e

NASA TECHNICAL NOTE

{—}

=N

o

(=)

(= -]
HO3l1

il

i

NASA TN D-4108
LELOETO

GENERALIZED DECOMPOSITION THEORY
OF FINITE SEQUENTIAL MACHINES

by H. Allen Curtis

Lewis Research Center
Cleveland, Obio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION o WASHINGTON, D. C. o OCTOBER 1967

R e



TECH LIBRARY KAFB, NM

IIMENI0 T

0130989
NASA TN D-4108

GENERALIZED DECOMPOSITION THEORY OF FINITE

SEQUENTIAL MACHINES
By H. Allen Curtis

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — CFSTI price $3.00



GENERALIZED DECOMPOSITION THEORY OF FINITE SEQUENTIAL MACHINES*
by H. Allen Curtis

Lewis Research Center

SUMMARY

As a direct outgrowth of a study of the decomposition structure of finite sequential
machines, an extended decomposition theory of finite sequential machines is developed
and presented in this report. From the theory it can be determined how any finite
sequential machine can be realized from a set of smaller, concurrently operating ma-
chines. This ability assumes practical significance in problems vital to the further ad-
vancement of space science, such as the design of control systems and of data-gathering
data -analyzing systems.

INTRODUCTION

The use of control systems and of data-gathering data-analyzing systems has been
and will undoubtedly continue to be instrumental in advancing man's knowledge of space.
Among the most exciting and interesting research aspects of this area are the design of
control systems which must be devoid of human control for environmental reasons and
the design of compact space-borne computers with much greater capabilities.

It has been suggested that solutions to such problems will increasingly depend on
formal automata theory to the extent that it concerns itself with the finite and with con-
siderations imposed by dynamic environments demanding the completion of computation
within a fixed time (ref. 1). Of the recent studies in this direction, the ones dealing
with the theory of decomposition of finite sequential machines are among those which
offer the most promise of direct application (refs. 2 to 5).

In the present report, extensions of the theories and results of the aforementioned
studies are developed. In particular, the basic result of the research described herein
is the formulation of a generalized decomposition theory of finite sequential machines.
Unlike previous investigations dealing with the theory of the decomposition of sequential
machines, the admissible class of realizations treated is not limited to series, parallel,
or combinations of series and parallel inertconnections - nor is it limited to specialized
realizations containing feedback loops. But, it does include additionally those realiza-
tions having a general class of feedback loop interconnections.

* Subsequent to the writing of this report in February 1966, the author learned
Mr, Arthur T. Pu had submitted a doctoral thesis to the University of Illinois entitled
""Generalized Decomposition of Incomplete Finite Automata,'' December 1965. Some of
the results reported in Mr. Pu's thesis are comparable to some of those in this report,
but the approaches used were significantly different.



PRELIMINARIES

Before an explanation of the formulations of this report are given, fundamental con-
cepts and terminology are presented as background material.

Definition 1

A finite sequential machine M is a quintuple (I, S,0, A, A) where
I= {11,12, e IZ } is a set of inputs, S = {SI’SZ’ C ey Sm} is a set of internal
statesl, 0= {01, 02, e ey 0n } is a set of outputs, A is the next state function that maps
the set of pairs (Ij, Sk) into 8, and A is the output function that maps the set of pairs
(I].,Sk) onto 0.

Inputs

L b L | h I I

S1 | Su  Sa Su | Ou O il

S2 | Sz S22 Sz | Oz O O
Present
states

Sm | Sim Sem - : : Stm | Omm Om - : : Otm

Next s;tates Outputs

Figure 1. - Flow representation of sequential machine M.

In figure 1 the behavior of M is described by a flow table. The flow table shows,
for instance, that if the present state of M is Sz and input Il is applied, then M
goes into a new state SZZ and supplies the output OZ2' In terms of the definition, this
observation is expressed by saying that the next state function A maps the pair (IZ ) Sz)
into Sl 9 2 member of S and that the output function A maps the pair <IZ’SZ> onto
012’ a member of 0. If a next state or an output is unspecified, this is denoted in the
flow table by means of a dash for the associated entry. If all the next states and outputs
of M are specified, then the flow table contains no dashed entries, and M is said to
be complete; otherwise, M is incomplete.

Algebraic techniques have been introduced as convenient means of studying sequen-
tial machines (refs. 5 to 7). Elements of an algebraic theory of sequential machines and
certain results obtained in previous studies using algebraic techniques will be introduced

1

The states are also represented by positive integers in cases where it is the more
convenient notation.
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Figure 2. - Sequential machine A.

as they are needed. With the aid of the example machine A of figure 2, some of the
elements of the algebraic theory are now presented.

Definition 2

The Cartesian product P X Q of two sets P and Q is the set of all ordered pairs
{(p,q) with p in P and q in Q - thatis, with p € P and q € Q.

A concrete illustration of the Cartesian product is provided by considering the sets
I=1{1,2}and S={1,2,3,4,5} of machine A. The Cartesian product IX S is the set
{(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (2,5)}. This set is
precisely the one that A and A of machine A map into S and onto 0, respectively.

Definition 3

A binary relation between two sets P and Q is a set p of ordered pairs (p, q)
with p € P and q € Q. Usually {(p,q) € p is expressed as ppq. A binary relation
between the set P and itself is called a binary relation on P.

Associated with the output function A of machine A are two binary relations between
the sets S={1,2,3,4,5} and 0 = {01, 02 }. Corresponding to inputs 1 and 2 are the
binary relations A(1) and A(2), respectively; A(1l) and A(2) are given as follows:

A(1)= {<1701>7 <2:02>9 <3’02)7 <4,01>: <5702>}

It is worthwhile noting that there is no pair in A(2) involving state 1. The reason for
this is that the output is unspecified when the input 2 is applied to machine A in state 1.



Each pair in these relations is essential to a complete description of the behavior of A.
For instance, (3, 02) € A(1) shows the relation between state 3 and output 0, when

input 1 is applied to A.
There are associated with the next state function A of machine A two binary rela-

tions between the set S and itself:
A(l) = {<1,4>’ <2,1>7 <3, 5); (4’ 3)]’
A(2)= {(1, 2)7 <2:5>’ <3’2>’ <4’1>’ <5;4>}

The absence of a pair involving a present state 5 in A(1) indicates that the relation be-
tween present state 5 and any next state is unspecified for input 1. Each pair in these
relations is also essential to a complete description of the behavior of A. In fact, the
flow table representation of A can be readily derived from the four binary relations
A1), A(2), A(1), A(2), and vice versa. The aforementioned relations, besides providing
a description of the behavior of A, are useful in algebraic manipulations. This discus-
sion serves as an introduction to the first two of the next three definitions.

Definition 4

The next state function A of a sequential machine M is a mapping that associates
with every input i € I, a next state relation A(i) on S.

Definition 5

The output function A of a sequential machine M is a mapping that associates
with every input i € I, an output relation A(i) between S and O.

Definition 6

For two sets P and Q, P is a subset of Q, written P € Q, if each element of P
is an element of Q. P is a proper subset of Q if P is a subset of Q and there is an
element of Q which is not in F.

In the case of machine A, A(1l) and A(2) are proper subsets of S X S. Similarly,
A(1) and A(2) are proper subsets of SX 0. Also, {1,2,5} is a proper subset of S.
The set S as a subset of itself is an example of a subset that is not proper.

The next two definitions are conveniently illustrated together.



Definition 7

If P is a set, the set N of all those elements in P which have a property R is

expressed as

N = {p € P|p has the property R}

Definition 8
If p is a binary relation between P and Q, the domain D(p) of p is given by
D() = {p € P|ppq for some q in Q}
With respect to machine A,
N={s € S|sA(2)o forall o in 0} = {2,3,4,5}
since the elements of S which have the property sA(2)o for 0, and 02 are 2, 3, 4,
and 5. Furthermore, N is the domain D(A(2)) of the output relation A(2). The fact

that D(A(2)) is a proper subset of S shows that machine A is not complete. In general,
for all i € I, both D(A(i)) and D(A(i)) must be S for a sequential machine M to be

complete.

Definition 9

If NCP, then
Np = {a € Q|ppq for some p in N}

A specific illustration of this definition is provided by considering a set N= {1,2,5},
a proper subset of S of machine A, and the next state relation A(l):

NA(]') {1’2’5}{<1’4>’ <2,1>’ (3,5>, (4’3)}

{4,1}
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Definition 10
If p CPXQ and 0 CQXR, then
po = {(p,r) € PX R|ppq and gor for some q in Q}
For machine A, A(1) CSX S and A(2) C S X 0; thus,

{{1,0,), (3,0p), (4,01}

The binary relation A(1)A(2) relates the present states of A to the outputs supplied
after the successive application of inputs 1 and 2.

Definition 11
The set intersection of a family Pl’ Pz, e ey Pn of sets, written
Py M P, N ... M P, is the set of elements which are in all of the sets of the

family. Two sets P and Q are disjoint if P M Q = ¢, where ¢, called the empty
‘ set, is the set with no elements in it.
In the case of machine A, Py = {1,2,5}, Py = {1,4}, Pg = {1,4,5} is a family
of the subsets of S. The intersection of these subsets is

P, N P, N Pg={1,2,5} N {1,4} N {1,4,5} = {1}

Two other subsets, P, = {1,3} and Pg = {2,4}, of S are disjoint since there is no
element common to both P4 and P5 so that

Definition 12

The set union of a family Py, Py, . . -, P of sets, written P1 UPZU LU P,
is the set of elements in at least one set of the family.



