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SiiMMAFiY 

Approximate solutions of the d i f f e r e n t i a l  equations of  continuum 
isentropic  gas dynamics may be obtained f o r  flows i n  the equator ia l  
plane of a binary s t a r  atmosphere i f  the  analogy between gas dynamics 
and shallow water flows i s  employed t o  define per t inent  experiments i n  a 
ro ta t ing  water tank. The magnitudes of the  l o c a l  inc l ina t ion  of the  
t ank ' s  bottom and of the resu l t ing  l o c a l  grav i ta t iona l  force a t  the 
corresponding point i n  the binary star atmosphere a re  proportional. 
The analogy requires a constant polytropic coef f ic ien t  of two. This 
appl icat ion of the  analogy r e s t s  on i t s  extension presented here t o  
ro ta t ing  systems with external  force f i e l d s .  A t heo re t i ca l  evaluation 
of the analogy, f o r  the case of the e a r t h ' s  atmosphere under hydrostat ic  
conditions with polytropic coeff ic ient  equal t o  two, y ie lds  the  correct  
r e s u l t  f o r  the  maximum height of the atmosphere where density reaches 
zero. 
a f t e r  a hypothetical  f i s s i o n  of the ear th  and the  moon. 

This study i s  motivated by an appl icat ion t o  the ea r ly  stages 

?The f i r s t  author i s  consultant t o  DVL and t o  the  Goddard Space F l ight  
Center of the National Aeronautics and Space Administration. 
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I '  

LIST OF SYMBOLS 

characteristic constant defined in (26) 
characteristic constant defined in (32) 
specific heat at constant pressure 
surface function defined in connection with (10) 

FROUDE -number 
gravitational acceleration 
depth of water rotating as a solid body, defined in (13) 

maximum altitude of atmosphere 

mass of celestial body 
pressure 
atmospheric pressure at the free surface of water 

distance from center of rotation 
reference length 

gas constant 

time 
ab solute temperature 
velocity components parallel to the coordinate axes 
Cartesian coordinates 
universal gravitational constant 
small dimensionless length, defined in connection with (34) 
disturbance amplitude of water depth 
polytropic exponent of a gas - 
wave length corresponding to 
mass ratio 
density 
nondimensional gravitational potential 
gravitational potential 
constant angular velocity 

z 

Sub s cr i pt s 

i gas and water 0 reference quantities or quan- 
g gas tities taken at the surface 
W water of the earth 
a,  e first and second celes- 1 bottom of container of water 

tial body, respectively 2 free surface of water 
I1 free surface of water in case 

of rotation of water as a 
solid body 

All dimensional quantities are marked by a bar above the letters. 
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INTRODUCTION 

According t o  observation, a binary star system may possess a 
common atmosphere which envelops both s t a r s .  
i n  such an atmosphere may be t r ea t ed  by use of the  r e s t r i c t e d  three-body- 
problem i n  c e l e s t i a l  mechanics. 
several  publications, e .g. ,  Kopal (1956, 1957) and Mrs. Gould (1957, 
1959). 
the  mean f ree  path i n  these atmospheres i s  of the order of magnitude of 1 
- 10 km, i . e . ,  t h i s  cha rac t e r i s t i c  length i s  so  much smaller thac e i t h e r  
the  separation of the stars or the  radius of one of them t h a t  co l l i s ions  
between pa r t i c l e s  i n  the  atmosphere have t o  be taken in to  account. 
Therefore, Prendergast (1960) studied s ta t ionary solutions of the  d i f  - 
f e r e n t i a l  equations f o r  continuum isentropic  gas flows i n  the equator ia l  
plane of the binary system by neglecting (a )  the pressure gradient and 
( b )  the veloci ty  component normal t o  the "Lagrangian surfaces". 
sequently, Huang (1965 ) employed a s tead-state  c e l e s t i a l  mechanics 
approach which neglects the pressure gradient but  takes in to  account 
co l l i s ions  between pa r t i c l e s  by invoking the s t a t i s t i c a l  propert ies  of 
the Jacobian constants of the  col l iding p a r t i c l e s .  

The motion of a p a r t i c l e  

This approach has been employed i n  

(See par t  E of  t h i s  paper. ) According t o  Prendergast (1960), 

Sub- 

The theory presented i n  t h i s  paper w a s  developed because of a 
desire  t o  study gaseous motions i n  the  v i c i n i t y  of ear th  and moon during 
the  ear ly  stages a f t e r  a f i s s i o n  of t h e i r  hypothetical  parent body. By 
such notions, mass, energy, and angular momentum would be red is t r ibu ted  
and possibly exported from t h i s  binary system. 

