but with a f i n a l  s t a t e  of vort ices;  Hockney and Levy (1966) a l so  showed the 
same r e s u l t  f o r  an e-layer focused by crossed E (self)  and ,B (applied) f ie lds .  
Thus, we see t h a t  t h i n  charge layers,  focused by B f i e l d s  or centr i fugal  accel-  
erat ion,  tend toward a thicker  s tab le  s t a t e  with ve loc i ty  shear or vor t ices .  

The klystron should be put in,  as w e l l  a s  electron-ion propulsion devices, and 
cer ta in ly  the  Gumi  o s c i l l a t o r  i n  so l id  state. However, as computer experiments 
with charged p a r t i c l e s  publications increase (by my count) as exp (1/3) (T-1956), 
covering everything i s  hopeless. 

Byers (1966) 

My l i s t i n g  covers only pa r t  of t he  milestones i n  e lectron and ion devices. 

V. Bibliography of Computer Experiments 

The l i s t i n g  given here appl ies  primarily t o  the  motion of charged par- 
€ i c l e s  and charged f lu ids ,  both i n  self and applied e l e c t r i c  and magnetic 
f i e l d s .  Single p a r t i c l e  or t r a j ec to ry  calculations are  not l i s t e d ,  nor a r e  
time-independent boundary value solutions.  The ordering i s  simply by year. 

p l e t e  but not in ten t iona l ly  so. The author welcomes additions and correct ions.  
Journal  a r t i c l e s  and reports  a re  l i s t e d .  Obviously the  l i s t  i s  incom- 

1955 

Hartree, D. R. ,  Some calculations of t rans ien ts  i n  an electronic  valve 
Appl. Sc i .  Res., - B1, 379-390. 

Nordsieck, A , ,  Theory of large signal behavior of traveling-wave ampli- 
f iers,  Proc. IRE, - 41, pp. 630-637, May (work done i n  1947). 

Poulter, H., Large s igna l  theory of the  t rave l ing  wave tube (including 
the e f f ec t s  of loss ,  space charge, f i n i t e  C ) ,  T.R. No. - 73, E.R.L., 
Stanford Univ . , January. 

Tien, P. K . ,  Walker, L. R . ,  and Woluntis, V. M., A l a rge  s igna l  theory 
of traveling-wave amplifiers,   roc . , IRE, - 43, 269-277. 

Tien, I?. K., A l a rge  s igna l  theory o f  t he  traveling-wave amplifier 
including t h e  e f f ec t s  of space charge and f i n i t e  coupling between the  
beam and the  c i r cu i t ,  B.S.T.J. 35, pp. 349-374. 

po ten t i a l  minimum of high-frequency diode, J. Appl. Phys., - 27, 
1067-1078, September. 

IRE Trans. 

Tien, P. K.  and Moshman, J., Monte Carlo calculat ion of noise near the 

( a )  Webber, S. E., B a l l i s t i c  analysis of a two-cavity f i n i t e  beam klystron 
Electron Devices - ED-5, pp. 98-108, April .  
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- 1959 

(b) .  . . . . , Large signal analysis  of t he  m l t i c a v i t y  klystron, same jour., 

....., Large s igna l  bunching of e lec t ron  beams by standing-wave and 

306-315, October. 

t ravel ing wave systems, IRE Trans. Electron Devices, - ED-6, pp. 365- 
372, October. 

Buneman, O.,  Dissipation of currents i n  ionized media, Phys. Rev. - 115, 

(a)  Mihran, T .  G., The e f f e c t  of space charge on bunching i n  a two cavi ty  

(b ) .  . . . . , Harmonic current growth i n  velocity-modulated e lec t ron  beams, 

503-517 - 
klystron, IRE Trans. Electron Devices, - ED-6, pp. 54-64, January. 

Jour. Appl. Phys., - 30, pp. 1346-1350, September. 

- 1960 Hull, J. F., and Kooyers, G. P., Experimental and theo re t i ca l  character-  
i s t i c s  of injected beam type forward-wave amplifiers,  Proc. I n t l .  
Congr. on Microwave Tubes, pg. 151-158. 

region, Be l l  Tel. Labs., MM-60-124-32. ( theory) 

c i r cu i t  diodes (computations). , B e l l  T e l .  Labs., MM-60-124-38. 

region ( r e s u l t s  and discussion) .  , Bel l  Tel.  Labs., MM-60-124-41. 

mechanisms i n  l i nea r  beam tubes, IRE Trans. Electron Devices, ED-7, 

Bridges, W. B. and Birdsal l ,  C .  K. ,  Transient behavior of an e lec t ron  

Dayem, A .  H . ,  Monte Carlo calculat ion of diode noise i n  the  multivelocity 

Lambert, C.  A . ,  Monte Carlo calculat ion of noise propagation i n  two open- 

Dayem, A. H . ,  Monte Carlo calculat ion of diode noise i n  the  multivelocity 

Webber, S. E., Some calculat ions on the  la rge  s igna l  energy exchange 

154-162, July.  

stream at and beyond l imi t ing  current,  Rept. 60-303, E.R.L., Univ. of 
Cal i f . ,  Berkeley, August 2. 

Lomax, R .  J., Transient space-charge f low,  J. Elec. and Cont., - 9, 127-140, 
August. 

"wombly, J. C. andlLauer, J. E., A study of self-actuated t r ans i en t s  i n  
high-perveance planar e lec t ron  tubes, Tech. Rept. No. 2, Contract 
Nonr-1147 (06), Univ. of Colo., Engr. Exp. Sta . ,  Boulder, December 1. 

31, P.P.L., Princeton Univ., Princeton, N. J., February. 

Phys. Fl., 3, pp. 387-394, May-June. 

Fully ionized pinch collapse,  Zec ' t ,  fur Natur. - l5a, pp. 1039-1050. 

Dawson, J. M., The breaking of la rge  amplitude plasma osc i l la t ions ,  MATT- 

Killeen, J. and Colgate, S. A . ,  Boundary-Layer formation i n  the pinch, 

Hain, K. ,  Ha?;, G. ,  Roberts, K .  V.,  Roberts, S. J., and Kuppendurfer, W., 

1961 Auer, P. L., Hurwitz, H. Jr., and K i l b ,  R .  W., Low Mach number magnetic 
compression waves i n  a co l l i s ion- f ree  plasma, Phys. Fl. ,  - 4, l l O 5 = l U l ,  
September. 

t ron diodes and plasma converters, J .  Appl. Phys., - 32, 2611-2618, 
December. 

Hess, R.  L., Large-signal traveling-wave tube operation; concepts and 
analysis,  Tech. Rept. No. 60-361, E.R.L., Univ. of C a l i f . ,  Berkeley, 
July.  

Hartman, C.  W., Colgate, S. A. ,  and Kellogg, P. J., (counter-streaming 
plasmas),  Bull .  Am. Phys. Soc., 6, p. 299. 

Buneman, O.,  Maintainence of equilybriwn by i n s t a b i l i t i e s ,  J. Nucl. 

Birdsal l ,  C. K .  and Bridges, W. B., Space charge i n s t a b i l i t i e s  i n  e lec-  
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Energy, Par t  Cy - 2, 119-134. 
t h e o r e t i c a l  observations on a fast l i n e a r  pinch, J. Nucl. Energy, 
P a r t  C: Plasma Physics, 3, pp. 162-166. 

Ashby, D. E. T. F., Roberts, K.  V. and Roberts, S. J., Experimental and 

- 
1962 Bridges, W. B. and Bi rdsa l l ,  C. K. An e lec t ron  stream i n s t a b i l i t y ,  Tech. 

Rept. No. 60-443, E.R.L., Univ. 6f Calif. Berkeley, March 23. 
Fisher,  D. L., Green, T. S. and Niblett ,  G. B. F., An experimenal and 

numerical study of r a d i a l  hydromagnetic osc i l la t ions ,  Plasma Physics, 
Jour. Nucl. Energy,. Part C, 4, pp. 181-184, June. 

Killeen, J. Heckrotte, W. and goer, G. ,  Energy t r a n s f e r  from hot  ions t o  
cold electrons i n  a plasma, Nuclear Fusion, 1962 Supplement, Par t  1, 

- 

pp. 183-191. 
Nible t t ,  G. B. F., Fisher, D. L., Numerical calculat ions on reversed 

f ie ld  heat ing i n  the  la t ron ,  Tech. Rept. CLM-R 19, c;*ulhm Lab., 
Culham, Abingdon, Berks . , England, March. 

Pollack, M. A., Noise t ransport  i n  the crossed f i e l d  diode, Tech. Rept. 
No. 60-485, E.R.L., Univ. of Calif., Berkeley, October. 
Pollack, M. A. and Whinncry, J. R., ib id . ,  I.E.E.E. Trans. Electron 
Devices, ED-11, 81-89, March 196k) 

Auer, P. L., H u r w i t z ,  H., Jr., and K i l b ,  R.  W., Large amplitude magnetic 
compression of a co l l i s ion- f ree  plasma, Development of a thermalized 
plasma, Phys. F1. 5, pp. 298-316, March. 

(a )  Dawson, J., One-&mensional plasma model, Phys. F1. 5, pp. 445-458, 
K i l b ,  R. W., Plasma magnetic shock waves with i n i t i a l  Temperature, 
Gen. Elec. Co., Report No. 62-RL-3169 E, (See Jones and ROSSOW, 1965). 

( a )  Eldridge, 0. C. and Feix, M., One-dimensional plasma model a t  thermo- 
dynamic equilibrium, Phys . F1. 5, pp. 1076-1080, September. 

(b)  . . . . .Fokker-Planck coeff ic ientE f o r  a one-dimensional plasma ( l e t t e r ,  
addi t ion  t o  Dawson (above, 1962)). Phys . F1. 5 ,  pp. 1307-1308, October. 

( b )  Dawson, J. M., Invest igat ion of the double-stream i n s t a b i l i t y ,  Nucl. 
Fusion, 1962 Supplement, Par t  3, pp. 1033-1043, 1107. 
MATT-63, P.P.L. , Princeton Univ. , 1961) 

(See a l s o  

(This was a l s o  

- 1963 Bridges, W. B. and Birdsall,  C. K., Space-charge i n s t a b i l i t i e s  i n  e lec-  

(a )  Dunn, D. A. and Ho, I. T., Longitudinal i n s t a b i l i t i e s  i n  an e lec t ro-  
t r o n  diodes, J. Appl. Phys., - 34, pp. 2946-2955, October. 

s t a t i c  propulsion beam with injected current neut ra l i ty ,  A.I.A.A., 
Preprint  63-041, March. 

Rept. 0309-2, December. 

t i o n  with i n i t i a l l y  cold electrons,  A . I . A . A . J . ,  1, pp. 2770-2777, December 

mechanism i n  ion propulsion, A. I .A .A. J . ,  1, pp. 2525-2528. 

v e l o c i t y  d i s t r i b u t i o n ,  I. General Analysis, J. Appl. Phys., 34, pp. 2972- 
2975, October. 

ve loc i ty  d i s t r i b u t i o n ,  Application t o  rectangular ve loc i ty  d is t r ibu t ion ,  
J. Appl. Phys., - 34, pp. 2976-2983, October. 