The union of the subsets Pl’ PZ’ and P3 of the previous example is

Py U P, U Py = {1,2,5} U {1,4} M {1,4,5} = {1,2,4,5}

Definition 13
A partition 7 of a set S is a family Pl’ P2, e ey Pn of nonempty pairwise dis-
joint sets such that Py U P, U. ..U P, =8. The sets Py, Py, . . ., P, are called

the blocks of 7.
The subsets Py = {1,5}, Py = {2,4}, and Pg = {3} of S of machine A are pair-
wise disjoint. Their union is P1 U P2 U P3 =S and the partition » is given by

T= {Pl, Py, P3}

Definition 14
The canonical relation 7* between S and 7 is given by
m* = {(s,P)|s€ P €1}

In particular, the relation 7* between S of machine A and the partition 7 of the
previous example is

¥ = {<1’P1>’ <59P1>7 <2:P2>’ <47P2>’ <3,P3>}

Then
STT* = {1,2,3:4’5}{<1’P1>, <57P1>’ <27P2>’ <4:P2>, <3)P3>}

= {PI;P2;P3} =T

Definition 15

The inverse of a binary relation p is



p7l= {{a,p) |ppg, p € P and q € Q}
The inverse of the relation 7* of the previous example is given, for instance, by
-1
(77*) = {<P1; 1); (PI’ 5)) <P2’ 2); <P2’ 4): <P3’ 3) }
Thus,

1971 = {P, Py, P} ((Py,1), (P1,5), (Py,2), (Py,4), (Pg,3)}

= {1,5,2,4,3} =S

Furthermore, Svr*(1r*)'1 =S and 77(17*)-1 T* = 7.

Definition 16
The greatest lower bound (g.1.b.) of two partitions =7 o and Tg is given by

Ty Tg= {P N QIPE 7, and Q €7TB}.

There are two trivial partitions of a set S. The partition I contains one element S. The
partition 0 is the partition whose blocks are precisely the elements of the set S. These

partitions have the properties

The use of the symbols I and 0 for these partitions as well as for input and output sets
is consistent with conventional usage. Whether these symbols refer to the trivial parti-
tions or the aforementioned sets in subsequent discussions should be clear from the con-
text.

For machine A, the definition is illustrated by considering partitions
7y = {Py={1,2,3}, Py = {4,5}}, my = {Q; = {1,3,4}, @y = {2,5} ],
I=1{S=1{1,2,3,4,5}}, and 0= {1,2,3,4,5}:



Ty 7T2= {Pl mQ1={1,3}, P]_ mQ2={2}, P2 M Q1={4}’ P2 rWQ2={5}}
I- 7T1={Sﬁ P1=P1,S mP2=P2}=771

0'n1={lﬁP1=1,2f—\P1=2,3ﬁP1=3,4ﬂP2=4,50P2=5}=0

Definition 17

That a partition n_, of S is the refinement of a partition g of S is expressed by

o
Ty =Tg= {Pc Q| forevery P € 7, and some Q € mg})

Illustrative of this definition are the partitions Ty * Ty and Ty of the previous
example:

. =
T - Tg=M
since

{1,3} < {1,2,3}, {2} < {1,2,38}, {4} < {4,5}, {5} < {4,5}

Definition 18

Partitions 7 and 7' of S of a sequential machine M form a partition pair (7, 7")
if and only if for every P € 7 and every i € I there existsa Q € 7' such that
P A(H) € Q.

With respect to machine A,

(77: {P1= {1’2}7 P2= {375}7 P3= {4}}7 m' = {Q1= {1,2,4,5}, Q2= {3}})
is a partition pair since
Pl A(l): {1:2}{<1:4>7 <2:1>’ <375>’ <4’3>} = {4,1}5 {1’2’4:5} =Q1
P2 A(1)= {5}_C_Q1

P3 A(l) = {3} EQZ



Pl A(2)= {1,2}{<1;2>, <2:5>: (3’2>: <4’1>, <594>} = {Z:S}EQI
P, A(2) ={2,4} CQ

P3 A(2)= {1} EQI

DECOMPOSITION OF SEQUENTIAL MACHINES

In previous studies valuable insight into the structure of sequential machines
has been gained by investigating the decompositional properties of these machines
(refs. 2 to 5). The problem of sequential machine decomposition is that of determining
how a sequential machine can be realized from interconnected sets of smaller machines.
The aforementioned studies have been concentrated either on specialized classes of feed-
back loop realizations of machines or else on loop-free connections of machines, that is,
machines connected in series, parallel, or series-parallel combinations. The present
study is a presentation of a unified decomposition theory that encompasses both loop-
free decompositions and a general class of feedback loop decompositions.

In the loop-free decomposition theory all smaller machines in any given realization
are assumed to be Moore type machines (ref. 4). A Moore machine is a sequential
machine for which the output mapping function A is independent of the input set I
(refs. 4 and 7). When all component machines in a realization are of the Moore type,
the output of each machine is used as an input to the other machines. Since the outputs
are determined by the present state of the machines, all component machines can com-
pute their next states simultaneously after an external input has been applied. Hence,
the advantage of a realization composed of an interconnection of Moore machines is that
it does not slow down the machine because all smaller machines operate concurrently
and do not require waits for carry computations. This property of concurrency of oper-
ation will be exploited further in the development of the extended theory of decomposition
of sequential machines.

Definition 19
The set {Ml’MZ’ C ey M } is a set of Moore machines. The set of inputs, states,
(k) S(k), and 0( ), respectively. Further-

and outputs of machine Mk’ 1 < k=j, are 1
more, the input set I( ) is given by

10 < 1x c®

10




unless either I or C(k) contains one and only one element, in which case

10 ¢ c® o 1 ¢

respectively. The set C(k) is the set of internal inputs or carry inputs, which are
derived from the outputs of other machines in a realization of a sequential machine M
as an interconnection of machines Ml’ MZ’ .« ., M.. The set I is the set of external

J
inputs applied to M.

Definition 20 (ref. 4)

The set {Ml’ MZ’ C e ey Mj} of interconnected Moore machines, in which the out-
puts of any Mk(l = k = j) may be used as inputs to other machines, is concurrently
operating if the next state of each machine Mk depends on the present state of Mk’ the
present outputs of the machines to which it is connected, and the present external input.
The ordered j-tuple of the present states of the machines Ml’ MZ’ ..., M, is

]
referred to as the state of the interconnected machine.

Definition 21 (ref. 4)

The state behavior of the sequential machine M, the behavior of M exclusive of its
outputs, is realized by a concurrently operating interconne.ction of the machines Ml’
Mz, e ey Mj with the sets of states S(l), S(z), ey S(]), respectively, if the follow-
ing obtains:

(1) The input I of M is a subset of the set of possible inputs of the machine
realized from the machines M1, M2’ .« . .y M.

(2) There is a one-to-one mapping ® between the set of states S and M and a

subset R of the Cartesian product of the sets of states of Ml’ MZ’ . v e Mj

s %@y xsW

which is preserved by the operations of M and the machine realized from M1,

M2’ C e, M].. In other words, if the two machines are initially in corresponding

states, they will again be in corresponding states after any sequence of inputs from 1.
Central to the decomposition theory developed in this report is the concept of an

S(k) -image of a finite sequential machine M. This concept is embodied in the next

definition.

11



Definition 22

Given sequential machines M and M., Mk is an S(k) -image of M if and only if

for every s® ¢ s®, i €1, ana 1® - G c®y ¢ 1®
(1) Every s € S belongs to some s k € S(k) and to some c(k) € C(k)

@) (c(k) A S(k)) AG) € (k) A(k)(i(k))
For the case in which I&) C 1, the quantity ¢® M s® of part (2) reduces to s®.

Also, when I(k) C 1, the concept of an S(k) -image reduces to a concept which has found

some previous usage (ref. 7).

In the development of the theory of this section it is convenient to consider the sub-
sets s(k) of S to be disjoint and also the subsets c(k) of S to be disjoint. In a later
section the case for which these subsets may not necessarily be disjoint is considered.

An example of the concept of an S(k)-image is furnished by the consideration of
machine A of figure 2 and machine A1 of figure 3. The elements of the sets,

S(1)= {Sgl) = {193’5}, Sgl)= {2’4}} and C(l) = {Cg_l) = {1’2a4’5}’ C§1)= {3}}, of

- ic(ln> <1’c(21)> <2,c(11)> <2,c(21)> ol

m | s s s s | o
8! 2 1 2 2 1

m | o s oD
%2 1 1 2

Figure 3. - Machine Aj.
machine A, satisfy condition (1):

(1) (1) (1) (1) _
n245ec)  secd P U cl-s

Condition (2) is also satisfied:

€ N s®a@) = (13} N (2,4Da0) = ¢ 2@ = ¢ = s D1, c{y)

€ N sMae) = ¢ a@) = ¢ = sPaB2,cfy)

12



P N s{haw) = 11,51 (<19, (2,1), (3,5), (4,3)}

= 141 c s = sPa® (1, ()
N stha) = 12,4380 = 11,3} < sV = sPaBa, (D))
P N sPaq) = 1318 = {51 < s{V = sPaWD(1, c{Vy)
N sMae) = (1,51 ((1,2), (2,5, (3,2), (4,1), (5,4)}
= 12,4} < s{V = sVaW((2, c{Vy)
e N sM)ace) = (2,414@) = 15,1} < s{M) = sPaWD((a, c{y)
) N sPha@ = 131a@) = 121 ¢ s = sPalz, cfy)

Therefore, machine A1 is an S(l)-image of machine A.

