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By
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Huntsville, Alabama

ABSTRACT

Presented is an analysis of the dynamic problems of two cable-
connected space stations rotating about an axis normal to their orbital
plane to provide artificial gravity. The dynamics of cable-connected
stations in which the cable tension is zero (non-spinning case) are not
treated herein. Differential equations of vibration of the elastic
cable and the angular movements of the stations are derived. These
motions are coupled through the nonhomogeneous boundary conditions of
the cable, This mathematical difficulty is resolved by using the con-
cept of concentrated fictitious masses. The cable equation is solved
by using Galerkin's approach for both frec and forced oscillations. A
general nth order determinantal frequency equation of free vibration of
the system is obtained. The responses of the space stations to applied
time-varying moments are presented in analytical forms.
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DEFINITION OF SYMBOLS

Symbol Definition

c center of rotation to space station

ET bending rigidity of cable

I.,I5,1I5 principal moment of inertias of space station
£ distance of cable connection to c.g. of space station
L length of cable

m mass of space station

M*(t) applied moment

p(t), s(t) generalized coordinates

ri(x) eigen-function of a free-free beam

R center of rotation to c.g. of space station

t time variable

u(x,t) displacement relative to moving coordinates
V,wW components of u relative to moving coordinates
X,¥,2 rotating coordinates

X,Y,2 inertial coordinates

X1,X0,X3 body~fixed principal axes

o constant in eigen-function of beam

Bnl eigen-value of free-free beam

7o eigen-value of matrix (A™'M)

N eigen-value of matrix Q

o} mass density per unit length of cable




DEFINITION OF SYMBOLS (Continued)

Symbol Definition
¥, 0,0 Eulerian angles of space station
¥, 0,0 column matrices of the Eulerian angles

Barred symbols refer to counter-weight of space station.
Subscripts i, n denote the ith and nth mode of vibrations of cable.

The dot above a symbol denotes the time derivative.




TECHNICAL MEMORANDUM X-53650

ON DYNAMICS OF TWO CABLE-CONNECTED SPACE STATIONS

SUMMARY

Presented is an analysis of the dynamic problems of two cable-
connected space stations rotating about an axis normal to their orbital
plane to provide artificial gravity. The dynamics of cable-connected
stations in which the cable tension is zero (non-spinning case) are not
treated herein. Differential equations of vibration of the elastic
cable and the angular movements of the stations are derived. These
motions are coupled through the nonhomogeneous boundary conditions of
the cable. This mathematical difficulty is resolved by using the con-
cept of concentrated fictitious masses. The cable equation is solved
by using Galerkin's approach for both free and forced oscillations. A
general nth order determinantal frequency equation of free vibration of
the system is obtained. The responses of the space stations to applied
time-varying moments are presented in analytical forms.

I, INTRODUCTION

The dynamic problems of cable-connected space stations rotating in
the orbital plane have been discussed in much of the published literature.
Reference 1 presents a detailed analysis of many types of arrangements
of the stations, as wecll as a bibliography on this subject, The con-
figuration of the space stations treated in this report is two arbitrarily
shaped space vehicles which are connected by a long elastic cable. The
system is considered rotating about an axis normal to the orbital plane
with constant angular velocity. The dynamic problems concerned here are
(1) the dynamic stability criteria, (2) the natural frequencies of free
vibrations and (3) the dynamic responses of the stations to applied
moments.

In a near-zero earth-gravitational field, the dynamic behavior of the
space stations in free flight is predominated by the response of the con-
necting cable. Therefore, it is essential to develop the dynamic equation
of the rotating cable coupled with the free angular movements of the space
stations. This concept leads to an approach entirely different from that
used in reference 1.




The equations of motions of the space stations and of the elastic
cable are formulated independently, but the two sets of variables are
linked kinematically at the points of connection., This enables us to
eliminate the angular variables of the stations. By using concentrated
fictitious masses to represent the dynamic coupling, the problem is
reduced to the solution of the cable equation with nonhomogeneous mass
distribution but homogeneous boundary conditions.

IT. ANALYSIS

A. Description of the Coordinate Systems

The formulation of the dynamic problems of space vehicles can be
greatly simplified by carefully choosing the coordinates and the vari-
ables. To achieve this, several coordinate systems are required (see
figure 1).

(1) The inertial coordinates XYZ: Let the X and Y axes be in
the orbital plane of the space stations and the center of mass of the
system be the origin. This coordinate system has fixed orientation with
respect to earth but with moving origin.

(2) The rotating axes x'yz and xyz: The z-axis is coincidental
with Z about which the coordinates rotate with a constant angular veloc-
ity Q. Another set of rotating axes, xyz, with their origin at one end
of the cable will be used in dealing with the cable equations,

(3) The principal axes xix-x3 and the Euler angles: Let the
center of mass of the space station be the origin of the principal axes
and let the xz-axis of the undisturbed station be parallel to Z. The
cable is attached to the space station at a distance § on x;-axis. The
orientation of the disturbed station can be completely defined by Euler's
angles., First, as shown in figure lb, the station rotates about the
axis normal to the orbital plane with angular displacement . This
moves the other two principal axes to x} and x,. Since the two stations
are rotating as a unit about the Z-axis with angular velocity (, the
first Euler angle is ¢ + qt. The second rotation, which is about the
x'-axis with angle o6, shifts x} to its final direction x; and the other
axis to x%. The last rotation ¢ about x;-axis gives the final orienta-
tions x, and xs.