( b )  . . . . . , Computer model of a beam generated plasma, Stanford, Elec. Labs. 

( e )  Dum, D. A. and KO, I. T., Computer experiments on ion beam neutral iza-  

Buneman, O., and Kooyers, G. P., Computer simulation of .the e lec t ron  mixing 

YU, S. P., and Mihran, T. G.,  Nonlinear rf gehavior of e lec t ron  beams with 
- 

Mihran, T .  G. and Yu, S. P., Nonlinear rf behavior of e lec t ron  beams with 
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Eldridge, 0. C., and Feix, M., Numberical experiments with a plasma 

Fried, B. D., and Culler,  G. J., Plasma o s c i l l a t i o n s  i n  an e x t e r n a l  
(This i s  a computer 

Smith, C.,  and Dawson, J. M.,  Some computer experiments with a one- 

model, Phys. F l . ,  6, pp. 398- 

e l e c t r i c  f i e l d ,  Phys. F l . ,  6, pp. 1128-1138. 
solution as contrasted with-a computer experiment. ) 

dimensional plasma model, Rept. MATT-151, P.P.L., Princeton Univ., 
Princeton, N .  J., January. 

Wadhwa, R.  P. and Rowe, J. E.,  Monte Carlo calculat ion of noise t r a n s -  
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November . 
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0833-1, Stanford Elec. Lab. S., Stanford, California,  July. 
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Panel Discussion On: 

METHODOLOGY I N  THE N-BODY PROBUN: 
LAGRANGE VERSUS EULER APPROACH 

FIRST PANEL: 

Oscar Buneman 
John M. Dawson 
Marc R. Feix (Moderator) 
Roger W. Hockney 
Craig G. Smith -- 

Feix: - One of the d i f f i cu l t i e s  with most panel discussions i s  t h a t  each of the 
panel members stands up and gives a 10 minute t a lk  with no audience par t ic i -  
pation. I hope tha t  t h i s  won't be the case here. I would first l i k e  t o  have 
all the panel members give t h e i r  philosophy about the computer experiments. 

L e t  me start with a remark which i s  ha l f  serious and half joking and 
show you a s l ide  which has been brought t o  my at tent ion by Macon E l l i s :  

"I think we may have more d i f f icu l ty  i n  exploring the fu l l  limits of the 
computer than we have had with ea r l i e r  gadgets. I think there may be more 
danger i n  the period of trial and er ror  than there has been with e a r l i e r  
devices. These ea r l i e r  devices - looms, engines, generators - res i s ted  at  
c r i t i c a l  points human ignorance and stupidity. Overloaded, abused, they 
stopped work, stalled,  broke down, blew up, and there w a s  the end of it. 
Thus they set c lear  limits t o  man's ineptitudes. 
I believe, a r e  not so obvious. Used in  ignorance or  stupidity, asked a fool-  
i s h  question, it does not collapse, it goes on t o  answer a foo l  according t o  
h i s  fol ly .  And the  questioner being a foo l  w i l l  go on t o  ac t  on the reply."l 

For the computer the limits, 

I think there i s  a l o t  of t ru th  i n  t h i s  l i t t l e  paragraph, but l e t  us go 
back t o  the  main discussion! 

Oscar Buneman has already given h is  opinion i n  h i s  introductory address 
and I think John Dawson disagrees with th i s  philosophy. 

DEtwson: I f e e l  t ha t  the computer i s  a very powerful new too l  and we are  r ea l ly  
We must develop new techniques and we jus t  beginning t o  learn how t o  use it. 

must learn what the computer can do and what answers we can get from it. 
Generally, we get so many answers tha t  we don't know what t o  do w i t h  them so 
we have t o  learn how t o  ask the r ight  questions. I think a computer i s  
suited for  two types of use - one i s  a practical  use where we t r y  t o  simulate 
real plasma devices and l e t  the computer t e l l  us what they are going t o  do. 

"he second use i s  r ea l ly  t o  look at fundamental problems, such as the 
s t a t i s t i c a l  mechanics problem Marc mentioned yesterday, and then we t r y  our 

~~ 

I E .  E. Morison i n  "Men, Machines and Modern !hes," M. I. T. Press, 
Cambridge, 1966, p. 91. 
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theories out and see if they explain what the computer te l ls  us. 
kind of study, we j u s t  can ' t  go at it bl indly and say, "Well, tu rn  the  thing 
loose and see what it turns out." 
ideas as t o  the direct ion i n  which we want t o  go. We should, however, be 
prepared t o  f ind  unexpected answers o r  unexpected r e su l t s  so we should look a t  
the answers with a ra ther  open mind. When we see something happen we should 
always ask: "Why didn ' t  my theory predict  t ha t ?  What have I l e f t  out?" O f  
course, i f  the theory does predict  the resu l t s ,  we a re  very happy, but as Marc 
mentioned yesterday there  a re  some calculations which don't agree with the 
theory; we should now go back and ask: 

For t h i s  

As i n  any experiment, we must have some 

"Why did the  theory f a i l ? "  

My o m  in t e re s t  i n  computers l ies  i n  t h i s  second l i n e  of investigating 
fundamental problems and t rying t o  deepen our understanding of the dynamics 
involved i n  them. I think t h a t  both the theory and the  experiment have t o  
be worked together and we have t o  rea l ize  t h a t  we a re  not going t o  understand 
everything, but at  l e a s t  the computer gives us clues and, hopefully, w i l l  
help t o  expand our theories.  

Feix: I see tha t  we already have a dangerous s p l i t  between the theore t ica l  
Roger, computer experimenter and the experimental computer experimenter. 

what do you think about that ,  on the experimental side? 

Hockney: The advantage of computer experiments i s  t h a t  one has i n  a sense a 
perfect experiment. One has, fo r  example, control over the i n i t i a l  condition 
and time; one can stop the experiment and examine it i n  great de t a i l .  
one can put i n  measuring instruments without disturbing the experiment, which 
i s  what one would l i k e  t o  do i n  a r e a l  experiment. 

Also 

On the other hand, of course, t he  computer experiment brings along i t s  
own errors of numerical and mathematical i n s t a b i l i t y  which a re  of no re la t ion  
t o  the  physical problem and which can quite eas i ly  occur i f  you do the wrong 
thing. So one has t o  watch out on t h i s  course as well. Also one has t o  
watch the numbers of pa r t i c l e s  i n  the par t ic le - l ike  models. 
cannot t r e a t  as many par t ic les  as we have i n  nature and as a consequence we 
usually exaggerate the noise. Provided one can convince himself t o  believe 
what the model does, I think one has, i n  a sense, the perfect experiment. 

We obviously 

Feix: - Craig, would you l i k e  t o  comment about your own philosophy? 

Smith: In  general I agree with Roger, but I sometimes have my doubts as t o  the  
standard raison d ' e t r e  fo r  doing computer experiments. 
more cavalier with the computer aspects of the problem and put more plasma 
simulation in to  the model. I would l i k e  t o  see more honest-to-goodness model 
making, rather than ju s t  deciding how many dimensions we a re  going t o  work i n  
and deciding whether w e  should use sheets or rods and what not. Along with 
studying some very basic questions regarding the k ine t ic  theory and relaxa- 
t i on  processes, we should also help those people with r e a l  experiments who 
are  trying t o  understahd ef fec ts  of boundary conditions. 

I think we should be 

Feix: - Oscar, do you want t o  answer some of these comments? 
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Buneman: I want t o  ask John what happens if we haven't got a theory and we hav 
the s i tuat ion which we discussed t h i s  morning, where we have a l o t  of evidenc 
from the computer but nobody i s  happy about the theory; people were quite rud 
t o  each other about this Fermi-Pasta-Ulam experiment. What do you do i n  t h a t  
case? 

Dawson: 

Do you throw the experiment away? 

You t r y  t o  get a theory. 
t rying t o  do. You have these very interesting resu l t s .  O f  course, i t ' s  l i k e  
nature - we don't understand them completely but we s t i l l  keep looking and we 
t r y  t o  f i t  them in to  a theory. The only way one learns  t o  trust the computer 
i s  t o  start out from a known s i tua t ion  where you know the answers and COMPU- 
t e r s  give reasonable answers and then you extend i t s  use t o  a known s i tuat ior  

I think tha t  is  what Norm [%husky] w a s  

Smith: There are  two levels of trust: there 's  the leve l  where you question 
the computational accuracy and there 's  the second leve l  where you question 
the a b i l i t y  of your model t o  describe the given situation. 

Buneman: I l i k e  the idea of the control experiment - one where you know the 
answer i f  the computer performs properly - and then I would t r u s t  the compute 
i n  other cases! 

Feix: One of the big advantages of computer experiments i s  tha t  we have i n  one 
man both the  theoretician and the experimentalist which is  the best s i tuat ion 
Now, perhaps we can go ahead and ask ourselves w h a t  i s  a perfect experiment. 
We w i l l  now discuss more special  topics, fo r  example, how perfect are  the 
experiments? How much can be trust them? We can discuss two models - the  
f i e l d  models (Vlasov equation, water bag), and the pa r t i c l e  models or sheet 
models. Put it i n  another way, w e  have two points of view: the Eulerian 
and the Lagrangian. 
have a very good experiment when we w a n t  long-time simulation of.systems whic 
have very large numbers of par t ic les ,  and where there a re  several very d i f -  
ferent time scales, such as, the different electron, ion, plasma or cyclotron 
frequencies found for  plasmas. 
model, for example? 

I ' d  l i ke  t o  ask the panel if they believe tha t  we can 

How long can we go with the discrete  sheet 

Hockney: If you have a cer ta in  number of rods or par t ic les  tha t  you move 
around, that will give you a cer ta in  number per Debye square and t h i s  deter-  
mines a cer ta in  time tha t  you can go along i n  a col l is ionless  si tuation. 
there are  two things you can do: you can e i ther  analyze t h i s  noise, and on 
the basis of t ha t  f ind out how long you can go before it becomes important, 
or you can t r y  t o  theorize on it t o  get the l i m i t .  
of the problem, I think, that  gives you confidence tha t  you know what noise 
you have and how long you can go before i t ' s  going t o  dominate. 

No% 

But i t ' s  the very nature 

- Feix: Do you think we can perform numerical experiments with the discrete 
model where we can be confident tha t  we simulate correctly over 100 t o  
1000 plasma osci l la t ions or star rotations? 

Hockney: We can have 100 rotations before col l is ions become important. 

Feix: Do you think we can do it i n  one, two, and three dimensions? 
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Hockney: If given enough superparticles we should be able t o  do it. Surely 
something l i k e  100,000 superparticles should be satisfactory.  