The following theorem relates the concept of an S(k) -image of a machine M to a
partition pair on the states of S of M. The partition pair as in previous investigations
into the decomposition structure of sequential machines (refs. 3 and 4) is a valuable
tool in the development of the theory. Adding to the importance of this relation between
the concept of an S(k) -image and a partition pair is the fact that one of the aforemen-
tioned partitions corresponds to the set of states S(k) of Mk and the other to both S(k)
and the set of carry inputs C(k) to M.

Theorem 1:

Given a sequential machine M. there exists a sequential machine My, which is an
S(k)-image of M, if and only if there exists a partition pair (nk, ﬂl'c) on the states of S
of M such that M = C(k) . 7’1'<’ where C(k and "l'c are partitions whose blocks are the
elements of the carry input set C(k) to Mk and the set of states S(k) of Mk’ respec-
tively.

Proof:

According to the hypothesis of the ""only if'" half of the theorem, Mk is an S(k)_
image of M, and C(k and 171'( are partitions whose blocks are the elements of the
carry input set C(k and of the state set S(k) of Mk’ respectively. All pairs of inter-

13



sections P = c(k) M s(k) are disjoint because of the disjointness of the pairs of the
c(k) and of the s(k). The union of all nonempty P defines a partition Ty of the states
of S since every s is in some c(k) and some s k according to (1) of definition 22.
The partition T in accordance with definition 16, is the g.1.b. C(k) . 711'( of the parti-
tions C(k) and "l'{ According to definition 22, P A(i) C s(k) A(k) (i(k)) C Q, where

Q< 7:1'{ and P € Ty This is precisely the definition of the partition pair

(7Tk, "1'<) = (C(k) " T 771:{).

Now for the 'if'' half of the theorem, it can be assumed that there exists a partition
pair (nk, m}) on the states of S of M such that = () . ), Where C(k) is a parti-
tion of the states of S. With the use of this information a sequential machine
M, = (I(k), s®, o), A A®)Y can be defined as follows: According to the definition
of a partition pair (C(k) . wi{, 7;1'(), there exists, for every P = c(k) M s(k) € Ty and
every i€1, a Q€ 711'{ such that P A(i) C Q. Let the blocks of 771'< and C(k) be the
elements of the sets S(k) and C(k) of Mk' Because ”1'< and C(k) are partitions
corresponding to the sets S(k) and C(k), respectively, every s € S necessarily
belongs to some s(k) € S(k) and to some c(k € C(k) ; that is, condition (1) of definition
22 is satisfied. Let I(k) be defined by i(k) = (i, c(k)) € I(k). Moreover, the definition
of A1) ig established by letting P A@i) © s(k)A(k)(i(k)g C Q. Thus, condition (2) of
definition 22 is satisfied. Furthermore, 0 and A can be defined by letting
s ) o®) ¢ 00 foran i € 1. In the process of defining M, it was shown
that definition 22 was satisfied. Therefore, machine M, is indeed an S(k)-_image of M.

In the previous example it was shown that machine A1 is an S(l)—image of ma-
chine A. The partition pair (nl, ni) which is implied as a consequence of the theorem
is

(ry = (P, = (1,5}, Py = (2,4}, Py={3}}, n} =sW = (s{V = (1,35}, s{V) = (2,4} })
where 7, =W - 71 ana ¢® = (cfV) = {1,2,4,5), ¢ = {3} ). Furthermore,
given machine A and the partition pair ("1’ 7r'1), one can construct machine A1 as an
S(l) -image of machine A. Illustrative of this construction is the following: Let

- 1, My, 2, ¢y, (2,

As a consequence of

e N sMaw) = (43 csP

14



@ N sMaw = (1,33 s

let
s = sDaW ¢, c{y)
s{) = s{DaM (1, cfty)
so that

A, cfhy) = sV, sy, (s, s{y

Similar constructions yield

a®¢, ) = (s, sy
a®z, e = (s, s, (s{H, sty
Az, e = (s, s

AW, ) = AW, e = Az, )

= a2, e = (s, ofh, (s, oy

Lemma 1:

If the state behavior of a sequential machine M is realized by a concurrently
operating interconnection of two machines M1 and M2, then there exist partition pairs
(771, ni) and (172, né) on the states of S of machine M such that

7ri né =0
my = C(I) . 7Ti
To = C(z) - ml

15



where

Ty = C(l)
Ty = C(Z)

Proof:

By the hypothesis the state behavior of a sequential machine M is realized by a
concurrently operating interconnection of two machines M1 and M2 According to

definition 20, the state of the interconnection is the ordered pair of present states of M1
and MZ’ that is, (s(l), (2 )> where s(l) (1) and s(z) € S(Z). Also, by definition 21
there is a one-to-one mapping ® between the states of S of M and members of a

subset R of S(l) X S(z). Thus, R is the set of states of the interconnection of M1 and

M2. In accordance with the mapping @®, each element S]Q) € S(l) is given by

SJO) = {u|u € S such that u corresponds to an ordered pair
(s, @y ¢ R for which s is s](l)}

Similarly,

Sl({z) = {v lv € S such that v corresponds to an ordered pair

(S(l), S(2)> € R for which s(z) is S(2)}

No two elements of S(l) can have any states s € S in common if the mapping @ is to
be preserved. A similar statement applies to the elements of S(2 . Also, the mapping
® requires that every s €S belongs to some s(l)C S( ) and to some s(z) < S(2).
Each element C(z) of the carry input set C(z) to M2 is obtained from the output set
0(1) of M1 accordmg to

o = (s [sDAWGM) _ ofD)
where

s§1)c s ang ogl)c oDy

16



If the output set 0(1) contains one and only one element 0(1), then the only element of

;
0(2) is c(z) =5 in which case 1? c 1; otherwise, ¥ c I1x ¢(®). 1t should be noted

that A(I)S (1)) is the same for all i € I because M, isa Moore machine. Each ele-
ment C(2 of C(z) is the union of the subsets S(l) of the set of states S and hence can
also be expressed as a subset of S. As such, no two elements of C(Z) can have
any state s € S in common and also every s € S belongs to some 0(2) € C(Z). A
similar consideration of C(l) shows that a statement analogous to the previous one
applies to C(l) and its elements, Hence, thus far it has been shown that M1 and M2
satisfy condition (1) of definition 22. To prove that these two machines also satisfy con-
dition (2) of definition 22 and consequently are S(l)- and S(z)—images, respectively, of

M, the following analysis is made: According to the mapping &,

1
Sj( ) A Sl({z) ={uM v|ju€S and v € § such that u corresponds to an ordered pair

(s(l), s(z)) € R for which s(l) is S](I), and v corresponds to an ordered

pair (s(l), s(z)) € R for which s(z) is Sl({z)}

Thus, either S(l) M S](f) = ¢ when there exists no ordered pair (s(l) (2)) € R for

1) 2) is S(z), or else S(l) M 8(2) is the state s € S

(2)

which both s(1) is s{1) and s

corresponding to (S( ) S(z)) Since C is the union of subsets S§ ) the quantity

C(Z) M S(z) is either ¢ or else a subset of S. In the latter case, the subset corre-
sponds to a set of ordered pairs (s ) ( )) € R whose first elements are the subsets
S(l) and whose second elements are all the same, the subset S(z). The aforementioned

set of ordered pairs is mapped by A(l)(l(l)) and /_\(2)(1(2)) into another not necessarily
dintinct set of ordered pairs. In particular, A(l 61 1 ) is used to map the first elements
of the given set of ordered pairs into the first elements of the resulting set of ordered
pairs. The second elements of the resulting ordered pairs are obtained from the map-
ping A(Z) i (2)) in an analogous manner. If all the ordered pairs resulting from the
mappings correspond to s%1 M s(z) = ¢, then the resulting states of the interconnection
of My and M2 are unspecified. In such a case, to preserve the mapping @
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(ng) M S]iz))A(i) =g E Sliz)A(z)(l(z))

If one or more of the resulting ordered pairs do belong to R, they must correspond

to the set of states resulting from the mapping A(i) of ng) M Sl((z) to preserve the
mapping @®. Since each of the resulting ordered pairs contains the same second element
s(‘2 € S(?" , the union of intersections s(1 M s 2 corresponding to this resulting set
or ordered pairs must be a subset of the element s(z) €8S 2) resulting from the mapping
A(z)(i(z)) of Sl({z) . Consequently,

@ N sPhaw c sBa@ @)

Therefore, machine M2 satisfies condition (2) of definition 22 and is an S(Z)-image of
M. A similar analysis shows M1 to be an S(l)-image of M. By Theorem 1, then
there exist partition pairs (7r1, ni) = (C(l) 'ni, 17'1) and (n2, né) = (C(Z)) Ly né). Be-
cause 77'1 and Tré are partitions whose blocks are the elements of S(l) and S(z),
respectively, and because each intersection s(l) M s(z) is either ¢ or a single ele-
ment s € S, it follows that ni . né = 0. Furthermore, since the partition C(z) is the
partition whose blocks are the elements of the carry input set c(2) and the elements of
the latter are composed of subsets of the elements s e s it follows that my = c@,
in the case where the carry input set C(2) is composed of a single element, then the
partition C(z) is the trivial partition I and it is still true that ni = C(z). Similarly,
né = C(1 .