(4) Symbols for the counterweight: The barred symbols are used
for the counterpart of the space station which will be referred to as the
counterweight.




(a) The Inertial Axes

Counterweight

Space Station
(c) The Layout of the System

Figure 1, The Coordinate Systems



B. Formulation of the Moment Equations of the Space Stations

Let us consider that the masses of the space stations are much
greater than the mass of the connecting cable and that the system is

free of external forces., Also, we may restrict the disturbed motions
of the system as follows:

(1) The motion of the space stations is in the plane of

rotation and along the line connecting the two c.g.'s,
and

(2) the orbital motion of the center of mass of the system is
not affected by the disturbance.

We shall now derive the equations of motion of the space stations and
the connecting cable separately.

Under the assumption that the cable cannot be extended, the radial
velocity of the space station is small in comparison with its absolute
angular velocities wj, ws and ws about the principal axes. Hence, the

rotational kinetic energy can be used as the kinetic energy of the
body:

[

T =5 (Tpwy + I3 + Isud), 1)

where I,, I, and I are the principal moments of inertia. Upon sub-
stitution of the relationships of the absolute angular velocities with
the Euler angles,

wy =& - (0 + ) sin o
we = 6 cos ¢+ (4 V) cos g sin ¢ (2)
ws = (0 + &) cos 0 cos & - O sin o,

we have

3
n
N |-

. . 1 ) ,
1.0 - (o + V) sin 0]1% + 5 I5[0 cos o+ (Q+ V) cos 0 sin 9%

+ % Is[(q + &) cos O cos d - O sin o]=. 3




Applying the Lagrangian equation of motion,

49T gL, W
ac 34, " 2, | or, | W

results in, after neglecting the nonlinear terms, three moment equations:

o, oV
M =1 + =
¥ sV oy
. . ..
Me =I6+ (Iz-T1) 56+ (I4+ I - Is) Q& +'56 (4a)
o - ., OV
M —Il®+(13'12)Q®- (Il+12-13) QO"‘\—-,
® od

where M is a moment due to all external forces about the axis through
the center of mass., Three identical equations can be written for the
counterweight:

M',=]-:31-lf+§—¥
v BW
M—e=I£e+(IJ_Il) 920+(Il-LI‘_’-Ij) ”)’L'{'% (Z'ru)
ou

]
IC/
b=

M- = I,0 + (I5 - I5) 0% - (I, + I. - I3) o0 +

,\
e

The potential energies due to the artificial gravity for the two bodies
are

V = mROZ(-AR) and V = mROZ(-/R), (5)

.

These terms become critical only when the spinning rate 1s very small,




where

c z
-/R = % k/q <§§> dx + (1 - cos 8) + £(1l - cos )
o

L 2
/-
-AR = % L/ﬁ <§§> dx + (1 - cos 8) + (1 - cos ¥)
C

in which u = u(x,t) is the deflection of the cable relative to the rotating
axes. Notice that the potential energy of the cable is small and can be
disregarded.

C. The Vibratory Motions of the Connecting Cable

For the convenience of using the tabulated data and the integration
formulas of eigen-functions given by references 4 and 5, the origin of the
rotating coordinates is transferred to one end of the cable, and the new
coordinates are denoted by xyz and their unit vectors by i,j and k. Let
M(x,t) be the bending moment due to centrifugal load, N(x,t) the axial
force in the cable, and U the position vector of an element from the
center of rotation,

Ux,t) = (¢ - x)i + v(x,t)j + w(x,t)k.
The equation of vibration can be expressed by either

4 7 2 =
EIDZ U+ D2M(x,t) + o(D: Tf)a 0 (6a)

or
EIDZ U - D_(ND_ u) + p(DZ u)_ = 0, (6b)
X X X t a

where Dy and D¢ denote partial differential operators with respect to x and
t, respectively., The last term in equation (6) denotes the absolute acceler-
ation excluding the acceleration of the origin. By the principle of differ-
entiation of a vector,



(D2 W), = DZ W+ (k) x (k) X W+ 2(0k) x (O, @) + (k) x U

- 2DV + (¢ - %) 0Fli + (Dﬁv - o)) + Diwk. (7)

The formulation of the middle term of equation (6) is given in appendix A,
Now, the following equations of motions are obtained:

Elniv + [% p(x® - 2cx) - mR] QEDiv + p0%(x - ¢) DV + p(DiV - 0v) =0

(8a)
1 = 2
EID;W + (3 p(x% - 2c¢x) - mR] QEDiw + p0F(x - ¢) D w + oDiw = 0. (8b)
There is no known exact solution to the above equations. However,

an approximate solution can be obtained by using the well-known Galerkin's
approach, Fictitious masses are used to provide conditions in which it
is applicable.