The r e l a t ive ly  large mean f r ee  path quoted above may be assumed 
t o  represent an average value f o r  the  e n t i r e  atmosphere enveloping the 
stars revolving around each other .  A rigorous hydrodynamic treatment 
of the atmosphere including the pressure gradient,  therefore,  seems 
desirable at least f o r  the regions of m a x i m u m  density within the  atmos- 
phere. I n  addition, the  observed eruption phenomena i n  binary systems, 
e . g . ,  Huang (1965), render desirable  a non-stationary treatment of the 
atmosphere. If these atmospheric motions always a re  
symmetrical with respect t o  the equator ia l  plane, the  d i f f e r e n t i a l  equa- 
t ions  of motion and energy f o r  three-dimensional i sen t ropic  gas flows 
reduce regorously t o  t h e i r  two-dimensional versions i n  t h i s  plane; i n  
the  continuity equation, however, one term has t o  be neglected i n  t h i s  
two-dimensional t rans ien t  approach. 
t h a t  the t o t a l  mass of the atmosphere i s  concentrated about the equator ia l  
plane, a study of flows i n  t h i s  plane appears t o  be r e l a t i v e l y  unimportant 
a r e s t r i c t i o n  of genera l i ty  which, i n  addition, governs the  preceding 
per t inent  publications mentioned above. Even i n  the  equator ia l  plane, 
the  time-dependent nonlinear system of d i f f e r e n t i a l  equations with three  
independent var iables  precludes any ana ly t ic  solut ions.  Numerical s o h -  
t i ons  reveal general cha rac t e r i s t i c s  only a f t e r  a very la rge  number of 

Since Prendergast (1960) points  out 
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individual cases have been computed and evaluted. Because of t h i s  
s i tua t ion ,  the  analogy between gas dynamics and shallow water motions 
i s  employed i n  the  following t o  furnish the  theo re t i ca l  background fo r  
a water-tank-experiment simulating t rans ien t  flows i n  the equator ia l  
plane of the  binary star atmosphere.* This requires a discussion of 
shallow water flcws (pa r t  B )  and an extension of the  v a l i d i t y  of t h i s  
analogy t o  flows i n  ro ta t ing  systems which are  subjected t o  external  
force f i e l d s  (pa r t  C ) .  A presentation of an analogy such as i n  t h i s  
paper should include some typ ica l  and su f f i c i en t ly  general  r e su l t s .  
Unfortunately, means a re  not available t o  the  authors t o  carry out 
these experiments f o r  the time being. 
change i n  the  foreseeable future ,  it was decided t o  publish the  paper 
now. 
presented here, the hydrostat ic  density d is t r ibu t ion  i n  the  e a r t h ’ s  
atmosphere i s  obtained as a special  application i n  pa r t  D .  

Since t h i s  s i t ua t ion  w i l l  not 

A s  a r e s t r i c t e d  tes t  of va l id i ty  and accuracy of the method 

SHALLOW WATER FLOWS - PART B 

A container, schematically shown i n  Figure 1 i s  f i l l e d  t o  a 
ce r t a in  heLght with water. 
about the  zwzaxis with constant angular veloci ty  %. 
of grav i ty  g i s  assumed t o  a c t  i n  the negative z -direction. A cyl in-  
der with radius r i s  mounted a t  the bottom of the  container; i t s  ax i s  

. Along the wetted surfaces of the cylinder coincides with the %-axis 
and/or the bottom, sources o r  sinks may add water t o  the system o r  
drain it off according t o  some l a w ,  which may vary loca l ly  and/or i n  
time. Thus the t o t a l  amount of water i n  the contained need not neces- 
sarily be constant. The shape of  the bottom w i l l  be t rea ted  later on. 

A t  time tw = 0, t h i s  water - tank i s  ro ta t ing  
The accelerat ion 

w -  W 

ow- 

The subscr ipts  w and g denote the water and the  gas, respectively; 
the  subscr ipt  i stands f o r  both w and g.  
marked by an upper bar .  The angular ve loc i t i e s  m. 
t he  dens i t ies  w i l l  be used as constant reference quant i t ies .  kon- 
dimensional cargdsian coordinates xi,yi, zi, ve loc i t i e s  u .  1 ,v.  1 ,w i’ times t i’ 
pressures pi and dens i t ies  pi  a re  introduced by re la t ions  such as %he 
following : 

Dimensional propert ies  a re  
the lengths ro., and 

1’ 