The machines B, By and B, of figure 4 are used to exemplify Lemma 1. Ma-
chines Bl and B2 comprise the concurrently operating interconnection realizing the

B By
(L) (L12) (211) (212)

114 4]0 7 9 - 9 - o(l 1
2|4 5|0 8 9 9 9 10 | ofp
315 610, 9| 7 10 7 g | ol
MR 0| - 10 - g | ol
506 2(0 | 2
66 3]0, B,

| Gfne) (sh) @) Gfa))|

1 1 11 11 i) 0‘12’

2 i © 1 12 0‘22’

Figure 4. - Representations of machines B, Bl, and 52'
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state behavior of machine B. Under the mapping @ the following correspondences
obtain:

1~ (7,11)
2 ~ (8,11)
3 ~ (8,12)
4 ~ (9,11)
5 ~ (9, 12)
6 ~ (10,12)

The state 7 of machine B, appears in only one ordered pair, and that pair corresponds
to state 1 of machine B; therefore, 7= {1}. The state 8 appears in two ordered pairs
corresponding to states 2 and 3; hence, 8 = {2,3}. Similarly, 9= {4,5} and 10 = {6}.
The states of machine B, are found to be 11 = {1,2,4} and 12 = {3,5,6}. Thus,
there exists the partition pair (7r1, n'l) on S of machine B, where

my={7= {1}, 8=1{2,3}, 0= {4,5}, 10= (61}, ¢V = (11= {1,2,4},12 = (3,5,6]}),
and Ty = C(l) . n'l = 0. Moreover, there exists (772, né), where 75 = {11 = {1,2,4},
12 = {3,5,6}}, c® = ({7,9) = {1,4,5}, (8,10} = {2,3,6}}, and 7, = C® . m

= {{1,4}, {2}, (3,6}, {5}}. Finally, it is observed that m} - c®, m < c@),
and 77'1 . :I'2=0.

Theorem 2:

The state behavior of a sequential machine M is realized by a concurrently oper-
ating interconnection of two machines M1 and M2 if and only if there exist partition
pairs (7r1, n'l) and (7r2, né) on the states of S of M such that

Ty oMy = 0
Ty = C(l) '71'1
To = C(z) . Tfé

Proof:

The "'only if'* half of the theorem follows directly from Lemma 1.
For the ""if'* half of the theorem it can be assumed that there exist partition pairs
(my ‘/Ti) and (nz,né) on S of M suchthat n} - 75=0, ny = C(l) - my, and
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g = c(z) - my. Moreover, there exist partition pairs (nl, 1) and (112, né) on S of M

with the additional properties that 71'2 = C(l) and ”'1 = C(z). That this last assertion is
true is verified by the following arguments: Suppose that Ty = 0; then C(l) can be taken

to be né since my = C(l) . 77'1 = né . 7r'1 = 0. Next, suppose that 7y #0 and C(l) < né;

then C(l) . né = C(l) so that Ty = C(l) . 7;’1 = C(l) . né . 1ri = 0, which is a contradiction.
Now, suppose that the first of the partition pairs assumed to exist is represented by
(—TL].: g(l) -7y ni) such that neither g(l) nor 7, isa refinement of the other. Hence,
9_(1) . 7T'2 =T, Where T <g(1) and 7< 7r'2. Then 7T - 7r'1 = g(l) . 1r'1 = my- Because of
the existence of (El’ n'l) on S of M, the partition pair (7 - ni, ni) also exists on S

of M (ref. 3). Therefore, let the partition pair (7 - 17'1, n'l) replace (7r1, ni) in all

further considerations; also let 7 = C(l) and my =T 77'1 so that C(l) < né. For this
case, it has already been shown that Ty must be 0, and hence C(l)
né. Thus, it1§1as been shown that there exists a partition pair (nl, 7r'1) on S of M such
that né = C\/. Similar arguments show that there also exists a partition pair (”2’ né)

can be taken to be

on S of M such that 7r'1 = C(z). According to Theorem 1, there exist machines M1

and M2 which are S(l)— and S(z)-images, respectively, of machine M. Because 17'1
7r'2 are partitions whose blocks are elements of S 1 anld S(Z), respectively, and
because w} - w5 =0, it follows that each intex('i;;action (zs)( ) M s(2 is either ¢ ora
single s € S. The nonempty intersections s M s can be put into a one-to-one
correspondence with a subset R of S1) x (). with the aid of definition 22 and a
reversal of the arguments presented in Lemma 1, it follows that there exists a mapping
® which is a one-to-one correspondence between the states of S of M and the subset
R such that M1 and M2 are the component machines of a concurrently operating
interconnection realizing the state behavior of machine M. This completes the proof of
the theorem.

The reader should be warned that the partition pairs given in the "'if'' half of the
theorem are not necessarily those directly associated with M1 and M2 as S(l) - and
S(z)—images, respectively, of M. As is brought out in the proof, if the given partition
pairs do not have the property that né = C(l)
ence of partition pairs that do possess this property. The implied partitions pairs only
differ from the given ones in that their first partitions are refinements of the corre-
sponding partitions of the given partition pairs. Thus, the implied partition pairs are
the ones that are directly associated with M1 and Mz.

A consideration of machine B again along with the partition pairs derived fn the
previous example afford a concrete illustration of Theorem 2. Machines B1 and By
can be derived as S(l)— and S(Z) -images, respectively, of B in the manner illustrated
in the example following Theorem 1. Typical of a specific demonstration that B1 and

and 7r'1 = C(2) , then they imply the exist-
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B2 are interconnected to operate concurrently and realize the state behavior of B is
the following: Suppose that machine B is in state 2 when the input 1 is applied; then,
the next state of B is 4 according to {2}A(1) = {4}. Since 8 M 11 = {2} where 8€S
and 11¢€ S(z), let it be supposed that machines B1 and B2 are in states 8 and 11,
respectively, when B is in state 2: that is, let 2~ (8,11). Because for B

(1)

1

11 N 8)a@) = {21a@) = {4} c saM1, 1)) = 9
for B2
(18,10} N 11)a@) = {2}a@) = {4} c 11 a@)1, {8,10})) =11

9 M 11 = {4}

the combined next state of B1 and B2 after the application of the input 1 is 4; that is,
4 ~ (9,11).

The fundamental theorem of the decomposition theory developed here is a generali-
zation of Theorem 2 and is as follows:

Theorem 3:

The state behavior of a sequential machine M is realized by a concurrently opera-

ting interconnection of j machines Ml’ M,, . . ., M. if and only if there exist parti-
tion pairs (771, 11'1), (7r2, né), ey (nj, 71]!) on the states of S of M such that
LA A S
LSRR n] 0
771 = C(l) : 7Ti
my = C® .
PTG ) R
my = C ™
Proof:

For the "'only if'' half of the theorem, it can be assumed that the state behavior of
M is realized by a concurrently operating interconnection of j machines Ml’
MZ’ e e, Mj' That part of the given interconnection consisting of all machines Ml’
Mz, O Mk—l’ Mk+1’ N M]. but Mk is a Moore machine which will be called
M a+k-1' The carry inputs to M a+k-1 come from the outputs of machine Mk' The

outputs from M atk-1 Serve as the carry inputs to Mk' Thus, the state behavior of M
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is realized by a concurrently operating interconnection of machines M k-1 and Mk'

By Lemma 1 there exist partition pairs (C(Ol"'k -1) . ”a+k 1’ ”a+k 1) and (C(k) C TR nl'{)

on the states of § of M suchthat nj, ; , - m =0 where m = C(a"'k -1) and

w& k1= C(k). There are j such pairs of machines M a+k-1 and Mk corresponding

to k=1,2, . . ., j. Their existence implies the existence of j partition pairs on the

states of S of M, (7Tk= C(k) . "i«:’"'k)’ where k=1,2, . . ., j. Also implied is that

"Zx+k-1=”i' Ty .. "l'«:-l'"iﬂl' C et ”j" Hence, Tfi . Tfé' . 7r5=0.
For the '"if'' half of the theorem, it can be assumed that there exist j partition

pairs (r,_= c® . n]:(, m), k=1,2, . . ., j, onthe states of S of M such that

”1 . ' . . . - 7! =0. As a notational convenience the given partition pairs are

represented by (nk = C( ) Thes ”1'{)‘ There exists a partition pair

(”B’ ﬂB) = (7r Ty e e lj-l’ Ty oMy 1) on the states of S of M (ref. 3).