Dawson: I think there are  two poss ib i l i t i es .  F i r s t  of all,  i n  the 'd i scre te  
model we can t r y  and soften the potent ia l  f o r  short distances, as Roger did, 
so as t o  minimize col l is ions or fluctuations. Also we ean t r y  t o  understand 
exactly what these col l is ions do and how they af fec t  our resul ts .  Finally, 
i n  a discrete model we can s t a r t  out w i t h  s l igh t ly  different  i n i t i a l  condi- 
t ions,  and then t o  see how much the e f fec t  tha t  we a re  interested i n  depends 
on the  different i n i t i a l  conditions. If the deviation i s  small then we can 
have some confidence that the discreteness i s  not r ea l ly  affecting our 
resu l t s  seriously. 

Buneman: I 'd  l i k e  t o  say something on t h i s  point of having t o  t race the system 
for  a very long period. 
thousand basic periods then there are l i ke ly  t o  be fac ts  tha t  we have not fed 
in to  the computer; typical ly  there may be an ionization going on which i s  
very rarely put into the computer (you would have t o  do a l o t  more hard work), 
and therefore anything tha t  shows up only a f t e r  a thousand basic periods i s  
under suspicion. If we want t o  compare long time w i t h  short time scales on 
the computer without too much expense, we reduce the masses as i s  often done 
t o  mass ra t ios  of 64 or 16. 

It seems t o  me tha t  i f  anything takes more than a 

Feix: - 
D r .  Zabusky t h i s  morning we have t o  go t o  very long times. 

But i n  phenomena l i ke  s t e l l a r  systems or problems l ike  those t reated by 

Buneman: In practice there w i l l  be a random process going on which w i l l  s po i l  
the third or fourth term i n  Dr. Zabusky's ser ies .  This w i l l  be a natural ly  
occurring process. 
analysis. 

The Zabusky problem i s  a nice exercise i n  nonlinear 

Feix: I ' d  l i ke  t o  introduce now the topic of microreversibil i ty and accuracy. 
Are there any comments? 

Bi rdsa l l :  Could the question be put t h i s  way: how does each member of the 
panel make his  resu l t s  believable t o  the audience? 
of energy, angular momentum? What do you do? 

Does he use conservation 

Buneman: I say I do a l l  these things but I never rea l ly  do. 

Dawson: Well, I think there i s  a cer ta in  amount of faith, too. I have used 
reversibi l i ty .  I used it once, and now I believe it. 

Buneman: I believe John. 

Dawson: We've written new codes and modified old codes but we haven't checked 
every time. 
if tha t ' s  being conserved, you can be p re t ty  sure things a re  going a l l  right. 
Certainly you can conceive of many things tha t  could go wrong and the energy 
wouldn't change, but I think over a long time if  the energy i s  not changing 
things are a l l  right, a t  l e a s t  for the  discrete  models. 

Also I think the energy i s  one good thing t o  keep t rack of and 



Feix: We have a question from the audience. - 
Sadowski: Concerning Fourier-Hermite expansion of the Vlasov equation, you can 

get senseless negative kinet ic  energy and yet conserve t o t a l  energy t o  one 
par t  i n  107. 

Dawson: That's r ight .  The energy i s  only one number and you have 2,000 numbers 
i n  the computer so you can cer ta inly shuffle t h e m  around and get anything you 
want, but t o  think tha t  your code and machine w i l l  do t h i s  every time i s  
rather unbelievable t o  me - again, I am thinking of discrete  sheet models. 

Roberts: Let me  make one point: there are cer ta in  codes, cer ta in  techniques 

Now, i s  it a good idea when you can guarantee exact conservation 
you can use t o  guarantee exact conservation. 
tomorrow. 
t o  get  it and say i t ' s  bound t o  improve the calculation, or not t o  get it and 
then use t h i s  numerical conservation t o  check on your accuracy? In the case 
of magnetohydrodynamics, you can get exact conservation of mass and momentum 
and magnetic flux. You can ' t  so easi ly  get exact conservation of energy and 
therefore we just use energy as a check on the calculation. But should you 
give away a l l  these exact conservation laws, you get  accurate physical checks 
on your solution. 

I sha l l  be talking about one 

Hockney: In the case of the star gas I can check angular momentum and energy, 
but i n  the diffusion problem I am on l e s s  firm ground because the number of 
par t ic les  varies and energy i s  not conserved. 

Smith: I agree t h a t  i f  it doesn't cost anything you can use energy or any 
other constant as a check, but I can envision going in to  more complicated 
problems where you can reduce the running time great ly  by making use of the 
constants of t he  motion. 
check and make it belie.vable by overall  physical self-consistency. 

But I ' d  be willing t o  give up t h i s  independent 

Dawson: When one does these numerical experiments, the person who i s  most dif-  
f i c u l t  t o  convince should be the man who i s  doing it himself. He should be 
skeptical  of a l l  h i s  resu l t s  u n t i l  he obtains reasonable checks of them; of 
course, you can't be absolutely sure and you w i l l  force yourself into a 
straight jacket if you have t o  be absolutely sure. We have had examples of 
codes tha t  ran f o r  a long  time u n t i l  a ra re  event occurred tha t  the code 
would not take in to  account correctly. 
tha t  t h i s  won't happen. 

I think you can never rea l ly  prove 

Feix: - Maybe we' l l  pose the same question again - the question of the credibi l -  
i t y  gap. 
curacy means uncertainty, uncertainty means lack of information, lack of 
information means increase of entropy, increase of entropy means i r revers i -  
b i l i t y .  Now w e  hear Dr. Buneman say that we can sacr i f ice  accuracy and get 
revers ibi l i ty .  
comment on th i s?  

I 'd  l i k e  t o  propose a l i t t l e  paradox based on the language. Inac- 

Now I think tha t  t h i s  appears t o  be a paradox. Can somebody 

Hockney: By using a lower order truncation approximation to  a derivative, the 
program is  therefore l e s s  accurate because the trurlcation error  i s  larger; 
however, it ' s symmetric and therefore reversible. 
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Buneman: -- I think I ran through an example of t h i s  yesterday. You may, f o r  
example, f ind  tha t  using a numerical code w i l l  produce an i n s t a b i l i t y .  
can then change your numerical code because you f e e l  t h a t  t h i s  i n s t a b i l i t y  i s  
due t o  numerics, and you can put i n  a strong damping term i n  the form of a 
f i rs t  derivative or i n  the form of a reference back t o  the  previous t i m e  step; 
i n  so doing you a re  i n  f a c t  k i l l i n g  the  i n s t a b i l i t y  and have made the  system 
i r revers ib le  and therefore  I would immediately doubt whether tha t  w a s  the 
right way of insuring your accuracy. I prefer  a system which i s  reversible ,  
though maybe inaccurate. 

You 

Hockney: For some problems you may prefer  accuracy instead of r eve r s ib i l i t y ;  
i n  other cases it may be the other  way around. 

- Feix: We can put it this  way: Is r e v e r s i b i l i t y  absolutely necessary? A s  a 
matter of f a c t  nature i s  i r revers ib le .  

Buneman: It i s  not necessary, but  I have often had t o  convince people t h a t  
i r r e v e r s i b i l i t y  i s  the result of sane physical process and not the r e s u l t  of 
some f i n i t e  difference equation. This i s  why I ' m  a b i t  biased i n  that  direc-  
t ion,  par t icu lar ly  when people want t o  explain how entropy i s  created i n  the 
co l l i s ion less  shock. Then you are r e a l l y  up against  it. You start w i t h  com- 
p l e t e ly  reversible  equations. If you want t o  do anything t o  convince people, 
you've got t o  make sure t h a t  i n  your shock calculations you do not make any- 
thing i r reversible .  

Roberts: I think that you ought t o  have a number of too ls  i n  your armory which 
you could use i n  a 'control led way and one of these i s  a reversible  code. 
think reversible codes a re  probably not normally necessary and they take 
longer t o  run, but i f  you f ind  something which looks i r r eve r s ib l e  it i s  nice 
t o  have a reversible code which can convince you t h a t  indeed the  i r r eve r s ib l e  
behavior i s  not due t o  the numerical code but t o  the  physics. After tha t  you 
may use an i r revers ib le  - but  f a s t e r  - code t o  pursue your problem. 

I 

Sadowski: There are cer ta in  very simple d i f f e r e n t i a l  equations which have two 
solutions: a pos i t ive  exponential and a negative exponential. O f  course, 
t h e  negative exponential w i l l  damp out. Now i f  you i n s i s t  on going out i n  
t i m e  and coming back, you w i l l  never come back on t h e  same curve f o r  obvious 
reasons, because the  sign of the  exponential has been reversed. Even though 
you achieved r eve r s ib i l i t y  w i t h  a t w i s t  or a d i f f e ren t  formulation, t h e  f a c t  
remains t h a t  there a r e  legi t imate  exact solutions which are i r revers ib le .  
I n  f a c t ,  i n  any kind of computer program there  a r e  a l l  kinds of extraneous 
solutions. 

Hockney: Perhaps you won't get  an extraneous solut ion i f  you take the  r i g h t  
If you use a second order d i f f e r e n t i a l  order of polynomial approximation. 

equation you should only use a second order difference equation; i f  you use 
a t h i r d  or fourth order difference equation you may introduce spurious 
solutions.  



Buneman: If I solve these equations, I go forward and then reverse, and then 
I come back t o  the  or ig ina l  point except for  the rounding off  e r ro r  i n  the 
t h i r d  or fourth d i g i t .  This 
could be vi ta l  if one i s  faced with a s i tuat ion where the  truncation e r ro r  i s  
extremely important. 

Otherwise I come back t o  the or ig ina l  point.  

Feix: We can close t h i s  discussion with a coment made by D r .  Roberts: "We 
should have two codes - one t o  convince the people of r eve r s ib i l i t y  and one 
t o  do the job." I ' d  l i k e  t o  move t o  another topic - the question of dimen- 
sions. 
three dimensions? 

- 

How much progress can w e  make and how rapidly can we move i n  two and 

Buneman: I see great  future  i n  one dimension, par t icu lar ly  the  extended one- 
dimension idea t h a t  is  the one and a half dimension, where one keeps cer ta in  
e f fec ts  of two dimensions but x and v a re  the only independent variables; 
that  i s  an area which I sha l l  cer ta in ly  develop immediately a t  grea t  speed. 
One thing I w i l l  t r y  out there i s  t o  use a Fourier analysis i n  the other two 
dimensions and pick up t h i s  idea of the  conductivity kernel t h a t  we heard 
about, except instead of Fourier analysis i n  time as w a s  done there, w i t h  an 
w l a b e l  on the kernel, I s h a l l  put a k l a b e l  fo r  the other two dimensions. 
The nice thing about tha t  approach i s  that  you can treat each Fourier com- 
ponent separately - work out the conductivity kernel as i f  you had a one- 
dimensional program - except t h a t  you are now working a two- o r  three- 
dimensional problem. 