D. The Boundary Conditions of the Cable

1. The Kinematic Boundary Conditions

It can be seen from figure 1b that the angular displacements of
the space stations and the displacements of the cable are related as
follows:

v(0,t) = fy(t) w(0,t) = 40(t)
9

ié(t).

“v(L,t) = Zy(t) w(L,t)

As a result of these important relationships, it enables us to combine
the three sets of equations into a single set,



2. The Dynamic Couplings

The external moments in equation (4) come from two sources.
One source is the applied moments from the control rockets on board the
space stations as denoted by M*, and the other is the elastic shearing
forces at the ends of the cable, Conversely, the disturbed motions of
the stations act upon the ends of the cable as shearing forces. The
action of the stations on the cable can be considered as concentrated
masses attached to the ends of the cable with magnitudes satisfying the
following dynamic conditions:

ot
w

=
1

£mv(Div(O,t))a + Mw 7

1
=
]
[

m, (O (L,£), - i (10a)

=
I

= zmw(Diw(O,t))a + M M= = zmw(niw(L,t)a + Mz, (10b)

[en] ]

where my and my; are the fictitious masses with respect to the motions of
v and w. Let us assume that the ends of the cable are free to rotate with
respect to the stations; thus,

M =M and M- = M2

i 10
o 0 2 o (10c)

By substituting the right side of equation (4) into equation (10) and making
use of equation (9), we now reduce the problem to free vibrations of a
rotating cable with fictitious concentrated masses attached to the ends.

E. The Modified Eigen-Functions

Let us consider that the fictitious masses are distributed uniformly
over a small interval ¢ at both ends of the cable. Consequently, the
constant p of the last term in equation (8) should be substituted by the
mass density functions py(€,x) and py(e,x) with respect to the motions
v and w. These functions are defined as

0 <x<e e <x <L - ¢ L-e<x<L
pv(e,x) o + mv/e 0 o+ mv/e
pw(e,x) o+ mw/e 0 o + mw/e




We now represent the two equations of equation (8) by an equation of a
single variable u(x,t) in the form

o /1 5 8] .
EID*u + mQ® % = 2 - - 2u+ = (x - y (2 Cu) o=
x = (2 X cx) R Dxu -~ (x ~ ¢) DXu + pu("x)(Dtu)a 0.

(11)

1, Eigen-Functions of a Uniform Free-Free Cable

The eigen-functions of a uniform, free-free cable which satisfy
the differential equation,

4
d*r,
i

dx? CiTi ’ ’
and the orthogonality condition

L

u/\ prn(x) ri(x) dx = pL&ni, (cni is Kronecker delta)

o
are
ri(x) =1 rigid body mode, symmetric
r~(x) = d(c - x) rigid-body mode, anti-symmetric aboui x = ¢
d = (¢ - cL + L2/3)'l/2
ri(x) = cosh Bix + cos Bix - ai(sinh Six + sin Bix), i = 3,

Notice that the ith mode given above is the (i - 2)th mode of references
4 and 5.

2. The Modified Eigen-Functions Adapted to Equation (11)

Let rj(c,x) be the eigen-function of a free-free cable with a
mass density function pu(e,x) of which ¢ serves as a small parameter.
In the limiting case, we have

lim r, (c,x) = ri(X), i=1,2,

e »0



Furthermore, the orthogonality condition for the modified eigen-func-
tions is

L
d/‘ pu(e,x) rn(e,x) ri(c,x) dx = 0, n# i. (12a)

[¢]

In dealing with the integration

L L
u/‘pu(c,x) rn(c,x) f(x) dx =k/ﬁprn(e,x) f(x) dx

o o

C L
41/P(mu/c) rn(ﬁ,x) f(x) dx +L/1(ﬁu/c) rn(c,x) f(x) dx,
o] L-¢

we may apply the mean-value theorem to the last two integrals of the
above and obtain

L
Lim \/mpu(c,x) rn(e,x) f(x) dx = ¥/ﬂprn(x) f(x) dx + murn(O) £(0)

c -0

o]
+ ﬁurn(L) £(L). ~ (12b)
Notice that
r,(0) =1 ro(L) =1
r2(0) = dc rg(L) = "d(L - C)
r (0) = 2 r (L) = -(-1)"'2 n = 3,4,

10




F. Approximate Solution by Galerkin's Approach

The general approach to the approximate solution of equation (8) is
to assume the solution in the form

V0, E) =R ) ri(e,x) py(6)

1=

[

(13)
[ee]
- - t).
w(x,t) 1{22 ri(e,X)si( )
i=1
In these expressions, r;(¢,x) is the modified eigen-function which satis-

fies the given boundary conditions; p;(t) and s;(t) are the variables to |
be determined., By the same token, we may write ‘

y(t) = }: v, (e) p(t) = 2J91(t) o(t) = *‘gi(t)
i=1 i=1. i=1
(14)
MQ=Z¢UQ MU=Z%M MG=L%@L
i=1 i=1 i=1

In accordance with equation (9), we have the following kinematic coupl-
ings between the variables:

Rr, (0) p, (t) £, () Rr (0) s, (t) = 20, (t)

(15)

_ Re, (L) p,(£) = =4%,(8)  Rr (L) s, (£) = 1B, (6).

