
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



-AA&ES-67-9
Purdue University: f

School of Aeronautics, Astronautics, and Engineering Sciences
Lafayette, Indiana

to

AD ift

CD
to

r NONEQUILIBRIUM RADIATION AND

IONIZATION IN SHOCK WAVES

r

o°

by

Clair E. Chapin

S	 (
K	 O

O

N
C
O
W
W
f
t
U

WM

f

ZW' O

h

NIL
W
W
U
U
t

a
W

Z
O

r) F

o ^S
^ u	 ^

t
N \V\,

C
VniJune 1%71; U }	 , F 	{!t iiAU Ez 2 i 19P ^ 4 t

ti U
0 v

This research was sponsored by
The Office of Naval Research (N00014-67 —A-0226-000 and

by the National Aeronautics and Space Administration {NA 8-11485)

foT jili }^i	 l

Too WHOA AIMOVA

Purdue Research Foundation — Research Projects 4520 and 1492



AAE'EB 67-9

NONEQUILIBRIUM RADIATION AND
IONIZATION IN SHOCK WAVES

Clair L. Chapin*

,Tune 1967

This research wac sponsored by The
Office of Naval Research (NO0014-67-A-0226-0001) and

by the National Aeronautics and Space Administration (NASA 8-11485)

Presently at Lawrence Radiation Laboratory, P.O. Box 808, Livermore,
California 9+551.



NNOW

ii

ACKROWIEDG14ENTS

I an grateful to the Office of Naval Research and the National

Aeronautics and Space Administration for their financial support.

It is a pleasure to acknowledge Dr. Robert Goulard for his helpful

counsel and Mr. H. Frederick Nelson for his capable assistance with some

of the calculations.



TABI OF Comm

LIST OF TART	. .	 .	 .	 .	 . .

LIST OF ILUISTRATiWV . . .. . . . . . . . . . . . . . . . . . .

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER I:	 BACWHOUND AND LITERATURE SURVEY . . . . . . , . 	 1

Effect of Viscosity	 . . . . . . . . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 4
Effect of Finite Chemical Rates	 . . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 5
Effect of Radiation	 . . . . . . . . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 8
Effects of Ionization	 . . . . . . . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 12
Literature Survey	 . . . . . . . . . . .	 .	 .	 . 13

Radiation in Shock Waves	 . . . . . .	 .	 .	 . . 13
Chemistry of Ionization	 . . . . . .	 .	 .	 . . 18

CHAPTER II:	 FORKTIATION OF ERUATIONS . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 25

Conservation Equations for a Partially Ionized Gas . .	 . 25
Elastic Interactions . . . 27
Pressure, Viscosity and Heat Conduction 29
Inelastic Interactions . . . . . . . .	 . 31
The Electric Field . . . . . . . . . .	 . 33
Internal Energy	 . . . . . . . . . . .	 . . 34

Simplified Nondirensional Equations 	 . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 34
Summary of Equations . .	 . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 44

Ionization Rates . . . . .	 . . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 45
Non-Grey Radiation Energy Transfer . . .	 .	 .	 . .	 .	 . .	 .	 .	 . 51

Separation of Radiative Interactions .	 .	 .	 . .	 .	 . .	 .	 .	 . 54
Line Radiation . . . . . . . . . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 56

56Continuum Radiation	 . . . . . . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 .
Reduction to Grey Radiation	 . . . . .	 .	 .	 . .	 .	 . .	 .	 .	 .	 . 61

The Radiative Ionization Rate	 . . . .	 .	 .	 . .	 .	 . .	 .	 . 70
Method of Solution . . . . . . . . . . .	 .	 .	 . .	 .	 . .	 .	 .	 . 71

	

CHAPTER III:	 RESULTS AND DISCUSSION . . . . . . . . . . . . . 	 80

Radiationless, Thermal Equilibrium Solutions . . . . . . . . 	 81
Thermal Equilibrium vith Trapped Radiation . . .	 86
Thermal Nonequiiibrium with Trapped Radiation	 91
Thermal Nonequilibritmm with Complete Ionization . . . . . . . 	 96

	CHAPTER IV:	 SW4%RY AND CONCLUSIONS . . . . . . . . . . . . . 	 100

Ili

Page
v

vi

vii

BIBLIOGRAPHY 9 . . . . . . 9 . . 9 . . 9 . . . . . . . . . 9 9 .	 105.



iv

TABIN OF CO tTS
(Contimed)

Page

APPENDIX A. DERIVATICK OF COLLI L RARE CONSTANTS . . . . . 110

APPENDIX B. RADIATIVE REACTION TRANSFER EQUATIONS . . . . . . . 114

APPENDIX C. AVERAGE ENERGIES OF CREATED EIBCTAOKS . . . . . . . 118

APPENDIX D.	 CALCULATIONAL DETAIIS . . . . . . . . . . . . . . . 123



v

ti

LIST OF TABLES

	

Table	 Page

	3.1	 Reference Conditions . . . . . . . . . . . . . . . . .	 80

	

3.2	 Characteristic Lengths . . . . . . . . . . . . . . . .	 81

	

3.3	 Length of A•A and e,A regions for Radiationless
Shock wave with T. = Ta . . . . . . . . . . . . . . .	 85

	

3.4	 Length of A-A and e,A regions for Trapped Radiation
Shock Waves with T. ^ Ta . . . . . . . . . . . . . . .	 95



IMT or MUM

Figure

1.1 Coordinate System

1.2 Radiation Transfer Geometry . . . . . . . . . . 9

1.3 Inviscid Radiating Shock Wave . . . . . . . . .	 . 16

1.4 Radiating Shock with Discontinuities	 . . . . . . .	 .	 .	 . 16

2.1 Attenuation Function F 	 . . .	 .	 .	 . 68

2.2 Special Function F' .	 ,	 . . .	 .	 .	 . 72

3.1 M s 12 Radiationless Shock Wave with To M a . 82

?.2 M - 18 Radiationless Shock Wave with Te a a $

3.3 M = 30 Radiationless Shock Wave with Te = To 	 . 84

3.4 M • 12 Trapped Radiation Shock Wave with ' e a Ta 87

3.5 M • 18 Trapped Radiation Shock Wave with Te • Ta .	 .	 .	 . 88

3.6 M - 30 Trapped Radiation Shock Wave with Te . a . 89

3.7 Precursor Degree of Ionisation	 . . . . .	 . . . . 90

3.$ M - 12 Trapped Radiation Shock Wave with T e	a ,	 .	 .	 , Se

3.9 M - 18 Trapped Radiation Shock Wave with T e	Ta .	 .	 .	 . 92

3.10 M - 30 Trapped Radiation Shock Wave with T e	Ta .	 .	 .	 . 94

3.11 M : 18 Shock Wave with Radiation Cooling	 . . . . .	 .	 . 98

D.l Successive Steps in the Solution	 . . 9 0 0 . . 0 0	 0	 0	 0 124

V1



ABSTRACT

Radiation energy transfer and ionization rates in the mixture of

atoms, ions and electrons produced by a normal shock wave propagating in

cold argon gas are examined. It is shown the gas may be regarded as a

combination of two gases, one composed only of electrons and one com-

posed of both atoms and ions. Temperature differences betaeen the elec-

tron gas and the atom-ion gas significantly affect radiation and ioniza-

tion rates in the shock wave.

The analysis uses the ionization rates due to both atom-atom

collisions and electron-atom collisions. In addition, photoionization,

which is responsible for precursor ionization, is included.

Although argon is not a grey gas, it is shown that the radiation

variables may be reduced to the forms they would have if the gas were

grey, but with different source functions and attenuation properties.