Feix: - But Dr. Leavens talked about a l inear  system. 

Buneman: It would only apply t o  the studies of perturbation of systems which 
are  uniform i n  two out of three dimensions but which a re  nonuniform i n  one, 
and t h i s  dimension I am giving up i s  the idea of Fourier analysis.  

Feix: The l inear ized problem tha t  Dr .  Leavens has been ta lking about i s  a prob- 
lem where t h e  veloci ty  f i e l d  has been eliminated. 
the perturbed t ra jec tor ies ,  only the unperturbed t ra jec tor ies .  S t i l l  the 
problem i s  very d i f f i c u l t .  

We don't have t o  compute 

Hockney: I t h i n k  t h a t  whether it i s  d i f f i cu l t  t o  go t o  one, two or three dimen- 
sions depends on how well you formulate the method of solution. 
by summing up the influences of a l l  the par t ic les  you couldn't care l e s s  
whether you sum up cosines or other forces. 
i s  t h a t  the amount of work increases as the square of the number of par t ic les  
involved, and as a consequence it i s  limited t o  a few hundred pa r t i c l e s  - l e t  
us say 500. On-the other hand i f  you go v i a  Poisson's equation, which i s  my 
own route, then the time t o  f ind  the f i e ld  i s  proportional t o  the number of 
mesh points t i m e s  the logarithm of t h a t  number, which you can more or  l e s s  
neglect. Therefore, the time goes l inear ly  w i t h  the number ofmesh points.  
And again the  amount of time t o  move through the  loop, which i s  of course the 
number of par t ic les ,  i s  proportional t o  the number of par t ic les ,  and I can 
t r e a t  up t o  2000 par t ic les .  And I don't  think it would be much more d i f f i c u l t  
t o  do t h i s  s o r t  of f i e l d  calculation i n  two o r  three dimensions, so the number 
of dimensions doesn't seem t o  matter. 
can use only 1000 "particles." 
three dimensions? 

If you d o ' i t  

The problem with the  calculations 

What we have t o  decide now is  i f  you 
Does it make sense t o  spread them i n  two or  
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Feix: The next topic i s  a 
These equations describe 
than the discrete model. 

- discussion of the Vlasov or field-type equations. 
a system l i k e  a galaxy or hot plasma much be t t e r  
We should t r e a t  par t ic les ,  but with the dis- 

crete  model we study typical ly  103 par t ic les .  
an inf in i te  number of par t ic les ,  we have the Vlasov equation t o  describe the 
system. This field-type l i m i t  i s  much more interest ing than the superparticle 
model but m y  be more d i f f i c u l t  t o  t r e a t .  
at tack on the Vlasov equation? 
x-v 

Buneman: 

I f  we now- go t o  the l i m i t  of 

What can we say about a d i rec t  
Would somebody comment about the merit of 

space attack and the  use of different  transforms. 

As many as 10l1 par t ic les  i n  six-dimensional phase space means 60 
or 70 i n  each dimension which looks more discrete than continuous t o  me. 
f e e l  that the Langrangian approach has the edge on the other method. 

I 

Dawson: Obviously a l l  computers are  f i n i t e  and they can handle only so much 
information. Par t ic les  have a natural  way of keeping the amount of informa- 
t ion  f in i te .  If you s t a r t  working w i t h  a Vlasov equation or the water-bag or 
any other field-type model, sooner or l a t e r  you are  going t o  have t o  start t o  
throw away information. It i s  a question of how far you can go and when you 
s t a r t  t o  throw away information. Which method throws away more information, 
or applies best  t o  the s i tuat ion under investigation, depends on the individ- 
ual  problem. T h i s  also applies whether you use transforms o r  work i n  x-v space. 

Smith: The most immediate vir tue of the Lagrangian approach i s  conservation of 
par t ic les  so tha t  the t o t a l  charge i s  conserved. One thing I always worry 
about i n  the computer experiments i s  tha t  any departure from it could lead t o  
a build-up of spurious e l ec t r i c  f i e lds .  There i s  one problem tha t  doesn't 
come under t h i s  topic but has t o  do w i t h  scaling; the f a c t  t ha t  we always have 
rather large Debye lengths, but i n  most physical applications tha t  we are  
interested in, they are  small, which says tha t  we should be se t t ing  the 
species density equal and dropping Poisson's equation and get t ing the f i e l d  
some other way. 
a generalized O h m ' s  Law. 
point of view. 

If we want t o  be sure, we should use a f l u i d  description and 
That would be my motivation f o r  pushing the Eulerian 

Armstrong: I have several comments. It i s  possible t o  use in tegra l  representa- 
t ion  t o  preserve charge neut ra l i ty  exactly. 
except i n  representation on an x-v gr id  where you don't have ident ica l  con- 
servation t o  s t a r t  with. A l s o  by using a transform representation you can 
reduce the problem of the Vlasov equation t o  a f i rs t -order  ordinary matrix 
d i f fe ren t ia l  equation, which i s  much more sui table  for  computer analysis. I 
f e e l  r a t h e r  strongly about the usefulness of the transform representation. 

That doesn't change the problem 

Feix: I would l i k e  t o  stand i n  favor of Euler f o r  the following reason. In 
problems with the Vlasov equation when the nonlinearity is  small, we can take 
advantage of the smallness of the wave-wave interactions and use a small num- 
ber of waves, and the space Fourier transform i s  cer ta inly useful. In prob- 
lems of strong nonlinearity such as turbulence I a m  not so sure. 
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Sadowski: I t ' s  not so much a question of  nonlinearity as a question of looking 
at the truncation of your expansion which has a physical meaning. The whole 
formulation i s  much more transparent physically. 
t ha t  is  the higher harmonics i n  Fourier or Hermite representations, you know 
what you are doing' much be t t e r  than i f  you introduce a gr id  of 

When you throw away high k, 

Ax = 0.2, e tc .  

Montgomery: In connection with the Fourier-Hermite program you have two checks. 
For two cases you have analyt ical  solutions and you can compare them. 
a free-streaming problem where you turn o f f  a l l  the par t ic les '  interactions 
altogether and is, by the way, quite hard t o  do on a computer; nonetheless, 
it can be campared with your results by putting the charge equal t o  zero. The 
second i s  the  l inearized problem where you have the Landau analysis t o  com- 
pare with and only a very small change between the two programs i s  necessary 
t o  both the  l i nea r  and nonlinear problems. 
accuracy. 

One i s  

These are  very good checks on the 

Feix: - Unfortunately, these two cases a re  linearized cases and you have t o  be 
prudent when you extrapolate the c red ib i l i ty  t o  the nonlinear problem. Our 
experience, f o r  example, i s  tha t  even i f  you very incorrectly represent the 
wave-wave interact ion f o r  l inear  o r  quasi-linear problems the convergence i s  
pre t ty  good. Now I think Dr. Berk wants t o  coment about the water-bag model. 

- Berk: This i s  a model which i s  a compromise between a Eulerian &nd a Lagrangian 
point of view, the point being that  we're not l imited by the discretization. 
On the other hand, we have t o  consider simpler problems. We think that we 
have essent ia l ly  extracted the essence of the two-stream ins t ab i l i t y .  
the evolution of the Berstein-Greene-Krushalmode as Armstrong sees it and 
now we have an idea of the formation of these so l i t a ry  modes. 

W e  see 

Buneman: I ' m  glad t o  f ind tha t  the water bag i s  so successful as we heard t h i s  
morning. 
myself on some problems, but don't kid yourself - you are  i n  f a c t  discretizing, 
first of a l l  the dis t r ibut ion function, and also, whenever you come t o  the 
f ie ld ,  you probably cut up at l ea s t  the x-plane, although maybe not the 
v-plane . 

I was most impressed with tha t  and I rea l ly  want t o  t r y  it out 

Roberts: We t r i e d  cut t ing up the x-plane with 32 points and 64 points; a t  each 
major instant  of time when we pr in t  out, we Fourier analyze the f ie ld ,  but the 
higher harmonics a re  incredibly small. You r ea l ly  don't get a very inaccurate 
representation of the e l ec t r i c  f ie ld .  
f i ve  minutes. 

As I say, these runs are very short - 

Feix: - F i r s t  a remark: It seems t o  me tha t  the r ea l  problem i s  how w e  a r e  
going t o  handle the information. 
mation theor i s t s?  It seems t o  me that they have looked at t h i s  problem. 
Another question i s  whether we can get help from quantum s t a t i s t i c s .  
first point i s  whether we recover the Linden-Bell theory. 
i s  tha t  c lass ica l ly  we have an x-v 
use e i ther  x- or  k-space. 
same but maybe it would be simpler t o  store it on only one form - for  example, 
the Fourier component + (k )  of the wave function. 

Can we get some idea or  help from the infor- 

The 
The second point 

problem, but i n  quantum mechanics we  can 
Of course, the amount of information i s  always the 



uneman: You raised the  question t h i s  morning concerning whether there i s  a 
Heisenberg principle and I t r i e d  t o  see what happens i n  x-v space. I can 
see why there i s  exclusion. You are not i n  a s t r i c t l y  c lass ica l  regime when 
you divide your chessboard up into squares and thereby quantize, because you 
are  not allowed t o  p i l e  two cas t les  on top of each other as you move them 
about i n  x-v space. That i s  not possible c lass ica l ly  if you integrate  
accurately because i f  you integrate accurately, two par t ic les  w i l l  never run 
across each other i n  x-v space. If they did, they must have run p a r a l l e l  
f o r  all times before and therefore i n  x-v there i s  an exclusion principle 
tha t  there can be no par t ic les  i n  the same place simultaneously. I think t h i s  
i s  the answer t o  the controversy which s ta r ted  t h i s  morning. 

ecar: I tbink tha t  i s  wrong. It i s  true tha t  one can quantize i n  the Linden- 
Bell theory any fixed distance - l e t ' s  c a l l  it h i n  phase space - at an 
i n i t i a l  time. 
zero. 
lem disappears. 

