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A NUMERICAL METHOD FOR STUDYING THE TRANSIENT BLADE MOTIONS 

OFAROTORWITHFLAPPINGANDLEAD-LAGDEGREESOF FREEDOM 

By Julian L. Jenkins, Jr. 
Langley Research Center 

SUMMARY 

The equations of motion for the fully articulated rotor system (i.e., rigid blade with 
flapping and lead-lag degrees of freedom) are  derived and the procedure used to obtain a 
numerical solution of the nonlinear coupled equations of motion is outlined. 
can be applied to a rotor system with blades of any airfoil section, mass distribution, 
twist, taper, and root cutout. 
considered require that the lag hinge be coincident with o r  outboard of the flapping hinge. 
Two-dimensional stall and compressibility effects can be accounted for. 

The equations 

The hinge geometry is variable; however, the restraints 

Stability boundaries a re  defined in terms of an absolute limit (i.e., hinge motion 
amplitudes greater than 90°) for varying blade mass constants as a function of the ini- 
tial azimuth position for introducing a disturbance. In addition, a boundary is presented 
which is based on the criterion of neutral spring forces in the forward quadrants of the 
rotor when the blade is released with an initial flapping-angle displacement at an initial 
azimuth angle of 90°. This boundary is thus a measure of the tip-speed ratio at which 
the nonlinear spring forces in the forward quadrants are approximately zero. A com- 
parison of this  boundary with one based on a maximum flapping amplitude limit of 15O 
for a 30-ft/sec (9.14-m/sec) vertical gust indicates good correlation. 

INTRODUCTION 

The problem of defining rotor-blade-motion stability and predicting response to 
disturbances has been a subject of study for many years. These studies have produced 
numerous and ofttimes contradictory results, depending on the simplifying assumptions 
made in order to handle the complicated rotor dynamic system. Such assumptions gen- 
erally leave the applicability of the results subject to question, particularly at extreme 
operating conditions. 

Although most investigations have shown the rotor flapwise motion to be very stable 
below tip-speed ratios of 1.0 (see, for example, refs. 1 to 3), there have been indications 
that inclusion of the nonlinear coupling of flapwise and chordwise blade motions might 



introduce marginal stability characteristics of the rotor (see ref. 4). In any event, con- 
tinuing efforts to increase the operating speed of both the pure helicopter and the com- 
pound configurations require a more exacting treatment of the nonlinear dynamics of the 
rotor system inasmuch as it becomes progressively more difficult to prevent excessive 
blade motions at high tip-speed ratios and under maneuvering conditions at moderate 
tip-speed ratios. Also, the transient response of the rotor to gusts is of more importance 
at higher tip-speed ratios because of increased rotor response sensitivity. 

In an effort to obtain further insight into the problems of blade-motion stability 
and to evaluate the possibility of unstable or excessive blade motions as a result of non- 
linear coupling of flapwise and chordwise motions, the rigid-body equations of motion 
for the fully articulated rotor system (i.e., rigid blades with flapping and lead-lag 
degrees of freedom) have been derived and programed for obtaining a numerical solution 
on a digital computer. This report presents a description of the method of derivation of 
the equations and the procedures used to obtain solutions. In addition, the results of a 
study of the blade-motion stability and response characteristics of the fully articulated 
rotor system are presented and discussed. 

SYMBOLS 

a speed of sound, ft/sec (m/sec) 

resultant blade-element acceleration about flapping hinge, ft/sec2 (m/sec2) aF 

resultant blade-element acceleration about lag hinge, ft/sec2 (m/sec2) "L 

collective pitch angle at blade root, average value of instantaneous blade-root 
pitch angle around azimuth, deg 

A0 

AI,% coefficients of -cos @ and -sin @, respectively, in expression for e; 
therefore, lateral and longitudinal cyclic-pitch angles, respectively, deg 

b 

B 

C 

d,o 
C 

2 

number of blades 

tip-loss factor (assumed equal to 0.97 herein); blade elements outboard of 
radius BR are assumed to have profile drag but no lif t  

blade section chord, f t  (m) 

section profile-drag coefficient 



cZ 

cd, F 

cd, L 

CMD 

CMT 

d D  

el 

e2 

et 

Ih 

KSF 

KSL 

dL 

m 

section lift coefficient 

flapping damper coefficient, lb-ft- sec/rad (N-m- sec/rad) 

lag damper coefficient, lb-ft- sec/rad (N-m- sec/rad) 