- - -  
with = FOw = const. and is = p ( r  ) . P i  - -  .- 

P i  poi w og g og 

*For general  information about t h i s  analogy, e .g . , Courant/Friedrichs 
(1948) and Wehausen/Iaitone (1960) a re  recommended. 
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- 2 -  - 3fi = roi mi /gi = const. ,  

a FROUDE-number ri is introduced as the  r a t i o  of the centr i fugal  accelera- 
t i o n  FOi Gi2 a t  the distance Foi from the ax is  f o  ro ta t ion  t o  the grav i ta -  
t i ona l  acceleration g'. . 
t i v e  with respect t o  time t . AccordingWto Lamb (1932, p.4 and p.318), the 
equations of motion of the  water flow read as follows i n  a system ro ta t ing  
a t  constant angular ve loc i ty  iEw : 

The symbol D / D t  denotes the  subs tan t ia l  deriva- 

W 

aPW 

ayW 
- - -  W 

Dv - -  
yw - 

apW 
W W axw J D t w  W 

+ 2u - 2v - x  = - -  - DUW 

DtW 
? 

and 

Here ( 4 )  w a s  obtained from 

( 3 )  

using relat ions (1). The l e f t  hand s ides  of ( 3 )  - ( 3 )  express the  mass- 
f ixed  accelerations i n  a system at  rest provided the  quan t i t i e s  of the  
ro ta t ing  system are  used. 
equation of continuity i s  independent of the chosen coordinate system, 
since it simply s t a t e s  the  constancy of a sca l a r  quantity.  

According t o  Goldstein (1960, p. E) ,  the  

It thus reads 
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du av aww 

axw 3YW azw 

W W + -  + - = o .  - 

For wW -- 0, the  bas ic  simplifying assumptions of the  shallow 
water theory are,  see e .g . ,  Wehausen and Iai tone (1960, p. 667): 

(I)  i r respec t ive  of flows i n  the  water, the pressure d is t r ibu-  
t i o n  i n  a v e r t i c a l  column of water i s  the  same as i n  hydro- 
s t a t i c s  and 

(11) the horizontal  ve loc i ty  components u and v are  independent 
of z (considering the  no-slip condytion ax the bottom, 
t h i s  assumption can be s a t i s f i e d  only approximately and 
f o r  short  times.) 

WJ 

I n  addition t o  assuming the va l id i ty  of (I)  and (11) for ww 0, 
here a l s o  the following assumption has t o  be made: 

(111) the hydrostat ic  pressure d i s t r ibu t ion  holds t rue  even i n  
the presence of motions r e l a t ive  t o  the  ro ta t ing  frame of 
reference. 

I f  the  f l u i d  ro ta tes  as a so l id  body, i t s  f r e e  surface (subscr ipt  11) 
i s  given by 

- 2- 2/2gw with '.' = 3; + yw2 . 
+ rw UtT W W z (F ) = const. I1 w 

Should any flows r e l a t ive  t o  the rotat ing frame of reference ("d is tur -  
bances") be superimposed t o  t h i s  so l id  body rotat ion,  the  f r ee  surface i s  
given by 

(7)  
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If the  v e r t i c a l  accelerat ions Dww/Dt caused by these disturbances a re  
negl igible  due t o  a su f f i c i en t ly  smah water depth, then ( 3 )  i s  satis-  
f i e d  by the hydrostat ic  d i s t r ibu t ion  specif ied i n  assumption (111) above, 

where go 
Eq.  (8) gas been derived i n  Lamb (1932, p. 318) f o r  ro ta t ing  shallow 
water flows. A nondimensional form of (8) i s  given by 

i s  the  atmospheric pressure act ing upon the f r ee  surface.  

The functions F = z - z (xw,yw) = 0 and F = z - z 1w w 1w 2 w w  
-= 0 represent the wetted bottom and the free water surface, respectively,  
see Figure 1. Therefore, 

DFjw/Dtw = 0 j = 1 , 2  , 

according t o  Lamb (1932, p. 7 ) ,  since these surfaces a re  always composed 
of the same f l u i d  pa r t i c l e s  and thus 

6 



! 

i .  

Because of  assumption (11) and eq. (ll), in tegra t ion  of the continuity 
equation (6)  with respect t o  zw i n  the l i m i t s  z lW and zm gives 

For Gw = 0, equations ( 3 )  and (12) represent the shallow water 
theory which i s  a f i r s t  order approximation by expanding i n  powers of a 
parameter f , defined as the  r a t i o  of the squares of  the charac te r i s t ic  
horizontal  and v e r t i c a l  scales  of length, Wehausen and Laitone (1960,- 
p. 466 and 667). 
the disturbance a re  employed f o r  these sca les .  
(1962), a second order approximation y ie lds  i n  case of xw + 00 and Z = 0 

