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THE ELECTRICALLY LONG ANTENNA -

CURRENT, ADMITTANCE AND FAR FIELD

by

Ronold W. P, King and Sheldon S, Sandler
Division of Engineering and Applied Physics
Gordon McKay Laboratory, Harvard University

Cambridge, Massachusetts

ABSTRACT

An approximate formula is derived for the distribution of current in
and the driving point admittance of electrically long and thin dipole
antennas. It consists of four terms to represent the real and four terms
to represent the imaginary part of the current referred to the driving
voltage. These combine simple sines and cosines for the leading parts
with linearly and logarithmically tapered sines and cosines to shape the
amplitudes. The currents per unit voltage at the driving points give the

admittance.



I INTRODUCTION

In recent papers ’

representations of the currents in cylindrical
dipoles were derived in the form of two and three trigonometric terms with
suitable complex coefficients. These were shown to combine simplicity with
quantitative accuracy for antennas in the range of electrical half-lengths
given by 0 < Boh € 5n/4 whereas conventional sinusoidal theory is satisfac-
tory only for very thin antennas in the much more restricted range 0 < Boh <
/2. An approximate representation specifically for long resonant antennas has
been reported3, but no general extension of the theory to electrically long
antennas has been made except in the rigorous analysis by Wu4 which does not
provide a simple trigonometric formula for the current. Such a formula is
generally useful in providing physical insight into the behavior of antennas
and for many applications, notably those that involve superposition and tran-
sient response. The purpose of this paper is to provide a simple, reasonably
accurate formula for the distribution of current in a cylindrical antenna that
may be many wavelengths long. Experimental studies of such antennas have been
made by Iizuka et al5 and by Altshuler6. The analytical procedure for deriving

1,2

the currents resembles that developed for shorter antennas , but is necessarily

somewhat more involved.
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I1 INTEGRAL EQUATIONS AND APPROXIMATE CURRENTS
The well-krown integral equation for the current in a thin center-driven
cylindrical antenna with half-length h and radius a is readily expressed in

the following form:

h
-1 e 1y ' | - b [1 e - ]
smula_(2) f I (2')K(z,2")dz _'L_cocossoh L%sing_(n-|z|) + Ucoss z],
: -h
1)
where Az(z) is the vector potential on the surface of the antenna, [ £ 1207
ohms, and
h .
i jCo ' ' '
u=-dam=-32 f I_(z')K(h,z')dz | (2)
=h

is proportional to the vector potential at the end z = h of the antenna.

-jB R
, . o
The kernel is K(z,z') = £ R , R = /Qz—z')z + a2 . (3

If the real and imaginary parts of the current, kernel, and function U are
introduced in the form Iz(z) = I;(z) + jI;(z), U = U& + jUI, K(z,z') =
1

KR(z,z') + jKI(z,z') =R cosBOR - jR-lsinBOR , (1) can be separated into

two equations as follows:

h
(g S S - ]
,‘/ ‘Iz(z )KR(z,z')dz' Cocoseoh[ZVOSinBo(h |z|) + UpcosB z
~h

h .
-.[ I;(z')KI(z,z')dz' (4a)
“h
: We ot ' ' 4mu [
f Iz(z )]%(2,2 )dz = - W cosBoz + f Iz(z )KI(Z,Z )dz N (lob)
=h -h




where

h
Z
Up = z‘% f[I;_(z')KR(h.z') + I;(z)KI(h,z')] dz' (5)
~h
; b
u = z% f [I'z'(z')KR(h,z') - I;(z')KI(h,z')] dz' . (6)
-h

The functions UR and UI are potentials in volts, Vs is the driving voltage
to which all phases are referred.
Owing to the quite different properties of the real and imaginary parts
of the kernel2 K(z,z') = KR(z,z') + jKI(z,z')_, the integrals that involve the
former have leading terms that are well approximated by

h
[ 1argz,z"ae v 1) )
h

whereas those that involve the latter have a dependence on z that is largely
independent of I(z'). If use is made of this fact, it follows directly from
(4a) and (4b) that I;(z) must have a distribution that includes as leading
terms the trigonometric functions sinB (h - |z]) and cosB z; I7(z) must
include cosEoz. Additional terms come from the integrals on the right.
However, since BOKI(z,z') € 1, whereas BOKR(z,z') 3 (Boa)—1 >> 1 these are
relatively small and insensitive to the variation of Iz(z) with z. It follows
that satisfactory approximations may be obtained with I;(z) £ A sin Bo(h - ]zY))

+ B' cos Boz + B" f(z). I;(z) = B" cos Boz + A g(z) + B' £(z) in these integrals

where
h
. L) z
f(z) = ‘[ cosBoz' KI(z,z')dz' 2 - [i-cossoz + E-sinﬁoz] (8a)
-h




h
g(z) = f sin Bo(h-lz'l)KI(z,z')dz' - -[% sin Bo(h—lzl) + % sing z sinB h
-h

- Ll(z)coseoz cossoh] «~ (8b)

The approximate expressions on the right in (8a,b) are derived in Appendix A.