aerodynamic drag moment coefficient in lead-lag equation of motion at given 
blade azimuth angle 

aerodynamic thrust moment coefficient in flapping equation of motion at 
given blade azimuth angle 

incremental drag force on blade element, lb (N) 

offset of center line of flapping hinge from center line of rotor shaft, f t  (m) 

offset of center line of lead-lag hinge from center line of flapping hinge, 

ft ( 4  

offset of center line of lead-lag hinge from center line of rotor shaft, 
e l  + 9, ft ( 4  

gravitational acceleration, ft/sec2 (m/sec2) 

mass moment of inertia of hub arm e2 about flapping hinge, 

Jet m(r - e1)2dr, slug-ft2 (kg-mz) 
e l  

mass moment of inertia of blade about lead-lag hinge, 

Je: m(r - et)2dr, slug-ft2 (kg-m2) 

flapping spring constant, lb-ft/rad (N-m/rad) 

lag spring constant, lb-ft/rad (N-m/rad) 

incremental l i f t  force on blade element, lb (N) 

mass of blade per unit of radius, slugs/ft (kg/m) 

3 



dP 

R 

t 

U 

aerodynamic- f orce moment, lb- f t  (N- m) 

damper moment, lb-ft (N-m) 

inertia-force moment, lb-ft (N-m) 

spring- restraint moment, lb-ft (N-m) 

weight moment, lb-ft (N-m) 

weight moment of blade at zero angular displacement, mg(r - et)dr, 3 e: 
lb- f t (N- m) 

c 

weight moment of hub arm e2 at zero angular displacement, 

leet mg(r - el)dr, lb-ft (N-m) 
1 
1 

local Mach number U/a at a given radial station and azimuth angle 

resultant aerodynamic force on blade element perpendicular to blade lag 
plane, lb (N) 

component of aerodynamic force on blade element perpendicular to blade- 
span axis and in the blade lag plane, lb (N) 

distance measured along blade from axis of rotation to blade element, f t  (m) 

radius of blade root pocket cutout (i.e., radius at which lifting surface of 
blade begins), f t  (m) 

radial distance from flapping-hinge Y ~ - a x i s  to mass element, measured in 
plane perpendicular to hinge axis, f t  (m) 

total radius of undeflected blade, f t  (m) 

time, sec 

nondimensional resultant velocity at local blade element, U/nR 
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U 

UP 

UT 

V 

wb 

We 

X 

resultant velocity perpendicular to blade-span axis at blade element, 
ft/sec (m/sec) 

component at blade element of resultant velocity perpendicular to both the 
blade-span axis and UT, ft/sec (m/sec) 

component at blade element of resultant velocity perpendicular to the blade- 
span axis and in the XL-YL plane, ft/sec (m/sec) 

velocity along flight path, ft/sec (m/sec) 

blade weight, 3 mgdr ,  1b (N) 
et 

weight of hub arm e2, leet mg dr, lb (N) 

ratio of blade-element radius to rotor-blade radius, r/R 
1 

x1 = el/R 

x2 = ez/R 

xc = rc/R 

xt = et/R 

Xe,Ye,Ze earth reference axes 

XF,YF,ZF flapping axes 

XL,YL,ZL axes 

xs,ys, zs shaft axes 

vertical displacement of blade tip from Xs-Ys plane, f t  (m) tip 

?r blade-element angle of attack, measured from line of zero lift, deg 

"s angle between shaft axis and plane perpendicular to flight path, positive when 
axis is pointing rearward, deg 
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B blade-flapping-hinge angle at particular azimuth position, rad 

i3,z first and second derivatives of /3 with respect to time 

-- 
6,; first and second derivatives of with respect to azimuth angle +b 

blade-flapping-hinge angle in azimuth range from 90' to 270°, rad 

pcR4 mass constant of rotor blade, 
Ih 

p(90-270) 

Y' 

63 blade-flapping-hinge cant angle, deg 

c blade leading angle at particular azimuth position, rad 

. .. c, c first and second derivatives of c with respect to time 

- 
c, F first and second derivatives of 0 with respect to azimuth angle +b 

MbR 
q = -  

glh 

0 rotor pitch attitude referred to earth axes, deg 

e instantaneous blade-section pitch angle, A0 - A1 cos Q - B1 sin Q + 81x, deg 

61 difference between root and tip geometric pitch angles, positive when tip 
angle is larger, deg 