Radiation generated by photoionization and radiative recombination

involving excited atomic states escapes ahead of the shock wave and

results only in cooling the hot gas. Radiation due to photoionization

and recombination involving the ground state is trapped by the cold

particles ahead of the shock and causes precursor ionization. Photo-

excitation processes (line radiation) are omitted from consideration.

The integral form of the radiation variables causes the equations

to be integro-differential. Iterative techniques for solving the

vii
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equations are not practical because they converge too slowly. Inst=mad,

a combined perturbation-iteration method is used.

The effect of viscosity and heat conduction is to discontinuously

change the temperature and density of the gas. Preceding the discon-

tinuity is the precursor region caused by ground state photoionization.

After the discontinuity the electron gas is colder than the atom-ion

gas. Subsequently the electron gas temperature increases until it

becomes equal to the temperature of the atom-ion gas. Finally, after

chemical equilibrium has been reached, the gas radiatively cools to its

final stage. The ionization rate and precursor ionization are found to

be greatly affected by the cool layer of the electron gas following the

discontinuity.

Radiation energy transfer has little effect on the ionization rate

until equilibrium ionization is approached. The net collisional rates

then decrease and the radiative rates become relatively more important.

The net effect is to decrease the ionization rate and delay chemical

equilibrium.
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CHAPTER I

$ACOROD AND 1 rfMTURE SURVU

In the last fev years there has been a great deal of interest

concerning shock eaves propagating with sufficient speed that the shocked

gas becomes ionized and emits radiation. Shock tube research has shown

how elastic and inelastic oollisions between electrons, ions, and atoms

of the gas influence the ionization process. The role of radiation in

the ionization process, however, has never been determined.

In this thesis the effect of radiation energy transfer on the

ionization process in chock waves propagating in argon is investigated.

It is an especially difficult problem because the radiation energy trans-

fer, the.kinetice of ionization and the energy exchange between electrons,

atme and ions in the gas must be considered simultaneausly. The fre-

quency dependence of the radiative emission and absorption processes

leads to additional difficulties in calculating the radiation energy

transfer.

Although the analysis in this thesis is performed for shock

waves in argon, its concepts and techniques are generally applicable

to chemically reacting, radiating gases.

All shock eaves analyzed in thib thesis are assumed to he norraal

and time independent. Ian the Bulerian frame of reference the three

appropriate fluid conservation equations are:
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The Conservation of *as Htuation;

dalx (p 
u) - 0	 {l.l)

In this equation p is the Haas density of the gas, u is the velocity

of an elemental gaseous volume and x is a coordinate parallel to the

direction of shock wave propagation. The origin of x is fixed to the

shock wave. Values of x increase in a direction opposite to the direc-

tion of shock wave propagation as shown on Figure 1.1.

The Conservation of 93mentum Eluation,

dx [pu2 + p - a] - 0	 (1.2)

Here p is the hydrostatic pressure in the gas and a is the compres-

sive stress produced in the gas because of its viscosity.

The Energy Conservation 6quatiou.

d [pu (h +lu` ) - ou+q) :0
	

(1.3)

The quantity h - (e + p)/p stands for the enthalpy per unit mass of

gas, E is the internal energy of the , gas per unit volume and q is the

net heat flux in the direction of increasing x.

These equations may be integrated once to give

pu = M	 (l.$)

Mu+p - j = P	 (1.5)

M (h + u` ) - ju + q - E
	

(1.6)

where M, P and E are integration constants. These are the equations

which are applied to the analysis of shock wave structure in the simplest
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cases. It is necessary to mWity these when the shock wave occurs in a

partially ionized gas. ?his modification is discussed is Cbx#$" I19

The character of the flow in a shock wave is determined by the

quantities h, p, s and q. The way in which these quantities are in-

fluenced by viscosity, chemical reactions, radiation and ionization is

discussed in the following sections.

Effect of Viscosity

The viscosity of a gas is responsible for the compression and

resultant heating which occur in shock waves. At low speeds where the

gas is not hot enough to produce changes of state in the gas or emit

radiation, it is the only process which occurs. The pressure, enthalpy,

compressive stress and heat conduction are then described by the follow-

ing familiar relations.

p - PRT	 (1.7)

h = C 
p 
T	 (1.8)

`^ = µJ
du

	

 dx	 (1.9)

q	 - kc 
dx	

(1.10)

Far upstream and far downstream the compressive stress and heat

flux are both zero and the initial and final states are related by

P !U = P+ U+ = M	 (1.11)

Mu- + P. = Mu+ + p+ 	(1.12)

h-+ j u2 = h+ + iu2	(1.13 )
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Subscripts + and - in tbese equations denote values at + u and

on the x coordinate.

Mathematically speaking the shock extends from	 to + a. In

practice the thickness of the viscous shock is often negligibly small.

It may then be thought of as producing an instantaneous change in the

state of the gas with the initial and final states related by equations

(1.11) through (1.13). In mathematical terms the change of state produced

by the shock wave may be described as a step function.

Effect of Finite Chemical Rates

The final .state reached by the gas in a shock nave can be chem-

ically changed comparea to its initial state. Description of chemical

changes in shock waves can be very complicated. For example, Sherman

(1] has studied a radiating shock wave in air involving thirty-four

reactions. The shock waves studied in this thesis are assumed to propa-

gate in argon.. The choice of argon is advantageous because the only

chemical process which can occur in argon is ionization. Consequently

the chemistry is relatively uncomplicated. Furthermore, because of its

wide use in shock tube experiments, the properties of argon are well

known.

For ionized argon gas the enthalpy and pressure are given by

the following formulas [2].

h = 5 (1 + a) pRT + a R Tion 	 (1.14)

p = (1 + a) pRT	 (1.15)

* Lumbers in brackets refer to the Bibliography.
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In these equations a is the degree of ionisation in the gas

6

where ni is the number density of ions and as is the number density

of atoms. Tion is the ionization temperature defined by the require-

•went that 
kTion be the ionization potential. For argon Tion = 1.82(105)K.

If the ionization is rapid, the gas may be thought of as instan-

taneously adjusting to a degree of ionization such that the rate of

ionization and the rate of recombination cancel each other. The gas

is then said to be in chemical equilibrium. If chemical equilibrium is

maintained in the gas, the degree of ionization may be calculated from

the Saha equation [2] which for argon may be written

2\ 3,12 - 
T	 'T

1l a	 ^p -T --	
e ions	

{1.17)
\ ion )

where 
pion 

is a constant which has the value 149.3 gm/cm3.

However, because of the finite rate at which ionization processes

proceed, the changes which would take place in a shock wave if chemical

equilibrium were maintained in the gas, may be more rapid than can

actually occur. The degree of ionization in this case must be calculated

from equations which describe the chemical kinetics of the ionization

process. Assuming no diffusion of electrons, conservation of electrons

requires

dx (n U)u) _ $e	 e+ n
Coll	 rad

(1.18)

where n  is the number density of electrons, A 	 is the net rate of
Coll

production	 electrons by collisional processes and 6e	is the net
rad
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rate of production of electrons by radiative processes. If the number

density of electrons and ions are equal, the degree of ionization may be

written

	

ni	 n 	 n 
n  + ni	n  + n

i	P ma

where ma is the atomic mass. Equation (1.18) may then be transformed

to

Mdux = ma (de	 + 6e	 )	 (1.1^ )
Coll	 rad

Collisional ionization occurs by the following reactions;

A{p)	 A	 A+ + _ + e	 p = 1, 2, ...	 (1.20)

A(p) + X « A(q) + X	 q > p, p = 1, 2 .,	 (1.21)

A represents an argon atom, a an electron and X stands for a typical

reaction partner which could be A. e, or a contaminant species. Bound

electron states are indicated by the index p or q with p = 1 corresponding

to the ground state.

