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SUMMARY

Approximate solutions of the differential equations of continuum
isentropic gas dynamics may be obtained for flows in the equatorial
plane of a binary star atmosphere if the analogy between gas dynamics
and shallow water flows is employed to define pertinent experiments in a
rotating water tank. The magnitudes of the local inclination of the
tank's bottom and of the resulting local gravitational force at the
corresponding point in the binary star atmosphere are proportional.

The analogy requires a constant polytropic coefficient of two. This
application of the analogy rests on its extension presented here to
rotating systems with external force fields. A theoretical evaluation
of the analogy, for the case of the earth's atmosphere under hydrostatic
conditions with polytropic coefficient egual to two, yields the correct
result for the maximum height of the atmosphere where density reaches
zero. This study is motivated by an application to the early stages
after a hypothetical fission of the earth and the moon.

+The first author is consultant to DVL and to the Goddard Space Flight
Center of the National Aeronautics and Space Administration.
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LIST OF SYMBOLS

A characteristic constant defined in (26)

B characteristic constant defined in (32)

Ebg specific heat at constant pressure

Fjw surface function defined in connection with (10)

F FROUDE -number

g gravitational acceleration

HW depth of water rotating as a solid body, defined in (13)
ﬁﬁax maxinmum altitude of atmosphere

M mass of celestial body

P pressure

ibo atmospheric pressure at the free surface of water
T distance from center of rotation

FO reference length

Ré gas constant

T time

T absolute temperature

u,v,w velocity components parallel to the coordinate axes
X,¥,z Cartesian coordinates

r universal gravitational constant

e small dimensionless length, defined in connection with (34)
ﬁﬁ disturbance amplitude of water depth

n polytropic exponent of a gas _

XW wave length corresponding to ﬂw

1 mass ratio

) density

¥ nondimensional gravitational potential

¥ gravitational potential

w constant angular velocity

Subscripts

i gas and water 0 reference quantities or quan-
g gas tities taken at the surface
w water of the earth
Q,B first and second celes~ 1 bottom of container of water
tial body, respectively 2 free surface of water
1T free surface of water in case
of rotation of water as a
solid body

A1l dimensional quantities are marked by a bar above the letters.




INTRODUCTION

According to observation, a binary star system may possess a
common atmosphere which envelops both stars. The motion of a particle
in such an atmosphere may be treated by use of the restricted three-body-
problem in celestial mechanics. This approach has been employed in
several publications, e.g., Kopal (1956, 1957) and Mrs. Gould (1957,
1959). (See part E of this paper.) According to Prendergast (1960),
the mean free path in these atmospheres is of the order of magnitude of 1
- 10 km, i.e., this characteristic length is so much smaller than either
the separation of the stars or the radius of one of them that collisions
between particles in the atmosphere have to be taken into account.
Therefore, Prendergast (1960) studied stationary solutions of the dif-
ferential equations for continuum isentropic gas flows in the equatorial
plane of the binary system by neglecting (a) the pressure gradient and
(b) the velocity component normal to the "Lagrangian surfaces'. Sub-
sequently, Huang (1965) employed a stead-state celestial mechanics
approach which neglects the pressure gradient but takes into account
collisions between particles by invoking the statistical properties of
the Jacobian constants of the colliding particles.

The theory presented in this paper was developed because of a
desire to study gaseous motions in the vieinity of earth and moon during
the early stages after a fission of their hypothetical parent body. By
such motions, mass, energy, and angular momentum would be redistributed
and possibly exported from this binary systemn.

The relatively large mean free path quoted above may be assumed
to represent an average value for the entire atmosphere enveloping the
stars revolving around each other. A rigorous hydrodynamic treatment
of the atmosphere including the pressure gradient, therefore, seems
desirable at least for the regions of maximum density within the atmos-
phere. In addition, the observed eruption phenomena in binary systeus,
e.g., Huang (1965), render desirable a non-stationary treatment of the
atmosphere. If these atmospheric moticns always are
symmetrical with respect to the equatorial plane, the differential equa-
tions of motion and energy for three-dimensional isentropic gas flows
reduce regorously to their two-dimensional versions in this plane; in
the continuity equation, however, one term has to be neglected in this
two-dimensional transient approach. Since Prendergast (1960) points out
that the total mass of the atmosphere is concentrated about the equatorial
plane, a study of flows in this plane appears to be relatively unimportant
a restriction of generality which, in addition, governs the preceding
pertinent publications mentioned above. Even in the equatorial plane,
the time-dependent nonlinear system of differential equations with three
independent variables precludes any analytic solutions. Numerical solu-
tions reveal general characteristics only after a very large number of