V sin cys - v 
S2R 

x inflow ratio, 

A = Ie/Ih 

v cos % 
S2R I.1 tip-speed ratio, 

V induced inflow velocity at rotor, positive downward, ft/sec (m/sec) 
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P 

0 

dJ 

mass density of air, slugs/ft3 (kg/m3) 

rotor solidity, bc/aR 

inflow angle at blade element in plane perpendicular to blade-span axis, 

tan" 2 deg 
UT' 

rotor bank angle referred to earth axes, deg 

blade azimuth angle, measured from downwind position in direction of rota- 
tion, deg or  rad as indicated 

51 rotor angular velocity, d*/dt, rad/sec 

Subscripts: 

0 initial condition 

F referred to flapping axes 

L referred to lag axes 

max maximum 

S referred to shaft axes 

%Y,Z components in x-, y-, and z-directions, respectively 

METHOD OF ANALYSIS 

The equations of motion for a blade with full articulation are derived by equating 
the moments about the hinge points to zero. The general moment expression for the two 
hinge points considered herein is as follows: 

MI + MA + M w  + MS + Md = 0 (1) 
where 

inertia moment 

MA aerodynamic-force moment 

MI 
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MW weight moment 

MS spring- restraint moment 

Md damper moment 

The two differential equations required a re  obtained by writing the expressions for 
the individual moments of equations (1). 

Reference Axes 

The basic hub system considered herein is illustrated in figure 1. Included also 
a re  the axes used to derive the equations of motion. The basic reference axes a re  the 
shaft axes, which consist of a nonrotating, right-hand, orthogonal system with the 
Zs-axis coincident with the shaft axis and the Xs-axis in the plane of the velocity vec- 
tor V, and the Zs-axis. The Ys-axis is perpendicular to the Xs- and Zs-axes and is 
positive in the direction of IC/ = 90' on the advancing side of the rotor disk (see fig. 1). 

The additional axes a re  the flapping axes and lag axes which a re  rotating, right- 
hand orthogonal axes with origins at the flapping hinge and lagging hinge, respectively. 
The flapping axes consist of an X F - ~ X ~ S  perpendicular to the flapping-hinge axis and in 
the Xs-Ys plane, a Y ~ - a x i s  coincident with the flapping-hinge axis, and a Z ~ - a x i ~  paral- 
lel to the Zs-axis  and perpendicular to the XF- and YF-axes. The lag axes consist of 
an X ~ - a x i s  coincident with the hub arm e2, a YL-axis perpendicular to the XL-axis and 
the lag-hinge axis, and a Z ~ - a x i s  coincident with the lag-hinge axis. It should be noted 
that the lead-lag angle < is measured in the XL-YL plane and that the flapping angle /3 
is the angle between the XF-axis and the line formed by the intersection of the blade 
plane XL-YL and the XF-ZF plane. 

Lead-Lag Degree of Freedom 

The lead-lag equation-of-motion expressions for moments acting about the lag 
hinge a r e  given in the following sections. 

Inertia moment.- The inertia-moment expression may be written as 

R 
MI,L = -Jet m(r - e t p L  dr  

where aL 
element. 

is the component about the lag hinge of the total acceleration of a mass 

A detailed derivation is not presented herein; however, the procedure used was to 
write the expression for the displacement of a mass element in terms of the shaft-axes 
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coordinates and to obtain the first and second time derivatives of the expression. Then 
by use of appropriate coordinate transformation matrices, the total acceleration may be 
expressed as acceleration components referred to the lag axes. These components may 
then be resolved into the desired resultant component perpendicular to the blade span. 
This procedure yields the following expression for aL: 

.. 
aL = <(r - et> - 20j[(r  - et)cos2(< + 63)sin p + e2 cos 63 cos 

F + 63)l + o2[(e1 + e2 cos p cos 63 cos p sin(< + 63) - et sin 63 cos 1 

Substituting equation (3) into equation (2) 

- 52 2 -PI MW + e2 cos p)cos 
g 

and integrating yields 

1 

- j2 e2 cos ti3 sin(< + tj3) 

(5 + "311 63 cos p sin(< + 63) - et sin 63 cos 

n 

(3) 

Aerodynamic-force moment.- The aerodynamic-force moment about the lag hinge 
is obtained by resolving the element lift and drag forces into a resultant force about the 
lag hinge. It should be noted that the aerodynamic forces are obtained by using a quasi- 
static, independent- element analysis. Figure 2 illustrates the forces acting on the ele- 
ment. The element l i f t  force is 