Subsequently, the wave length xw and the  amplitude \ of 
According t o  Laitone 

W 

- - 
where w = zII - ZlW 

* 

- 
Correspondingly, Laitone (1962) shows f o r  Xw 4 0 and = 0 

W 
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Relations (13) and (14) show f o r  = 0 t h a t  the following quant i t ies  
have t o  be suf f ic ien t ly  small i n  order t o  allow an inv isc id  water flow 
t o  be approximated by the shallow water theory: 

W 

L - 
( a )  the hydrostatic depth (zw,yw) = z - z of the  water, 

( b )  

( e )  

W I1 1w 
4 

the  r a t i o  %/Ew of the  disturbance amplitude 

the r a t i o  of gw/xw . 
t o  Hw, and 

It i s  assumed here t h a t  conditions ( a ) ,  ( b ) ,  and ( e )  also govern the 
v a l i d i t y  of the shallow water theory i n  the  ro ta t ing  water tank provided 
both w" and \grad z ( ~ w , ~ w ) l  are  su f f i c i en t ly  small. 

W 1 W  

THE ANALOGY BETWEEN SHALLOW WATER AND GAS FLOWS - PART C 

By assuming z = w = 0, a two-dimensi.ona1 t rans ien t  gas flow 
( subscript  g ) will&oe rg la ted  t o  the three-dimensional t rans ien t  shallow 
water f low (subscr ipt  w )  t rea ted  i n  par t  B .  
i n  (13) and taken a t  s t a t ion  xw2 + yw2 = 1, the following funct ional  
re la t ionships  now a re  introduced between the  water flow and gas flows: 

By use of HW(l) as defined 

x -= xw; yg - - yw; u = u * t tw; 
g g w) g 

and 
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The scales of length and time of the two flows under consideration are 
connected by the quotients /? and 7 f i  = 3 /zw = const., respectively. 
Since the isentropic flow ofox cf?&nically hgmogegeous gas is considered 
here, there exists a functional relation p = p ( p  ) between pressure and 
density. The special polytropic relation 5 a gK with x = 2, which 
follows immediately from (16) and (l7), can only gpproximately hold true, 
since the kinetic theory of gases shows that I C  H <_ 1.67. 

W 

g 

and 

Substitution of (15) - (17) into ( 3 )  and (12) yields by use of (9)  

The gas flow defined by (15) - (17) is two-dimensional, since the third 
coordinate z of the corresponding three-dimensional water flow is needed 
to describe The density p of the gas. Because of 

g 

awW - t 0, aZ W 

it does not follow from (6) and (20) that p 
seems to be suggested by relations (1) and g(15). 

is constant even though this 
By the argument 
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following equation (5 ) ,  t.he left-hand-sides of (18) and (19) a re  the 
mass-fixed accelerations i n  the ro ta t ing  system of reference, and (20) 
i s  the  two-dimensional equation of continuity of a compressible medium 
i n  t h i s  system. 
and (19) may be interpreted as due t o  a conservative body force, which 
can be derived from a poten t ia l  z 
arz  the equations of motion and cbHti8uitf ( i n  the continuum regime) 
of two-dimensional gas flows subjected t o  conservative body forces  i n  
a system rota’;ing a t  a constant, angular -;elocity. 

The last  terms i n  the  r igh t  hand s ides  of both (18) 

(x , y )/rw. Thus (18) - (20) 

The f i r s t  law of thermodynamics yields  f o r  a y  mass element of the 
supposedly isentropic gas flow the  r e l a t ion  F dT = d3 f i  between - 
the  spec i f ic  heat -6 a t  constant pressure, t8# abgolutegteRperature T 
the  pressure anRgthe density of the gas.  Therefore, the energy 
following (5)  

g ’ 
g ’ g 

Eq. (21) i s  s a t i s f i e d  by any two-dimensional t rans ien t  flow provided a 
thermally perfect gas and the polytropic r e l a t ion  ~7 n with n = const. 
a r e  specif ied.  Thus the r e l a t ion  between water andggas flows as  given 
by (15) - (17) i s  a complete analogy within the l imi ta t ions  of the  assump- 
t ions mentioned at various placed above. 