11 |



By making use of equations (4) and (13) to (15), the dynamic boundary

conditions given by equation (10) become

)/ BV %

= (0 Rop; ~ My

R . (0) (B, = (IsR/4) r (0) B, +

szwri(O) ('S'i)a

p 5 AV *
(I, + I - Is) Q,@i + —“_‘ri(o) _Rési - Mei

+

iRA r (LB, = - (TR0 £ @) By -

- - e = = - e = - = - 2
Emeri(L)(si)a (I=R/ £) ri(L) 5.+ (Is I,)(R/ %) r. (L) s,
= = = v ,-@ 6\-7 o
+ - —— —— -
(Ip + Iz - Iz) 9 + r.(L)R Os, My o
i i i
where Mj. , M3 s M* and M¥ are the components of M*, Mf, M* an
(P v ey 04 vy e

(I=R/0) v (0) &, + (I - I,)(R/2) . (0) sti

d M%,

(16a)

(16b)

(16¢)

(16d)

0

respectively. For the purpose of combining the treatment of the two

variables v and w, we use the following matrix notations:

. pl - QEPI
Q) = @9, = s
m 0 ) EST oy (%)
S . G =l o (p(e,x)) = 0
-

12

= 1, (&%) (1)

0

pw(€,X)

(17)




Substituting from equation (13) into equation (8) and making use
of equation (17) results in

Z JLEIBfri(c,x) + mo? [{ﬁ (% xZ - ¢x) - R} Diri(c,x)

i=1
2= o) Dxri<c,x>J (@) + 1 (%) p<L,x>> (di>a}*= 0. (18

By integrating the product of r,(¢,x) and equation (18) from x = 0 to
x = L and taking the limiting case that ¢ approaches to zero, we obtain

EIBﬁL(qn) + m0® 24 £i1(ay) +ol(@) + ri(o)(mn)(dn)a + ri(L)(ﬁn)(dn)a= 0.
i=1

(19)

Notice that use has been made of the orthogonality condition given by
equation (11) and the integration formula given by equation (12)., The
constant f,; in equation (19) is defined as

L
o1 1 . P ]
£ =1 () 4= Gx - ex) - R| DI (%) + - (x - ¢) D (x) > dx,
ni / n | m 2 4l m x i
o
(20)
which gives
- - - - - - = L
fi1 = f10=1£., = fnl = fny 0 £.. o
L 2c n, R
= (- = £o1) - 2% 1 - (-1 = = 2
fLo= D o p L(F -1 =208 LIL- DT (22)
T - (-1‘n FLd L' 5 L{2c%/L - 3¢ t Ly 4 2¢ - L1
n ! m 'I nn "% / J

B

- 2Rd ~{[1 - (DU T+ (-l)n}-ahan L - 201+ (—1>“]J

13



(_l)n+i 20L

n+i
(L - 20) (B, - @ B;) - 4RIL+ D@ p - a8)

_ m
fni - 4 4 B%
Bl - 87
(n,i =z 2)

o
m

5 - 1
1_5 + (1 - 2c an/L) B L+ (ccx;/L -3 aﬁLZJ + R BL - 2) @B .

-
i
,

I\Jlr‘

nn

The last two terms of equation (19) are recognized as the dynamic coupl-
ings given by equation (16). The partial derivatives in equation (16)
are now determined from equation (5) by using equations (10) and (14).
The results are written as follows:

l @.V_ = mR’ZZ T l .Q-_ = fﬁf{qz N
R apn i ZJ gnipi Bpn - 24 gnlpl
i=1 ]'_:1
(21)
1 v =N 1V -\ -
R Os MR ‘ZJ Eni®i R Os mRa /, 8ni®i
n i=1 " i=1
.@V_ =0 a\-] =0
g o
n n

The formulations of g,; and gni are shown in appendix B.