( 5) 
1 dL = - 2 pU2czc dr  

and the element drag force is 

The desired resultant force dP is given by 

dP = dD cos + - dL sin + (7) 
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From figure 3, the aerodynamic-force moment is 

R 
MA,L = -s (r - et)dP 

r C  

Substituting equations (5), (6), and (7) into equation (8) yields 

clc (r - e sin @ dr  -lrR f ~ U ~ c ~ , ~ c ( r  - e t) cos @ dr  (84 
C 

t ) 

It is assumed that rc is equal to or greater than et so that no aerodynamic-moment 
contributions are included for the blade spar inboard of the root pocket cutout. In addi- 
tion, the integration of the lift integral contains the tip-loss factor B so that lift forces 
beyond BR are neglected. 

The additional expressions required to evaluate equation (8a) are as follows: 

where 

UT = r - e cos 6 + net cos < cos p + nel cos 63 cos(< + 63)(1 - cos 6)' f ( r  - et) ( t) 

+ S~RA sin(< + 63)sin p 

and 

Up = ORA cos 6 - S2Rp cos(@ - 63)sin p - S2(r - et)sin(< + tj3)sin p 

- j(r - et)cos(c + 63) - je2 cos 63 - net sin tj3 sin p (9b) 

-1 UP 
UT 

@ = t a n  - 

U 
M(x,+) = a 

Expressions (11) and (12) are used to determine the section lift and drag coeffi- 
cients required in equation (8a). The lif t  and drag coefficients are functions of section 
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angle of attack and Mach number; thus, compressibility and two-dimensional stall effects 
may be taken into account for arbitrary airfoil sections. 

It should be noted that the section angle of attack (eq. (11)) and the velocities UT 
and UP are derived with respect to the lag axes, and consequently, the pitch change 
due to the flapping and lag position is taken into account. In order to decouple the blade 
pitch from the flapping and lag displacement, the following expression may be used for 
the section angle of attack: 

= 8 + @ + A 8  (13) 

where 

Weight moment.- The expression for the in-plane weight moments is obtained by 
first orienting the gravity vector with respect to the shaft and then determining the com- 
ponent about the lag hinge from the appropriate coordinate transformations. As illus- 
trated in figure 4, the gravity vector must be transformed through the angles 0 and ip 

to obtain components referred to the shaft axes. The expression for the transformation 
is 

~g.1 r cos 0 0 -sin 0 

ip sin 0 cos ip sin CP cos 0 

0 cos @ -sin @ cos @ cos 0 
- 

By appropriate coordinate transformations, the gravitational acceleration about the lag 
hinge may be shown to be 

gL = g sin([ + 63)~in  p cos ip cos 0 

+ - ij3)sin([ + 63)cos p - cos(+ -  COS([ + sin @ cos 0 (15) 

The expression for the weight moment about the lag hinge is 

I 

I 
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Substituting equation (1 5) into equation (16) and integrating yields the following expres- 
sion for the weight moment: 

Mw,L = I& (,i.(C + 63)sin /3 cos @ cos O 

cos 6 + sin(+ - 63)cos(~ + 63)lsin o 

- ti3)sin(C +  COS /3 - cos(+ - 6 3) cos (C + 63jjsin ~h cos 

Spring-restraint moment.- The spring moment which is included in the in-plane 
equation of motion may be used to represent either an actual spring restraint or to 
simulate the structural stiffness of a hingeless rotor. 

The expression for the moment is 

where KSL is the lag spring constant. 

Damper moment.- The damper- moment expression has been included to represent 
either a viscous damping moment or simulated structural damping. 

The moment is defined as 

where C is the lag damper coefficient. 
d,L 

Lead-lag equation of motion.- The expressions for the moments about the lag hinge 
have been derived in the preceding sections. Substitution of the five terms (eqs. (4), 
(8a), (17), (18), and (19)) into equation (1) yields the following equation of motion for the 
lag degree of freedom: 

-1ik + Ih.$sin(< +  COS(< + 63)~in2,9 - -2 sin(5 + 6 3 ) ~ 0 ~ ( 5  + 63) + 2 1 h ~ 2 ~  cos2(< + 63)sin 

2 - -  "w d e 1  cos 63 cos ,9 sin(< + 63) + "W S2 2 et sin 63 cos(< + 63) - "w n2e2 cos 63 COS ,9 sin(< + 63) 
g 

7 

:w j2e2 cos 63 sin(< + 6 + 2 "W - O;e2 cos 63 cos(< + b3)sin ,9 - Ma([...($ - 63)~in(< + t~~)cOs  6 
3) g 