The function

1 - -
Ll(z) = 3 [Fin ZBo(h z) + Cin 28°(h+z) 2Cin 2802]

2 2 -2802
= fn J(h /z°) - 1+e in 2802 Y » ZBO(h_z) > %. 9)

is slowly varying except near z = 0, Note that &n y = 0.5772..(Euler’'s con-
stant) and Cin x = j} x—l(l - cos x)dx is the modified cosine integral. 1If
these formulas are :sed in the evaluation of the integrals on the right in
(4a,b) (see Appendix A), relatively simple expressions are obtained that are
acceptéble approximations for all values of z not too near the ends at z = h.
The resulting approximate distributions of the real and imaginary parts of the

current have the forms

I)(2) * A sing (h-|z]) +[E' + H'Ly (2)] cosg 2 + D' (z/h)sing 2 (10a)

I(2) & [E" + 'L, (2)] cosp 2 + [1- + D"(|z|/h)]sin80|z| . (10b)

The coefficients A to F remain to be determined. The formulas (10a) and (10b)
are useful approximafions when 0 ¢ BoZ € soh - n/4.

An approximate simple expression for the current near the ends z = th
of a long antenna is readily obtained if note is taken of the following fact -

which has been verified both by reference to measurementsa and to detailed




calculations from the analytically correct theory of Wua. The currents

in antennas in the range O ¢ Boz < 5n/4 are very well represented in the form1

I;(z) A sin Bo(h - |z|) + B'(cos B,z = cos soh) (11a)

1" " -
Iz(z) B'"(cos Boz cos Boh) . (11b)
If a given antenna with Boh € 57/4 is increased in length by integral multiples
of the wavelength so that the new electrical length is Boh +nr, n=1,2,...
the distribution of current in the outer pieces of length h is still very well
represented in the forms (1lla) and (11b) with appropriately modified coeffi-
cients A, B', and B". This suggests the following representation for antennas
of any length: use (10a) and (10b) in the range 0 ¢ B_z < B_h' = nu; use
v v
' X - 1h! o

(11a) and (11b) in the range Boh IS Boz < Boh, where  § Bo(h h') < P

In order to provide continuity of current, the two sets of formulas must

be equated at Boz = Boh' = nr. This requires the two coefficients A to be the

same, and
B' = b[E' +H'L1(h')] . B = b[E"+H"L1(h')] , (12)
where cos 8 h'
= Q0 = 1 (13)
1] - = - - L
cos Boh cos Boh 1 - cos Bo(h h')

and Ll(h')_ = ln’(h/h')2 -~ 1 . The components that involve sin Boi vanish

at z = h'., They can be continued with components that are zero at z = h.

Suitable expressions are

I;(z) = A sin Bo(h-izi) + B’ (cos Bz - cos Boh) + D'[:(éh:lﬁlg} B




I)(z) = B"(cos Bz ~ cos B h) + [F + D"(h'/h)] [hT-:szl-!-] sin Bo|z| .

(14b)

Actually, the two added terms are small and usually negligible.

II1 DETERMINATION OF COEFFICIENTS
The several coefficients in the distribution of current are determined
by substituting the currents (10a,b) and (1lla,b) in the equations (4a,b) and
approximating the integrals as obtained by trigonometric functions. This is
carried out in Appendix A; the desired approximations are in (A-30) to (A-33).