We now have a set of four equations of motion, two of which are
obtained from equation (19) by separating the variables and two of
which are the third equation of equations (4a) and (4b).

o0

o o PL 4 _ - SO 3
an(pn/Q ) + 3 [K(BnL) 1] P, + < iPs rn(O) M¢h rn(L) M¢h(22)
i=1

14




f I, -1 P,- 1 =,
/R |OL o oona , 2 L 20 > oo —lﬂ N
bn(an/ Q7)) + Lm K{B LY* + m_:e2 rn(u; + ng rn(L) s +L_. nisi
i=1
+ arn(O) (¢n/9) + arn(L) (gn/g) = rn(O) M, + rn(L) M, (23a)
n n
@ /97 + &g - br_(0)(5 /9) = M¢ (23b)
n
(y;én/ %) + éyﬁn - Ern(L) (sn/O) = MSB s (23¢)
n
where
a, = oL/m + ri(O) Is/mg2 + ri(L) Is/m%
bn = pL/m + ri(O) Io/mgs + rr21(L) ig/mjeg
€ni * fni + Eni + (mR/mR)gni o= ——4’?
a= (I, +Is-Iz)/mRE &= (Is - Is)/ b= (1 +2) R/
5. = (il + ig - ij))/mR,-@ -6 = (ij) - ig)/il E = (l + é) R//_@
ﬁ* _ 1 M—k Ok _ 1 M" l;}-,': — 1 M‘
¥ T mROCL Y 8 mROFL I.0° @
n n n n n
Mol 1 % e 1 Y Sk 1 o
M5 = M= M- = - M% ME = —— M
ﬂfn mRo27 n % mreZp ° n 1,02 “n

15



Notice that equations (22) and (23) represent the equations of motions
of two infinite-degrees-of-freedom systems of which the former is in the
variable p, alone while the latter has three variables coupled together.

In studying the dynamic stability or computing the frequencies of
vibrations of a many-degrees-of-freedom system, it is often convenient
to have the equations of motions in matrix forms. To this end, let us
take a finite number of modes for each variable, say, N, we obtain
readily from equations (22) and (23)

1 ..
=3 AF +Mp = E(c) (24)
g S s
1 . 1 _
EB B+ C g [TK 2| =F(), (25)
& 2 | @
where
S . R - -
P1 S1 &1 @q
p = Po s = 152 g = Zo Q _ Y2
N x1 . N x1 Nx1 . N x 1 .
N ] g ]
U = Identity Matrix D( ) = Diagonal Matrix
N xN
A =D(a,) By = D(b ) R, = D(r,(0)) Rp = D(r (L))
N xN N x N N x N N x N
M = [c .] + L [D(B*L%) - U]
ni m n
N x N
B, 0 O 0 aR 5RL K, O
B = |0 U 0 C = -bR0 0 K = |0 U
3N x 3N 0 0 3N x 3N -BRL 0 0 3N x 3N 0 0

16

o




I - I, I5 -1, oL
Ky =[c . ] +—=—RZ+ =—=— RZ + == «D(BYLY) 0 = Null Matrix
NxN m © ms L m n N x N

E(t) = M;I}Ro(e) + M’II’IRL(é)

N x 1
I_A-" A - ]
MR () + MZR) ()
F(t) = ¥ (g)
3N x 1 N
M2 (8)

In the expressions of E(t) and_F(t), we have_introduced the load distribu-
tion vectors, (e), (e), (£f), (£f), (g), and (g), such that

M * M* '
¥y 91 21
v - % * — % 7 - M;':
MW(G) ng M, (£) M02 M (&) -
({- \JN ad
— [ U
(26)
ME ME *
0, 91 2R
ME(e) = |ME ME(E) = |ME MI(g) = |ME |,
W( ) o 5 (® 9 @(g) oo
ME ME ME
(IJN : t/N ;AN

These vectors remain undetermined at present time,

17




By transformation of variables, equation (25) can be reduced to the
first order matrix differential equation [7],

1.
¥ - Qo= 6(e), (27)
where
~ L]
S
& - U —
; Q. Q- 0
y = Q = U 0 G(t) =
6N x 1 s 6N x 6N 6N x 1 F(t)
4]
|7 ]
0 -aB:R, -dB.R -B.K; O 0
Qu = -B"'C = |bR, 0 0 Q. = -B™'K = 0 -0 0
3N x 3N _ 3N x 3N -
bRL 0 0 0 0 -3U

= p=1 =
B> = BJ' = D(1/b,).

G. Solution of the Homogeneous Differential Equations

Let the complementary solution of equations (24) and (27) be,
respectively,

p = pel7 i =1 (28a)

se N, (28b)

«
[}

18




Substitution of the assumed solution into the respective reduced differ-
ential equations yields
™ - 72A)P =0 (29a)

(N0 - Q)s =0 (29b)
and the characteristic equations

M - »2A] = 0  (Nth degree polynomial of ¥2) (30a)
|%U - Q| =0 (6Nth degree polynomial of A). (30b)
Since the sub-matrices of matrix Q are either null or diagonal
matrices except one, BoK;, the 6Nth order determinant given by equation
(30b) can be readily reduced to an Nth order determinant,
[ (A2 + B8) (W2 + B)(WB, + Ky) + A2(N2 + B) abRZ + N2(M? + 6)55RE| = 0.
(31)
This gives a 3Nth degree polynomial of A2. For a symmetric system, all

the barred symbols are equal to the unbarred symbols and Rg = Rf; the
determinant of equation (13) degenerates to an Nth order determinant,