individual cases have been computed and evaluted. Because of this
situation, the analogy between gas dynamics and shallow water motions
is employed in the following to furnish the theoretical background for
a water-tank-experiment simulating transient flows in the equatorial
plane of the binary star atmosphere.* This requires a discussion of
shallow water flcws (part B) and an extension of the validity of this
analogy to flows in rotating systems which are subjected to external
force fields (part C). A presentation of an analogy such as in this
paper should include some typical and sufficiently general results.
Unfortunately, means are not available to the authors to carry out
these experiments for the time being. Since this situation will not
change in the foreseeable future, it was decided to publish the paper
now. As a restricted test of validity and accuracy of the method
presented here, the hydrostatic density distribution in the earth's
atmosphere is obtained as a special application in part D.

SHALLOW WATER FLOWS - PART B

A container, schematically shown in Figure 1 is filled to a
certain height with water. At time tw = 0, this water tank is rotating
about the z -axis with constant angular velocity w . The acceleration
of gravity g _1is assumed to act in the negative z_-direction. A cylin-
der with radils ¥ is mounted at the bottom of thé container; its axis
coincides with the@"Z -axis. Along the wetted surfaces of the cylinder
and/or the bottom, sources or sinks may add water to the system or
drain it off according to some law, which may vary locally and/or in
time. Thus the total amount of water in the contained need not neces-
sarily be constant. The shape of the bottom will be treated later on.

The subscripts w and g denote the water and the gas, respectively;
the subscript i stands for both w and g. Dimensional properties are
marked by an upper bar. The angular velocities wm,, the lengths T,i? and
the densities p . will be used as constant referefice quantities. Non-
dimensional Car%ésian coordinates x,,y.,z,, velocities u,,v,,w,, times t.,
pressures p, and densities p; are iftroduced by relations such as the *
following:

: 5, o 5& .
(1)
S = 5 (F
o, = %:; with § =9 __ = const. and Pog = pg(rog)

*For general information about this analogy, e.g., Courant/Friedrichs
(1948) and Wehausen/ILaitone (1960) are recommended.
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= b3 s 2 = —
Fi ", 0 /gi = const., (2)

a FROUDE number F . is introduced as the ratio of the centrifugal accelera-
tion roi u')i at thcle distance r i from the axis fo rotation to the gravita-
tional acc€leration g.. The symbol D/Dt denotes the substantial deriva-
tive with respect to time t . Accordingto Lamb (1932, p.4 and p.318), the
equations of motion of the water flow read as follows in a system rotating
at constant angular velocity 'J)W

Du dp Dvw op
b, T TN T U BE, TN T T E, (2)
and
D_vi‘_V':_a_p'V_’__l_ (4)
Dty oz, Fy

Here (4) was obtained from

DV %,
p.w. D.t: = = BE - pw gw b (5)
\ \

using relations (1). The left hand sides of (3) - (5) express the mass-
fixed accelerations in a system at rest provided the quantities of the
rotating system are used. According to Goldstein (1960, p. 12), the
equation of continuity is independent of the chosen coordinate system,
since 1t simply states the constancy of a scalar quantity. It thus reads




W W
3% + 3 t 55 o . (6)
W
For w - O, the basic simplifying assumptions of the shallow

water theory &re, see e.g., Wehausen and lLaitone (1960, p. 667):

(I) dirrespective of flows in the water, the pressure distribu-
tion in a vertical column of water is the same as in hydro-
statics and

(II) the horizontal velocity components u_ and v_ are independent
of z_, (considering the no-slip cond¥tion a¥ the bottom,
this assumption can be satisfied only approximately and
for short times.)