Since 7, = C(l) C(z) ek g(j_l) B there certalnly exists a partition C(B ) such that

= C(B ). nb. Therefore, according to Theorem 2, the state behavior of machine M
is realized by a concurrently operating interconnection of two machines M, and M..
The proof of Theorem 2 also indicates how the partition pairs (713, ";8) and (n]., n]!),

which are directly associated with machines MB and M. as S<B ). and S(j)-images of
M, are derived from (nB, 7%) and (nJ, 7!). A partition, which will be called 7 1'{, on the
states of S(B ) of M B can be derived from ”I'«: on the states of S of M as follows:

In accordance with definition 14, there exist canonical relations

ﬂb*= {(s,s(ﬁ)> |s € s(B) € S(B)}
Mk = {(s,s(k)) |s € sW ¢ S(k)}

By definition 15, the inverse of 7TB* is

(17'6*)'1 = {(S(B), s) [snb*s(ﬁ), scs and s ¢ S(B)}

By definition 10,

¥ = (nﬁ'*)'ln};* = {(S(B), s(k)) ]s(B)(w"g*)‘ls and snl'{*s(k) for some s € S}

Thus,

S”b*= S(B), S”l'{* = S(k) so that S(B)(ﬂb*)-l =8
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and

srp = $® ) Lnjr = sBlox - 50

Then, ?1'{, is the partition whose blocks are the elements of S(k). That the blocks of

?l'{ as defined by the previous mapping are indeed pairwise disjoint is guaranteed by the
fact that nb = m. A partition pair (fk, FI;) on the states of $(P of Mg can be derived

by an application of definition 18 (ref. 3). Since (0, 77'1'() always exists, it follows that
there exists a partition pair of the form (fk = _q(k) . ?1'{, ?1'{) on the states of 8 of Mg.
Hence, there exist j - 1 partition pairs (fk = _g(k) . Fl'c’ ?1'{), k=1,2,...,j-1,0on
the states of S8 of Mg such that o ?b L 77]!_1 -0 where 0 on s® of Mg
corresponds to 7, on S of M. The process given thus far in this half of the proof
can now be iterated to show that the state behavior of machine M Bik-1 is realized by a
concurrently operating interconnection of machines MB ok and Mj—k for

k=1,2, ..., j- 3. The process terminates when it is established that the state

behavior of machine M -3 is realized by a concurrently operating interconnection of

B+j
machines M1 and M,. Hence, the state behavior of M is realized by a concurrently
operating interconnection of machines Ml’ M2, e e e, Mj’ which establishes the
theorem.

Machine B of figure 4 provides a specific example of the ""if'' half of Theorem 3.
Associated with machine B are partition pairs (12 = 9(2) . né, né), (23 = 9(3) . 1r:'3, wé),
and (114 = 9(4) '774'1’ 774'1)’ where

my = (11= {1,2,4), 12= {3,5,6)}  c® = (13- (1,4,5), 14= {2,3,6}}

ny= {13 = {1,4,5}, 14= {2,3,6}} C® = {17=(1,2,4}, 18= (3,5}, 19 = {6} )
my = {15={1,2,3}, 16 = {4,5,6}} 0_(4)= {20={1,2,3,5,6}, 21 = {4}}

such that né . n:'3 . 77"1 = 0. According to the theorem, this implies that the state be-
havior of machine B can be realized by a concurrently operating interconnection of
three machines - Bz, B3, and B4. This interconnection can be derived by the process
introduced in the proof: The partition pairs (12, né) and (EB, nb) = (13 "t My, TR ”21)
=0, {1T=1{1}, 8=1{2,3}, 9=1{4,5}, 10 = {6} }) are considered. The partition nb is
precisely the partition n'l given in the previous example. Fromlthat example it is also
seen that there exists a partition 7 =T = g such that 77'2 =C and that there exists
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a partition 7, = 7, such that 7y = 2(2) = C(2) . The construction of flow tables for
machines Bl and B2 would ordinarily comprise the next step of the process, but these
tables have already been presented in the previous example and are shown in figure 4.
Next, partitions ?é and ?21 on the states of (1) of B, are derived as
Ty=113={7,9}, 14 = {8,10}}
my=1{15={7,8}, 16 = {9, 10} }

With the use of definition 18, the partition pairs

(Mg, 75) = ({15={7,8}, 16 = {9,10}}, {13={7,9}, 14 = {8,10}})
and
(54, N”&)=({15= {7:8}’ 16 = {9)10}}: {15= {7;8}; 16 = {9)10}})

are generated. An inspection of partitions i3 and E reveals the existence of parti-
titions ’?f3 = C(3) . 'Tré S?_f3 and 7’74 = C(4) . 714 = 17’11, where C(3) = 1’?"4 and C(4) =1I.

Hence, 7'4'1 = C(3), ?7'3 = C(4), and ?é . ?’r‘i =0 on S(l) so that the state behavior of
machine By is realized by a concurrently ?perating interconnection of machines B3
and B4. These machines constructed as S 3)_ and S(4)—images of machine B1 are

shown as the flow tables of figure 5.
It should be noted in the flow table of machine Bg that the unspecified next stages

can be selected in such a way that, for every input i®e 1(3), 13 A®) (1(3))
=14 A® G, With such a specification machine By can be simplified to the extent
that its next states are independent of its present states. Such a machine is said to be

B3
_ aw) @wig @) @G @ws) @mi) @12,15) @)

13 13 13 - 14 13 13 - 14 o'3
1

14 13 - 13 14 13 - 14 14 0‘23’

By
Q) Q1) @u @1

15| 16 16 16 16 0‘14’

6] 15 16 15 15 0‘24’

Figure 5. ~Machines B3 and By,
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feedback free. It is worthwhile noting that the existence of a feedback-free machine Bg
could have been anticipated. On the states S of machine B there exists a partition
pair (C(3) - I, 1%), which implies for every i€ I,
s® ¢ §® that ¥ A < @ or equivatentty AP c 5. The 1atter retation
implies the existence of a machine B 3 independent of its present states. '

ADDITIONAL BACKGROUND

Additional basic background material (ref. 2) is introduced in this section to facil-
itate the concluding theoretical investigations of this report. The presentation of a logi-
cal design problem serves a dual purpose as a convenient vehicle for illustrating the
concepts comprising the additional background material and as an example of how the
newly developed decomposition theory might be used in practice.

The design problem is that of deriving a two-layer ''and/or'' diode gate realization
of a machine C represented by the flow table of figure 6. The solution of this problem

:(3)

i

is facilitated by the introduction of four definitions.

1
1 5
2 3
3 7
4 2
5 1
6 5
7 3

5

2

Figure 6. - Tabular repre-
sentation of machine C.

Definition 23

A partition 7 on the set of states S of a sequential machine M is said to be output
consistent, if for every block P of 7, all the states contained in the block have the
same output. That is, for every P € 7 and every i € I, PA(i) =0, where o €0 is
not necessarily the same for any two inputs i.

One such partition on the set of states- S of machine C is

c 1, B¢ B, ang




7= {P]_: {1'6}3 P2= {2;3}9 P3= {7}, P4= {435}}

since
P;_,A(i) = 01
P 4A(i) = 02
where

Definition 24

Given sequential machines M and Mr’ Mr is a reduction of M if and only if the
following conditions are satisfied:

(1) There exists a partition pair (nr, ﬂ;,) on the states of S of M such that #

2) 7). is output consistent.

(3) The output set O(r) of Mr is a subset of the oufput set 0 of M and has
elements

— 1
r- Ty

o= S(P)A(i) = s(r).A(r) (i(r))
where
o€0, sWe s e, ana 1 1,

From figure 6 if is observed that there exists a partition pair (7 Py 17‘;,) on the states
S of machine C such that

m,=m,=18= {1}, 9= {2}, 10= {3,7}, 11 = {4}, 12 = {5}, 13= {6}}
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1 2

8 | 2 10| 0

9 | 1 1| o

0] 1 9 ] o
]9 w0
12 8 B | o

B |2 |o

Figure 7. - Tabular repre-
sentation of reduction Cr

The calculation
8A(1) = 0, = 8 A®) ()
9A(D) =0y = on () ()
10A() = 0, = 104 )
11AG) = 0, = 114F)aE)y
1240) = 0, = 1240 @)
13A%1) = 0, = 13 A®) @)
where 1= i(r)’ serves both to show that T, is output consistent and to establish the
output set of a reduction Cr of machine C. That such a machine exists is guaranteed

by Theorem 1 which implies that machine Cr is an S(r) -image of C. The flow table
representation of machine Cr is given in figure 7.

Definition 25

Two sequential machines are said to be equivalent if they have the same input-output
relations. A sequential machine M and any reduction M. of M are equivalent.




Definition 26

The state behavior of a sequential machine M is said to be realized by a concur-
rently operating inferconnection of the machines Ml’ MZ’ . . .y M. if the state be-
havior of a sequential machine M, equivalent to M is realized by the aforementioned
interconnection.

To obtain the desired realization of machine C the decomposition theory is now
used to derive a concurrently operating interconnection of three machines Cl? Cz, and
CS which realize the state behavior of machine Cr' An examination of the flow table of
machine C_ given in figure 7 shows that there exist on the states of S(r) the partition

r
pairs (my = C(i) ey wi), (g = C(g)- T, né), and (75 = C‘(s) Y m}), where

sy = {14= (8,12}, 15= {9,10,11,18} } ¢ = (20 = (8,13}, 21 = {9,10,11,12}}

m = (16= (8,10,13}, 17= {9, 11,121}, @ j22-81,23= {121, 24= {11,13},25= {9,10}}
ny= 118= (8,11,13}, 19=19,10,12 1}, c® = (26= {8}, 27 ={12},28= {10,13}, 29 ={9,11}}
and n’i . 775‘_2 . rrié = 0. Therefore, Theorem 3 is satisfied. Furthermore, because

My c Wy =7y < C(i) and 7 = C(4) for (7r1, zri} and (774, ir_i)

oy =g c® and = c® for (ry, 73) and (ag, )

wy - owh =Ty = c® anda ny= c® for (rg, 7y and (rg, )

it follows as indicated in the proof of Theorem 3 that the three given partition pairs are
those directly associated with the machines (31_, Cg, and (33 as S(1 - 8 2)-, and
8(3)—images, respectively, of Cr' The flow table representations of these machines
are shown in figure 8.