Radiative ionization is described by a similar set of reaction

eq-.tations.

	

A(P) + by	 A+ + e	 P = 1, c, 3, .. .
	

(1.22)

	A(p) + by	 A(q)
	

q> p , p = 1, 2 , 3, .. .
	 (1.23)

Continuum radiation is emitted and absorbed by reactions (1.'22) and

line radiation by (1.23).

Other reactions are possible but the research to be reviewed

presently shows them to be of secondary importance for the calculations

performed in this thesis.
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Detailed expressions for the collisional and radiative ionization

rates are developed in Chapter II.

Nffect of Radiation

Radiation of the gas in a shock wave can affect shock wave struc-

ture by contributing to the ionization process, as just discussed, and

by its contribution to the heat flux q. The effect of radiation on

pressure and energy density is completely negligible for the calculations

performed in this study (3].

The equation of radiation energy transfer appropriate to a one-

dimensional geometry is

µ I {x, µ, v? _ _	 1	 [I(x, µ, v ) +	 x, v ))	 (1•^4)
I (x,v)

The radiation intensity I(x, µ, v) is defined by the requirement that

I(x, µ, v) dA (to dv is the radiation energy which passes through area

dA of a surface at x whose normal is parallel to the x axis, within

solid angle dcu of a direction making an angle cos -lµ with the x axis,

in the frequency interval v, v + dv, per unit time. The geometry approp-

riate to this definition is pictured in Figure 1.2.

The source function S(x, v) is the radiation intensity at position

X. angle cos -lµ and frequency v due to radiation emitted per unit mass

of gas at the location of dA. Since emitted radiation is independent of

direction, the source function has no dependence on µ.

The penetration length I(x, v) is the length required for the

radiation intensity to decrease by a factor 1/e in a gas of constant

properties if there is no emission of radiation ( as can be seen directly

from egvation (1.24)). The penetration length is a function of x

through its dependence on temperature, density, etc., and it is a fs,=tion
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Figure 1.2. Radiation Transfer Geometry.
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of frequency through the ray in which radiation is created and destroyed

by the atoms, ions and electrons in the gas. Detailed formulas for the

penetration length are developed in Chapter II.

At the upstream boundary x = x_ the gas is assumed so cold that

no radiation is emitted in the positive X direction. At the downstreais

boundary, the gas is assumed to have constant properties and the inten-

sity is given by the Planck function B V(7 ) 2hv3/c2(ehv/kT_l)-1

evaluated at the upstream temperature T+.

I(x_, µ, v) = 0	 for 0* g 9 1

(1.25)

I ( X+, µ, V ) = B,, (T+)

Replacing x by the optical length

x
1

v)	
dx'

T(x,	 J
o	 c{X ,v)

(1.26)

in terms of which equatioi, (1.24) is linear, the solution of equation

(1.24 ) appropriate to the boundary conditions (1.25) is seen to be

T(X, V)	

11J s(X',V) ^ jr [ T ( X, v ) - T (Xl , v ) )/P)dT ( xl , v)/µ
T(X_,v)	

for O 6 µ 9 1

I ( X ,µ, v)

B 
(T ) e- [ T ( X , V ) - T(X+,V)l/µ	 (1.27)

v +
T(X+'V)

` J S ( X , v ) eXP (- [T(X, V) - iI (X', V). /µ)CI*(X', V)/µ
T( X ) v)	 for -1 9 9 S 0
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The contribution to the beat flux from radiation in tho frequency

range V. v + dv is
1

%(x, V) • 2X 	 I(X, g, V) dµ	 (1.28)1
Substitution of (1.27) into this expression gives

'r ( X+,

qS( X) V ) 
a 2x 

C J 
S (X ; V )Bgn[ T (X)V) - T ( X) V ) JEC(I T ( X , V ) - T(X',V)I)dT(x')V)

Trx_XV)

- E.3[T(x+,V) - T(x,V)) BV(T+) 
J	

(1.29)

where
1

F.n(t) a r 4L	 a-tali dp
0

+1 if t' < t
sgn (t-t' ) _ 
	

(1.31)

-1 if t' > 't.

The location of the downstream boundary x Will be taken to be

- co and that of the upstream boundary x + will be taken to be + a. Then

equation ( 1.29) becomes

III1	 1qR(x, V) s cf( 1 $ ( X ^^ V ) sgn[ T ( X f V ) - T ^ x^v)J g2[I T ( x s V ) - T(X^fV)IJdT(xffV)

J-ee

(1.32)

1'he total contribution to the heat flux due to radiation of all fre-

quencies is found from this by an integration over frequency.

m

qx(x) _	 q,(x,V)dV
	

(1.33)

0

The form of the radiative heat flux q B considerably complicates

the problem because of the frequency integration required in equation

(1.33) and because the integrand in equation ( 1.32) depends on the
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temperature, density, *to. of the ps which are not known until the prob-

lam is solved. In almost all of the work on radiation shook waves the

problem has been sS,s Ufied by assumptions involving ens or both am.

plicating  factors.

Sffects of Ionization

Ionization in shock ~raves is responsible for sole phenomena which

are mentioned here and discussed in greater detail later.

A partially ionized gas is a mixture of atoms, ions, and eloe-

trons. In such a mixture it is possible for processes to occur in

which one species is preferentially affected.

For example, electrons will lose energy by creating ions through

the reaction

e+A(p)-.A++e+e.

It happens that the ways in which electrons can gain energy are much less

efficient than the way they lose energy by creating ions. The net result

is an energy drain from the electrons. The electrons can be thought of

as cooler than other species when ionization is taking place.

The thermal conductivity of electrons is much larger than for

other species. Consequently a preferential heat conduction in the

electron gas can be expected.

Transport properties are greatly affected by ionization. Via-

cosity and heat conduction are much different for a slightly ionized

gas than one which is fully ionized [4).

Collision processes by which energy and momentum exchange take

place also depend on the degree of ionization in the gas. If the
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degree of ionization is mail, energy and momentum exchagge takes place

through binary collisions. But when the degree of ionization is large,

energy and momentum may be exchanged by interactions involving vaQy

particles.

Lastly, the steep concentration gradients in a shock wave will

promote diffusion of electrons relative to ions. The resulting charge

separation will cause an electric field which can affact the flow.

Literature Survey

The survey presented in this section does not attempt to give an

exhaustive account of all the research conducted on radiating, chemically

reacting shock waves. Rather, its purpose is to illustrate the experi-

mental and theoretical knoL:iedge which has been gained by such research.

haaintion in Shock Waves

All of the work involving radiation energy transfer in shock

waves, with the exception of the work of Clarke and Ferrari 151, has

assumed the gas to be grey and the radiation to be emitted in local

thermodynamic equilibrium.

A gas is grey when its penetration length may be replaced by an

average penetration length which is independent of frequency.

t( x ) v) - favg(x)
	

(1.34)

Local thermodynamic equilibrium means that the source function at

any point in tLe gas, is given by the Planck function evaluated at the

local gas temperature.

8(x, v) - BV(T)	 (1.35)
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With these simplifying assumptions equation (1.33) for th-a radiative

flux becomes

+ M b

qR : 2 
J 

y T(x l )sgn [T( x) - T(X l ) lf"2(IT(x) - T(x') ) dT(x l )	 (1.'^)

- o

where y is the Stefan-Boltzmann constant and

x

r ( x ) _	
dx x
	 (1.37)

o	 avg

The radiation is characterized by the average penetration length.