If these are substituted in (4a,b), the following equations are obtained:

. 2nve 4my

_ o _ ' R
R + 2cos Boh cocos Boh sin Bo(h |z|) + ‘% wCR

AY - ————
cocos Boh

-1 (E" + 0.55H" + F tan 8 h) - D" }cos B z
2 o o

+ [H'WCR - F] Ll(z)cos BOz + [D'WhR - E" - 0.55H" - %ﬂd] (%sinsoz)

=0 (15a)

4nUI

- Al " SN ST ' '
(F?SR - &5 cos Boh)sin Bolzl + [% Yor * z_co8 £k + 2(A sin g h + E' + 0.55H')

1 " - 1"
+D ]cos Bo2 + [ ¥or A cos Bog]Ll(z)cos BoZ + [D ¥hr + A sin soh
+E' + 0,550 +1 D')] Zsingz) = 0 . (I5b)

These equations are satisfied if the coefficients of the trigonometric

functions are individually equated to zero. In this manner the following

simple results are obtained directly:




AT cos Boh n Vo
F = = (168)
2¥sp % Yr1 Ysr
27 Ve 2
A * TV e FE Y T Rt (16b)
o Rl o SR
F AT cos Boh ﬂz Vg
H' = = = (16c)
Yer Z¥p Yor % *r1 Ysr Yer
A cos Boh 2% Vg
" = - . (16d)
Yer % Yr1 Yer

The following equations must also be satisfied:

. 4w UR
E'Y  -—(E" 4+ 0.55F" + Ftan Bh) - D' =« ———— = 0 (17N
CR Z o’ T cos B h
o o
- 4m UI
" St ' ' ————
E WCR + 2(E + 0,55H' + A sin Boh) + D + Co o8 BOh 0 (18)
' - Y o "o LU =
D th E 0.55H 2 D 0 (19)
11} 1 t 1 ' =
D th + E' + 0.55H" + 2 D' + A sin Boh 0 . (20)

It remains to evaluate D', D", E', and E" from (17) to (20). This
involves the functions UR and U; as defined in (5, 6) . They are readily

evaluated if (1C5,b) and (lla,b) are substituted in (5, 6). The results are:

4n U

. = AWVR(h) + E'WCR(h) + H'wLR(h) + D'WZR(h)

+ E"WCI(h) + H"WLI(h) + D"WZI(h) + FY_.(h) (21)

SI




4 UI

- E"WCR(h) + H"\PLR(h) + D"‘i’ZR(h) + F‘l’SR(h)

where the several constants ¥ (h) are defined in Appendix B. Now let

- ' " _ X "
A1R AVVR(h) + H TLR(h) + H WLI(h) + FWSI(h) 2{?.55H + F tan Boh]cos Boh

(23a)

= "
A AVVI(h) + H"'Y

11

" - T '
L (B) = 'Y (h) - FYg(h) + 2[o.ssn + A sin Boh}cos B.h

(23b)

With (16a-d) these become
Ay = A[‘PVR(h) + £ cos Boh] . A= A[\PVI(h) + £ cos Boh] , (24a)

where

-1,-1 -1
flR = (ﬂ/Z)WLR(h)WSRWCR + WCR[?LI(h) - 0.2757 cos Boﬁ]

+ (1[/2)‘1';; ¥ () - (1/2) sin Boh] (24b)

~1°
-1 -1
flI = (w/Z){%in Boh + WSRWCRfil(h) 4+ 0,2757 cos Bo#] - WSR(h)?SR}

-1
- WZR(h)WCR . (24¢)
With (21) to (24), the equations (17) and (18) now become
L} 11
D'¥,.(h) + D [\PZI(h) - cos soh] + E'[WCR(h) + ¥ cos Boh]

+ B[ty () - (s/2)cos Bh] = A (25




' - n" '
D [\I’ZI(h) + cos eoh] D"Y, (h) + E [\I'CI(h) + (1/2)cos Boh]
- E [WCR(h) - ¥op cos Boh] = Ay (26)
Equations (19) and (20) may be arranged as follows:

'.T.T. ! = -1
D'th - D > - E" A(O.SSWCR cos Boh) (27

-1W-1

v Iy Ve
D > +D"Y 4+ E A(sin Boh + 0.2757 wSR CR

hR cos Boh) . (28)

The simultaneous solution of (25) to (28) for D', D", E', and E" expresses
these coefficients in terms of the known constant A, It is carried out in
Appendix C. This completes the determination of all of the coefficients in

(10a,b) and (1lla,b) so that the current in the antenna is completely known.

IV DISTRIBUTIONS OF CURRENT AND ADMITTANCES
The distribution of current in the form Iz(z) - I;(z) + jI;(z) is well

approximated in the range |3°z| < Boh' = nnm by

2n Vz sin Bo(h—|z|)
1 1
+ T!cos Boz + TLLl(z)cos Boz

' =
Iz(z) cos Boh C

Co\le
+ T;(z/h)sin Boz (29a)

e

2n V
" = n " 1
Iz(z) Tocos Bz + TLLl(z)cos B,z + Tz(z/h)sin B,z + Tgsin Bolzl] ’

[

1t - ! ||." 'B' "=
where TC = E'/A cos Boh, TC E"/A cos Boh, Tz D'/A cos Boh, Tz

D"/A cos B, T; =H'/A cos B,h = /2 ¥

" = 1] =
! T H"/A cos B h 1/y

srfcr® 'L CR?