A representation of this decomposition in terms of physical switching elements is
afforded by making the following associations: Associate with the external inputs 1 and 2
of the three machines the binary variables ¥ and x, respectively; X denotes the
complement of x. Likewise, with the present states 14, 15, 16, 17, 18, 19 associate
the binary variables vy ?1, Yo 372} ?S, Y3 resgpectively. = Also, let the next sﬁates
14, 15, 16, 17, 18, 19 be associated with the binary variables Yl’ Y;{" Yq, YZ’f Y‘S_, YS’
respectively. Since 20 = {8,13} =16 /) 18, associate with the element 20 of the carry
input set C(l) to Cy the ""and'' function YZZ";S of Vo and ?S. Similarly, associate

28




1

(L,20y (4,2 2,200 (220
“| 1 14 15 5 0‘11’
5 14 15 1 15 0(21)
1,22) ¢,230 @20 (1,25 {222y 28 {24} 225
% | 17 - 7 16 16 -- 17 7 0‘12’
wil - 6 u 16 - 16 u 17 0(22)
C3
L%y 42 (1,28 (L9 {226 {22 (2,28 2,29
18| 19 - 19 19 19 - 19 18 0(13’
v - 18 I - 18 1L 18 0‘23’

Figure 8. -Machines Cy, Co and C3.

Yq =Xy Y1¥o¥s

ngYg ﬂYZ +¥g) XYzy3 X‘YZ *¥3)
vi| Y Y ' v of
| n Y1 Y oo
Y2 =Xy3+xy1

s X3 Wz Wa¥3 Xz X3 01 X3

Y. v . Y. (2)

: (2
i B o Y2 Y, Y B Y 0

Y3 =Xj1 +¥p

fyl)’z i}’l)_(z 3_()71Y2 ﬁlyz Xy Xy 1?2 ¥, Y2 X¥; ]__Y-g
— v ¥ v (3)
Bl 3 3 Y3 Y3 3 Y3 Y3 Y3 |0

Y. Y. v (3

Figure 9. -Truth tables of the switching functions Y, Yz, Ya.




with 21 the ""or'' function ?2 + g % an analoggus manne:r;3 jssicia‘te with the carry
input elements 22, 23, 24, 25 or CY/ {o 02 ¥1Y3 ¥1¥3: ¥1¥3 Y{V3; respectively.
Finally, associate with the carry input elements 26, 27, 28, 29 of C 3 to (33 ¥1Yq:
yl';{rz, ’5713?2, 37"’1?2, respectively. Under these associations the flow tables of machines
C‘l, Cz, and C3 become truth tables for the logical switching functions Yl, Yz, and
Y, respectively (see fig. 9). Moreover, the part of the flow table of machine Cr
specifying the input-output relations is transformed into a truth table for the output
function of the decomposition. This output switching function, designated by Z, is

Z=¥1¥3
8 V1¥a¥3 z
9 ¥i¥o¥s YA
0o Y | I
| ok | 2
12 5’137'7}’3 z
B z

Figure 10. - Truth table of
the switching function Z.

\}/

P
)

"dhﬁ“ !loru
gate gate
Inverter Delay

unit

Figure 11, - Realizetion of machine C.
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associated with 01; whereas its complement Z is associated with 02. The truth table
for Z is given in figure 10.

Corresponding to each of the switching functions Yl’ Yz, Y3, and Z are logical
switching circuits made up of transistor inverters, diode ''and/or'' gates, and delay
units. These circuits, shown in figure 11, comprise the sought after realization of
machine C. '

STATE SPLITTING

An important concern of the previous section was the realization of the state
behavior of a given machine M as that interconnection of concurrently operating ma-
chines realizing the state behavior of a reduction Mr of M. A reciprocal concern of
equal importance is the realization of the state behavior of a given machine M, as that
interconnection of concurrently operating machines realizing the state behavior of a
machine M of which M, is a reduction (refs. 5 and 9). It is clear that the latter
realization can be obtained merely by applying the newly developed decomposition theory
to machine M. There is a problem, however, of deriving the machine M from M...
The derivation of such a2 machine M from a given machine Mr is achieved by means
of a process called state splitting (refs. 5 and 10).

Definition 27

A state S§r) € S(r) of a sequential machine Mr is said to be split if it is replaced

by two or more states Sgr)l, S{r)z’ . e ey S}gr)n. A sequential machine M is said to be
a state split version of Mr if it is derived from Mr as follows:
(r) ; . (1 4(x)2 (r)n
(1) If a state S]. of M, is split, then the states Sj , Sj s e e ey Sj are

taken as states of S of M.

(2) If a state Sl(ir) of M, is not split, then the state S](;) is taken as a state of S
of M.
(3) I sl({r) A®) (@) =s]§r) for M, then for M sg) A() =s§r)l, where i) =ie€ 1
and ! is an integer such that 1 =7 =n.

@) 1 s]§r)A(1‘)(1(r)) =" for M, thenfor M s§r)l A@) =S{), where ¢ assumes
all integer values such that 1 =7 =n.

(5) It S§r)A(r)(i(r)) =S§r) for M, thenfor M S§r)ZA(i) =S§r)m’ where 7 assumes
all integer values such that 1 =7 =n and m takes on some integer values such that

i=<m=n.
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©® 1 sPaBaE) < s, where both 8 and 8{) are not split, for M, then

for M S(r)A(l) S(r)
A concrete 111ustrat10n of the defmltmn is provided by considering machine D of
figure 12. If only state 4 of machine D, is gplit info states 41 and 42 then accord’mg

1 2 1 2

froid
w1
%]

oln olrt
1 1

2 1 O(i’) 0( I
4 1 2

(r) {r)
3 i} 4 01 0I
4 7 4 0( T 0( r)
2 1
5 6 3 0( r 0( r}
2 2
2 1

d 1 2

Figure 12, - Machine Dr'

to parts (1) and (2) of the definition, the set S of states of machine D, which is a state
split version of D is {1,2,3, 41, 42 ,5,6,7}. By part (3) of the definition, because it

is true that
2401y = 4
6a0)(1) = 4
SA(r)(2) =4

for machine Dr, then for machine D

2a(1) = 4l
6a(l) = 41
3A(2) = 41

where the choice of 4! in each case is arbitrary. By part (3) of the definition

4@y = 7

32




for Dr implies that
ala() =7 and 42a@) =7
for machine D. By part (5) of the definition
aa)(2) =4
for Dr implies that

alA(@) = 42 and 42a@2) = 4!
for D, where the choice of next states 42 and 41, respectively, is arbitrary. Typical
of part (6) of the definition is

3a)(1) = 6
for Dr implies that
3A(1) =6

for machine D. The flow table representation of machine D is shown in figure 13.

It is clearly impractical to determine at random what states of a given machine
should be split and to what degree they should be split. Bases for systematic determina-
tion procedures must be developed if state splitting is to be useful. Information about
the decomposition structure of a given sequential machine should most properly be the
basis for state splitting when the primary objective is to design the machine as a con-

1 2 1 2
1|5 2 0 0
2 | & 0 0
3 16 &4 | o 0
& |7 Z | o 0
@ |7 a0, 0o
5 | 6 3 0, 0
6 | & 6 0, 0
7 |5 3 o 0,

Figure 13, -Machine D.
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currently operating interconnection of smaller machines. A step toward the develop-
ment of such a systematic state splitting determination procedure has been made by
introducing concepts among which are generalizations of partitions and partition pairs
(ref. 5). These generalizations carry information about the loop-free decomposition
structure of sequential machines. These concepts must, however, be extended further
to convey sufficient information about the general decomposition structure of sequential
machines. Obvious extensions of the aforementioned concepts are now introduced.

Definition 28
A nondisjoint partition 6 of a set S(r) is a family Pl’ PZ’ c e e Pn of nonempty
sets such that 11’1 LJ P2 ., LU P, = S(r). The sets Pl’ Por v v s Pn are called

the blocks of #. The blocks of # are not necessarily pairwise disjoint.
With respect to machine Dr’ a nondisjoint partition Et_l is given by

51= {P]_:{l}z}; P2= {394JI9 P3= {495}9 P4: {6«7}}
where the union of the blocks Pl’ Pz, P3, P4 is
(1,2} U {3,4} U {4,5} U {6,7} = {1,2,3,4,5,6,7} =5

and blocks Pz and P3 are nondisjoint.