This is a consequence of the grey gas assumption. When frequency variation

of the radiation is considered, there may be no one length which typifies

radiation energy transfer. Non-grey radiation energy transfer is con-

sidered in Chapter H.

Research on radiating shack waves may be classified by whether

the radiation is lost or trapped.

Of course no radiation energy can ever be lost in the sense that

it is destroyed. By lost radiation is meant radiation which escapes the

system being considered. For example, radiation may be iost from a

shock tube to the surrounding laboratory. Loss of radiation energy from

a system is referred to as radiation cooling.

Radiation which is not lost but re-absorbed within the shock will

be termed trapped radiation. All previous investigations of shock wave

s,.ructure have considered either trapped radiation or radiation cooling

Lut not both.

Beaslet and Baldwin [6 1 have obtained solutions for shock waves

with trapped radiation. The shock wave is asstL%ed to be inviscid and

propagating in a perfect gas. The mathematical problem associated with
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the integral form of the radiation flux, which requires the solution

to be known before the iategrand in equation (1.36) can be calculated,

is avoided by what is essentially the differential approximation

discussed by Murty 17j and by Goulard and Traugott (8].

Although the problem solved by Heaslet and Baldwin is the least

complicated formulation possible which involves trapped radiation, it

must still be solved numerically.

If there were no radiation,the solution would be a step function

shock wave caused by viscosity and heat conduction in the gas. The nature

of the solution depends on the amount of heating which occurs by radia-

tion ener&v transfer compared to that which occurs by viscous dissipa-

tion.

If radiative heating exceeds viscous heating it is possible to

have a shock wave without any discontinuities. The absence of discon-

tinuities shows the viscous effects to be completely negligible . Repre-

sentative profiles of temperature, velocity and radiated heat flux

typical of this kind of shock wave sketched from the solutions obtained

by Heaslet and Baldwin are shown in Figure 1.3. Presentation of the

results in terms of the optical length can be misleading. If the

average penetration length for grey radiation is large, the extent of

the shock in terms of the optical length will correspond to a very small

distance in terms of the physical length x.

When the radiative heating is not so strong the solution consists

of a step function shock imbedded in a larger inviscid region. Profiles

typical of this situation, sketched from the solutions of Heaslet and

Baldwin, are shown in Figure 1.4.
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o	 T
Figure 1.?.	 Inviscid Radiating Shock Wave.

O	 Z-
Figure 1.4. Radiating Shack With Discontinuities.
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Heselet and Baldwin assume the viscous portion of the shock in

the latter case to be vanishingly thin. Cohen and Clarke [9] and Chow [10]

have shown it is a good approximation to consider the shock wave composed

of an inviscid region, identical to the solution obtained by Heaslet and

Baldwin, in which is imbedded a viscous region, unaffected b. radia-

tion, which matches the inviscid solution at its boundaries. This is

true as long as the penetration length is large compared to the extent

of the viscous region.

Solutions for shock waves with combined radiation and viscosity

in which there is no restriction placed on the size of the penetration

length compared to the size of the viscous region have been obtained by

Traugott [11]. Sen and Guess [12] also solve the combined problem but

assume the penetration length to be small compared to the thickness of

the viscous region. They then c-laplcy the Rosseland approximation to

calculate the radiative heat flux.

All of the solutions just mentioned assume the gas is not ionized

by the shock wave. Non-grey trapped radiation energy transfer in shock

waves with ionization has been investigated by Clarke and Ferrari [51.

Their work is discussed in Chapter U.

Radiation cooling effects in shock tube experiments have been

reported by Petsch ,̂ k et al.[131 and Redkobordyi [14].

All of the solutions for radiation cooling assume the shock may

be divided into two regions. In the first region ionizational equili-

brium is reached and no radiation cooling occurs. That region is followed

by the radiation cooling region from which radiation energy is lost. The

radiation cooling region is terminated by a cold gas interface or wall.
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Petschek et al. [.1A; calculate profiles in the radiation cooling

zone assuming it is optically thin. McChesney and Al-Attar [16) perform

a similar calculation except they assume in addition the gas is grey.

In the solution of Pomerantz [17] the gas is assumed to be grey

but self absorption is taken into account. In contrast to the optically

thin solutions, in which the gas continually cools, cooling stops after

a few penetration lengths due to self absorption. A steady state is

reached in the radiation cooling region when it is a few penetration

lengths thick.

In the case investigated by Pomerantz the radiation cooling region

was terminated by a cold gas interface. Yoshikawa and Chapman [18] ob-

tained a solution similar to that of Pomerantz but they terminate the

radiation cooling region with a wall. In addition to the radiation

which is lost by emission ahead of the shock there is a loss at the wall.

Cooling adjacent to the downstream boundary appears to be absent from the

solution of Pomerantz.

Chemistry of Ionization

For shock waves in argon,ionization proceeds in a very complicated

way. The details of the ionization process are not clearly known.

Petschek and Byron [19] show that more than one reaction is

necessary to reach equilibrium ionization. If the electron concentration

is sufficiently high, the most probable ionization process is ionization

by electron-atom collisions. Petschek and Byron concentrated on investi-

gating this reaction.

They deduced the electron concentration during the approach to

equilibrium ionization in argon from measurements with potential probes
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placed in their shock tube and from measurements of the continuum radia-

tion intensity. Initially the electron concentration is too low for

electron-atom collisions to be important, but later in the ionization

process the number of electrons is sufficient for electrom-atom collisions

to be the main source of ionization.

Their measured ionization rate is consistent with a two-step

reaction scheme consisting of excitation followed by ionization of the

excited state.

e + A -+ A	 + e

e +A* -► A + + e +e
	 (1.58)

Furthermore, their measurements verify that the electrons are not in

thermal equilibrium with the atoms as ionization proceeds. This is

because each time an electron is produced the electrons collectively lone

energy equal to the ionization potential of the atom. The only way in

which this energy can be regained is through elastic collisions with the

ions and atoms. However, this is an inefficient process because the

electron mass is much smaller than the atom mass. On the other hand,

energy exchange between the ions and atoms, which have essentially the

same mass, is effective. As a result the electrons tend to cool, but

the atoms and ions establish an equal and hotter temperature. Petschek

and Byron assumed the electrons established thermodynamic equilibrium

among themselves at an electron temperature T  and the atoms and ions

established thermodynamic equilibrium among themselves at a temperature

Ta . The electron temperature was assumed to be such that the energy

lost by electrons through ionizing collisions was just balanced by that

gained from elastic collisions with the atoms and ions. Since the reaction
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rate is sensitive to the electron temperature, the agreement between

measured and calculated rates obtained by Petscbek and Byron justified

their model of thermal non-equilibrium between the electrons and heavy

particles.

Wong (21) has also deduced the electron-atom ionization rate in

argon by measuring the electron concentration in the chemical non-

equilibrium region of a shock wave using an interferometric technique.

He found the electron-atom ionization rate to be more rapid than had

been measured by Petschek and Byron. He attributes the larger rate to

the onset of one-step electron-atom ionization

e + A -• A + + e + e

but it could also be caused by other processes to be discussed presently.

In the early stages of ionization, when the electron concentra-

tion is too small to support ionization bjr electron-atom collisions,

other reactions must be responsible for ionization. Petschek and Byron

noticed that the time to reach equilibrium ionization was greatly af-

fected by the concentration of impurities present in their shock tube.

Accordingly, they suggested that when the electron concentration was

small reactions between impurity molecules and argon atoms would be

important. However, the concentration of impurities in their experi-

ment was not great enough to account for all of the ionization which

takes place in the region of small electron concentration. They

Speculated that reactions involving atom-atom collisions aiA radiation

in addition to contaminant reactions contributed to the ionization.