In addition to assuming the validity of (I) and (II) for w + 0,
here also the following assumption has to be made:

(III) the hydrostatic pressure distribution holds true even in
the presence of motions relative to the rotating frame of
reference.

If the fluid rotates as a solid body, its free surface (subscript II)
is given by

-

= _ = 2-2/pF ith T2 T2, =2
zII(rW) = const. + T @ /2gW with £2 =X %+ 7 = . (7

Should any flows relative to the rotating frame of reference ("distur-
bances’) be superimposed to this solid body rotation, the free surface is
given by

2y = 2, (Kp¥¥) = T (uyty) + 20 (K00,



If the vertical accelerations wa/Dt caused by these disturbances are
negligible due to a sufficiently small water depth, then (5) is satis-
fied by the hydrostatic distribution specified in assumption (III) above,

w o pw Sy [ZII(XW’yw) + T\w(xw"yw’tw) - ZWJ + poo’ (8)

where 50 is the atmospheric pressure acting upon the free surface.
Eq. (8)°Bas been derived in Iamb (1932, p. 318) for rotating shallow
water flows. A nondimensional form of (8) is given by

pw=pm)+[wmq-zm)+(zm-gQ]/?;- (9)
The functions Flw =z, - zlw(xw,yw) = 0 and sz =z - zzw(xw,yw,tw)

= O represent the wetted bottom and the free water surface, respectively,
see Figure 1. Therefore,

DFjw/DtW =0 j=1,2 |, (10)

according to Lanmb (1932, p. 7), since these surfaces are always composed
of the same fluid particles and thus

az,w az_w Bz,w
Yiw = 3t Yy 3%, TV oy, ’ J=1L 2. (11)




Because of assumption (II) and eg. (11), integration of the continuity

equation (6) with respect to z, in the limits ziy and zgy gives

N zzy - ziw) o i} ] 3 [ - ] -
ot " (Zzw ZlW)uW * ayw _(Zzw 1w) Wy 0
For ®&_= 0, equations (3) and (12) represent the shallow water

theory which is a first order approximation by expanding in powers of a
parameter € , defined as the ratio of the squares of the characteristic

horizontal and vertical scales of length, Wehausen and laitone (1960,__
p. 466 and 667). Subsequently, the wave length kw and the amplitude
the disturbance are employed for these scales. Accordlng to laitone

(1962), a second order approximation yields in case of X - 00 and.ﬁ%

3% M 0, kil
gioc‘ﬁwgw[l-gé—-} ]andﬁm@; <H%>2

Correspondingly, Laitone (1962) shows for Kw - 0 and Ew =0

—

apw i <%ﬂ E%‘\? ﬁ%
e L () ] ewe
w W w

oT nH 57

N BT (2

oz woWw o O\ A / 1
W W W

(12)
of
=0
(13)
(14)




Relations (13) and (14) show for Ew = 0 that the following quantities 1v ‘
have to be sufficiently small in order to allow an inviscid water flow
to be approximated by the shallow water theory:

(a) the hydrostatic depth Hw(xw’yw) =z - Zoy of the water,
(b) the ratio 'ﬂw/Hw of the disturbance amplitude ﬂw to Hw’ and

(¢c) the ratio of Hw/xw
It is assumed here that conditions (a), (b), and (c) also govern the

validity of the shallow water theory in the rotating water tank provided
both & and |grad z (X ,¥ )| are sufficiently small.
W 1y W W

THE ANALOGY BETWEEN SHALLOW WATER AND GAS FLOWS - PART C

By assuming z_ = 0, a two-dimensional transient gas flow
(subscript g) w1llgbe r%lated to the three-dimensional transient shallow
water flow (subscript w) treated in part B. By use of H_ (1) as defined
in (13) and taken at station xW + yw2 1, the follow1ng functional
relationships now are introduced between the water flow and gas flows:

X, =X Y, =¥, u =uj to=t; (15)
p_ = [zzw(xw,yw,tw) - zlwkxw,yw)] / B (1), (16)

and

2
b, = [ZZW( Y.t ) - le(xw:yw)1 /Efw Hw(l) =

= T’” ) (17)
2 W




The scales of length and time of the two flows under consideration are

connected by the quotients fow/f and EW/E =W /EW = const., respectively.
Since the isentropic flow of a cﬁ%mically h%moge%eous gas 1s considered
here, there exists a functional relation p_ = p (p ) between pressure and

density. The special polytropic relation < ©p "M with u = 2, which
follows immediately from (16) and (17), can®only 8pproximately hold true,
since the kinetic theory of gases shows that 1 < u < 1.67.