But unfortunately as time goes on, the quantum ef fec t  goes t o  
If you w a i t  long enough all of the degeneracy i n  the Linden-Bell prob- 

eix: - I think w e  have run out of time. Let me jus t  
the problems. We, of course, l i k e  t o  keep sane of 
I ' m  quite sure tha t  tomorrow the second panel w i l l  
p rac t ica l  problems. I am happy t o  thank the panel 
fo r  t h e i r  participation. 

say we  have not solved all 
the problems f o r  the future.  
also solve many of the 
members and the  audience 
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Panel Di.s  cus s i on On : 

APPLICATIONS AND ORGANIZATION OF THE NEW FIEIlD 
OF COMPUTATIONAL PHYSICS 

Bernard J. Alder 
Charles K. Birdsall  (Moderator) 
Michel Henon 
Ralph W. Kilb 
Keith V. Roberts 

Bi rdsa l l :  The general theme f o r  t h i s  afternoon i s  somewhat i n  contrast t o  t ha t  
fo r  yesterday; i n  effect  we would l i ke  t o  t a l k  about applications and then 
take a look in to  the c rys ta l  b a l l  i n  order t o  see what things w e  would l i k e  
t o  do i n  the future and some of t he  things we think we should be able t o  do. 
The panel does not have a l l  of the available information, so we would l i k e  t o  
draw a lso  on the  audience. Ralph Kilb will s t a r t  off talking about fusion. c 1  
- Kilb: In  general, we a re  i n  f a i r l y  good shape f o r  low-density problems where 

we can use the  single-particle picture. 
forward, and it i s  jus t  a matter of running the computer. 
reasonably good shape f o r  high-pressure problems such as i n  high-density 
theta  pinches where w e  can use the MHD equations. 
t i e s  with boundary conditions, but people have approached r ea l i t y  within a 
factor  of 2 or 3, a t  l eas t  i n  plasma turbulence. 
reasonable cr i ter ion.  
s i t y  o r  high density), but i n  the intermediate range, i n  the s t e l l a r a to r  
regime, I f e e l  there a re  s t i l l  problems i n  choosing a plasma model. 
low-density the ta  pinch, it appears t ha t  we have a s i tuat ion where we cannot 
use the MHD equations f o r  the  ions; we also have a problem on how many dimen- 
sions must be included i n  the  plasma model. 
the rules  a re  tha t  we have t o  follow i n  order t o  real ly  decide what's hap- 
pening i n  the  experiment. 
t ion,  and I hope the next conference is  going t o  see some r e a l  resu l t s  i n  
t h i s  intermediate regime. 
of magnetic f ie lds ,  because I think this is the  main area where experimental- 
ists  a re  working and we need more numerical work on tha t  sor t  of problem. 

The principles a re  f a i r l y  straight- 
We a re  a lso i n  

There a re  s t i l l  diff icul-  

I think a fac tor  of 2 i s  a 
So I a m  f a i r l y  happy about the extreme ends (low den- 

I n  the  

We s t i l l  don't qui te  know what 

I think we a re  making some progress i n  tha t  direc- 

I hope there  w i l l  be more thoughts on the  effects  

Birdsall: Craig [hitg, would you l i k e  t o  comment on the  Princeton work? 

Smith: The s t e l l a r a to r  i s  a nonaxisymmetric machine. There a re  problems not 
with the  plasma behavior but with the  f i e l d  behavior; tha t  is, the topology 
of the  f i e ld .  
point of views, the other from the  plasma point of view. 

There a re  several programs under way - one from the f lu id  

- Feix: I have a question. I wonder i f  w e  are i n  such good shape i n  the low- 
density l i m i t ,  and i n  par t icular ,  I would l i k e  t o  ask about the  high energy 
accelerator where the single pa r t i c l e  picture i s  certainly valid. In  these 



accelerators, the  par t ic les  turn 108 or  109 times. Can we follow, on the  
computer, the  one par t ic le  motion (with no collective effects)  f o r  such a 
long time? 

Birdsall: John [Killeen), the question was asked about the par t ic les  turning 

Can somebody comment on t h i s ?  

many times around i n  the machines. You have done some of t h i s .  

Killeen: Well, I think we are  talking about two different  things. As far as 
I know, no one has taken anything around a toroidal  device. 
jector ies  i n  the  baseball magnets and i n  the  mirror machine have been calcu- 
la ted  and some of these cases have been followed fo r  a long t i m e .  

O r b i t a l t r a -  

Feix: What about the big accelerators? - 
Killeen: I ' m  not familar with them a t  a l l .  The other thing I thought perhaps 

tha t  you were talking about i s  tha t  we calculate f ie ld- l ine  t ra jec tor ies  
many t imes  around the torus on an accelerator-type configuration. When you 
follow the f i e l d  l i n e  there you solve an ordinary se t  of d i f f e ren t i a l  equa- 
t ions forming a smooth surface. We follow the t ra jec tor ies  around a t  l ea s t  
a hundred times without any problems. 
fac t ,  more sensit ive than the equations of motion of par t ic les .  

"he d i f f e ren t i a l  equations are,  i n  

Hess R V : How does the col l is ionless  shock f i t  into your discussions? c -  3 
Some solutions have been obtained f o r  simple geometries. 
on this? 

Could you comment 

Kilb: Well, I think we are  a l l  r ight  i n  a simple geometry, but the question 
is, does a simple geometry correspond t o  rea l i ty .  For instance, it appears 
t o  me that t h e  ear th ' s  bow shock ( the three-dimensional nature of it) i s  not 
understood i n  dethi l .  I don't think w e  yet  have a convincing example of an 
experiment with a t rue  col l is ionless  shock. 

- Hess: Lots of experiments claim t o  have col l is ionless  shocks. 

Kilb: - You a re  going t o  see more experiments tha t  touch on col l is ionless  shocks. 
There are s t i l l  complications on how t o  t r e a t  the electrons theoretically.  
Apparently, the electrons do not behave i n  an adiabatic manner, as  I would 
l i k e  t o  believe myself. 
i n s t ab i l i t i e s  or  some other mechanisms which involve more than one dimension 
which are disturbing the electron behavior. 
want t o  believe on simple terms, the multidimensional problem i s  with us and 
we-will have t o  face up t o  it. 

Therefore, it appears tha t  there a re  streaming 

Compared w i t h  what one would 

Birdsall: Who would l i k e  t o  comment on the fusion problem? 

Roberts: I would l i k e  t o  comment on a prac t ica l  point. A calculation i n  which 
you simulate an actual  experiment i s  much harder than one i n  which you ju s t  
do an abstract theoret ical  problem. 
number of calculations of the second kind, and relat ively few i n  which you 
try t o  simulate the detailed conditions of an actual  experimental device. 
two-dimensional magnetohydrodynamics fo r  example, most of the  d i f f i c u l t i e s  

It is  probably worthwhile t o  do a large 
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a r e  associated w i t h  the unknown boundary conditions at the end of the 
apparatus, and with the changing shape of the curved plasma boundary. 
possible t o  calculate most of the phenomena which occur i n  a r e a l  device, 
such a s  the behavior of shocks, by doing a much simpler calculation with a 
fixed rectangular mesh and r igid,  perfectly conducting w a l l s .  

It i s  

Alder: I agree tha t  we should use the computer t o  keep the theoretician 
honest. 
possible t o  check t h e i r  approximations on a computer. 

They can work a problem fo r  some idealized s i tua t ion  where it i s  

_I_ Kilb: I ' d  l i k e  t o  make a f i n a l  point. There seems t o  be a great need f o r  us 
t o  suggest experiments which the  experimentalist can perform. These experi- 
ments would allow a check against our computations. 
i s  too complex t o  be studied on a computer and, therefore, I suppose i t ' s  up 
t o  us t o  come up with reasonable experiments which the experimentalist can 
carry out and which we can compute accurately. 

The Princeton s t e l l a r a to r  

Birdsall: I ' d  l i k e  t o  make one comment concerning the  simple diode in s t ab i l i t y  
tha t  has come up a couple of times. The osci l la t ions following the ins tab i l -  
i t y  had never real ly  been seen experimentally, so a f t e r  we did the computer 
experiments we went t o  the laboratory and t r i e d  t o  see them i n  an electron 
diode. However, the osci l la t ions were not seen clearly u n t i l  experiments 
were done on the plasma diode. I n  the plasma diode, the  osci l la t ions were 
then seen. 
electron diode ins tab i l i ty .  
a very complicated one, f i rs t  predicted them. 
beginning t o  occur. 

The high-frequency oscil lations ( q e )  had been postulated by the 
The point i s  tha t  a computer experiment, and not 

More f i r s t s  of this kind are  

Keith Roberts has volunteered t o  provide guidelines of two kinds. I ' m  
afraid tha t  i f  he's  not careful he 's  going t o  make himseLf so r t  of president 
of a data bank, so i f  w e  will excuse him from this, he i s  going t o  t e l l  us  
how we can do various things that he thinks are  very necessary. 

Roberts: I would l i k e  t o  discuss how we can understand one another's programs, 
exchange useful programs and subroutines, and run them without d i f f icu l ty  on 
different  machines. This i s  a problem which w e  have encountered a t  Culham,  
because we have had a number of people working a t  the laboratory fo r  a time 
t o  write programs for  us, and then going elsewhere. 
different  machines ourselves, and from time t o  time people at other ins ta l la -  
t ions have asked us whether they could have copies of our  programs. This has 
usually been quite embarrassing. 
no, o r  something equivalent - the  conversion problems have been much too 
great. 

We have had a ser ies  of 

We have e i ther  had not t o  reply, o r  t o  say 

We have therefore been looking at the problem from an operational point 
of view. What actually makes a program unintell igible,  and what makes it 
d i f f i c u l t  t o  run on other machines? 
a t  the same time i s  what makes a mathematical paper i n t e l l i g ib l e ,  and how do 
we bring Some of the  i n t e l l i g i b i l i t y  of a mathematical o r  s c i en t i f i c  paper 
i n to  a computer program? 

A related question which can be examined 



Well, there  are many things. It i s  very easy t o  make a program i n t e l l i -  
g ib le  i f  you del iberately s e t  out t o  do so, and t h i s  approach w i l l  a lso help 
t o  get  it writ ten more quickly and w i l l  minimize mistakes. 
should be well l a i d  out, l i k e  a page i n  a pr in ted  text-book. 
important things i s  t o  put i n  enough comments; these correspond t o  t h e  text 
i n  mathematics, with the  executable ins t ruc t ions  corresponding t o  the  formulas. 
A good dis t r ibut ion i s  about two or th ree  times as many comment characters a s  
ac tua l  instruct ion characters - much as i n  mathematics. The comments should 
start i n  a d i f fe ren t  column from t h e  code, t o  make them more distinguishable 
t o  t h e  eye, and it i s  useful  t o  introduce various types of sect ion heading, 
again using d i f f e ren t  columns. 
s ide t o  indicate boundary conditions, inner loops (which must be coded effi-  
c ien t ly) ,  and so on. 
comment cards - j u s t  
emphasize the  various "paragraphs" of t h e  program, j u s t  as i n  a book. 
with a dash o r  a s t e r i sk  punched r igh t  across are used t o  separate major 
sections. 