T_=F/A cos Rh=mx/2 ¥ . When 8 h' = nt < 8 z < R h. where LIPS 8 (h-h")
S o SR ) o o’ 4 o

5w
< Pk the formulas for the current are



e
2n v { sin Bo(h-lzl)

' = ' -
Iz(z) C v cos B h + b[? + T! Ll(h )} (cos Boz cos Boh{}
R1 o
(30a)
27 Vs
" = n " -
() = 7 b[Ty + TVL, (b )] (cos B_z - cos B,R) (30b)
o R1
The driving-point admittance Yo = G0 + jBo is given by
B = tan B h + T, + T]L (0)] (31a)
° Co Rl [ c
G = [T" + T"L (0)] . " (31b)
° o Rl L1

When cos Boh = 0 all of the coefficients T in (29a,b) remain finite

except Té. However, if the two first terms in (29a) are combined in the form

sin Bo(h—|z|)
' = T -
wos Boh + TC cos Boz 1C cos Boz sin Bolzl, (32)

' = - ' ‘
where TlC tan Boh + Tc (A sin Boh + E')/A cos Boh (33)

the new coefficient TiC remains finite when cos Boh = O, This is shown in

Appendix C., It may be convenient to use the alternative form
27 V¢

S [— sin B |z| + T!
Cole

1@ = 1C

cos B z + T (z)cos B,z *+ T G— sin 8 z)]
(34)
in place of (29a) when cos Boh is very small or zero., In this form the

susceptance is

B =
(o]

= [Ti +T Ll(O)] , (35)

where, from (9), Ll(O) = Cin ZBoh . (36)

-10-




The current in the range Boh' = nn ¢ Boz < soh that corresponds to (34)

is obtained from (30a) with the substitution T! = T!_. - tan Boh as given

c 1C

by (33). Since,

sin Bo(h—lz])

cos Boh

e
o

I'(z) =
z Cole

sin Boh - gin B,z + tan Bok(cos B,z = cos Boh) (37)

- ' ' " o '
{%in B,h - sin Bolz] + b[T1C + T/L,(h') - sin B h sec 8 h ]

(cos Boz - cos Boh)} » (38)

where, as defined in (13), b = cos Boh'/(cos Boh' - cos Boh). Note that

(33) reduces to

(34) at z = h', since Boh' = nm,

V THE FIELD PATTERN

The radiation field of an electrically long antenna has been deter-

mined by Wu4 in

a useful form. It is readily computed from the well-known

formula
jco Iz(O) e-jBoRo
Eg = o R £(0) , (39a)
o
where the field factor is
h
~-jB z cos 8
fo) = Sin8 I(z') e °© g dz' . (39b)
o
2vey
oo ~h

In the form given in (34b) the field is referred to the Iz(O) = V:Yo at the

driving point.

but this is not

(29b) and (30b).

It may, of course, be referred to the driving voltage instead,

conventional., The current distribution in (34b) is that given

£ 2N~
NI

Y\
bl Radis

In the evaluation of the far field pattern it is adequate

-11-




to replace the logarithmic term with its value at z = h', Hence, with Iz(z)

- I)(2) + I13(2),

2n ve sin Bo(h-lzl)
° I + Tocos Bz + Tz(z/h)gié B,z + Tgein 8°|z|

Iz(z) = ;o?Rl cos Boh
(40a)
2n vz sin Bo(h-lzl)
Iz(z) - o [3 cos B + bTCL(cos B,z - cos Boh?] , (40b)

where (40a) applies for 0 < Bo|z| 3 Boh' = nv, (40b) for Boh' < BOIZI s 8 h.
= " T " T ] - ”" )
In (40a,b), Tep = Te + 3T¢ (TL + jTL)Ll(h ), -TZ T, + JT,. Note that
TS is real. Y =G_+ j B_ is obtained from (3la,b).
o o o ,