Weymann (21] considered the relative importance of contaa.inant

reactions and atom-atom reactions. He showed the contaminant reactions
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could be considered independently from reactions between gas atoms

because of the much lower concentration of impurities. The impurity

reactions were conjectured to occur much more rapidly than atom-atom

reactions due to the lower ionization potential of impurity species.

He viewed the initial region of ionization as being divided into two

re6ions. In the first region ionization would take place by reactions

involving impurity molecules. This would be followed by a much more

extensive region where ionization would proceed by reactions involving;

only gas atoms.

Weymann theorized the most provable atom-atom reaction would be

a two-step reaction similar to the twc-step reaction investigat°d by

Petschek and Byron.

A +A -► A * + A	
(1.39)

A * + A -. A+ + a +A

The concentration of excited atoms is maintained either because the

excited state is metastable or because radiative transitions from this

excited state are optically thick. This reaction scheme was experimental-

ly verified by Harwell and Jahn [22] by use of a microwave probe trans-

verse to their shock tube. Great care was taken to reduce the impurity

concentration. Only when the impurity level was reduced to s few parts

per million did their presence have a negligible effect on the results.

Their technique for reducing the impurity level was further refined by

Kelly [23J who confirmed the conclusions of Harwell and Jahn and obtained.

more accurate results.
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The contaminant reaction region was investigated in xenon by

Hacker and Bloomberg (24] by using the microwave probe along the axis

of their shock tube. They found the ionization occurred by a very

complicated set of reactions involving contaminant species, xenon atoms

and molecules in various states of excitation, and radiation. Contami-

nant reactions'in argon were theoretically discussed by Morgan and

Morrison (25) who calculated the time to reach equilibrium ionization in

argon shock waves by combining the electron-atom rate of Petschek and

Byron and the atom-atom rate of Harwell and Jahn. They attributed the

discrepancy between the calculated time and the time Observed by Petechek

and Myron to contaminant reactions. The calculations made in this thesis

assume the argon gas to be absolutely free of impurities.

Bibermann and Yakubov (26) also calculated the time to reach

equilibrium ionization by combining electron-atom ionization and atom-

atom ionization rates. F,xperiments show the ionization process actually

takes place more quickly than they calculated. They suggested that line

radiation from the hot gas following the ionization region excites argon

atoms in the ionization region, which are easily ionized, contributing

additional electrons and consequently decreasing the time to reach

equilibrium. The equilibrium ionization time calculated by including

this effect showed much improved agreement with experimentally measured

times.

Radiation can affect ionization in still another way by creating

electrons ahead of the shock discontinuity. Such electrons have been

termed precursor electrons because they occur ahead of what is normally

thought of as the shock front. They have been observed in re-entry by
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their effect on radar cross section 1271, (281 0 [29], and in shock

tubes as described belov.

Results of experiments to detect precursor electrons in shock

tubes were at first quite confusing. Some care was needed to eliminate

extraneous causes of electrons ahead of the shock wave such as the phvto-

emission from the shock tube walls (301, (311. The early measurements

of precursor phenomena seemed to indicate that most of the charged parti-

cles ahead of the shock front were electrons [30), [32), [33). 	 If

the photoionization caused the precursors the number of electrons and

ions would be equal. It was proposed that precursors were caused by

electrons diffusing ahead of the shock wave. It was thought the severe

gradients of electron concentration in the shock wave would cause such a

diffusion.

Theoretical investigation of the diffusion hypothesis has been

reviewed by Wetzel [34]. All the calculations showed a much smaller

electron density ahead of the shock than had been measured. Pipkin [35)

argued that the distribution of electrons in small diameter shock tubes,

such as had been used for the experiments, produce an electric field

vector that is not mainly along the axis of the shock tube as had been

assumed in the theoretical work. He analyzed the problem assuming a

different configuration of the electric field and, because of its weaker

axial component, vas able to explain the main features of the experi-

mental results. Appleton [36) claims it is unreasonable to assume that

Pipkin's expression for the axial field is valid in -the immediate vicinity

of the shock. Instead Appleton requires the field to be one-dimensional

near the shock and obtains a numerical solution in which the electron
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concentration rapidly decreases ahead of the shock, consistent with the

earlier theoretical results. Unless a transition to a weak axial field

takes place in a short distance ahead of the shock, the diffusion hypothe-

sis cannot be theoretically explained.

Recently Weymann &Qu Holmes [ 371 and Holmes [ 361 have repeated

the earlier experiments of Weymann with improved measurements. These

more recent experiments show that photoionization of the cold gas ahead

of the shock by radiation from the hot shocked gas is the principal means

of producing precursor electro -R. This is consistent with the recent

experiment of Uvanovic [39]  and Leder en and Wilson [401 who .+ere able

to separately cmea"w a the photo-electrons and the diffusion electrons

abead of the shocK waves. They found only photo-electrons.

These experiments indicate that precursor ionization is caused by

radiation from the hot shocked gub.



CPAPTER II

FORWIATION OF FAUATIONS

In this chapter, the equations which describe non-grey radiation

energy transfer, ionization kinetics, and energy exchange in partially

ionized arson are formulated. First the fluid conservation equations

for a partially ionized gas are developed. These are then transformed to

a non-dimensional form and simplified by eliminating all unimportant

terms. Next equations for the ionization rate are developed. Finally

expressions are developed which give the non-grey radiation flux and

radiative ionization rate. The method of solution is discussed at the

end of this chapter.

Conservation l^rquations for a Partiall y Ionized Gas-.^.

In an un-ionized monatomic gas mass, momentum and energy can be

transferred only by the neutral atoms which make up the gas. If the gas

is ionized, electrons and ions provide additional ways for crass, momentum

and energy to be exchanged. An equation for the conservation of mass,

momentum and energy can be written for each species of the gas following

the approach used by Appleton and Bray [ 41]. .Let each species be labeled

by a subscript X. The species conservation equations for one-dimensional

steady state flow are as follows;

The species mass conservation equation is

dux ( 0 ). uA) . w 1	 (2.l)

25
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where pl • sex is the mass density of species X. of is the mass of
a particle of species a, nX is the number density of species X, u l is

the average velocity of species 1, and w'k is the mass rate of production

of species 1 per unit volume per unit time.

wl = m'A ix

Where nX is the net number of species i produced per unit volume per

unit time by all radiative and collisional reactions.

The equation expressing conservation of momentum for species X is

3 ( P ), ua + pl - Q 1)	 r,^ e XF + P
tea' 

+ J^	 (2.2)

X'

where pi is the partial pressure of species X. j 1 is the viscous stress

tensor component of species X. e X is the charge of a particle of species a,

B is the electric field created by the collective motion of the charged

particles, P 	 the rate of lose, of momentum by species k per unit

volume and time due to elastic interactions with particles of species a,

and J  is the rate of loss of momentum by species a per unit volume and

time due to inelastic interactions with particles of all other species

and the radiation field.

Conservation of energy for species k is expressed by the following

equation.

U ( <E X + 2 P1 a + p^ 	 Q^) ul + q  )
x

=n1eAEuX+u^)~
I^ P)A, I + Y. EXX I + /►

(2.3)

where e X is the average internal energy per unit volume due to species a

and qc is the conductive • heat flux. The first term on the right hand

X



27

side of equation (2.3) is the energy dissipated by Joule heating and the

second is the rate at which work is done on species a per unit volume and

time due to elastic interactions between specie°s X and the other species be-

cause of the fluid notion of species X. In the remaining terms %. Xl is the

rate of energy gain by species A per unit volume and time due to elastic

encounters between species X and N' because of thermal motion of the parti-

cles and Q,^ is the rate of energy gain by species ), per unit volume and time

due to inelastic encounters between species X and all other species because

of the thermal motion of the particles and radiation.