Substitution of (15) - (17) into (3) and (12) yields by use of (9)

Du .} d(z )
p [__g. - 2v - X ] - - _I.)g. -p LW_/_?—W— ( 18 )
g LDt g g ox g 3x ?

g g g

Dv - d d(z )
p [—-5-+ 2u -y, |=- -3 p —E—iﬂsz;— (19)
g Dtg g g Byg g oY, ’

and

op

- -1 -1 _

atg + axg (pg ug) + ayg (pg vg) 0. (20)

The gas flow defined by (15) - (17) is two-dimensional, since the third
coordinate z_ of the corresponding three-dimensional water flow is needed
to describe the density pg of the gas. Because of

v
‘az_w¥0:

3]

it does not follow from (6) and (20) that Py is constant even though this
seems to be suggested by relations (1) and ®(15). By the argument

9




following equation (5), the left-hand-sides of (18) and (19) are the
mass-fixed accelerations in the rotating system of reference, and (20)
is the two-dimensional equation of continuity of a compressible medium
in this system. The last terms in the right hand sides of both (18)
and (19) may be interpreted as due to a conservative body force, which
can be derived from a potential z (x , v )/F.. Thus (18) - (20)

are the equations of motion and cdHtifuit§ (in"the continuum regime)
of two-dimensional gas flows subjected to conservative body forces in
a system rotating at a constant angular velocity.

The first law of thermodynamics yields for any mass element of the
supposedly isentropic gas flow the relation T dT = ap /3 between
the specific heat ¢ at constant pressure, tRE ab%olutegte%perature T',
the pressure D _, an €the density P of the gas. Therefore, the energy
following (5) g

Py Cog ﬁz = D"Eg . (21)

Eq. (21) is satisfied by any two-dimensional transient flow provided a
thermally perfect gas and the polytropic relation P« P " with u = const.
are specified. Thus the relation between water andggas flows as given

by (15) - (17) is a complete analogy within the limitations of the assump-
tions mentioned at various placed above.

The generalization of the analogy developed above consists of ad-
mitting (a) conservative body forced which determine the bottom shape
Zy = %oy (x_, y_) of the water tank and (b) rotating systems. Variable
bottom conflguretions have been used in many applications of the analogy
to problems without body forces in order to admit arbitrary constant
values of u. During the years 1952 to 1962, this issue initiated a dis-
cussion in which body forces were not mentioned at all. In agreement
with the derivation presented above, Laitone (1952, 1953, 1961, 1962)
and Wehausen and Laitone (1960) pointed out the necessity of zlw(xw, yw)
= const. in case of problems without body forces which were considered
solely by them, Loh (1959, 1962) and Bryant (1960, 1962) remarked that
z (x, y) * const. is admissible in view of the other approximations

1w
involved 1n the analogy, such as constant values of y.

The conditions for the validity of the shallow-water theory mentioned

at the end of section B also apply to the analogy. Experiments by Laitone
(1952) confirmed that the analogy yields satisfactory agreement between
gas dynamics and water flows as long as for tap water with usual surface

10




tensioq_the water depth is smaller than one quarter inch and the wave
length A of the disturbances exceeds 3 inches, see also Laitone (1953,
1961, 1962). Under consideration of the surface tension of water, Gupta's
analysis (1965) yields about the same limits for the validity of the
analogy carried out in water tanks.

For sufficiently small values of W,, the wave systems caused by the
tank's rotation (e.g., Iamb (1932)) presumably are negligible as compared
to the wave systems which have been discussed above for w_ = 0. Since,
in addition, a transient boundary layer growth at the tanﬁ bottom is due to
the waves disturbing the solid-body rotation of the water, the relation
T ® =7t & following from (1) and (15) prohibits atmospheric motions
t% bé studied in the water tank beyond sufficiently short time intervals
T after the beginning of the sald waves. The required small values of

demand a sufficiently small meximum inclination of the tank bottom.
is may necessitate the addition of a detergent to the water because of
the surface tensionm.