If (40a,b) are used in (39b), the following integrals are obtained:

h

3B z cos 6
o
(1/2)sin © ] sin 8_(h-|z]) e B dz = F_(0,8 )
~h
cos(B h cos 68) - cos B h
- o o (41)
sin ©
h'
jB z cos 6
(1/2)sin © J[ sin 8_|z| e ° B dz = F(0,nm)
— L
h 1 - (--1)n cos(nm cos 6)
= sin 6 (42)
h' 18 -
Zz cos
(1/2)sin 6 Jf cos Boz e ° B, dz = FC(G,nﬂ)
_h'
= - (-1)" cot 8 gin(nT cos 8) 43)
hl
, , jB z cos 6 ‘ .
(1/2)sin o ‘f (z/h)sin Bz e © B dz = F_(0,nm)
..h'
- (-1 2 '
= 4 [nﬂ sin” 8 cos(nw cos 6) + 2cos 6 sin(nw cos eﬂ
BOh sin [$] (44)

-12-




h h'
jBoz cos 6
(1/2)sin © f—- f (cos Boz - cos Boh) e Bodz
=h -h'

= F.(0,8,h) - F (0,am) - [FE(O,Boh) - FE(e,nn)] cos Bh ,  (45)

where

FC(O,Boh) - sirlx O[Sin Boh cos(Boh cos Q) - cos Boh sin(Boh cos 0)cos O]

(46)

FE(O,BOh) = tan O sin(Boh cos ) . 47

It follows that the field pattern is given by

CLFC(O,mr)

-1
£(0) = [TC + TLLl(O) + j tan Soh] {j Fm(O,Boh)sec Boh + T
+ T,F,(0,nm) + TSF (0,nm) + bTCL'FC(O,Boh) - Fo(6.nm) - E,(0,8 h)

cos B h + EC(G,mr)cos 8B h . (48)

A similar formula is readily derived for the range of Boh near and at

(2n + 1)(n/2). Usually |£(8)| is of primary interest.

-13-




APPENDIX A: INTEGRALS

The following four integrals occur in the equations (4a,b):

h h

3 =/ I'(z') Kp(z,2')dz' 5 % = f I'(z') Ky(z,z')dz’ (A-1)
-h ~h
h h

J:'[ = ] I;(z') KI(z,z')dz' H J']; = j I;(z') KI(z,z')dz' . (A-2)
-h -h

In the approximate evaluation the currents are given by

-

I;(z) = A sin Bo(h—lzl) 4+ E'cos Boz + H'L(z)cos Boz + D'(z/h)sin Boz

(A-3a)
I"(z) = E"cos B z + H"L{z)cos 8 z + D"(z/h)ein 8 z + F sgin R lz|, (A-3b)
z / o =7 "‘o \oeq/ 7~ P'o - l-'o| 1 7 N et 4
when |z| < h' = n'n/Bo, and by
I;(z) = A sin Bo(h—lzl) + b[E' + H'Ll(h')](cos Boz - cos Boh) (A-4a)
" - " 1] ' - -
I'(2) b[E + H'Ly (h ):l(cos B,z - cos B_h) (A-4b)
) i ] 5‘"
in the range h' < |z| s h where 2 < Bo(h-h ) L
When these distributions are substituted in the several integrals
certain well-known integrals are encountered. These are
h .
s_(h,z) = j sin B_|z'| K(z,z")dz’ (A-5)
~h
h
Ca(h,z) = [ cos Boz' K(z,z')dz' (A-6)
-h
h
Ea(h,z) = f K(z,z'")dz' . (A-7)
-h

-15-




The properties of the real part of the kernel permits the following

approximations:

Re S (h z) = Yo s:l.n By |z| , Re Ca(h,z‘) = ‘I’CRcos Béi .

Re E_(h,z) & Yo ' | -~ (A-8)

| where wSR = Sa(h,klé) . \yCR - Ca(h,O) , ,\P,ER = Ea(h,O).'
In the imaginary parts of the integrals (A-5) to (A-7); the approxi-

mation R £ |[z' - z| can be made. It then follows that

Im Sa(h,z) = -[Ll(z) cos Boz + Pl(z) sin Bolzl] = —[Ll(z) cos Boz

. ,
+ 5 sin B°|z|], (A-9)
X
where, with Cin x -[ x—l(l - cos X)dx,
)
1 ‘
Ll(z) = zl-flin ZBo(h-—z) + Cin ZBo(h+z) - 2 Cin 2802} (A-10)

2, 2. S ' u
s ¢nf(h"/z2°) - 1 + Zn(ZBoz Y)e when 28°(h-z) >7 (A-11)