~
(98]
N
N

[N . Ry ' ” )
| (32 + 3) (\®B, + Ky) + Zabthii = 0,

which is a 2Nth degree polynomial of A2, This can be seen from the
relationship

1

6= D5 n (33)

obtained by eliminating the variable $,, from equations (23b) and (23c).
Hence, N variables of @, can be eliminated from the set of 3N variables
of a symmetric system. 1In equation (31) the constants a, a, b, b, &, &
and the matrices B;, K; are directly related to the geometry and moments

of inertia of the system and bending stiffness of the cable. The matrices

Rg, Rf and D(B§L4) can be written out immediately:
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1
d%c2
4
RZ =
[o]
_
0
4y =
D(BL?)
1
2 - p2 =
RS = RY

500.6
3803
14618
39944
89135

e

1
Bl =5 (2n ~ 3)x n>7

for a symmetric system .

H. Dynamic Stability and Free Vibrations of the System

1. Dynamic Stability Criteria

From the solution of the homogeneous differential equations, the
dynamic stability of a system which is free of external moments and internal
damping force can be readily given as




(1) 7? >0 i=1,2, ..., N for motions in the plane of
rotation
(2) N <0 i=1, 2, ..., 3N for motions out of the

plane of rotation.

2. Free Vibrations of the System

If a system is dynamically stable, its disturbed motions are
vibratory and can be written in the forms:

N
= k t + i
p }j ( ny 0% 7, Q kn2 sin y QL) Pn (34)
n=1
3
N Ath
y ==§:Re 1?ne }- (%n's are positive, pure (35)
n=1 imaginary)

where Re { } means the real part of { }. In the above equations, P, and
S, denote the eigen-vectors which are the solution vectors of

™ - yiA) P =0 n= 1, 2, ..., N (36)

(KnU - Q) Sn

]
(o]
o]

1]
p—
N
[*8]
z

(37)

respectively. The arbitrary constants kp; and kp, and the arbitrary
magnitudes of the eigen-vectors S, can be determined for a given set of
initial deformation and velocity of the cable as functions of x by using
eigen-function expansion method. However, this is of little practical
interest to us.
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I. Special Case - Free Vibrations of Two Identical Stations

Connected by a Massless, Flexible Cable

Before we proceed to determine the responses of the system to external
moments, let us apply the results of the previous section to a simple case.
If the connecting cable is massless and flexible, it remains straight under
centrifugal force. This is to say that the disturbed motions of the space
stations produce only the two rigid-body modes of the cable. For free
vibrations of a symmetric system connected by a massless and flexible
cable, we substitute the following in equation (32),

1 0 .12 0 T, + I - IxZl2 0
2 _ 2 _ _ = 2
RO = RL = B, = EE , 2abR0 = <‘ \
o 3 0 6 / /o 6
1 2J_'|__ O :[3 - Il 2 0
Ky = 7= + 0 s J. = mRg Jo = 2mR74/L,
0 6J - 0 6

and obtain the characteristic equation of the motions out of the plane of
rotation

2F 1 (M) 0
=0, (38)
0 6£ ()

where

fn(%) = TI0* + [Ix(I5 - I5 - I7) + 21,1 + IlJn]A2 + (I5 - I2)(I5 - I + Jn),

This gives two values of A for each mode from the equations

£f,(A\) = 0 and £-(n) = 0.
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Inserting

into equation (30a) yields
Tn " JE;7E;’ n=1,2,
for the motions in the plane of rotation.
J. Responses of the System to External Moments

Let us consider a system which is dynamically stable; i.e., the
eigenvalues 7y, (n=1, 2, ..., N) are real and positive and the eigen-
values A, (n =1, 2, ..., 3N) are pure imaginary. We now define the
following:

P = (PP, ... P) modal matrix of matrix (A™!M) or a row matrix of
N x N the eigen-vectors of equation (29a)
S = modal matrix of Q
6N x 6N
rs =D0(y) = PTH@ATMP (39)
N x N
Ny 0
A = = §71qs Ay = D(A)
6N x 6N |0 -3y
Qt
eAﬂt _ D(e7\'fl ) 0
sin I'Qt = D(sin yngzt) 6N x 6N 0 D(e_"“““)
N x N
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By making the transformation of variables

p = Pq (40)
and

y = Sz, (41)
in equations (24) and (27), respectively, we obtain

g+ (aMZq = PTATLIE(E) oF (42)

and

z - (WN)z = 0S™1G(L). (43)

It follows immediately that

t
p =Pq = Pr? fsin ro(t - 1) PTIATLE(7) dxt (44)
[0
t
y = Sz = sf SHED) g-1g00y dr. (45)
o}

In the above, formulations of the solutions E(t) and G(t), as mentioned
earlier, are yet to be determined.