Definition 29
A canonical relation 6* between S(*) and @ is given by

o* = {(s(r),P} e pe g}

In particular, the relation 6¥ petween S(r) of machine D, and 8, of the previous
1 r 1
example is
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Definition 30

Nondisjoint partitions 6 and 8' of S(r) of a sequential machine Mr form a non- ;
disjoint partition pair (6, 8'), if and only if for every P € 0 and every i ) € I(r ) ‘
there exists a Q € ' such that P. A(r)(i(r')) < Q. . |

Illustrative of this definition is the nondisjoint partition pair

(61,69) = ({Py = {1,2}, Py = {3,4}, Py= {4,5}, Py = {6,7}},

{Ql = {1:2a4:5}’ Qz = {3’4;63 7}})
of the machine Dr:

(1,21a0q) = (5,4} cqq
13,43a00) = (6,7} c q,
14,51400) = (1,6} cq,
(6,714000) = (4,51 cq,
(12180 = 2,11 g

13,4120 = {4} cq or q,
14,5149@) = (4,31 q,

16,7140@) = (6,3} c q,

Definition 31

A nondisjoint partition 6, of S(r) is said to be a refinement of a nondisjoint parti- 1
tion 6, of S, written 6, = g if and only if the following conditions are satisfied: '

(1) Every P €0, is contained in some Q € 6 g

(2). The union of all- P contained in the same Q equals that Q.




The nondisjoint pariitions 91 and 6'1 of machine D afford a concrete example of
the definition. Since P;C Qq and PgC Qq such that Pl LJ P3=Q; and Py Q,
and P, < Q2 such that P2 U P4 Q2 91591

Definition 32

The multiplicity of the element S( r) in 6 of S(r) is one less than the number of
blocks of ¢ o that contain S§r). The mult1phc1tv of S( r) in 8 o is denoted by

a;s{)

m particular, the multiplicity my.y4 of state 4 in 61 of machine D is 1; whereas,

the multiplicity of all other states of S( r) in 91 is 0.

Definition 33

The multiplicity-dependent intersection of two blocks P € 0, and Q € 0,
writtenas P M Q, is any subset of P ) Q such that the fellowmg are true:
(1) Every S( contained in P M Q, for which either or both ma,Sgr) and

g, S(r) is 0, also belongs to P m Q. J
1

(2) Any S%r) contained in P /M Q, for which ma,s(r) >0 and mﬁ,s(r) >0, may
H j s j

g

be chosen to be 2 member of P i Q, but is not necessgarily so.
A specific illustration of the multiplicity -dependent intersection of two blocks is
provided by considering the nondisjoint partitions
;= 18=11,2,4,5},9={3,4,6,7}} and 0, = {10 = {1,2,3,4}, 11 = {4,5,6,7}}
of machine D_. By part (1) of definition 33
11,21} < & m10
and by part {2) either
i1,2} =8 m 10

or

{1,2,41 =8 m 10
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Definition 34

The multiplicity~dependent greatest lower bound of two nondisjoint partitions 6 a
and 0 g written as 6, mé 8 is a nondisjoint partition

6,={P @ Q|P € 0,,Q € g and my;sl({r) =ma;SJ§r) if 'ma;sgr) ZmB;S}(r);

otherwise, m, . S]§I‘) = mp. S§I’)}

such that

Specifically, the multiplicity-dependent greatest lower bound of Qi and 9 '2 of the
previous example is :

93={8@10,8m11,9m10,9m11}

8 m 10={1,2} or {1,2,4}
8 m 11 = {5} {4,5}
9 M 10= {3} {3,4}

9 m 11={6,7} {4,6,7}

such that precisely two blocks of 93 contain the state 4 and
8 M 10) U (8 @ 11) =8

©m10) U (9 @ 11) =9




(8 m 10) U (9 M 10) = 10
8 m 11) U (9 M 11) = 11
Thus, 63 can be chosen to be either
{8 m 10={1,2}, 8 m 11 = {4,5}, 9 At 10= {3,4}, 9 M@ 11 = {6,7}}
or

{8 m 10={1,2,4}, 8 M 11 = {5}, 9 A 10= {3}, 9 m 11 = {4,6,7}}

Definition 35

Given sequential machines M, and Mk’ Mk is a generalized S<k)—image of Mr if

and only if for every s®) ¢ g i) ¢ 1) ang i® e (B e following conditions e
satisfied: )

(1) Every Sgr){ S(r) belongs {o some S(k) < S(k) and to some c(k)i C(k}.

(2) (C(k) fif s(k))A(r)(i(r)) c S{k)A(k)(i(k)),

The machine Dl, shown in figure 14, is a generalized S(I;—image of Dr and affords
a specific example of the previous definition. The carry input set to Dl is

W (10=1{1,2,3,4}, 11=14,5,6,7)}
and the state set is
s (8= 1(1,2,4,5}, 9= {3,4,6,7}}

From calculations carried out in examples 30, 31, 33, and 34, it is clear that machine
Dy satisfies the conditions of definition 35 to be a generalized Sa) -image of D -

By
4100 QI 2w QW
8 9 9 ofd
8 8 !
9 9 8 - 9 oll
Z

Figure 14, - Representation of machine Dy as a generalized
s(1'-image of machine Dy.
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Theorem 4:

Implied by a generalized S(k) -image Mk of a given sequential machine Mr isa
family of state split versions each of which is an S(k)
M of M... Reciprocally, implied by the S(k)-image of any state split version M of

M. is a generalized S(k)-image My of M...

-image of some state split version

Proof:

For the first half of the theorem, it can be assumed that there is given the sequential
machine Mk which is a generalized S( )—1mage of a given machine M Also, accord-
ing to part (1) of definition 35, corresponding to the sets S(k) and C(k) of machine Mk
are nondisjoint partitions 9k and C(k) . Each state S]( ) whose multiplicity . S(r)

. is greater than zero for either Qk or C(k) can be split as follows:
(1) T the multiplicity of s(r) in 0} is greater than that of s(r) in c® and is
(r) =n - 1> 0, replace SJ(r ) in each block of Gk that it appears by one of the

states S(r) 1 S<r) 2 .. S(r)n. The replacement can be made such that S§r )1 is
assigned to the ﬁrst block of the arbitrarily ordered blocks of 9 containing S( )

S](r)2 to the second such block, etec. Correspondmg to every multiplicity - dependent
block intersection c(k) 03] s(k) orlg‘mally containing S( r) the state S( 1) for the sake
of compatibility must be replaced in C(k by the state S(r)Z just ass1g11ed to the asso-
ciated block of Qk
(2) If the multiplicity of S(r) in C( ) is greater than that of S(r) in 9],5 and is
(r) =n -1>0, replace S( r) in each block of C(k) that it appears by one of the

states S(r)1 S(r)2 .. S§r n rhe replacement can be made such that S(r)rl is
assigned to the f1rst block of the arbltrarlly ordered blocks of C( ) containing Sgr) .
S](r )2 to the second such block, etc. If the state S( r) is contained in the multiplicity-
dependent block intersection c(k) fm s(k) for the sake of compatibility replace
s(r) in the block S®) of 6; by the state s(r)l just assigned to the block ¢® ot c¢®
Some blocks of Gk will now contaln two or more replacements for the original state
S(r) under this procedure.

(3) Once the present states of M, have been split as described, the next states of
Mr must be split. KEach next state of Mk’ before state splitting, corresponded to a
block of 6];. Let the next states of M., be split in such a way that each next state of
M, corresponds to the associated block resulting from the procedure of (1) and (2).
Each next state which is left unsplit after this process can be arbitrarily replaced by any
member of its replacement set of states.
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In the state splitting process (1) to (3) just given, the parts (1) and (2) of definition 27
are obviously satisfied. In accordance with step (3) of the state splitting process, to
every state S{r) < S(r) in some s(k)a‘ S k implied by a state s e c(k) i s(k} for an

input l(I) there corresponds a state S( )Z" where ! is an integer such that 1 =7 =n.
Thus, part (3) of definition 27 is also satlsfled Moreover, similar reasoning shows

that parts (4), {5), and (6) of definition 27 are satisfied. Therefore, the state splitting
process presenied herein serves to derive a state split version M of Mr. The derived
machine M is a member of a family of state split versions of M The number of
members in this family is s , wWhere a is the number of replacements which can be
made arbitrarily in step (3) of the above state gplitting process. The state splitting has
been accomplished in such a way that the relation

B @ sB)AE)E) o 509,09,

k)

where c(k) and s( are elements of the given sets, corresponds to

® s(k)) AG) © s&) A(k}(i(k))

where c(k) and s(k) are blocks of the newly derived partitions C(k) and ﬂi{, respec-
tively, Hence, the partition pair (C(k) . wl’{, ﬂii) on S of M implies by Theorem 1 the
existence of an S(l‘) ~image of M.

For the second half of the theorem, it can be assumed that machine M and an S(k)
image of M are given. By Theorem 1 there exists the partition pair (C{ ). ﬁ'k, ’ﬁk)
on the states of S of M. Machine M can be derived directly from M as a reduction
of M. The states of S< r) of M, are the blocks of an cutpui-consistent partition pair

(n! o T ) on the states of S of M Canonical relations n*, C(k) (n;;,*} -1 exist such

that (;rrI',*) -1 7;1{* maps the partition ﬂ'k into a nondisjoint partition @i{; likewise,

(ﬂ;j*)_lc(k)* maps the partition C(k) into a nondisjoint partition C(k) on the states of

S(r) of M_. Because i(r) = i, the relation

©® A s®ag) < sBA®E)

under the aforementioned mappings goes into
® @ &) A(r)@(r)) c s 2 ) (k)

where the latter elements e(k) and s(k) are those belonging to new sets C(k) and S(k)

corresponding to the derived nondisjoint partitions C(k) and 61'1’ regpectively. There-
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fore, in accordance with definition 35 there does exist a machine Mk which is a
generalized S(k) -image of M,.. This completes the proof of the theorem.