The generalization of the analogy developed above cons is t s  of ad- 
mitt ing ( a )  conservative body forced which determine the bottom shape 
zw = ZIW by, Yw ) of the water tank and ( b )  ro ta t ing  systems. 
bot tom configurations have been used i n  many appl icat ions of the  analogy 
t o  problems without body forces  i n  order t o  admit a r b i t r a r y  constant 
values of u.  During the years 1952 t o  1962, t h i s  issue i n i t i a t e d  a d i s -  
cussion i n  which body forces  were not mentioned at. a l l .  I n  agreement 
with the  derivation presented above, Laitone (1952, 1953, 1961, 1962) 

Variable 

and Wehausen and Laitone (1960) pointed out the  necessi ty  of zlw(xw, yw 1 
const. i n  case o f  problems without body forces  which were considered 

so le ly  by them, Loh (1959, 1962) and Bryant (1960, 1962) remarked t h a t  
zlW(xw, yv) const. i s  admissible i n  view of the  o ther  approximations 
involved i n  the analogy, such as constant values  of H. 

The conditions for the  v a l i d i t y  of the shallow-water theory mentioned 
at the end of section B a l so  apply t o  the analogy. Experiments by Laitone 
(1952) confirmed t h a t  the analogy y ie lds  sa t i s f ac to ry  agreement between 
gas dynamics and water flows as long as f o r  t a p  water with usual  surface 
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tension the water depth i s  smaller t h  n one quarter  inch and the wave 
length 'i; 
1961, 1982). 
analysis  (1965) y ie lds  about the same l i m i t s  f o r  the v a l i d i t y  of the 
analogy car r ied  out i n  water tanks. 

of the  disturbances exceeds 3 inches, see a l so  Laitone (1953, 
Under consideration of  the surface tension of water, Gupta's 

For su f f i c i en t ly  small values of %, the  wave systems caused by the 
tank ' s  ro ta t ion  (e.@;. ,  Iamb (1932)) presumably are negl igible  as compared 
t o  the wave systems which have been discussed above f o r  u, = 0 .  Since, 
i n  addition, a t rans ien t  boundary layer growth a t  the tanx bottom i s  due t o  
the waves disturbing the solid-body ro ta t ion  of the  water, the r e l a t i o n  

5 following from (1) and (15) prohibi ts  atmospheric motions 
t6 bg s tuxiex i n  the water tank beyond su f f i c i en t ly  short  time in t e rva l s  
t a f t e r  the  beginning of the sa id  waves. Tine required s m a l l  values of 

demand a su f f i c i en t ly  small maximum inc l ina t ion  of the  tank bottom. 

- 
= t 

4 

i s  may necessi ta te  the  addi t ion of a detergent t o  the  water because of 
the  surface tension. 

APPLICATION TO AN ASTROPHYSICAL AND TO A GEOPHYSICAL PROBUM - PART D 

The right-hand s ides  of (18) and (19) were interpreted as representing 
body forces,  which r e s u l t  from a poten t ia l  z,,(x , y )/rv. 
t a t i o n a l  po ten t ia l  of spherical ly  symmetric celegt iaf  bodies now w i l l  be 
employed t o  demonstrate the analogy. 
of two c e l e s t i a l  bodies ro ta t ing  about t h e i r  common center of g r a v i p  S 
a t  the  constant angular ve loc i ty  w' . 

denote the distance 6f any point Q(?,Y,Z) f rom the centers %'tt@ two mksses, r e s e c t i v e l y .  The g rav i t a t iona l  po ten t ia l  i n  the 
space outside Ma and % then i s  given by 

The gravi-  

Figure 2 shows a "binary" system 

The masses of the  bodies a re  M and 
- I  and 

where i= i s  the  universal  g rav i ta t iona l  constant. 
contr ibut ion of the  atmospheric matter - -  t o  the grav i ta t iona l  po ten t ia l s  
w i l l  be neglected. 
of any one of the two c e l e s t i a l  bodies i k  uged as a constant reference 
length Fo , i . e . ,  7 /F and r = F /yo . 
the  expression ? 2u = coni t .  d?s e&loyed t o  obtain nondimensional 

In  the following, the 

The mass r a t i o  ~ 1 ,  = M /M i s  introduced and the  radius 

Since has the u n i t s  (cm2 secm2) 

po ten t i a l  og g 
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r '  3 1 

where the Froude -number 

is the ratio of centrifugal to gravitational forces at the surface of 
the celestial body Ma. In applications of the analogy, = r. The 
components of the gradient of this potential now will be &quate6 to the 
last terms in equations (18) and (19) to obtain an expression for the 
bottom shape in the water tank 

Z 

(24) 1W - grad r; = grad y . 
With z as a constant of integration, it is found that 

0 

The analogy as expressed by (13) - (17) enables one to study two- 
dimensional atmospheric motions subjected to a gravitational field F(F ,y ,Eg) 