In (A-11) the first term is & well-known approximation for arguménts that
are not too small. The second term, in which &n y = 0.577... as Euler's con-
stant, is added to provide a formula that has approximately the correct

behavior near and at z = 0. In (A-10), with Si x -f X -1 sin x dx,
1
Pl(z) 2[Si 23°(h-z) -~ si 280(h+z) +}2A si ZBOz] . (A-12a)

In the range Zao(h-z) > L

Py(2) sin B [z| 2 3 sin g |z| . (A-12b)

Actually, near z = 0, Pl(z) + 28 z, so that Pl(z) sin Bolzl > 262:2,' whereas

12'- sin 8°|z| + % ByZe However, the precise shape of these small terms in a

-16-




narrow range near z = 0 ig not important so long as the value at z = 0
is correct. Hence, the simple form (A-12b) is adequate.

Corresponding to (A-10)

2

Im Ca(h,z) - -[Pz(z) cos Boz + Lz(z) sin Bolzl] = -[12'- cos Boz

z -
+ ¢ sin Boz] . (A-13)
where
L,(2) = 7[cin 28 (w2) - cin 26, (h-2))] (A-1l4a)
-1 ]
Pz(z) 2[?1 2B°(h+z) + si ZBO(h-z) . (A-14b)
Subject to the condition ZBO(h—z) > /2,
s h+z .2 s X -
Lz(z) = fn h- 2z~ T ° Pz(z) 2 . (A-15)

Strictly, the approximation Lz(z) é~% is valid only when (z/h) < 1.
However, near z = h, iz(z) rises rapidly to Lz(h) =~% Cin 48°h 5’%[?.577
+ &n ABoh] which is considerably greater than 1, However, in a small
correction term, the simple form L2(z) = ﬁ-should be adequate even though
congsiderably in error near z = h,

Finally,

In E_(h,z) = -[31 28_(h+z) + Si 2so(h-z)] doq . (A-16)

The approximafion on the right is valid when ZBo(h-z) > /2.
Additional integrals - which occur only in quite small terms -~ involve
distributions of current of the forms Ll(z)cos B2 and (z/h)sin B2+ The

associated integrals are
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. 1

h
}’ Ll(z') cos Boz' KR(z,z')dz' - wCR Ll(z) cos Bozw e - (A=)
~h

Since Ll(z) is quite slowly varying, Yor is an appropriate amplitude.
h

' [] "2 .

i jf(th) sin Boz KR(z,z )dz YR (z/h) sin Boz + (sin
-h

2Boh/Boh)cos B,Z

(A-18)
where ¥, o = zn(Zh/BOaz) - 1.577. Note that when the limits are -h' and h',
sinze h' = 0 since 8 h' = nm.
o o
h h

j Ll(z') cos Boz' KI(z,z')dz' Ll‘(h/Z) [ cés Boz" KI*('z,z')dz'"
-h ‘ ~h

e

- 0.55[—12L cos Boz + _}z_I_ sin Bon. (A-19)

In this small term, the slowly-varying function Ll(z,)-‘ is replaced by an.
approximately average value at z = h/2, viz. Ll(h/2) = —;‘-[C_,in 3_B°h - Cin Boh]

% (fn 3)/2, and the remaining integral is the same as (A-13),

sin ZBoh 2
f (z'/h) sin Boz' KI(z,z")dz' = -{cos Bzl 1- ——2—8;-.;—-+ F[PZ(Z) sin Bolzl
-h

- L2(z) coé Boz]}

sin ZBOh z2 . 2 4
= —{[1 - ——Z?O-}T— - -h—z cos Boz + 7% sin Boz} . (A-20)

Note that when the limits are -h' to h' sin ZBoh' = 0 since Boh' = nm,
This integral is evaluated directly with R & |z - z'| in the kernel. The
approxiniate expression is obtained with (A-15). Since the term (z./h)zcos Boz

is of higher order in the current distribution than the terms in (10a,b),
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it will be omitted.