Equations (2.1) and (2.2) may be used to reduce equation (2.3) to

the following alternative form

d

Elastic Interactions

Assuming that the degree of ionization in the gas is sufficiently

small that only binary collisions are important, the following kinetic

theo •y expressions give the net momentum and energy transfer between species

x and	 [41] 0 	 ( 42].

PTA 	
m	

'	 ,,n..'

A
J 

;s 
'AA {
	 ) f'Nf), , dv

'
,dv-A { c . 5 )

YX
r

"M	
_ -	 +,	 n?,n.,,^

g.G^ SWX,(g) fXfN ,dvNdvX, - ^PNA'
(2.6)

:1J

In these expressions g is the relative velocity of the particles before
.0

collision, G is the center of mass velocity of the particles, f T i y tole
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velocity distribution function of species X, v* is the total velocity

of species X equal to U), + c1 where c
',
 is the thermal velocity, and

S),T, is the diffusion cross section between species W and A'.

It is reasonable to assume the time required for each species

to establish a Maxwellian distribution of thermal velocities by self

collisions is short compared to the time required to exchange energy with

other particles [431. Accordingly, the velocity distribution function

in equations (2.5) and (2.6) are assumed to be Maxwellian at a particular

species temperature TX . The species temperatures are equal only if

thermodynamic equilibrium between the species is established.

In addition to the distribution functions, the cross sections

S.,,, are needed to evaluate the integrals in equations (2.5) and (2.6).

They are given by.the following equations [4), [42), [44] -[47).

4	
9k3 T

S = S =	
xe	 In [	

e
---- e 	(2.7)

ee	 ei	 2(k Te ) `	4n n  e

S _ n e4	 In 
j 
yk3 

Ti
	

(2.8)

( k Iri )
	

n n i

Saa = 1.7 (10-14 )Ta-	 cm`
	

(2.9)

Sia = 1.4 (10-14)
	 CM 

.4	 _16
[- .35 + •775 (10 )Te ) 10 cm2 if Te > 104 ^K

Sea =

[.39 - -55140-4 )Te + .595(10-
8 ) e J
1 0

-1
 cm 

if Te S 104 0K

(2.10)

(2.11)
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where the subscripts i, a, and a stand for ions, atoms, and electrons.

Using these cross sections and the Maxwellian velocity distribu-

tion functions the integrals in equations (2.5) and (2.6), correct to

first order in (me/ma )1, are [4], [19], [i+81,[51]•

m	 i

%i = - Pia -	 ,(2 nani	 ^c(Ts + Ti)	 Sin (U- ui )	 (2.12)

(
m k T ^,

Pae = - Pea = - 3 ,F2 Wane +, 
e 
x 

e	
Sea(ua ue )	 (2.13)

g	 / mek Te I
Pei - Pie = - f` nine \.^._.l	 3ei(ue - ui)	 (2.14)

	

mek 
Tee.	 Sei

Wei	 - Fie	 - 8 -T2 nine ---	 J	 m-._... I k(T e - Ti)

(2.15)

+ I(ue - ui)(mi 
(ui - ue	 e) + mue)^

/ S 	
'-

Fae - Ee8 - 8 F2 nane ( me- ^- a \} mea l k(Ta - Te ) + 3(ua- ue ) a e^

	

`.	 1	 i L

(2.16)

	

r k(Ta + Ti) 1	 1
Sai - Fia . - 2 ,[2 nand	 m	 S [k(Ta - Ti ) 

+ 3(ua - ui )miu1 J

	

(,	 i	 JJJ

(2.17)

Pressure, Viscosity and Heat Conduction

The partial pressure p,, viscous stress 
u  

and conductive flux qc

are assumed to be given by the following familiar formulas.

p-A = nx k Tx	 (2.18)
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4
dul

v^ s 3 µJ S dX

dTl►
qc l ` - kc k dx

(2.19)

(2.20)

The viscosity coefficient µJ and thermal conductivity coefficient
a

k  are given by the following classical expressions [4], [48j.
1

ca
µ^ r •-- nAm k cT + ^	 (2.21)

	

32	 \	 ,

kcl
	 41
	 (2.22)

In these equations c  is the mean thermal velocity of species K.

8k T	 2
c	 1	 (2.23)
a ` t n In ` 1

and Lo  is the frequency of collisions of species k with all other

particles.

2m,^

Wk 	 ..^ n.,S.^^' 
(cX + c ^, )	 m" m ,	 (2.c )

Noting that me/ma << 1, the viscosity and heat conduction coef-

ficients may be written as follows;

i
z 	 ni Sia Ta

	

µQa - ^-5-S 	(A ma k Ty 	 + na Ssa `` 2 a	
(2.25)

	

5ni	 I	 / Ta+Ti z	 niSii -Ti
µg	 - 1 S n (n mik} Ti	 '--

	 )2

 +n S--^ T +T I (2.26)
i	 is a^	 a is	 a i

µ	 = o	 (2.27)

Oe
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15k	
2.28kca'gy m` 94a	 ( )

k 	
9J 
	 (2.29)

k	 75...E k 1 + 2	
f2 Sea na	 , -1

(1 + , 2 
)See n 

The relative magnitude of these coefficients depends on the amount

of ionization that has taken place through the ratios nisia/''aSae^

nisii
/naaia, etc.

Inelastic Interactions

Inelastic interactions are collisions in which the internal energy

of the collision partners is permanently changers. r-;ach species may

gain or lose energy through inelastic collision processes.

Processes of this kind are the inelastic electron-atom (e-A) colli-

sion process

e + A(1) r e + A(2)

e + A(2) ♦ A + e + e

and the inelastic atom-atom (A A) collision process.

A(1) + A(i) + A(2) + A(1)

A(1) + A(2) : A + + e + A( 11

Particles may also exchange energy with the radiation field.

Consider how the a-A process will affect the particles in a unit

volume of gas. There are n  electrons in the unit volume. Suppose one

electron is produced by the a-A process. The electrons which cause the
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ionization will lose energy equal to the ionization potential X plus

the energy of the created electron. The average energy of the created

electron is T. T'ue original n  electrons will establish equilibrium

by elastic collisions among themselves. Thus the n  original electrons

collectively lose energy X + T in creating one electron of average

energy T. There will then be n  + 1 electrons in the unit volume,

n  of which have lost the energy X + T and one which has gained energy

^. No energy is lost in the unit volume by equil.ibr-+ting the created

electron since the required energy ff k T  -	
will be lost by the

original n  electrons but 1iained by the created electron. The net

energy loss per unit volume is therefore just X. if neA 
is the net

rate of production of electrons by the e-A process, the total energy loss

per unit volume by this means is -neA X.

Since	 kTa +	 c► ua is the a,;erage energy of an atom, and

the a-A process destroys atoms at the rate -n eA , the atoms will collec-

tively lose energy at the rate -nea (^ k Ta + f ma ua) . Similarly

the ion gas will gain energy at the ratenea( k Ti +	 miu'a

Electrons are ineffective in transferring momentum with ions and

atoms because of their small mass. Approximately the rate of momentum

exchange by the e-A process for the electrons is zero, for the at=4 is

-n
eA a u  and for the ions is neA m  ui.

Similar considerations for the A-A process and radiation lead to

the following formulas for the inelastic momentum and energy exchange.