Before we proceed to determine the moment distribution vectors defined
in equation (26), some considerations about the applied moments are neces-
sary. To confine ourselves to the assumptions made earlier for the deriva-
tion of the equations of motion, we require that (1) the resultant moment
in the plane of rotation is small such that the change of the rotational
velocity Q is negligible and (2) the resultant moment normal to the plane
of rotation is also small so that the motions of the station normal to
the orbital plane can be disregarded. Based on the above considerations
and on the assumption that the moment of inertia of the system (mR® + fiR%)
is much greater than the principal moments of inertia of the stations, we
may assume that the disturbed motions of the stations due to the applied
moments do not have appreciable effect on the motions of the whole system.
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In other words, the applied moments which are used for the purposes of
navigation, changing orbital plane, spinning up or down of the system,
etc., are excluded. Although there is no means by which to determine the
exact components of the applied moments on each generalized coordinate,

it seems plausible to determine the loads distribution in a static equili-
brium state and use it as an approximation in the solution of dynamic
responses.

Static Loads Distribution

Let ¢ and { be the angular displacements of the stations and u(x) be
the deflection of the cable produced by the application of a unit moment
M¥. The work of the unit moment is equal to the sum of the change of
potential energy of the stations and the strain energy of the cable,

1+ = AV + AV + AU (46)

Notice that the kinetic energy of the system is omitted under the assump-
tion that the system is in static equilibrium configuration. We now
assume that

N
u(x) = RZ c.r, (x), (47)

i=1

of which the constants c.;'s are to be determined from the condition

i
€=y - (AV + AV + AU), (48)
is a minimum; i.e.,
d¢
= = = ces . 4
Bcn 0 n=1, 2, , N (49)

Some of the terms in equations (48) and (49) can be written using results
already obtained:
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N
AN M _ sz N2
Sc m gnici S mR= gnici (50)
n

i=1 n
N
\lf = Z/ Z Cnrn(o) S-\CE— = % rn(o) (51)
n
n=1
L L N
M —
=L 2 oy _ 1 X - L
N = SET fMX dx Bcn - f MX bcn dx ~— L,hnici’ (52)
© 0o i=1
where
EL X
M o= 2J Cn\/xpﬂz(c - O [r x) - rp(8)] dE - mRQ?[rn(x) - 1 (01,
n=1 o

as given by equation (A-1). It is tedious to perform the integration given
in equation (52); however, with the aid of reference 5 a closed form of hpj
can be obtained. This work is omitted here.

Substituting from equations (50) to (52) into (49) results in a system
of equations in cj

IS 1~

1 -
.+ ﬁ' hni)ci =

202 - 2 _
(mR=Q i + mRR( &ni rn(O) n 1, 2, ..., N (53)

from which ¢; can be solved. We now replace the static deflection r (x)
by r,(x) pp(t) to represent the dynamic deflection, and rewrite the work
expression as follows:

[>~]=

S P

N
M0 = M) §er (0 p(6) =) w6, (0).
n=1

1

n

. R
Since wh(t) = E r, (0) pn(t), the above expression gives

M,dj, =M c . (548.)
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Similarly,

Mg =My (54b)
n
A T N (54e)

Brn(L)

= C

where ¢, = Z¥—?57 n+ This relationship is obtained by comparing equation
n

(53) with the equation which generates En

3

(mR2Q2gni + ﬁﬁRQ2éni + L h ) ¢c, =

BT Mhi) S5 T rn(L). (53a)

=1

However, the proposed static approach cannot be applied to the pitch moments,
since the rotsional vibration of the cable is not considered. Therefore, the
response to these moments cannot be treated at the present time.

We now return to equations (25) and (26) and rewrite the load func-
tions in the forms:

E(t) = 06 (£) R, +M3() R) (e)

(55)
Nx1
(M’;(t)R0 + M’le"(t)RL) (c)
F(t) = 0 (56)
3N x 1 0

N 1
where RO = E R, RL'

K. Discussion and Recommendations

A great deal of computer time can be saved in computing equation (45)
by using partitioned matrices to take advantage of the fact that the eigen-
values and eigen-vectors of matrix Q are in conjugate pairs.,

For this
purpose, let us partition the matrices as follows:
_ . —
JEA =N 0
s =|---f---- £ o= |u (57)
6N x 6N s, 5 3N x 3N v
= ]
N I, , U
S =TT~ I =, n, ) (58)
6N x 6N |1y , IT 3N x 3N
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where "~' above a letter denotes its conjugate; o, p, v are N x 3N sub-
matrices; and &, 7, { are 3N x N sub-matrices. It is easy to prove that
matrix II can be computed directiy from the equation

sy I gy (M + Ay SIm)TL osa, 5T, (59)

Now, equation (45) becomes

s = 2Re {oH(t)} § = 2Re {joA; H(t)])
N x 1 N x 1

g = 2Re {pH(t) g = 2Re {jun; H(t)] (60)
N x1 N x1

g = 2Re {vH(t)] ;;a = 2Re {jvA, H(t)],
N x1 Nx1

where Re denotes the "real part of" and

t
H(t) = fejAlQ(t'T) EOCC (DR + ME(DRY (e ) di. (61)

o
From equations (44) and (52),

t
prt fsin ar(e - T)P'lA-l(Mi]j(r)Ro +M§(T)§°)(cn) dt (62)

o}

o
I

and

t
p = QPL/ﬂcos (e - 1) P'lA'l(Mi(T)RO + Mﬁ(T)ﬁo)(cn) dr.