APPLICATION TO AN ASTROPHYSICAL AND TO A GEOPHYSICAL PROBLEM - PART D

The right-hand sides of (18) and (19) were interpreted as representing
body forces, which result from a potential zlw(x , ¥ )/3r . The gravi-
tational potential of spherically symmetric celeBtia® bodles now will be
employed to demonstrate the analogy. Figure 2 shows a "binary" system
of two celestial bodies rotating about their common center of gravity S
at the constant angular velocity ®_ . The masses of the bodies are M and
M§, T and ¥, denote the distance Bf any point Q(%,¥,Z) from the cenfers
of th& two mgqges, respectively. The gravitational potential in the
space outside MOL and Mé then is given by

T
. SRS 4 (22)

T ¥
a B8

=i
=l

where I is the universal gravitational constant. In the following, the
contribution of the atmospheric matter to the gravitational potentials
will be neglected. The mass ratio u = ﬁ'/ﬁ' is introduced and the radius
of any one of the two celestial bodies i% ufed as a constant reference

length T__, i.e., ?&/Eg and T =T /?O . Since ¥ has the units (cm® sec 2)
the expre%sion ?6 2 © = congt. E% eﬁiloyed to obtain nondimensional
potential & &

11




‘¥=§Ta[i—+%-s-], (23)

where the Froude-number

i: 362

3" - o8 8
THM
a a

is the ratio of centrifugal to gravitational forces at the surface of
the celestial body M_. 1In applications of the analogy,.ﬁr'z jF'. The
components of the grgdient of this potential now will be @quate% to the
last terms in equations (18) and (19) to obtain an expression for the
bottom shape in the water tank

z
- grad 3%¥- = grad ¥ . (24)

With z,6 as a constant of integration, it is found that

Fvor
0w T F [g*‘g] ' (25)

The analogy as expressed by (15) - (17) enables one to study two-
dimensional atmospheric motions subjected to a gravitational field ¥(X ,¥ ,Z )
by experimental simulation in a water tank with the bottom z =z (X %y §. =
These atmospheric flows are restricted to the equatorial plane 2z 1% 0w v
where the complete differential equations of motion and energy thke on
the special two-dimensional forms (18) - (19) and (21), respectively,
provided the motion is isentropic and symmetrical with respect to the
plane z = 0. Due to this symmetry, the derivatives with respect to z_of
U,V ,pg,p , and T wvanish identically as functions of x ,y and t
ift the Plafle z = 0. Since dw /dz $0 for z_ =0, the®thPee-dimEnsional
equation of cofitinuity retains Ehis®term aw /a%g which is absent in (20).

If g

(Ewg/BZg)IZg -0

12




| is known as a function of x ,y and t by use of some information outside

! of the analogy under discus%io%, this®term can be represented by a suit-

‘ able distribution of sources and sinks in the bottom z = z (x my ) of
the water tank. The equations of contimuity (6) and (80) tﬁgn pgssess
corresponding additional source terms.

Since an experimental verification and test of the accuracy of the
analogy can not be carried out by the authors for the time being, a
theoretical check is desirable. ©Such a test of accuracy is provided by the
application of the analogy to the earth's atmosphere under conditions of
a known density distribution, i.e., in case of the hydrostatic atmosphere.
In this case, the above equations simplify somewhat since , = O and
r Mg/rogz =8, where g, is the gravitational acceleration at the surface

of the earth. Then the quotient W/ . reduces to

I
= - = A, (26)

i.e., the ratio of the centrifugal forces in the container to those at
the earth's equator. By realizing that ra = rg =T because of (15) and

by taking z _ =0 at r_ =1, equation (25) yields
1

1
=A (1 -=—
2w AT (27)
w
The atmosphere enveloping the earth is assumed to rotate as a solid body,
such that in the analogy ZzW = 211y and ﬂw = 0. From (7) it is thus found
= v 2
Zpy = comst. + —— T S . (28)