,1e = G	 ( 2.31)

is = - n ma ua	(2.32)
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ii s 
n m  "1	 (2-33)

Qe - - n  X + A
AA TO + nrad Trad	 (2' 34 )

d
. - n ( 3 kT + 1 	2) - n ( X +t ) - 

9R	 (2.35)a	 7	 a	 a s	 AA	 AA	 dx

- nrad (Irad + X)

Q1 = n(	 kTi+X+ ^miui )
	

(C•-  )

where	 TAA is the average energy of electrons when created by the A-A

process) Trad is the average creation energy of photoelectrons ) AAA is the

rate of production of electrons by the A-A process, 
nrad 

is the rate of

production of electrons by the radiation field and n s neA + nAA + nrad'

The Flectric Field

Steep gradients of electron anti ion densities in the shock wave

will cause diffusion of electrons relative to the ions. The resulting

charge separation creates an electric field. The electric field is found

from Poisson's equation;

The diffusion is impeded by the electric field it creates. A steady

state is reached when the diffusion is gust balanced by the drift from the

electric field. It is assumed a steady state diffusion is maintained in the

shock wave. The net current then is zero.

eniui-eneue=0
or

a  ui= n  ue	 (2.38)
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Internal Energy

The internal energy due to the thermal motion of particles of species

X is 3/21tTX since the particles have a Maxwellian velocity distribution
at the temperature TN. The internal energies of the atoms, ions and elec-

trons per unit volume are:

n  ( 7 k Ta + #a)	 (2.39)

F^ = ni (	 k Ti + X)	 (2.40)

Ee = n  T k Te	(2.41)

where *Q is the average electronic excitation energy of the atoms. For

the calculations to be performed *a	 is negligible compared to the

thermal energy of the atom.

Simplified Nondimensional requations

It will be advantageous to refer the variables to characteristic

values in order to aid in the estimation of the relative magnitudes of

terms in the equations. Let the characteristic values be denoted by a

subscript U. Then the barred variables

TX 	 u?,	 pa
T^ = T

o 
,	 = u ,o 	 P^ = po

will all have a value near one. Let l be a length which is typical of

the extent of the chemical and radiative portion of the shock wave. It

will be on the order of a centimeter for the shock waves to be considered

in this thesis. let x = x;4 be the nondimensional coordinate.

In addition to the length I there are several other characteristic

lengths which will appear in the equations. Those which are associated
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with the momentum and energy exchange are presented next.

In the course of the presentation to follow it will be shown that

charge separation is negligible for the shock waves to be investigated.

Then ne . ni and the species concentration may be related to the degree

of ionization by the following formulas.

	

ne . ni : ^ m	 na	 (1 - oc) --	 (2.42)

	

a	 a

Using relations (2.42) the lengths characteristic of the energy and

momentum exchange processes may be written as follows.

T 1^4

l	 ^°	 a	 (2.43)
as	 _	 as

	

y 2 Sas n 	 (1 - a) P

where

m T 1/4
`aa

,-2 (1.7) ( 1fl-1^^) Po

l

	

pia '	 lia -- 1 ---	 (2.45)

	

,^2 
Sia 

na	 (1 - a) P

where

M
°	 a	 (2.46)
is

,F2 (1.4) 10-14 Po
2
T /a p

	lei . A1	
. 

lei	

t	
(^c•47 )

r2 Sei n 	 1 + 1 
in

c 	 (e ! P)
ei

where

	

Lo	
ma	 8(kTo)`	 ma

(	 -	 ----
	 (2.48)

	

ei	 me	 ^2 	 Po °ei

and
3 s

	c s ^ ( 9k To	 ^	 (2.45)

	

ei	
4s Po e
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^^ = joy	 1

where

j° _ ( ma

	

a
es	 me 

-f2  Po Sea (TO)

(2.50)

(2.51)

and Sea(Te) _ %a (Te)/ %,(TO). Using the reference values T O = loll OK

and a density of p° • 2.13 (10 5), gm/cm3 (which is the density come-

sponding to a pressure of 1 cm Hg at a temperature of 300*K) the following

values are found.

	

'aa = 1.31 (10 -4 ) cm	 l0a = 14.3 am

li	 1.58 (10 ) cm	 lei	
.S (10.2 ) cm	 (`'S`)

cei = 6.86

From these formulas it can be seen that the lengths for heavy

particle partners, las and lia , are considerably smaller than those

involving electrons, lea and lei'

An appropriate nondimensional electric field is

F	
F
	

(2.53)
( k TD/e JD)

where AD is the Debye length. In terms of nondimensional variables

the Debye length is

T

	

ID = 1p ( e
	

(2.54)
u A

vhere

m k T
o	 s	 o
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For the Satan values of the reference variable as used above, A0 is

found to be 1.21 (10
-6

) cm. The Debye length is much smaller than any

other length in the problem.

SubstltuUt g the fOMQU developed in the Let section and the

nondimensional variables from this section into the electron momentum

equation (equation (2.2) with X . e) and noting that %4< ma produces

the following equations

( ne Te )	 - rie 7. TL + -- --	 ( ua - sic ) 
+ lei 

(sit - ui ) (C.56)
D

where the parameter a : kT0/mauO is a typical ratio of thermal to

kinetic energy of the particles. Since ID <'C A., 	 first term on

the riSht hand side will be the dominant terms In the equation. Unless

the gradients in n  and ire are large the electric field must be small In

order to preserve the equality. it will be assumed that $ is small

throughout the region which has characteristic length 1. Equations

(2.37) and (2.313) then show that there is no charge separation and no

diffusion of electrons relative to ions,

n 	 a n 	 (2.57)

U  = u 	 (2.5$)

This justifies the previous use of relations(? (PAL) which will. be used

frequently in the equations which follow.

Consider now the equation obtained r .-i addin6 the cletAron momentum

equation to the ion momentum equation. This is found by summing equation

(2.2) over the electron and ion species. Using the result just obtained,
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ni . ne and ui a u4, and the formulas specified in the previous sections,

the nondiesnsional form of this equation is found to be

r

s	 (P ^) +	 P {Te + Ti)
Ca I

due

	

L	
Ti dz

la5 FT  P 

-fa + Ti	
lia	

2 Ti

Ta + Ti

= 
4

tra (ii. ua - e ) a p 2	 Yet +	 (a + Ti )'	 (2.59)

ea	 is

Since the ratio A 1, which appears on the right hand side of the
is

equation, is very large, the gran atom velocity u  must be very nearly

the same as the mean electron velocity u  in order that the equality

be true. Consequently there is negligible diffusion of the species

relative to each other.

a = ue =ui .0
	

(2.60)

The nondimensional form of the ion energy equation (equation

(c^.3) with 'A = i) is:

r

Q Pu	
-dT	 d I 75 2Aa lig a P

	

dx	 dx iL 16

_ dTi

Ti dx

!a+ Ti I1 + aia 2T )

2 L 1i ( +i- Ta Ti
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2
T (du^

+CYadu -^ 2a j^^
	

i di

^c
r Ta	 i	 1 + pia

	

L	 ` ^- -- }
ii 

Ta + Ti

s	
n	 a P (Te - Ti ) + n Eton

	

ei	 N

a	 (,	 1+2 n	 C1 P- (Ta+ J2 fa Ti )	 (2.61)
is

m
where N	 t u a is a characteristic convective rate.