The l i s t i n g  
One of t h e  most 

I place various symbols on the  far  right-hand 

A usefu l  dodge i s  t o  keep a la rge  stock of "blank" 
i n  column 1 - which can be used as spacers t o  "C" 

Cards 

In  mathematics, one can of ten guess t h e  meaning of a symbol from i t s  
appearance, and qui te  elaborate conventions a r e  used. I n  a s i m i l a r  way, one 
can use standard conventions f o r  t h e  i n i t i a l  l e t t e r s  of COMMON var iables ,  
i n t e rna l  variables,  loop indices,  log ica l  var iables ,  and formal parameters, 
so t h a t  the reader can t e l l  a t  a glance what t h e  s t a tus  of a var iable  i s .  
Another convention i n  mathematics i s  always t o  define the  meaning of a vari-  
able before using it. This can eas i ly  be achieved by se t t i ng  up an alphabetic 
index f o r  a l l  COMMON var iables  i n  t h e  program, and one f o r  t he  in t e rna l  var i -  
ables of each subroutine. It i s  almost no work t o  do a l l  these things as you 
a r e  writing t h e  program. 
statement numbers i n  numerical order, or some sensible  decimal scheme, so 
tha t  i f  the program says "GO TO 6" the  reader knows where "6" is ;  whether t o  
look up or down t h e  page, and roughly how far. 
a man who published a paper with a l l  t h e  equation numbers i n  random order? 
It would never get  past  t he  referee, and i f  it did, it would cer ta in ly  never 
get pas t  the edi tor .  

Another en t i r e ly  obvious thing i s  t o  have a l l  t h e  

What would any of us think of 

So, there a re  l o t s  of elementary things one can do t o  make a program 
more i n t e l l i g i b l e ,  but we have gone a b i t  beyond t h a t .  Joyce Staples and 
Klaus Hain, who a re  here, have both wri t ten automatic flowcharting programs 
which take other programs and make them as i n t e l l i g i b l e  as possible.  David 
Fisher and I wrote an automatic documenter, which did much t h e  same thing f o r  
a large systems program wri t ten i n  machine code. 

The next question i s  how t o  wri te  programs so that they will run on many 
d i f fe ren t  types of machine. 
planned from the  start. The various versions of Fortran do not differ  very 
much, b u t t h e y  d i f f e r  i n  annoying ways, f o r  example input-output. 
know the  inconsistencies between the  d i f f e ren t  versions you can choose t o  
wri te  your programs i n  such a way t h a t  most of t he  subroutines w i l l  run f a i r l y  
universally, and segregate input-output statements i n  just a f e w  spec ia l  sub- 
routines,  which are c l ea r ly  marked. I keep a stock of cards marked "WARNING", 
nINpuT", "OUTPUT", "NOTE n", e tc .  on t h e  right-hand side, which can be 

This again i s  not d i f f i c u l t ,  i f  it i s  de l ibera te ly  

SO if you 
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inser ted i n  the  deck t o  draw the user 's  attention t o  possible conversion 
d i f f i cu l t i e s .  It i s  important t o  signal l ibrary subroutines, which the pro- 
gram makes use of but which may not be available i n  other ins ta l la t ions ,  and 
t o  include a note explaining exactly w h a t  these do. 
cu l t  t o  re-create them, provided the i r  function i s  known. 
programs which automatically a l t e r  other programs t o  run on different  
machines, and these programs can also a l t e r  themselves, jus t  as  flowcharters 
can flowchart themselves. 

It i s  not usually diffi- 
People have writ ten 

With a l l  these techniques it i s  really qui te  easy, i f  you think about it 
from the  outset, t o  write programs tha t  you can give t o  your colleagues, and 
tha t  will run on t h e i r  machines with very l i t t l e  trouble. It i s  a l so  very 
much quicker t o  write a program i n  the f i rs t  place, and t o  get it running, 
i f  t h i s  policy i s  adopted. 
actually worked the first time, and t h i s  i s  because I wrote it qui te  rigor- 
ously and gave it t o  Herb Berk t o  referee f o r  correctness and i n t e l l i g i b i l i t y  
before we put it on the machine. 
bracket wrong by the time that we s tar ted t o  compile._ 

When an in s t i t u t ion  publishes a sc ien t i f ic  paper, or even a report, the  

The water-bag program which I talked about e a r l i e r  

I think that we had one comma and one 

division head or  professor won't l e t  it go out without i t s  being checked by 
colleagues and refereed by himself. So equally, I would advocate tha t  we 
should w r i t e  programs and subroutines that w e  a re  not a f ra id  t o  give t o  other 
people. We should t r y  t o  make each program as readable as  a mathematical 
textbook, and should t r y  t o  adopt the principle tha t  a l l  important programs 
are  published. 
how a re  we t o  known tha t  the resu l t s  a r e  right? 
these programs may produce a great amount of data and some very interest ing 
physical resul ts ,  which a re  analogous t o  astronomic observations o r  t o  records 
of careful sc ien t i f ic  measurements - say on the ear th ' s  magnetic f i e ld .  If ' 

t h i s  data i s  based on programs of qui te  unknown val idi ty ,  nobody can check 
the resu l t s  and I think tha t  the scient i f ic  l i t e r a t u r e  may get corrupted. So 
I f e e l  t ha t  we should actually publish a l l  our programs i n  an in t e l l i g ib l e  
form, and s e t  very high standards comparable t o  those of the r e s t  of science. 

If a program i s  never published and i f  it i s  not i n t e l l i g ib l e ,  
In  a few years, some of 

Birdsall :  I think one point you didn' t  make c lear  i s  what was meant by 
"publish. " 

Roberts: By "publish" I mean publish the  code, possibly as  a report, possibly 
a s  microfilm. 
possible t o  get a t  the  program from which they were computed, but there 
needn't be many copies of it. 
AEC laboratory o r  the National Bureau of Standards or  a l ibrary,  so tha t  you 
can get hold of the program t o  f ind out precisely what the resu l t s  mean. I 
think tha t  i n  other f i e l d s  of knowledge t h i s  principle of "documentation of 
Sources'' i s  accepted. 

A s  long as the  resu l t s  exist i n  the l i t e r a t u r e  it must be 

There must be archives, f o r  example i n  some 

Birdsall :  I think one of the problems i n  distributing programs and communi- 
cating with other programmers i s  the language. You are  talking about Fortran. 
Apparently there i s  a movement afoot i n  the mathematical journals, the numeri- 
calmathematical journals, t o  use Algol. 
mendation you might want t o  think about which language t o  use. 

If you are  going t o  make a recom- 
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Roberts: I think each program has t o  be communicated i n  the  language i n  which 
it is  written. Algol, of course, i s  more readable than Fortran. I would say 
tha t  a program i s  intended t o  be read a t  l e a s t  as much by people as  by the  
machines. I t ' s  actually read more by people, especially by the i n i t i a l  pro- 
grammer, and by those who t r y  t o  modify it. 
comments i t ' s  l i k e  publishing a mathematical paper with a l l  the  English l e f t  
out. 

I f  you have l e f t  out a l l  t he  

Once programs and subroutines have been made i n t e l l i g i b l e  and re l iab le ,  
and reasonably e f f i c i en t  and universal, it w i l l  become sensible t o  talk of 
se t t ing  up an internat ional  library. A t  present we a re  t rying t h i s  out a t  
Culham on a national scale,  i n  collaboration with a number of un ivers i t ies  
and with organizations such as the National Physical Laboratory. The library 
a t  present includes a var ie ty  of mathematical subroutines, a number of stand- 
ard programs of i n t e re s t  i n  plasma physics, and several  display packages. 
There i s  a project underway t o  s e t  up a compatible Fortran-Algol system, so 
tha t  the l ib rary  can accept routines wri t ten i n  e i t h e r  language. 

Birdsall: I would jus t  l i k e  t o  say a few words about the display. We have 
many different types of display. 
j u s t  as important a s  diagnostics a re  t o  an experimentalist. If you do a cal- 
culation and don't explain the r e su l t s  a t  a l l ,  that 's j u s t  l i k e  making a 
pinch collapse experimentally but not actual ly  looking at  it - i t ' s  not very 
useful. 
do i s  t o  throw the discussion open t o  w h a t  so r t  of display people f ind  useful.  
I think we f ind  movies useful; graphs of a l l  kinds, of course; color ought t o  
help - it gives us  an extra  dimension; how about stereoscopic display and on- 
l i n e  display? 
on-line display which you couldn't do any other way? 

I think display i n  these big programs i s  

We rea l ly  ought t o  concentrate on display. Perhaps what we should 

Is it possible tha t  there  i s  a calculation you can do with an 

KiJleen: You mentioned stereoscopic displays. With regard t o  pa r t i c l e  tra- 
dectories i n  the  baseball  geometry, this has been done. Perhaps some of you 
have seen t h e  film; you can actual ly  follow the  t r a j ec to r i e s  i n  complicated 
geometries and see them i n  three dimensions. 
dicted d i f f i c u l t i e s  i n  the  experiment and enabled the  experimenter t o  modify 
the  baseball co i l s  t o  take care of some things t h a t  t he  computations showed 
should happen. 
modified the co i l s ,  so tha t  when they turned on t h e  modified co i l s  the d i f f i -  
cu l t i e s  didn ' t  appear. 

These movies have actual ly  pre- 

I n  other words, they predicted some problems and then they 

Birdsal l :  With many pa r t i c l e s  having a var ie ty  of i n i t i a l  conditions, one 
obtains a collection of orb i t s ,  which i s  more meaningful than a s ingle  o rb i t ,  
but it only t e l l s  you t h a t  something's running. 
the  t ra jec tor ies  only as a f i r s t  step. For example, we once found almost 
indistinguishable t r a j ec to r i e s  for two different runs but with the  harmonic 
content of the poten t ia l  qui te  different :  
next with a strong t h i r d  harmonic. point i s  t h a t  other quant i t ies ,  espe- 
c i a l l y  integrated or averaged (energy, e t c . )  should be folKowed as well. 

I would advise looking a t  

one with a strong-fundamental, the  

Alder: I once gave a t a l k  on melting with a l o t  of theory and numerical 
analysis. A t  the  end I showed one s l i d e  generated by the computer which 

422 



showed the t ra jec tor ies  of par t ic les  i n  a system where there were regions 
of c rys t a l  and regions of l iquid.  That convinced more people - more than 
a l l  the ta lking about the theory of melting. 

Kilb: I think that's a l l  r ight  t o  convince an audience, but if  you want t o  do - 
things tha t  can be measured experimentally, you can ' t  measure t ra jec tor ies ,  
so  you've got t o  specify gross macroscopic quant i t ies  i n  uni ts  t ha t  can be 
under stood. 

Dawson: Besides the question of how t o  display, there ' s  also the  question of 
w h a t  t o  display because the  computer generates a tremendous p i l e  of numbers. 
Some of these t e l l  you something, others don't. For pa r t i c l e  orb i t s ,  we can 
take short time averages which smooth out things tha t  look quite e r r a t i c  and 
help make sense of the  data. 

Henon: This problem of display w i l l  be more and more serious as  theacomputer 
i s  used t o  study problems of more dimensions. There's certainly a l i m i t  t o  
the number of dimensions we can display, even i n  color. Suppose I give you 
a number of points i n  four-dimensional space, and I want t o  know i f  these f i l l  
a region of the four-dimensional phase space or ,  f o r  example, a three- 
dimensional subspace. A t  the moment, I don't see any prac t ica l  means of 
answering this  question. 