Integrals that actually arise in addition to (A-5) to (A-7) include

h
] sin Bo(h-lz'l) KR(z,z')dz' = Re[ca(h,z) sin Boh - Sa(h,z) cos Boh]
~h

< ¥p sin Bo(h-lzl) R (A-21)

where

Y, = Re[Ca(h,h-AM) sin Boh - Sa(h,h—)‘/l;) cos Boh] when Boh > % (A-22)

h
] sin Bo(h—-|z'|) KI(z,z')dz' - Im[ca(h,z) sin'Boh - Sa(h,z) cos Boh]
-h

& [g— sin Bo(h-lzl) - Ll(z) cos B z cos B h + % sin 8 2z sin Boh]
(A-23)
h' h h' ,
j cos Boz' KR(z,z')dz' + f - / (cos Boz' - cos Boh) K.R(z,z')dz'
-h' =h ~h'
= \PCR cos Boz (A-24)

in the range |z| < h'. The constant amplitude Yor is deferred at a maximum

of cos Boz such as at z = 0 where

\yCR‘_ Re [ca(h',o) +b {Ca(h,O) - ¢ (h',0) - [Ea(h,O) - Ea(h',o)] cos Boh}} .

(A-25)
Since Ll(z) is slowly varying,
h‘ h h'
' ' ' U ' - v _
f Ll(z ) cos B2 KR(z,z )Ydz' + b Ll(h ) / / (cos B2 cos Boh)
-h' ~h -h'
KI(z,Z')dz' = TCR Ll(z) cos tsoz M (A-26)
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Since integrals with the kernel KI(z,z') are not sensitivé‘fo the distri-
bution of current and since this is continuous at z = h'; the added slightly
different integral for h' g |z| < h cannot significantly alter the value

obtained with an unchanged distribution. Hence; with (A-13),

h' h h' _
f cos Boz' KI(z,z')dz' +b f - f (cos Boz' - cos Boh) KI(z,z')dz'
b S cw
s -2 Bz+2=sl ’ (A-27)
2 cos oz h sin Boz .-
Similarly, with (A-19)
h h  h'y
J{ Ll(z') cos Boz' KI(z,z')dz' +b Ll(hf) ‘[ - '[ (cos Boz' - cos Boh)
-h -h -h'

£ gin eon . (A-28)

KI(z,z')dz' = - 0.55[3 cos Bz +

2

With the several approximate formulas, it is now possible to express

the original integrals (A-i) and (A-2) with (A-3a,b) and (A-4a,b) as follows:

. , . . z
cos Boz +H wCR Ll(z) cos Boz + D ?hR h sin Boz

' - '
Jp & A Y sin_so(h lz]) + E'Y,

(A-29)

e
Ne

E"Y . cos Boz + H'y

\1]
R CR (z) cos Bz + D WhR(z/h) sin B z + F Y., sin BO[zl

CRL

(A-30)

(&
[ )

= -[aZ ud 1L, pt
1 = A3 cos Bh sin 8°|z| [A 2 8in Boh +E'5+ 0555 + D ]cos R

] ' T2
+ A cos-Boh Ll(z) cos Boz - [A sin 6°h + E' + 0.55H' + D 2](h sin Boz)
(A-31)

"o | us nw,, I A _ T an . " nl
JI [F 2 + 0.55H 2 + D" + 2 F tan Boﬁ]cos Boz [E + 0.55H" + D 2]

r

(%-sin BOZ) - F Ll(z) cos Boz + >

F sin Bo(h-|z|)/cos Bh - (a-32)
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APPENDIX B: COMPONENTS OF U

The coefficients UR and U; are defined by (5, 6). Approximate values
are obtained from the substitution of the currents (10a,b) and (1lla,b).
They may be expressed as in (21) and (22) in terms of a set of numbers
denoted by ¥(h) since they correspond to integrals evaluated at z = h,

the end of the antenna. The several values are defined below.

h
¥o(h) = Yp(h) + J¥y;(h) = / sin 8_(h-|z'|) K(h,z')dz'
~h
= Ca(h,h) sin Boh - Sa(h,h) cos Boh (B-1)
: h' ( h h'\
1) ] T r ]
?C(h) - WCR(h) + jYCI(h) = ‘[ cos Boz K(h,z')dz' + b j - j. (cos B2
-h' \Zh
- cos Boh) K(h,z')dz'
= c (h',h) + b[ca(h,h) - ca(h',h)] + b[Ea(h,h) - Ea(h',h)] cos B h
(B-2)
h'
¥ (h) = ¥ o (h) + 3¢ . (h) = f L (2') cos B z' K(h,z")dz' + b L (h')
~h!

h h'
j‘— j’ (cos Boz - cos Boh) K(h,z')dz"'

-h ~h' (B-3a)
= Ll(h') Wc(h) (B-3b)
h'
¥, (h) = ¥ (h) + §¥,.(h) = (Boh)_lf B,z' sin Bz’ K(h,z")dz' .  (B-4)
~h' ’
Note that
i
nzy - cos BoRh _ sin BoRh ,
R Ry
where Rh = f(h - z')2 + a2 .
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APPENDIX C: SOLUTION OF EQUATIONS