13




Because of (16) and (17),

g 1
(29) = = (z -z, ).
Pg %}w ITw 1w
The equation of state for a thermally perfect gas, p = R T , requires

at the surface of the earth (subscript o) o ce B ©8

s R T
(30) ‘og _ _g og 1 .

p - -

og g, Tog %,

Because of 52 = 5; and z, =0 at r =1, the expressions (29) and (30) yield

(31) zIle =24aB
r =1
W
with -
R T
(32) B =828,
€ rog

From (27), (28), and (31) finally

(33) Zrp, © %y C A [213 + 2§ (rw2~1) - (1 - -l—)]

is obtained to express the nondimensional density distribution in the earth's
atmosphere under hydrostatic conditions and for u = 2. From left to right,
the terms in the bracket of (33) represent the contributions of the earth's
surface temperature, of the centrifugal force due to the assumed rigid-body-
rotation, and of the gravitational force.

Because of the small ratio of the maximum extension of the atmosphere
to the earth's radius, it is reasonable to write rg =r, = 1 + ¢, where second

2
and higher powers of e¢ are to be neglected. By realizing that l/(l+e)=l-€+€---,
the following relation is obtained to replace (33):

> o

(34) 271y - 2,4y = A [2B - (1 -:-Tf-sé) ¢].

1k




Because of (17), the pressure variation in the earth's atmosphere
according to the analogy is

B A g TRy, (35)

where the effect of the centrifugal force is negligible even at the
earth's equator since 2 = 3.32 x 10 >. Because of B = 1.27 x 10 °

for a surface temperature<ig = 293 (O K), the analogy predicts that
the atmospheric pressure ié Svanishes at a maximum altitude as given
by

It will now be shown that this result for Hmax agrees with the
one of the well-known hydrostatic polytropic atmosphere with u = 2,
where is defined by (a) neglecting rotation, i.e., F = 0 and (b)
by assuming a constant acceleration of gravity. UndBr these condi-
tions Prandtl/Tietjens (p. 33) show that

D - "
A S S (56)
Pog w ho
where in the notation of this paper
h-r -7 and h =Br .
rg Og o] og (57)

15




Because of € = h/rog, Eq. (26) yields in case of yx = 2 the relationship

which is identical to Eq. (35) for ;T = 0. It should be recalled
here that the polytropic hydrostatic gatmospheres defined by condi-
tions (a) and (b) mentioned above possess a finite maximum altitude
ﬁﬁax’ with the exception of y = 1.

OBSERVATIONS AND GENERAL CONSIDERATIONS WITH RESPECT TO THE ATMOSPHERE
OF BINARY STARS - PART E

Prominance activity in the sun is a well known phenomenon.
Observation of binary stars suggests that the prominence activity
of the secondary component is stronger on the hemisphere facing the
primary star. Appropriate initial velocity vectors of these promin-
ences could result in a gaseous stream toward the primary or escape
from the binary system, Sahade (1960).

(38)

Within the context of the restricted three-body-problem of celestial

mechanics, several authors have studied trajectories of ejected
particles in the equatorial plane. For a particle moving in this
plance, the Jacobi integral shows the existence of curves of zero
veloclty in a frame rotating with the binary system. These closed
curves are the "Roche equipotentials" on which the geopotential is
constant, i.e., the sum of the gravitational potentials of the com-
ponent stars and the potential of the centrifugal force due to the
rotation of the system. These Roche equipotentials define admissible
cross sections of each component star in the equatorial plane. The
equipotential enclosing the largest area in this plane and only one
component star is called the Roche limit. For a particle having a
given value of the Jacobi integral, the corresponding Roche equipoten-
tial represents a barrier which the particle, of moving inside its
folds, can never penetrate. The trajectories of particles ejected
from a component star completely filling its Roche limit take place
in an area of the equatorial plane whose Roche equipotential boundary
«nvelopes both component stars. For this case, trajectories of
particles have been computed by numerical integrations of the equa-
tions of motion of the restricted three-body-problem, Kopal (1959).
The results could be summarized as follows: (1) particles fall upon
the companion star, (2) particles fall back upon the parent star,

and (3) particles escape from the system if they possess sufficiently

16




high initial velocities, generally of the order of several hundred
kilometers per second.