-- 

+ sin(+ - ~ ~ ) C O S ( <  + 63)Isin 0 - [IE.i.($ - &~)sin(< + ~ ~ ) C O S  ,9 - cos(+ - ~ ~ ) C O S ( <  + 631 sin + COS 0 

R l  - sin(< + 63)sin ,9 cos + cos cL c sin @(r - et)dr - s pU2cd,oc cos @(r - e ' dr - %.< - C 6 = 0 (20) t) d, L 
r C  
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Equation (20) is the dimensional equation of motion. It may be nondimensionalized 
by dividing by -IhQ2 and substituting the following expressions: 

el = xlR U = uaR 

e2 = x2R 

et = 3 R  
-- 

I 
Ih 

r = xR -e= A 

rc = xcR 

The nondimensional lead-lag equation of motion is 

( e  + 63) + q(xl + x2 cos p cos cos p sin(c + 63) - qxt sin Q3 cos 1 

( ( 3) 
-2 + qp x2 cos 63 sin + tj3) - 2 4 x 2  cos cos + 6 sin p 

'd,L- KSL 
3) 'ha 'ha2 

- sin(c + 6 sin p cos CP cos q + - r = o  

where 

Flapping Degree of Freedom 

The equation of motion for the flapping degree of freedom is obtained by again 
determining the expanded moment expressions of equation (1). The expressions for 
moments about the flapping hinge a re  given in the following sections. 
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Inertia moment.- - The rigid-blade inertia moment about the flapping hinge may be 
written as 

r R  

where 
sured in the plane perpendicular to the hinge axis. 

rF is the radial distance from flapping-hinge YF-axis to mass element, mea- 

By using the same procedure as was described for the acceleration about the lag 
hinge, the acceleration aF and the moment arm rF may be expressed as 

t) (244 2 .. 
aF = pp - e cos 63 + 52 r - e sin p cos p + 52 e ,  cos 63 sin p (e, 2 r 5 e 

1) 2( 1) 

rF = (r - e,)cos 63 

and 

2 + 252t(r - e cos < + 6 sin p + Be2 cos 63 + 52 el cos 63 sin p t) ( 3) 

+ 52 2 e2 cos G3 sin p cos p (et S r S R) (25a) 

rF = e2 cos 6 + r - e cos < + 6 (et 5 r 5 R) (25b) 3 ( t) ( 3) 

By substituting equations (24) and (25) into equation (23) and integrating with appro- 
priate limits, the inertia moment may be expressed as 

M 2 = -1~52 cos2(< + 63)sin p cos p - cos 
I, F 

Mb e2a2cos tj3 cos(< + 6 sin p cos p - 2 M;J e ib  cos 63 cos < + 6 3) g ( 3) 
- 2- 

g 
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- 2 MW - e2a< cos e3 cos + 6 sin p - 7 - e22a2cos263 sin p cos p g ( 3) 

-- 2 wb ele2S1 2 2  cos ti3 sin p wb e22p cos G3 - - 
g g 

2 2  2 2  .* 2 M'*e elSt cos 63 sin p - IeQ cos 63 sin p cos p - Iep cos G3 - g 

Aerodynamic-force moment.- The expressions for the aerodynamic forces on a 
blade element are given in equations (5) and (6). From figure 2, the component of these 
forces (i.e., l i f t  and drag) normal to the blade lag plane is 

dN = dL cos @ + dD sin @ (27) 

The aerodynamic-force moment is therefore 

where 

By substituting equations (5), (6), and (27) into equation (28), the aerodynamic-force 
moment may be expressed as 

[ 3 ( t) ( 3)ldr + J~~: pu cd,oc sin e2 cos 6 + r - e cos < + 6 2 

C 

Weight moment.- The components of the gravitational-acceleration vector referred 
to the shaft axes are given in equation (14). By appropriate coordinate transformations, 
the gravitational acceleration about the flapping hinge may be shown to be 

gF = -g sin 0 cos ( Q - 63)  - sin ch cos O sin (q - tj3)1 sin p - g cos + cos o cos p c (30) 

The weight moment about the flapping-hinge axis, defined as positive in the direc- 
tion of positive p, is 

15 
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where 

rF = (r - el)cos G3 

r = e 2 c o s 6  + r - e  c o s { + 6  
F 3 (  4 ( 3) 

By substituting equation (30) into equation (31) and integrating with appropriate limits, 
the weight moment may be expressed as 