A consideration of machines Dr and Dl provides a concrete illustration of the
first half of the theorem. Corresponding to the sets S(l) and C(l) of Dl’ a general-
ized S (1) ~-image of machine Dr’ are the nondisjoint partitions

0] = {8={1,2,4,5}, 9= {3,4,6,7} } and c) = (10 = {1,2,3,4}, 11= {4,5,6,7} }.

The only state whose multiplicity is greater than 0 in either 9'1' or C(l) is state 4.
In accordance with step (1) of the proof, state 4 is split such that Gi becomes

Wi:' {8= {132:41:5}’ 9= {3:42:6:7}}

Since 9 M 10 = {3,4}, state 4 in 10 of "C(l) is replaced by 42 . Likewise, since
8 M 11 = {4,5}, state 4 in 11 of C(l) is replaced by 41. Thus, C(l) becomes

c® - 10=11,2,3,42), 11 = {41,5,6,7}}

By step (3) of the proof, the next state implied by state 2 when the input (1,10) is applied
is 4~ since

o N 8a®@ = 11,2120 = {5,411 8

Similarly, the next states implied by present states 6 and 41 for inputs {1,11) and
{(2,11), respectively, are 41 and 42 , respectively, since

a1 N 9a®q) = 16,7340 (1) = (4,5} 8

a1 N 8)a®@) = (41,5140 @) = (42,319

The next states implied by present states 3 and 42 must be the same because
@0 N 9a® @) = 13,4214 @) = (41} or (42}

Let these next states be arbitrarily chosen to be 41. With this choice, state 4 of
machine Dr will have been split precisely as it was in the illustration of definition 27.
Hence, machine D of figure 13 is an implied state split version of Dr‘ Furthermore,
from the nondisjoint partitions Gi and C(l) comes the partition pair




(ry= {10 M 8={1,2},10 N 9= (3,421, 11 " 8= (41,5}, 11 M 9= {6,7}}

= (8= 11,2,41,5}, 9= {3,4%,6,7} })

which implies the existence of an Su)-image of machine D whose flow table representa-
tion is like that of machine D1 of figure 14. The two representations differ only in that
the next state im(plied by state 9 for input (2,10} is unspecified for machine D1 but is
state 8 for the S 1) -image of machine D.

For an illustration of the second half of the theorem, machine D and iis S(}‘Limage
are congidered. An examination of the flow table of machine D shown in figure 13
reveals in addition to (7;-1, ni) the existence of the cutput-consistent partition pair
(77;‘, 17;,), where T = {1,2,3,4 = {41, 42}; 5,6,7}. From (’iTi,; ﬁ;_) the reduction D, of
machine D is directly derivable and is seen to have the representation given in fig-
ure 12. Additionally,

R o= (LD, (2,2), (3,3), (44D, (4,45, (5,5), (6,6), (1,7}

((1,8), (2,8), (41,8), (5,8), (3,9), ¢42,9), €6,9), {7,9) }

il

{(1,8), (2,8), (4,8), (5,8), (3,9, (4,9, (6,9, (7,9}

il
k]

from which
pi={8={1327435}«9ﬁ{3*4-6*?}}
on the states of S(r) of Dr‘ Similarly,

a9 1eW* = @ L{(1,10), (2, 10), (3, 10), (42,10}, (41,11}, (5,11), (6,12}, (7,11} }

{{1,10),4(2,10),(3,10),{4,10),{4,11),{5,11},(6, 11, (7,11} }
from which
c® _ (10={1,2,3,4}, 11 = {4,5,6,7} }

on the states of S(r ) of - D.. The two thusly derived partitions define the nondisjoint
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| partition pair (61 = C(l) mo’, Gi) considered previously and shown to imply the existence
of machine Dy, a generalized S%-image of D,.

Theorem 5:

Given a sequential machine M » then there exists an S(k) -image Mk of a state
split version M of M, if and only if there exists a nondisjoint partition pair (Gk, 61'{)
on the states of S(r) of M, such that 6, = C(k) nh@l'{ and such that when the states are
split, the blocks of C(k) and 0] become the elements of the cartry input set C(k) to

My and af the set of states S(k of My, respectively.

Proof:

~ The proof follows immediately from Theorems 1 and 4.

Theorem 5 shows that the nondisjoint partition pairs of a sequential machine convey
vital information about its decomposition structure. Such information is of the type
sought for as a basis for the development of a systematic state splitting determination
procedure. Included in the proof of Theorem 4 is a model of such a procedure.

The fact that Theorem 5 is the state split generalization of Theorem 1 furnishes
some promise that the fundamental theorem, Theorem 3, also has a state split general-
jization. The following embodies the fulfillment of this promise:

Theorem 6:

The state behavior of a sequential machine Mr can be realized by a concurrently
operating interconnection of j machines Mi’ Mz, e e ey Mj if and only if there exist

nondisjoint partition pairs (91, 9'1), (92, 9'2)_, v e e, (Bj, GJ!) on the states of S(r) of M,
such that Hirileén'l . .. 11'19}! =0, 01 =»C(1)n'19i, 92 = C(l) 1i19'2, e ey Gj = C(j)n'lG‘%,

and furthermore the machines Ml’ M2’ e e ey Mj are S(l)-, S(z)-, . e ey S(j)—images,
respectively, of the same split version M of M,

Proof:

With the use of definitions 31 and 34, the proof follows directly from Theorems 3,

4, and 5.
The next example shows the significance of the requirement in the theorem that the
machines Ml’ MZ’ e e ey M]. are S(l)-, S(z) - e e e S(])—images, respectively, of the

same state split version M of Mr' Previously, it was shown that an S(l) -image of a
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state split version of machine D existed corresponding to the nondisjoint partition %)fur
(C )mf?'l ) With the aid of Theorem 5, it is found that additionally there exist S

and S‘ }-1macres of state split versions of D.. corregponding to {C{g)mc}'z H') and
{ﬁ:‘(?’)mé?' . }, regpectively, where

oy = ¢, ¢® < (12= (1,3,4,6), 13= [2,4,5,7}}

g = 112 @ 10 = {1,3}, 12 @m 11 = {4,6}, 13 M 10= {2,4}, 13 @ 11 ={5,7}}
oy = c@ )
8y = C

By = {8 M 12 = {1,4}, 8 m 13={2,5}, 9 fi 12 = {3,6}, 9 M 13 = {4,7}}
The nondisjoint partitions i 8L, and € é are such that
Hlméém@g 0

Nevertheless, there exists no state split version D of machine D, whose state
behavior is realized by a concurrently operating interconnection of the aforementioned
q{l) S(g)-} and S( ) -images. The reason for this is made evident by deriving from
{c@)me* 2) a state split version of machine D.. The only such state gplit version,
which can be derived so that the transformation of the nondisjoint partition Hé = C 1) to

the partition ﬁé is compatible with transforming C(l) on S(r) of Dr to C(l) cn 8
of D, is the machine represented in figure 15. This machine is not the same state split

1 2 1 2
1 5 2 0, o0
2 a4 0, 0
3 6 £ o o
b1 4]0, o
£ £ 1 0, 0
5 | 6 3 0, 0
6 A 0, 0
7 5 3 0 0

Figure 15, - State split version of D,
derived from (8,, 65).
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version of D derived previously and shown in figure 13. Moreover it is not the same
as any member of the family of state split versions derivable from (C( )mé)' s 9'1). There-
fore. Theorem 6 must indeed include a compatibility condition requiring in essence that
all nondisjoint partition pairs concerned imply a common state split version of the given
machine.

It is suggested that the interested reader illustrate to himself the further workings
of Theorem 6 by deriving a concurrently operating interconnection of three machines
realizing the state behavior of D, as follows: Replace the nondisjoint partition C(z)
already given in the example by C( ) = 3 such that C(z)me'2 = 0. Then by using
Theorem 4 proceed to verify that now the three nondisjoint partition pairs do imply for
machine Dr a common state split version D, shown in figure 13. During the verifica-
tion process, partition pairs (ry, ﬂ'l), (7r2, wé), and (7T3, né) on the statesof S of D
such that 7r'1 : 7Té . 7r’3 = 0 will have been derived. As a final step, with the derived
partition pairs apply Theorem 3, as illustrated in previous examples, to construct the
machines Dl’ DZ’ and D3 of the required interconnection.

Theorem 6 is of twofold importance. First, it is a fundamental statement of the
generalized decomposition theory; as such Theorem 6 also represents the attainment of
the primary objective of this report. Second, it provides a basis for an adequate state

splitting determination procedure insofar as the design of machines from their decompo-
sitional properties is concerned.

CONCLUDING REMARKS

The basic result of the research reported herein is the development of a generalized
decomposition theory of finite sequential machines.
It is hoped that the nery developed theory will Iay the foundation for the successful
completion of many other research projects. Such projects might, for instance, involve
the following:
1. The formulation of algorithms for the derivation of the ''best'' decompositions
of sequential machines under varying criteria

2. The founding of similar algorithms for determining the best decomposition of a
combination of two machines given one machine already realized (the realized
machine might be a computer and the other, an addition to it)

3. The establishment of criteria under which the specification of sequential machines

can be changed to improve their decomposition structure

4. The gaining of a more practical understanding of iterative arrays of logical

circuits (ref. 11)




5. The development of methods for the synthesis of sequential machines with given
classes of modular building blocks (refs. 12 and 13)
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