According to Sahade (1960), velocities of TOO km/sec have been
observed in the binary system V 444 Cygni. Because of the smaller
masses, considerably smaller velocities would be needed for the escape
from the earth-moon system after fission of its hypothetical parent

body.

These results of celestial mechanics referred to above do not
account for interactions between particles. Struve (1957), therefore,
has pointed out that it would be important to consider the problem
at hand also from a hydrodynamical point of view and to allow for
the effect of radiation pressure and magnetic forces. The theory
presented in Parts B, D, and D of this paper furnishes a background
for a water-tank experiment which attempts to simulate gaseous
streams in the equatorial plane of a binary star system by accounting
for gravitational, inertial, and hydrodynamic pressure forces. These
results would pertain to the continuum flow regime which is separated
from motions due to applications of celestial mechanics by the rarefied
flow region. The transient water-tank experiment, therefore, would
furnish a necessary supplement to published results from (a) applica-
tions of celestial mechanics, Kopal (1959) and (b) stationary continuum
flow theory under rather restrictive assumptions (see part A),
Prendergast (1960).

COMMENTS WITH RESPECT TO THE EXPERIMENTAL SIMULATION OF THE FLOW IN
THE BEQUATORTAL PIANE OF THE BINARY STAR SYSTEM - PART F

In the water tank, the primary and the secondary stars are
represented by cylinders mounted parallel to the table's z-axis of
rotation, see Fig. 3. ©Since the primary star by definition possesses
the larger mass, the bottom of the tank reaches its smallest z-coor-
dinate at its intersection with the "primary" cylinder. If the sur-
faces of the cylinders are sufficiently smooth, the motion of the
water is very little affected by rotations of the cylinders about
their own aces of symmetry. Therefore, the wetted portions of these
surfaces may have to be roughened artificially if this eigen-rotation
of the cylinders is to influence appreciably the water flow. Even
though the gravitational fields extend tc infinity in the equatorial
plane, it is sufficient to place a board parallel to the axis of
rotation of the system on the bottom of this tank, provided the board
is located beyond the "synchronous satellite orbit" of the system.

A water sink may be placed at the intersection of the board and the
bottom.

Under hydrostatic conditions, the water depth at the circum-
ference of one of these cylinders may be prescribed arbitrarily.
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Because of (32) and (33), this depth is proportional to the tempera-
ture of the atmosphere at the surface of the corresponding component
star. This temperature should be sufficiently small to ensure the
gaseous state of the atmosphere since (16), (17), and the equation of
state of a thermally perfect gas show that the temperature of the
atmosphere 1is proportional to its density in the analogy being em-
ployed here. The tank's bottom between the cylinders does not have

to be covered by water continuously in time. As far as mass transfer
from the secondary to the primary star is concerned, it is sufficient
to have intermittently water jets emanate from the "secondary" cylinder.
The mass flow from the secondary to the primary cylinder can be visualized
by adding dye to the water pouring out of the secondary cylinder.

CONCLUDING REMARKS - PART G

The objective of conducting a water-tank-experiment should be a
gualitative simulation of transient astrophysical effects such as
the ones mentioned in Part E of this paper. The following details
militate against quantitative validity of the results:

(1) the assumption of a constant polytropic coefficient (of 2)
which is essential to the analogy in every possible version:

(2) the assumption of isentropic gas flow;

(3) the treatment of flows in the equatorial plane without regard
for the interaction with the general three-dimensional flow field
outside of this plane; this shortcoming manifests itself in
neglecting the term aw/az in the three-dimensional continuity
equation;

(4) the omission of radiation pressure, turbulence, viscous friction,
heat conduction, and other real gas effects;

(5) experimental difficulties, e.g, such as the ones discussed
at the ends of part B and part C.

Even though this seems to be a formidable accumulation of shortcomings
of the method presented in this paper, the approach may be expected
to yield more reliable and realistic results in sufficiently dense
atmospheres than the theoretical methods employed by other authors,
see Sectlon A.
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Pigure 3: Schematic coangurntion of water tank
suggested to study the atmosphere around

the celestisl bodies shown in figure 2.