The four equations (25) to (27) for D', D", E', and E" can be solved
quite simply if E' and E" are first eliminated from (25) and ¢26). Thus,

from (27) and (28)

' B - 'l ' -l -1 | ] f -

E [D 2 +D th + A(sin Boh + 0'275"1WSRWCR cos Boh) s (C la)
"ot I LA -1 -

E D th D 2 0.55A wCR cos Boh . (C-1b)

When these expressions are substituted in (25) and (26) these become

L} L (1) ' (1} - -
D Ql + D ¢1 A ¢3 (C-2a)
] 1 " 1" - (O
D ¢2 + D @2 A 04 ’ (C-2b)
where
- - - ’ _
¢1 WZR(h) WCR(h)n/Z + WhRWCI(h) (WCR + WhR)(wIZ) cos Boh (c-3)
v _ _ _ 2,
¢1 = WZI(h) WCR(h)WhR WCI(h)ﬂ/Z (1 + WCRth 1~ /4) cos Boh
: (c-4)
5
] = . - - -
0y = ¥p(h) - ¥ (W)7/2 - ¥ (W)Y, + (1 + ¥t o - 77/4) cos B h
(Cc-5)
o = - ‘YZR(h) - wCI(h)\th + -\PCR(h)n/Z - (\yCR + th) (n/2) cos B h
(C-6)
¢3 = - WVR(h) + WCR(h) sin Boh + f3 cos Boh (c-7)
¢4 = - WVI(h) + WCI(h) sin Boh + f4 cos Boh R (c-8)
where
£, =~ f_._+ 0.55 W_I[W (h) - (n/2) cos 8 h] + V¥ _ sin 8 h + 0,275« w'lw'l
3 1R CRL'CI o CR o) * SR'CR
[?CR(h) + ¥ cos Boh] (Cc-9)
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-1
fé = - f1I - 0.55 vCR[?CR(h) - WCR cos Boh} + (n[2) sin Boh + 0.,2757n

“’Ellz“féi[\"a(h) + (n/2) cos BohJ . (C-10)

It follows directly that
D' = A A'l[q» o - % qs"] =aal "[— ¥y (h) + ¥. (h) sin B h + f_ cos B h]
372 471 2 VR CR o 3 o

- @1[- WVI(h) + WCI(h) sin Boh + f4 cos Boh]
(Cc-11)

"o -1 | . L . =1} .4 - )
D' = A A [¢4¢1 ¢3¢2] A A {?1[ ¥, (h) + ¥ (h) sin B h + £, cos Boh]

- o3[~ ¥p(h) + ¥ (M) sin B h + £, cos soh}} ,
(C-12)

] " - 12 1
where A= 01 ¢2 01 ¢2 R

and A = = 27 V3/r_ ¥, cos B h. Since when Bh > (2n + 1)(n/2), ¥ (h) »
WCR(h), WVI(h) > WCI(h), it is clear that all terms not multiplied by cos
Boh in the numerators of (C-11) and (C-12) vanish so that the cos Boh in
the denominator of A is cancelled and finite values of D' and D" remain.

With D' and D“ given in (C-11) and (C-12), E' and E" are given by
(C-1la,b). Thus,

! - - f "o wi, -1 v v] -1
E A{1¢302 Qaél]A (n/2) + [¢4¢1 §3¢2JA YR + sin Boh
+ 0,275 Y ¥+ cos B h (c-13)
' SR'CR o

"o "o nl, =1 - v o e - -1
E A{ 049, 04¢i]A ¥ e [5401 ¢3°é]A (n/2) - 0.55 ¥op €OS Boé} .
(C-14)
Since the coefficients ¢3 and'Qa individually reduce to the form f cos Boh

when Boh + (2n + 1)(n/2), it is clear that E" remains finite when cos Boh
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+ 0 since cos Boh ‘in the denominator of A cancels withAcos Boh in the numera-
tor. Exactly the same is true in E' except for the one term, sin Boh.
When cos Boh in the denominator of A is multiplied through this becomes

tan B _h,
° 27 V¢

Hence, E' + {(finite term) + tan Boh} . As pointed out in con-

% le
junction with (32), the sum of the terms A sin Bo(h-|z|) +E' cos B z
yields simply (A sin Boh + E') cos B,z = A cos B h cos B z which remains

finite when B_h + (2n + 1)(%/2).
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