These atmospheric flows are restricted to the equatorial plane z 1x 0 
where the complete differential equations of motion and energy tgke on 
the special two-dimensional forms (18) - (19) and (21), respectively, 
provided the motion is isentropic and symmetrical with respect to the 
plane z = 0. Due to this symmetry, the derivatives with respect to z of 
u ,v ,p , p  , and T vanish identically as functions of x ,y and t 
ig tge glage z = Since aw /az 0 for z = 0, thegth$ee-dim6nsional 
equation of coatinuity retains fhisgterm aw /ag 

by experimental simulation in a water tank with the bottom z = z bw,Yw * W 

g g 

which is absent in (20). 
If g Q  

12 



is known as a function of x ,y and t by use of some information outside 
of the analogy under discuskoa, this term can be represented by a suit- 
able distribution of sources and sinks in the bottom z = z (xwmyw) of 
the water tank. 
corresponding additional source terms. 

g 

The equations of continuity (6) and (30 )  tfiEn possess 

Since an experimental verification and test of the accuracy of the 
analogy can not be carried out by the authors for the time being, a 
theoretical check is desirable. Such a test of accuracy is provided by the 
application of the analogy to the earth's atmosphere under conditions of 
a known density distribution, i.e., in case of the hydrostatic atmosphere. 
In this case, the above equations simplify somewhat since = 0 and 
r M /r 
of the earth. Then the quotient w/ reduces to 

= go, where g is the gravitational acceleration at the surface a og 0 

a 

i.e., the ratio of the centrifugal forces in the container to those at 
the earth's equator. By realizing that r -= r = r because of (13) and 
by taking z 

a g w  
= 0 at rw = 1, equation (25) yields 

1w 

The atmosphere enveloping the earth is assumed to rotate as a solid body, 
such that in the analogy z = z and 'f& = 0. From (7) it is thus found 2w IIW 

r 2 .  = const. + - IIW 2 w  
W 

Z 
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5 7F requires - - - - 
pog pog g og' The equation of s t a t e  f o r  a thermally perfect  gas 

a t  the  surface of the  e a r t h  (subscr ipt  0) 

(30) 1 

3 g 

Because of 3 = and zlw = 0 a t  r = 1, the  expressions (29)  and (30) y i e l d  CY W 

(31) zIIwl = 2 A B  
r =1 

W 

with 
K T  

( 3 2 )  B =-- . - -  
go 

i s  obtained t o  express the  nondimensional densi ty  d i s t r ibu t ion  i n  the  e a r t h ' s  
atmosphere under hydrostat ic  conditions and f o r  N. = 2. From l e f t .  t o  r igh t ,  
the  terms i n  the bracket of (33) represent the  contr ibut ions of t he  e a r t h ' s  
surface temperature, of the cent r i fuga l  force due t o  the  assumed rigid-body- 
ro ta t ion ,  and of the g rav i t a t iona l  force.  

Because of the  small r a t i o  of the  m a x i m u m  extension of the atmosphere 
t u  the e a r t h ' s  radius, it i s  reasonable t o  wri te  r = r = 1 + e ,  where second 

and higher powers of e a r e  t o  be neglected. 
the following r e l a t ion  i s  obtained t o  replace ( 3 3 ) :  

l 9 w  2 
By r ea l i z ing  t h a t  l/(l+c )=l-c+e 

,c.- 

(34) Z ~ I W  - zlW = A [2B - (1 - .$i) SI. 
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Because of (l7), the  pressure var ia t ion i n  the e a r t h ' s  atmosphere 
according t o  the analogy i s  

where the  e f f ec t  of the  cent r i fuga l  force i s  negl igible  even a t  the  
e a r t h ' s  equator since JF L 3.32 x Because of B = 1.27 x 

g -  0 f o r  a surface temperature T = 293 ( K ) ,  the analogy predic t s  t h a t  
t he  atmospheric pressure Ogvanishes a t  a maximum a l t i t u d e  as given 

€3 by 

1 -  
F 3 -  394 rog M 16 km . 2B - - 

= r  . Hmax = rag* 'max og 1 -3g 

It w i l l  now be shown t h a t  t h i s  r e s u l t  f o r  Emax agrees with the 

Und& these condi- 

one of the  well-known hydrostat ic  polytropic atmosphere with H 
where i s  defined by ( a )  neglecting rotat ion,  i . e . ,  
by assuming a constant acceleration of gravi ty .  
t i o n s  Prandtl/Tietjens (p .  33) show t h a t  

= 2, 
= 0 and (b )  

where i n  the  notation of  t h i s  paper 

- -  c 

(36) 



Because of C = h / r  Eq. (26) y ie lds  i n  case of H = 2 the re la t ionship  
og' 