Roberts: One thing we haven't done i s  build three-dimensional displays. People 
studying nuclear reactions do this - f o r  example, a f l a t  t ab le  with rods pro- 
jecting out of it, which can be pushed i n  and out. 
dimensional model of a minimum-B magnetic mirror device, and it took 5 man- 
days t o  do it. It was immensely useful and we rea l ly  didn' t  understand the  
device u n t i l  we b u i l t  the display. 
of two-dimensional contours drawn on a graph p lo t te r .  
thing i s  t o  have a v isua l  console, which may or  may not be 3-D, and t o  have 
a l l  your information stored on the disks and t o  in te rac t  with your information 
i n  various ways on-line. If you have a model you can put a ru le r  inside it, 
but i f  you have a movie fi lm you can ' t ,  so you real ly  want t o  be able t o  get 
in to  your display and change it. 

W e  b u i l t  a three- 

We just bu i l t  it i n  cardboard, from a se t  
I think the idea l  

- Tuck: There's a very sophisticated display a t  MIT f o r  looking a t  organic 
molecules associated with DNA, i n  which you can put a molecule on the screen 
and, by turning a knob, turn the molecule over. 

Birdsall :  I think we can cut off this discussion and go t o  another topic. The 
most interest ing thing t o  many of us here i s  the cross-fer t i l izat ion among 
the different  f i e l d s  tha t  a r e  represented here. 

Henon: I must say t ha t  I am very much impressed by the  variety of techniques 
tha t  have been developed i n  plasma physics. Certainly i n  astronomy we do not 
have such variety of techniques. 
well they can be used fo r  astronomical problems. Not a l l  of them can be used 
because of differences i n  the two problems, but it i s  s t i l l  worthwhile t o  t r y  
them. 
t ion  have not been used i n  as t ronoq before Hockney (Roger Hockney). 
of i n t e re s t  a r e  approaches t o  the d i rec t  attack on the Vlasov equation. 

We should t r y  t o  borrow them and see how 

For example, these techniques f o r  fas t  solution of the Poisson equa- 
Also 
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example, t h e  Fourier-Hermite expansions and the  water-bag model. The only 
things which have been done previously are computation o r  ana ly t i ca l  theory. 

Also, i n  astronomy w e  cannot make experiments, and t h e  observations a r e  
not very good. 
w e ' d  l ike  - f o r  example, t h e  masses of t he  stars a r e  very d i f f i c u l t  t o  deter-  
mine f r o m  observation. Thus, w e  have t o  r e ly  very much on theory and numeri- 
c a l  experiments. 
techniques, and i f  t he  same techniques a r e  used with plasma problems, then w e  
can have more confidence i n  them. 

We cannot ex t rac t  from t h e  systems a s  much information a s  

I think it would be very helpful  f o r  us t o  develop numerical 

- Tuck: There i s  another very intr iguing f i e l d  - t h a t  i s  biology. There i s  a 
par t icular  problem t h a t  i s  tremendously important. 
code i n  t h e  nucleus from t h e  DNA which sends out messages on RNA. The RNA 
takes  something from t h e  code and goes out f o r  processing. How does it do 
t h i s ?  
view that  these l i t t l e  fellows actual ly  go out and look. 
view i s  t h a t  i t ' s  diffusion. 
puter  experiment. 

In  the  c e l l  w e  have t h e  

Many people a re  now actual ly  beginning t o  ge t  t h e  very mechanistic 
A more i n t e l l i g e n t  

I think w e  could set t le  t h i s  by means of a com- 

Birdsal l :  
dishes,  scanning them with a computer and watching f o r  changes. 
those that  change and discard those tha t  do not.  

The physical experiment of Glaser involves s e t t i n g  up l i t t l e  P e t r i  
You keep 

- Tuck: Th i s  es tabl ishes  t h a t  they go, but t he  question I ' m  asking i s  what w i l l  
t h e  computer t e l l  us? 
remember t h a t  a molecule can scan the  i n t e r i o r  of a c e l l  very rapidly,  and I 
am convinced tha t  i t ' s  a random process. I think t h a t  he can es tab l i sh  t h a t  
they are going there ,  but how? 

Remember t h a t  diffusion on the  microscale i s  very f a s t ;  

Birdsal l :  There a re  some good questions t o  be asked about where w e  are going 
from here. Most of our machines have 32K memory, so t h a t  w e  a r e  forced t o  
make a t r ade -o f f  between t h e  number of mesh points  w e  use and t h e  number of 
pa r t i c l e s  o r  t he  number of f l u i d  elements. 
computer development. We could go t o  bigger problems, and should re-do o ld  
problems more precisely as well. W e  have always been pushing the  computer as 
far as it can go i n t o  new problems, and w e  have not been doing t h e  la t ter .  I 
have asked Bernie Alder t o  comment on t h e  upcoming generations of computers. 

Now suppose that w e  have unlimited 

Alder: F i r s t  of a l l ,  I s h a l l  say I ' m  not an expert on t h i s  topic.  I do know 
of two computers which a re  coming along beyond the  6600. 
c a l l e d t h e  CDC 6800 and i s  now ca l led  t h e  CDC 7600 w i l l  come along i n  about a 
year.  
opposed t o  t h e  present 6600 which has U 8 K .  
pe t i t i ve  designs of which one i s  sponsored by Livermore, about which, unfor- 
tunately, I know very l i t t l e ;  t h e  other  one i s  sponsored by I l l i n o i s .  The 
University of I l l i n o i s  i s  building I l l i a c  I V .  I v i s i t e d  there  a couple of 
months ago and learned about t h i s  machine. impression i s  
t h a t  i t  i s  designed by computer people instead of by users.  My impression of 
t h a t  machine i s  t h a t  it w i l l  be exceedingly d i f f i cu l t  t o  program fo r .  
f a c t ,  I think tha t  they have s t a r t e d  t o  worry themselves. 

One which has been 

It will be four times f a s t e r  than 6600 and have about 3OOK memory as 
Beyond that there  a r e  two com- 

First of a l l ,  

I n  
The machine i s  
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beautiful, but it i s  not c lear  how the user would get maximum use of it. 
basic concept of t h i s  machine i s  t o  have in  pa ra l l e l  256 machines which are 
s l igh t ly  faster than the 7094 - each Of these 7094's w i l l  have a 2K memory. 
The d i f f i cu l ty  i n  using t h i s  machine is  that these 236 machines a r e  supposed 
t o  be used i n  four independent banks. That is, you can only do four d i f fe r -  
ent operations i n  para l le l .  
perform the same operation at  the same t i m e .  Now I will explain our experi- 
ence with the 6600 at Livermore which has some pa ra l l e l  processing features 
t o  it. 
i n  ser ies  of operations and Fortran on the 6600 i s  consequently inef f ic ien t .  
So tha t  already for the 6600, which has a number of pa ra l l e l  operations, one 
should i n  fact ,  do hand coding t o  take maximum advantage of two features of 
t ha t  machine. 
fast, small memory of 32 words. However, i f  you can use pa ra l l e l  coding i n  
your numerical scheme, the I l l i a c  I V  may offer  advantages. We spent a whole 
afternoon t rying t o  code my specific problem on the  I l l i a c  and we were com- 
pletely unsuccessful i n  taking good advantage of the  pa ra l l e l  features. 

The 

So 64 machines a re  t i e d  together and have t o  

Most Fortran schemes a re  se r i a l ly  designed. Most people think things 

The first i s  the pa ra l l e l  aspect and the second i s  the very 

Roberts: I would l i k e  t o  remark tha t  i n  many programs, the re la t ive  frequency 
w i t h  which different  pa r t s  a re  executed can vary by an enormous factor ,  even 
up t o  109. 
machine w i t h  p a r a l l e l  operations by writing the c r i t i c a l  par t s  i n  machine 
code, and the  l e s s  frequently used par ts  in  Fortran. 
these c r i t i c a l  portions are  quite short ,  so t ha t  the penalty of writing i n  
machine code i s  not serious. This i s  particularly t rue  of a Vlasov program, 
where the c r i t i c a l  pa r t s  a re  concerned with the motion of the  par t ic les .  By 
writing i n  machine code, one can use several times as many par t ic les  f o r  the 
same amount of computer time. So I should imagine tha t  the new machines 
would help here. 

So it might well be tha t  you could make use of a complicated 

It often happens tha t  

Sadowski: I should think that any expl ic i t  scheme such as your sodium crys ta l  
f i n i t e  difference scheme could be coded so t ha t  it could run two of the half-  
time steps i n  para l le l .  

Roberts: I should l i k e  t o  ask other people i f  it i s  possible t o  write c r i t i c a l  
par t s  of t h e i r  programs i n  machine code, and a l l  the  r e s t  i n  inef f ic ien t  
Fort ran? 

Alder: YOU can go i n  and out of Fortran and write the heart  of o m  program i n  
machine code. 

Hockney: I n  superparticle calculations we do exactly the same thing fo r  a l l  of 
the 2000 par t ic les .  If we could do 250 a t  a time we would gain a fac tor  of 
250 i n  computing speed. Also i n  the  Poisson solution where we Fourier analyze 
on a l i n e  a t  a time, one can do 250 l ines  i n  para l le l .  
e n t i a l  equation you get f o r  each harmonic i s  independent and can be solved i n  
para l le l .  The whole thing i s  very powerful, and i t ' s  real ly  up t o  the  com- 
p i l e r s ,  i f  they can help us t o  code properly. 

The ordinary d i f fe r -  
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Birdsal l :  W e l l ,  we've 
ments are welcome t o  
view on Williamsburg 

gone over our hour, so a l l  those who have not made corn- 
make comments. We have scheduled f o r  last ,  t h e  pane l ' s  
meeting. Do we have any las t  minute comments? 

Zabusky: May I ask you a question? What do you think of outputting data  on 
tape  and s tor ing  it i n  archives? 

Roberts: I don't  th ink  it would be relevant t o  do it now. I don't  th ink  we 
have good enough information y e t  t o  s to re  i n  public archives, but i t ' s  some- 
thing that  might be done i n  t h e  future ,  j u s t  as t h e  astronomers keep t h e i r  
p la tes .  
culations,  they w i l l  be stored. 
done on a personal basis .  

When our calculat ions get  respectable, pa r t i cu la r ly  the weather cal-  
I think a t  t h e  moment i t ' s  something t o  be 

Henon: The question a s  t o  what kind of computer w e  would l i k e  t o  have. 
f o r  the  pure N-body problems the i d e a l  computer would be a p a r a l l e l  one where 
each small un i t  would be i n  charge of j u s t  one p a r t i c l e  and would follow it 
at  a l l  times. Then it would be close t o  the  idea l  system but it would be 
almost an analog computer and it would have t o  be special ly  designed f o r  t h e  
problem. 

I think 

Roberts: Well, t h e  I l l i a c  could have each computer take care  of t en  pa r t i c l e s .  

Feix: What about analog computers i n  computer simulation problems? 

- K i l b :  I t r i ed  t o  use one but it wasn't very sa t i s fac tory .  