+ sin 0 sin p COS(@ - G3) - sin 6, cos 0 sin p sin (@ - 63)1 (3 2) 

Spring- restraint moment.- The spring moment about the flapping hinge is included, 
as was done for the lag hinge, to permit simulation of structural stiffness or an actual 
spring at the hinge point. The moment expression is simply 

Damper moment.- The damper moment is included also for generalization of the 
rotor system. The moment expression is 

M d,F = -‘d,FP (34) 

Flapping equation of motion.- By substituting the five moment expressions derived 
in the preceding sections (Le., eqs. (26), (29), (32), (33), and (34)) into equation (1) and by 
using the nondimensionalizing parameters given in equations (21), the flapping equation 
of motion may be shown to be 

Bkos2(S + 63) + (A + ex22)cos 2 G3 + 2qx2 cos 63 cos({ + 63fl + [cos2(< + G3) 

+ 2qx2 COS 63 cos 

2 + e x p 2  + qexl)cos 63 + qx1 cos 63 cos(< + G3) + 2qx2t cos 63 cos(< + 63) cc 
16 



q cos ' + 63) + (qe + EX 2)c0s 6.J Eos + cos o cos 6 + sin o sin p cos (+ - 63> %[ ( 
'd,F - KSF p + - p = o  

021h 
(' - 63.)1 + a$, 

sin @ cos 0 sin #3 sin (3 5) 

where 

cMT = J B  - y'u Cz cos @ [ x2 cos 63 + (x - x t) cos ('+ 631, 
2 

XC 

Solution of the Equations of Motion 

The equations of motion (eqs. (22) and (35)) are nonhomogeneous zind nonlinear with 
varying coefficients that contain complex integral expressions when such items as stall 
and compressibility a re  considered. Thus, it is not feasible to obtain an explicit solu- 
tion and a numerical iterative method is required. 

The procedure used to obtain the results presented is outlined as follows: 

1. At an initial azimuth position Qo, assume initial conditions for <, c, p, 
- 

and p. 
2. Compute the thrust moment CMT and drag moment C M ~  at the selected 

azimuth position by evaluating the integrals at specified radial stations and integrating 
the results by numerical methods. 

3. Solve equation (22) for p and equation (35) for z. 
4. Repeat steps 2 and 3 at the next azimuth position, using values of <, f, p, - - 

and p obtained by integrating the previously determined quantities F and 3. Several 
techniques are  available for performing the integration. The method used herein is the 
Runge-Kutta method described in reference 5. 

5. Continue the process at successive azimuth positions until ,f3 and c reach 
steady-state values (i.e., repeat for successive rotor revolutions) or one or both of the 
angles diverge. 

The method of solution outlined above yields the transient blade motion from some 
arbitrary initial condition to a steady-state flight condition. The method may also be 
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used to compute the transient response of the blade motion due to control inputs or angle- 
of-attack changes by changing the appropriate input information after the initial steady- 
state flight condition has been achieved. Rotor-performance characteristics and steady 
blade motions may also be obtained from the forces and motions computed when the blade 
motion has reached a steady-state condition. 'The data presented herein do not cover 
rotor-performance aspects; however, as an aid in checking the equations and programing, 
the performance results obtained with this program have been compared with other com- 
puter programs (e.g., ref. 2) and very good correlation was found. 

APPLICATION AND DISCUSSION 

The applications and results presented herein are intended to illustrate the prob- 
lems associated with rotor operation at high tip-speed ratios and to define limiting con- 
ditions of rotor operation. It must be emphasized that the boundaries presented are  for 
a particular rotor-hub configuration and are  not intended to be applicable to all design 
configurations (e.g., configurations with added hinge restraint and/or dampers). The 
boundaries presented do, however, indicate the approximate range of tip- speed ratios 
wherein the destabilizing aerodynamic spring forces will have an adverse effect on blade 
motion. 

The following table lists the primary geometric parameters of the rotor hub and 
blade which were used in the examples presented herein: 

u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.1 
x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.05 
xc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.2 
Cd, ........................................... 0 
KsF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
Cd, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
KSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
el . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
......................... . . . . . . . . . . . . . . . . . . . .  0.97 
y' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Varied as indicated 
m . . . . . . . . . . . . . . . . . . . . . . . . . . .  Constant (value compatible with y ' )  

It should be noted that the in-plane damper has been omitted, and consequently, the 
lag motion will exhibit only the small amount of aerodynamic damping. 