P 
-B_ = (1 - k) 2, 

which i s  iden t i ca l  t o  Eq. ( 3 5 )  f o r  4r = 0. It should be recal led 
here t h a t  the polytropic hydrostat ic  
t ions  ( a )  and ( b )  mentioned above possess a f i n i t e  maximum a l t i t u d e  

gatmospheres defined by condi- 

with the exception of H. = 1. max' 

OBSERVATIONS AND GENERAL CONSIDERATIONS W I T H  RESPECT TO THE ATMOSPHERE 
OF BINARY STARS - PART E 

Prominance a c t i v i t y  i n  the  sun i s  a wel l  known phenomenon. 
Observation of bi.nary stars suggests t h a t  the prominence a c t i v i t y  
of the secondary component i s  stronger on the  hemisphere facing the 
primary s t a r .  Appropriate i n i t i a l  ve loc i ty  vectors  of these promin- 
ences could r e s u l t  i n  a gaseous stream toward the primary or escape 
from the binary system, Sahade (1960). 

Within the context of the  r e s t r i c t e d  three-body-problem of c e l e s t i a l  
mechanics, several  authors have studied t r a j e c t o r i e s  of e jec ted  
pa r t i c l e s  i n  the  equator ia l  plane. For a p a r t i c l e  moving i n  t h i s  
plance, the Jacobi i n t eg ra l  shows the existence of curves of zero 
ve loc i ty  i n  a frame ro ta t ing  with the  binary system. These closed 
curves a re  the "Roche equipotent ia ls"  on which the  geopotential  i s  
constant, i . e . ,  the  sum of the g rav i t a t iona l  po ten t ia l s  of the com- 
ponent stars and the  po ten t i a l  of the  cent r i fuga l  force due t o  the  
ro ta t ion  of the system. These Roche equipotent ia ls  define admissible 
m o s s  sections of each component star i n  the  equator ia l  plane. The 
equipotential  enclosing the l a rges t  area i n  t h i s  plane and only one 
component s t a r  i s  ca l led  the Roche l i m i t .  For a p a r t i c l e  having a 
given value of the Jacobi in tegra l ,  the corresponding Roche equipoten- 
t i a l  represents a b a r r i e r  which the pa r t i c l e ,  of moving inside i t s  
folds ,  can never penetrate.  The t r a j e c t o r i e s  of p a r t i c l e s  e jec ted  
from a component star completely f i l l i n g  i t s  Roche l i m i t  take place 
i n  an area  of the  equator ia l  plane whose Roche equipotent ia l  boundary 
envelopes both component stars. For t h i s  case, t r a j e c t o r i e s  of 
pa r t i c l e s  have been computed by numerical in tegra t ions  of the  equa- 
t i o n s  of motion of the r e s t r i c t e d  three-body-problem, Kopal (1959). 
The r e s u l t s  could be summarized as follows: 
the companion star, ( 2 )  pa r t i c l e s  f a l l  back upon the  parent star, 
and ( 3 )  par t i c l e s  escape from the system i f  they possess s u f f i c i e n t l y  
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I .  

high i n i t i a l  ve loc i t ies ,  generally of the order of several hundred 
kilometers per second. 

According t o  Sahade (1960), ve loc i t i e s  of TOO km/sec have been 
observed i n  the  binary system V 444 Cygni. 
masses, considerably smaller ve loc i t i e s  would be needed f o r  the  escape 
from the  earth-moon system a f t e r  f i s s ion  of i t s  hypothetical  parent 
body. 

Because of the smaller 

These r e s u l t s  of c e l e s t i a l  mechanics re fer red  t o  above do not 
account f o r  in te rac t ions  between pa r t i c l e s .  Struve (1957), therefore,  
has pointed out t h a t  it would be important t o  consider the problem 
a t  hand a l so  from a hydrodynamical point of view and t o  allow f o r  
t he  e f f ec t  of rad ia t ion  pressure and magnetic forces.  The theory 
presented i n  Pa r t s  B, D, and D of t h i s  paper furnishes a background 
f o r  a water-tank experiment which attempts t o  simulate gaseous 
streams i n  the equator ia l  plane of a binary star system by accounting 
for gravi ta t iona l ,  i n e r t i a l ,  and hydrodynamic pressure forces .  These 
r e s u l t s  would per ta in  t o  the continuum flow regime which i s  separated 
from motions due t o  appl icat ions of c e l e s t i a l  mechanics by the ra ref ied  
flow region. The t r ans i en t  water-tank experimat ,  therefore,  would 
furnish a necessary supplement t o  published r e s u l t s  from (a )  applica- 
t i ons  of c e l e s t i a l  mechanics, Kopal (1959) and ( b )  s ta t ionary continuum 
flow theory under ra ther  r e s t r i c t ive  assumptions (see pa r t  A ) ,  
Prendergast (1960). 