Smith: I might say t h a t  I once heard a paper by someone who w a s  solving diffu-  
s ion equations and had t o  inver t  a matrix. He sent that p a r t  out t o  a net- 
work. The network inverted t h e  matrix and sent it back t o  the  machine. He 
claimed a subs tan t ia l  improvement i n  machine time. 

Birdsal l :  There a re  e lectron gun calculat ions which have been done qui te  
elegantly by se t t i ng  up two e l ec t ro ly t i c  tanks. 
equation and the  other tank solves f o r  the  magnetic f i e l d .  
l i t t l e  pickups t h a t  run i n  p a r a l l e l  t h a t  pick up both poten t ia l s .  
off t o  the analog computer which moves the  pickup and w i l l  calculate  i n  par- 
a l l e l  both the  e l e c t r i c  and magnetic f i e l d .  
jectory a t  a time, but makes a f i r s t  guess as t o  what t h e  charge density i s  
and re inser t s  t h i s  through sources t h a t  a r e  i n  t h e  tank. 
verges rapidly a f t e r  about th ree  t r i a l s  and i s  very useful  i n  shaping elec- 
trodes,  e tc .  However, these a r e  time-independent problems so  one can a f ford  
t o  i t e r a t e  them. For time-dependent problems I think such approaches would 
be very time consuming i f  not impossible. 

One tank solves Poisson's 
There are two 

These go 

The device runs only one tra- 

The scheme con- 

Sadowski: I think t h e  analog computer would be very su i t ab le  f o r  a display 
system. 
are not r ea l ly  periodic ( i . e . ,  t he  amplitudes change with t i m e )  you might 
reproduce the  output wave on an analog computer ra ther  than do a complicated 
harmonic analysis.  

If you have a complicated harmonic analysis  t o  do where t h e  functions 
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Birdsall: We have now run out Of time. I think t ha t  it i s  very c lear  t ha t  
there has been very f ine  organization behind the  symposium f o r  which w e  a r e  
a l l  most gra te fu l  and tha t  the symposium has more than accomplished a l l  t ha t  
it se t  out t o  do. 
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ON SOME ASPECTS OF THE EIGENFUNCTION EXPANSION OF THE 

SOLUTION OF THE NONLINEAR VLASOV EQUATION 

By W .  L. Sadowski 
National Bureau of Standards 

Numerical d i f f i cu l t i e s  encountered by the author i n  the solution of the 

non-linear Vlasov equation by f i n i t e  difference methods* l ed  t o  a development 

of a d i f fe ren t  technique of dealing with the problem. 

w a s  developed independently by M. Feix and F. Grant as well as by T. 

Armstrong and D. Montgomery . 
A similar technique 

1 

2 

The model used i s  a one-dimensional periodic electron plasma with a fixed 

neutralizing ion b.zckground. The dis t r ibut ion function a t  the time t = 0 i s  

given by the expression 2 
V - -  

Eq. 1 2 f (x,v,t = 0) = (1 +.xC An cos nkx)e 
n '  

where a! i s  the nonlinearity parameter. 

I n  dimensionless form the Vlasov equation i s  

Eq. 2 

The solution of this equation is  expanded i n  a se t  of eigenfunctions of the 

d i f fe ren t ia l  space and velocity operators. 

The space dependence i s  expressed by Fourier s e r i e s  while the velocity 

dependence i s  expressed i n  terms of Hermite polynomials. 

With the a i d  of the recursive relat ions on Hermite polynomials the partial 

d i f f e ren t i a l  equation (Vlasov equation) i s  reduced t o  an ordinary d i f fe ren t ia l  

equation i n  time on the matrix of the Fourier - Hermite expansion coefficients.  

* 
To be published. 

1. 

2. T. Armstrong, Ph-D.Mssertation, Dept. of Phys. & Astron., Iowa 

M. Feix NASA report en t i t l ed  "Mathematical Models of Plasmas", 1966. 

University, 1966. 
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This permits the  use of Range - Kutta techniques t o  obtain a s m a l l  t runcat ion 

e r r o r  i n  the  in tegra t ion  of the  equation with respect t o  time. 
af 
av 

The nonlinear term E -  becomes a convolution of Fourier components. 
afkl - 

%-k1 av k 

This sum can be represented as a sum of two matrices which contain the  sum and 

the  difference of kr and k"respective1y. The program, wr i t ten  t o  solve t h e  

non-linear Vlasov equation , executes t h e  convolution sum diagonal by diagonal 

i n  the  two matrices. Thus it i s  possible t o  control  t h e  physical processes 

t r e a t e d  by t h e  program and check the  r e s u l t s  against  t he  full numerical 

treatment. 

For instance i f  only the  k"- k'  = 0 diagonal i s  included i n  the  calcu- 

la t ion ,  the poten t ia l  energy of t he  e l e c t r i c  f i e l d  i s  allowed t o  be converted 

t o  k ine t i c  energy only, with no harmonic decaying i n t o  a lower harmonic. 

Taking the f i rs t  horizontal  row i n  the  k"+ k '  matrix i n  conjunction with above 

gives t h e  quasi l inear  trcatment. If the diagonals k"-k' = 0 and kv1-k1 = 1 are 

used, t he  neighboring harmonics a re  allowed t o  decay i n t o  the  fundamental, e t c .  

One thus controls mode-mode coupling by s e t t i n g  up various cascade processes. 

The quasil inear solut ion represents the fundamental Fourier component 

ra ther  well for a f e w  plasma periods. The higher harmonics begin t o  deviate 

from t h e i r  t r u e  values i n  a short  t i m e .  

The calculat ion w a s  performed on a M x N.coeff ic ient  matrix, with M being 

the  number of Fourier harmonics and N being the  number of Hermite polynomials 

used i n  the expansion. Values of M and N ranged between 6 and 13 and 35 and 75, 
respectively. A s  discussed by T. Armstrong2 i f  one requires  t h a t  t h e  solut ion 

of t he  non-linear Vlasov equation represent "at l e a s t "  t he  free-streaming 

solution, one obtains an estimate of t he  number of Hermite polynomisJs re- 

quired t o  represent the  solution. Thus we solve t h e  equation 

- afIl + inkvfn = 0 a t  
The solution i s  

g (v) 
f n = a e  - inkxeinkvt 

n 

Eq. 4 

where g(v) i s  an a rb i t r a ry  function of veloci ty .  
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Tais can be expressed i n  terms of Hermite polynomials with the a i d  of the 
-V generating function. If g(v) i s  defined as e 5 , then 

-xl-& 1 2  Hm(x)lm 
m! m d  - - 

e = E  

) 
- ( ink t )2  + (idt)' 

2 
Multiplying the  solution by exp ( 

we obtain: 

This can be writ ten as 

where 

= Z  e -inkxH (v) fnm nm m 

(inkt)rn - (nw2 
z = a  e -  2 
1 2 l t G !  

mn 

Eq. 6 

Eq* 7 

Eq. 8 

where the normalization 

One can now determine the time at which zm w i l l  reach i t s  m a x i m u m  value- 
has been absorbed by the m-th Hermite polynomial. 3 

This time i s  given by 
m = -  

Tmn nk Eq* 9 
This means that with a given number of harmonics i n  the Fourier expansion for  a 

given k and a given time over which the equation i s  t o  be integrated, the 

highest polynomial i n  the expansion i s  determined by Eq. 9.  
Whether this estimate can be extended t o  the non-linear o r  even the 

l inearized equation is  not clear,  since the e l ec t r i c  f i e l d  based on the free- 

streaming solution has the form - 
(nkt)" 

2 E n - e  - Eq. 10 

while Landau damping i s  proportional t o  the first power of time i n  the ex- 

ponent. 

Vlasov equation i n  terms of the free-streaming solution show the same damping 

character is t ics  as i n  Eq. 8. 
Since both the convolution term and the v af term of the Vlasov equation 

The f i rs t  two orders of a perturbation expansion of the l inearized 

ax 
generate higher terms i n  the double expansion, working with a f i n i t e  matrix 

r e su l t s  i n  truncation errors  being propagated from the  ends of the f i n i t e  
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natrix into the  in t e r io r .  These may be amplified and w i l l  result i n  a 

iumerically unstable solut ion . One of t h e  methods of s t ab i l i z ing  the solut ion * 
LS 

I s  

the  introduction of t he  Fokker- Planck term. It i s  easy t o  show that 

expressed i n  terms of t he  Hermite polynomials as 
v2 

3ere y i s  the co l l i s ion  frequency 

thermalize the  plasma. 

Figures 1 through 3 show the  

Eq. 11 

Eq. 12  

and i t s  universe i s  t h e  time necessary t o  
I 

behavior of t he  first three  harmonics f o r  ~ 

z = .5, and cx = -1 while Fig. 4 shows the  ve loc i ty  d i s t r ibu t ion  function. 

lamping frequency had t he  value y = 

iomial on. As we can see no l eve l l i ng  of f  of t he  damping i s  observed and the  

shoulder due t o  the trapping of e lectrons by t h e  e l e c t r i c  f i e l d  i n  t h e  ve loc i ty  

space i s  washed out. 

Prom such graphs, b-lt not the  d e t a i l s  pertaining t o  trapping. 

The 

and w a s  applied f r o a  the  13th poly- 

~ 

1 
Landau damping and dispersion r e l a t ions  were obtained 

Fig. 5 shows a comparison of t he  ve loc i ty  d i s t r ibu t ion  functions with no 

lamping and dmping beginning a t  M = 99, M being the  order of t he  Hermite 

polynomial. A s  can be seen from Fig. 4, 13 polynomials a r e  not su f f i c i en t  t o  

properly describe the  ve loc i ty  d i s t r ibu t ion  function and the  damping smoothes 

mt the  shoulder. I n  the  other  case t h e  shoulder p e r s i s t s  with t i m e  and a 

Levelling o f f  of the  Landau damping i s  observed (see Fig. 6) 
Thus it seems unnecessary t o  include as many as 1200 terms i n  the  Hermite 

zxpansion of ve loc i ty  space, provided proper cut off i s  assured with the  aid 

3f the  Fokker-Planck term. 

* 
The discussion of numerical difficulties encountered by the author in this 
formulation of the problem is to be published. 
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Fig. 1. First harmonic of the electric  f i e l d  vs time for k = 0.5 
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Fig. 2 .  Second harmonic of the electric  f i e ld  vs time for k = 0.5 

semilog scale.  
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Fig.  3. Third harmonic of the e l e c t r i c  f i e l d  vs t i m e  f o r  

semilog scale .  
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Fig.  4 .  

VELOCITY DISTRIBUTION F ( V )  VS. V 

Velocity d i s t r i b u t i o n  funct ion f (v )  vs v e l o c i t y  a t  t h e  t i m e  

t = 8.0 . 



Fig. 5 .  Comparison of f(v) vs velocity for a run where damping was used 
with the run where damping was absent. The t h e  vs t = 32 .O . 
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