.The airfoil section characteristics used herein a re  those given in reference 6. 
The section characteristics include compressibility effects; however, in order to 
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minimize such effects on the results presented herein, the rotor tip speed was adjusted 
to maintain an advancing tip Mach number of 0.8. 

Significance of the Angles p and 

The hub restraint specified in the derivation of the equations of motion (i.e., lag 
hinge at or outboard of the flapping hinge) requires the use of a flapping angle j3 which 
does not directly describe the physical location of the blade. It does, however, give the 
angular displacement of the flapping-hinge bearing. For example, at extreme lag 
angles e ,  it is possible to attain a 90° flapping angle with the blade only slightly out of 
the hub plane. This may be more clearly illustrated by writing the expression for the 
blade-tip displacement with respect to the hub plane. From figure 1 the expression for 
coincident hinges at the center of rotation is simply 

ztip = R cos sin p 

It is apparent that as approaches 90' (cos 
approaches zero regardless of the amplitude of p. Thus, at extreme lag amplitudes, 
the motion of the flapping hinge must be large for even moderate tip displacement. 
this  unique condition exists only at large amplitudes of lag, the flapping angle can gen- 
erally be considered as a measure of blade motion out of the hub plane for small lag 
angles (e.g., when cos = 1). 

- 0), the tip displacement 

Since 

Stability Examples 

Some preliminary applications and results obtained from a numerical solution of 
Figure 5 herein, the equations of motion derived herein a re  presented in reference 7. 

taken from reference 7, shows the blade-motion stability boundaries developed by intro- 
ducing the same initial flapping-angle displacement at two different initial azimuth posi- 
tions and solving for the transient blade motions of an unloaded (nonlifting) rotor. 
two boundaries illustrate the sensitivity of blade-motion stability to the azimuth position 
at which a displacement disturbance occurs. It should be noted that the boundaries pre- 
sented a re  essentially absolute limits, in that they represent conditions where hinge- 
motion amplitudes exceed 90'. Consequently, acceptable rotor operation (i.e., hinge- 
motion amplitudes less than blade mechanical stops) would be limited to tip-speed ratios 
less than those indicated by the boundaries. In addition, the disturbance amplitude intro- 
duced is relatively large and, thus, the lower boundary is in all likelihood conservative. 
These boundaries, however, were developed for a nonlifting rotor system and it would be 
expected that the addition of a lifting load would aggravate the condition because l i f t  
produces a destabilizing moment. An example of the shift which can occur for a lifting 
rotor is presented in reference 7. 

The 
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The fact that stability boundaries may be established over a range of tip-speed 
ratios for  various amplitudes and phasing of the disturbance is significant because it is 
possible to operate a rotor beyond a specific boundary and then encounter a disturbance 
of sufficient magnitude to produce a divergent condition. 

As a measure of the sensitivity of the boundaries to the initial flapping-angle input, 
the variation of the limit established for a mass constant y' of 1.6 for varying initial 
flapping angles is presented in figure 6. The boundary presented was established in the 
same manner as the boundaries in figure 5. That is, the blade was released from the 
initial flapping-angle amplitude Po as indicated and the transient solution of the equa- 
tions of motion was obtained. A s  indicated in figure 6, the increase in the tip-speed 
ratio at which unstable motion occurs for decreasing Po is relatively linear for the 
range Po = 0.10 to Po = 0.20. Below Po = 0.10, the boundary moves more rapidly to 
higher tip-speed ratios, as might be expected for  such small disturbances. Again it 
should be emphasized that these boundaries are, in effect, absolute limits since the blade 
amplitudes which occur in the stable region near the boundary are unacceptable in terms 
of realistic structural limits. 

Limited-Response Boundary 

An example of the amplitudes obtained for stable transient motion of the blade near 
the boundary for  po = 0.20 (presented in fig. 6) is shown in figure 7. The transient 
motion presented is characteristic of the response obtained when the blade is released 
with an initial displacement Po at = 90'. That is, the flapping angle increases as 
a result of the negative effective aerodynamic spring in the forward quadrants and the 
blade swings forward (i.e., leads) as a result of the Coriolis forces resulting from the 
positive flapping velocity. 