COMMENTS W I T H  RESPECT TO THE EXPEFKIMENTAL SIMULATION OF THE FLOW I N  
THE EQUATORIAL PLANE OF THE BINARY STAR SYSTEM - PART F 

I n  the water tank, the primary and the  secondary stars are  
represented by cylinders mounted p a r a l l e l  t o  the t ab le  ' s  z-axis of 
ro ta t ion ,  see Fig.  3 .  Since the primary star by def in i t ion  possesses 
the  l a rge r  ~ S G ,  t he  bottom of the tank reaches i t s  smallest z-mor-  
dinate  a t  i t s  in te rsec t ion  with the "primary" cylinder.  I f  the  sur-  
faces  of the cylinders a re  su f f i c i en t ly  smooth, the  motion of the 
water i s  very l i t t l e  a f fec ted  by rotat ions of the cylinders about 
t h e i r  own aces of symmetry. Therefore, the  wetted portions of these 
surfaces  may have t o  be roughened a r t i f i c i a l l y  i f  t h i s  eigen-rotation 
of the  cylinders i s  t o  influence appreciably the w a t e r  flow. Even 
though the g rav i t a t iona l  f i e l d s  extend t o  i n f i n i t y  i n  the equator ia l  
plane, it i s  su f f i c i en t  t o  place a board p a r a l l e l  t o  the ax is  of 
ro t a t ion  of the system on the  bottom of t h i s  tank, provided the board 
i s  located beyond the "synchronous s a t e l l i t e  o r b i t "  of the  system. 
A water sink may be placed at the in te rsec t ion  of the  board and the  
bottom. 

Under hydrostat ic  conditions, the  water depth a t  the circum- 
ference of one of these cylinders may be prescribed a r b i t r a r i l y .  



Because of (32) and (331, t h i s  depth i s  proportional t o  the tempera- 
t u re  of the  atmosphere a t  the  surface of t he  corresponding component 
star. This temperature should be su f f i c i en t ly  small t o  ensure the  
gaseous s t a t e  of the atmosphere since (16), (l'j'), and the  equation of 
s t a t e  of a thermally perfect  gas show t h a t  the  temperature of the  
atmosphere i s  proportional t o  i t s  density i n  the analogy being em- 
ployed here.  The t a n k ' s  bottom between the cylinders does not have 
t o  be covered by water continuously i n  time. A s  far as mass t r ans fe r  
from the secondary t o  the primary star i s  concerned, it i s  su f f i c i en t  
t o  have intermit tent ly  water je ts  emanate from the "secondary" cylinder.  
The mass flow from the secondary t o  the primary cylinder can be visual ized 
by adding dye t o  the  water pouring out of the  secondary cylinder.  

CONCLUDING REMARKS - PART G 

The objective of conducting a water-tank-experiment should be a 
qua l i ta t ive  simulation of t rans ien t  astrophysical e f f e c t s  such as 
the ones mentioned i n  Par t  E of t h i s  paper. The following d e t a i l s  
mi l i t a t e  against quant i ta t ive v a l i d i t y  of the  r e su l t s :  

(1) the  assumption of a constant polytropic coef f ic ien t  (of 2 )  
which i s  e s sen t i a l  t o  the analogy i n  every possible version: 

( 2 )  the assumption of isentropic  gas flow; 

(3) the treatment of flows i n  the equator ia l  plane without regard 
f o r  the in te rac t ion  with the general  three-dimensional flow f i e l d  
outside of t h i s  plane; t h i s  shortcoming manifests i t se l f  i n  
neglecting the  term aw/az i n  the three -dimensional cont inui ty  
equation; 

(4) the  omission of rad ia t ion  pressure, turbulence, viscous f r i c t i o n ,  
heat  conduction, and other  real gas e f f ec t s ;  

( 5 )  experimental d i f f i c u l t i e s ,  e.g, such as the  ones discussed 
a t  the ends of pa r t  B and part C .  

Even though t h i s  seems t o  be a formidable accumulation of shortcomings 
of the method presented i n  t h i s  paper, the  approach may be expected 
t.0 y i e ld  more r e l i ab le  and r e a l i s t i c  r e s u l t s  i n  s u f f i c i e n t l y  dense 
atiiiospheres than the theo re t i ca l  methods employed by o ther  authors, 
see Section A. 
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Figure 1: Water Tank. 

t" 

Figure 2: Configuratio of celeatial bodler.  f 

I Figure. 3: Schematic configuration of water trnlc 
suggested to 8tudy the atromphere around 
the celestial bodler  ahom in f i v e  2. 