o]
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Finally, the
tions are

Euler angles and their time derivatives of the space sta-

1 _ 1 .
o= ) zRop 6 = 7 ZROS ® = 1%
Ty=lz‘Rp 5=%irs = ig
;L 7
o =L iRs o = ig (63)
W 7 ‘RGP 7 Ro iy
V=%irp B=TirRs o= ip
=<1 =T 1 = 1
iRy ~ iR
where 7 = (1 1 ,.. 1), a1l x n row matrix.
In conclusion, the following problems are suggested for further
study:

(1) Refine the approach used for the determination of the
load distribution factor.

(2) Obtain solutions on other types of loadings such as reel-
out and reel-in of the cable, spin-up and spin-down of
the stations, movements of the astronauts, etc.

(3) Take into consideration the torsional stiffness of the
cable and other end conditions of the cable.

{(4) Study other configurations of the stations, such as two

stations connected to a massive hub,
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APPENDIX A

Determination of M(x,t) and N(x,t) and Their Derivatives

As observed from Figure A-1, the bending moment at x due to the
centrifugal force is

X
M(x,t) = -prg(C - B)[u(x,t) - u(E,t)] dE - mROZ[u(x,t) - u(0,t)] x<c
o]
L
I\-/[(X:t) = -j DQE(g - C) [U(X,t) - U(g,t)] dé = &§Q2[U(X,t) - U.(L,t)] c< x <L,
* (A-1)

Since x = ¢ is the center of rotation,

MR + 3 pe? = @R + £ (L - o)2. (A-2)

It can be proved readily that

O Ry
<7 M(x,t) = <5 M(x,t)
OX OX

2 2
=%092\(X2'20X)§+2(X-C)ég}-mRQz'%;%, 0 <x < L.

L X
(A-3)
The axial force in the cable is
X
N(x,t) =k/ﬁpQ2(c - £) dt + mRO5, x < cC
o)
A-4
. (A-4)
ﬁ(x,t) =\/n 00F(E - ¢) dE + ﬁﬁng, X > c.

X
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It is seen that

2

X
m? [ W °

e [% l | H/L_’mﬁﬂz

£ R/
—~ o~
b
T
N’ N

Figure A-1. Displacement of Cable
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APPENDIX B

The Potential Energy

Substituting equations (13), (14) and (15) into equation (5) results

in
N
L)) [ G E e o 5o g,
n,i=1 o ’
N
= % dchs - }ﬁ[r (¢) - 2] 924 +-—-};[a (c) + lZa B ] q
i=3 n=3
N N
1 -
+-§§{: [a,; () + &(Bfop, - Bl B )1(BY - BD ™ qa,
n,i=3
+1) ) x5O (B-1)
2 7 'n i) 9p%y-
n,i=1

- NN r,
_%592 _ %E Z \: <_.. <Z—X-l-> dx + -_12 rn(L) ri(L):l 9,94
n

,i=1

=%¥@-cmi+dZ[ODi2+Q®Hq£i
i=1

1\ - 2
+ §'>J[4058n(3056n b ann(c)] 9

4
11— 1
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where

Let us denote

1
R

Q/

\
q

Q/

|

n

N

o 10
mR {7 ) €nidi R Jq
i= 1

N N
1 4
22 Z[(—l) 4(plop, - Bl B) - a (] qa;
n,i=3
N N
Y )t @ orw B-2
2/, [, 5 Tt Tt Gndype (3-2)
n,i=1
dri drn dzri d=r dgrn d5rl
= pdpr L _ 4 - L -
Pn’n dx iTi dx dx2 dx2 T dx® dx° n# i
dr_ r 2 d°r . d‘-rn dd d"rn\
—_— —_— - —X1 - o 4
n dx +tx dx 2xrn dx= E dx* dx + (X/B ) dx? )

where the formulas of g, ; and éni are tabulated as follows:
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ni

R//@ 812 < dCR/ﬂ

RdZc(l + c/ %)

4 -
ani(c)-M(BnaiB' B1an8h)

By - B:

+ 2
£

wi

&.p

8ln

nn

RA[2

4

2R/ 4 (n > 2)

c/p + 2 - rn(c)]

(n > 2)

(c)+3a B + 2JR




091

oo

ni

nn

R/Z fao= -d@-OR/Z &, = ~CDWRIZ (>2)

_ N ]
RdZ (L-c) <1 +IEEY) 5 RAIED"2@-0)/Z + (12 + ()]
2/ n n

n+i

- 4 _ a4 - _
La(BﬂyiBi Biaan)( L ani(c) + (_1)n+i 4/@] R
By - 8]

[Oéan(3Oéan + 1) - %;ann(c) + 4/3] R.
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