The response curve also illustrates another trend which is generally characteristic 
of the motion for the prescribed initial conditions: for stable conditions near the bound- 
ary, the maximum flapping amplitude occurs within the first half revolution after the blade 
is released. As was pointed out in reference 7, this increase in flapping amplitude occurs 
because the negative (destabilizing) aerodynamic spring forces in the forward quadrants 
are larger than the restoring centrifugal spring force. Thus, a more realistic boundary 
in terms of acceptable rotor operation could apparently be based on the tip-speed ratio at 
which the restoring spring forces a r e  at least equal to the negative spring forces during 
the first half cycle after the blade is released at 90' azimuth. Thus, upon release of the 
blade from an initial amplitude, the flapping angles do not exceed the initial amplitude 
(Le., p 5 Po) for the first half cycle. A boundary based on this criterion is presented 
in figure 8, and represents the approximate tip-speed ratio at which the rotor blade 
encounters regions of neutral stability in the forward quadrants. Also included is the 
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absolute limit of figure 5. The area between the two boundaries may be considered as 
an area of marginal stability. That is, it is an area in which the sensitivity to distur- 
bances is increasing rapidly as a result of the contribution of the destabilizing aero- 
dynamic spring forces in the forward quadrants of the rotor disk. 

An example of the blade transient motion which is characteristic of conditions 
along the lower boundary of figure 8 is presented in figure 9. The significant trend of 
the transient motion is the relatively flat slope of the flapping amplitude for the first 
part of the initial revolution as opposed to the large increase shown for the condition 
presented in figure 7. This relatively flat slope indicates that the nonlinear centrifugal 
and aerodynamic spring forces are approximately equal for the conditions imposed. In 
addition, the remaining revolutions indicate that the flapping motion is rapidly damped 
and that, as expected, the in-plane (lagging) motion has very little damping. The lagging 
amplitude, however, is not large because the coupling terms (Coriolis forces) are small 
for  the conditions presented. 

Since the boundary presented in figure 8 is based on somewhat arbitrary initial 
conditions, it is of interest to illustrate the significance of the boundary. 
by establishing a boundary based on a criterion that the maximum flapping does not 
exceed 15O when a nonlifting rotor is subjected to a 30-ft/sec (9.14-m/sec) vertical 
gust. The vertical gust was introduced as a step function in the inflow ratio A. 
resultant boundary is presented in figure 10 and compared with the boundary of figure 8. 
It should be noted that the gust input was  made with the blade at an initial azimuth angle 
of zero degrees with zero initial flapping displacement. The agreement between the two 
boundaries is surprisingly good in view of the fact that they are based on two diverse 
criteria. In addition, it appears that the boundary based on the criterion of neutral 
spring forces in the forward quadrants p 
tip-speed ratio at which blade-motion stability begins to deteriorate. Thus, the sensi- 
tivity to disturbances would probably be of concern when operating at tip-speed ratios 
above the indicated boundary. 

This was done 

The 

5 Po) gives a very good indication of the ( <  

CONCLUDING REMARKS 

The equations of motion for a fully articulated rotor system (flapping and lead-lag 
degrees of freedom) have been derived and a method for obtaining numerical solutions 
of the equations is presented. The equations a re  applicable to a wide range of rotor 
variables (e.g., airfoil section, twist, root cutout, and hinge geometry) and can account 
for two-dimensional stall and compressibility effects. The hinge restraints considered 
require that the lag hinge be coincident with or outboard of the flapping hinge. With this 
hinge restraint, the flapping angle /3 describes the flapping-hinge motion and does not 
indicate directly the blade motion with respect to the hub plane. 

21 



The equations were used to define blade motion stability boundaries in terms of an 
absolute limit (i.e., amplitudes greater than 900) and to define a boundary based on the 
criterion of neutral spring forces in the forward quadrants when the blade is released 
with an initial flapping-angle displacement at an initial azimuth angle of 90°. The latter 
boundary is thus a measure of the tip-speed ratio at which the destabilizing aerodynamic 
spring forces in the forward quadrants are approximately equal to the stabilizing centrif- 
ugal forces. Consequently, rotor operation above the boundary could be considered to be 
in an area of marginal stability in the sense that the rotor sensitivity to disturbances is 
increasing rapidly. A comparison of the boundary based on the neutral-spring criterion 
with a boundary based on a maximum flapping-amplitude limit of 15O for a 30-ft/sec 
(9.14 m/sec) vertical gust indicated good correlation. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 5, 1967, 
72 1-01-00-29-23. 
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Figure 1.- Geometry of rotor hub. 
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Figure 2.- Forces and angles at the blade element. 
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Figure 3.- Component of blade aerodynamic forces producing in-plane moment. 
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Figure 4.- Orientation of shaft axes with respect to earth reference axes. 
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