0

The largest term on the left hand side of this equation is of

order a. On the right hand side of the equation the term containing

the ratio	 and the term containing the chemical reaction rate n
is

will have the largest values. If the chemical rate were-zero, the atom

temperature and the ion temperature would have to be very nearly equal

to preserve the equality since the ratio 	 is very large. However,
is

if the chemical rate is sufficiently high, the atom and ion temperature.

can ' ffer. For the shock waves which are considered in p his thesis the

chemical rates are sufficiently small that differences in the atom and

ion temperatures are negligible. Accordingly, it is assumed that

	

T  = Ti
	

(2.62)

The assumptions just discussed greatly simplify the problem for

they have reduced the dependent variables to the following five quanti-

ties; a, p, u, T.J. and Te. The equations which will be used to calcu-

late these variables will be the total conservation equations, the

electron energy equation and electron mass conservation equation.

i
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The total conservation equations are obtained by summing equa-

tions (2.1), (2.2) and (2.3) over all species.

The nondimensional form of the total mass conservation equation

is

p u • CM = 1
	

(2.63)

The constant CM is chosen to be one. This means that the reference

quantities must be chosen such that p  o is equal to pu at some point

in the shock wave.

After summing equation (2.2) over all species, substituting the

nondimensional variables sad integrating once, the following equation

which governs the transfer of momentum is found.

1 + a p(Ta + a Te) 
Y3 

^2na ^(1 - a) p 0 1. a/
P	 as/lia

+	 Sial1
	

du_ C
^P 1 + 

Aia Sii I a	 P

where C  is the integration constant. The last term in this equation

is the viscous stress. This term is negligible since the ratios Iaa

and	 are very small and the velocity gradient da is assumed not
dx

to be large. The equation of momentum transfer for the gas is therefore

(2.64)

The equation of total energy conservation is obtained in a manner

similar to that used to derive the total momentum conservation equation.

The result is
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2 (Ta +a$e)+aTion + 2"+ ' R 3
2iap	 a Po u3

	--2 2a	 Iaa/l	 • -	 Ball	 - du

	

12 
N	 {	 (I - a)Ta +	 a OT! u --

l 1 + ^aaia	 1 + Aia1Aii	
di

	

r laa/l	 lia/l	 dTa

	

^'"'^.I 1+l	 (1-Es)pT^+1+	 !	 ap	 12

	

^	 as is	 i ii	 a .1 di
X

I /l dT

	

7", F1- a	 ee	
a p T	 o- Cg 	(2.65)- zt .

	

( 1 +,(•2)(1 +	 `r2	 lee )	 di
1 + f2	 ea

t. where C E is a constant resulting from the integration of equation

(2.3). The last two terms represent thermal heat conduction in the

gas and the one preceding these represents viscous dissipation. The

terms containing the ratios laa and lj are clearly negligible but

the term containing the gradient in electron temperature car be impor-

tant. This term represents heat conduction in the electron gas. Its

larger magnitude reflects ..he fact that the electrons are good con-

ductors of heat. As can be seen from equation (2.47), the quantity

a Lee , which is the magnitude of this term, is sufficiently small for

the range of variables of interest in this thesis that heat conduction

in '.he electron gas may be neglected. The equation of energy conserva-

tion then reduces to the following form.

2 (Ta + a ++ a Tion + 1 c 
+ .." . ° k^	 (2.66)

2a p	 a po 0
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Equation (2.4) evaluated for A s e is the equation which de-

scribes the energy balance for the electrons. 8ubstitU#04 t 	 .

formulas developed in the preceding sections into this equation and

noting that %/ me << 1, the following nondimensional fora of the elec-

tron energy equation will be found.

/^	 dT
_ d ^	 gee	 a p2	 _	 _[	 e 	 ]	dx	 di	 12 Aee l	 dx`,	 1 + f 2 ea

	

du a 	a	 +	 - — Y	
" " - —

+ at 
p Te dx
	 ^R jea	 'lei	

o P IT (Ta _ Te ) ` N Tion

+ AAA tAA + nrad trad _ n	
T	 (2.67)

N kT	 N	 KT	 N 2 e
0	 0

Conduction and convection of energy in the electron gas is

described by the terms on the left hand side of this equation. The

gain in energy of the electrons by elastic interactions, inelastic

interactions, and the creation of electrons by ionizing reactions is

accounted for by the terms on the right hand side of the equation.

When the rate of production of electrons is sufficiently slow

the right hand side of equation (2.67) reduces to the single term

^	 1

+ lei
L )  ap e (Ta - Te)I ea

This term represents the energy gained by electrons because of elastic

interactions between the electrons, ions and atoms.

i
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Jaffrin (4] has studied shock waves in ionized argon assuming the

rate of production of electrons to be zero. Equation (2.67) reduces to

the electron energy equation used by Jaffrin when the rate of production

of electrons is zero. In addition Jaffrin neglects the radiative heat

flux %. He finds the shock wave consists of a region of the order

lee thick in which the electrons are rented b* conduction and elastic

interactions with ions and atoms. Imbedded in the region where heating

of the electrons takes place is a much smaller region of the order 'pia

or I., thick in which the atoms and ions experience a viscous shock.

For the shock waves studied in this thesis the rate of

production of electrons is not negligibly small. Heating of the

electrons by conduction and convection, however, is negligible because

either a is small, or a tee 	 small or the gradients in T  and u

are small. Consequently the electron energy equation reduces to

_ _ 	 n
^a	 ,t	 l	 - --	 eA	 AA AA
8 n e

a 
♦ A	 P Te (Ta - Te ) - N Tion + N kTo

(2.66)

+ 'grad ' Sr^ad - n a- T s 0
kTo	2 e

When all ionization processes except the electron atom ioniza-

tion process are ignored equation ( 2.68) reduces to the equation used

by Petschek and Byron ( 19] to describe the energy balance of the

electrons.

The final equation needed to completely determine the problem

is the mass conservation equation for the electrons (equation (2.1)

with A a e). The nondimensional form of this equation is

i --
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dx	 p
(2,69)

(2.69)

Summary of Equations

The simplified nondimeusionsl equations which are used in this

thesis to describt shock waves in radiating and ionizfag, argon are:

The total mass conservation equation.

pd = 1

The total momentum conservation equation.

1 +ap(Ta+aTe)aCP
P

The total energy conservation equation.

_	 q
2 (Ta + cY Te ) + a Tion + -1- + --R — = CE

2a p	 a Po U 

(9.63)

(2.64)

(2.66)

The electron energy conservation equation.

••^!S
, 	 _

( `	 L)	 o	
-8 	 a+ l a p Te (Ta - Te) 

n

N 

eA 
Tion

(2.68)

"	 n	 n 
I	 aoAA AA	 Arad rad	 —+ ^' T + '" kT r 2 eN	 o	 N	 o	 N

The electron mass conservation equation.

da	 n

dX	 H

It remains to give detailed expressions for the ionization rates

and the radiative heat flux. This is done in the following two sections.
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Ionization Rates

In order to compute the rates II.A, ;AA and 
Arad 

it 'a

necessary to know the population of all electronic energy ,	 Of the

atom which contribute to :,he rates. In many instances one process, for

example, electron collisions, is dominant in populating these states and

a Boltzmann distribution of the population of excited levels can be

assumed.

However, in the present problem no one process is necessarily

dominant in populating all the electronic states of the atom. For

example the upper levels might be affected most by collisions of the atom

with electrons, but the ground level population might be affected most

by radiative interactions.

In theory it is necessary to calculate the population distribu-

tion of the atom by solving a rate equation for each level, taking into

account all the ways by which the population of that level can be

changed. Such a calculation has been performed for atomic hydrogen

(the only gas for which the collisional and radiative cross sections are

known in sufficient detail) assuming the upper states of the atom to be

in statistical equilibrium (521 - (561.

A detailed analysis of the population of excited levels in

argon cannot be made because of an insufficient knowledge of the neces-

sary data. Wen if all the necessary data were available it would be

desirable to simplify the calculation by making a reasonable model of

the actual case.

The L.odel employed in this thesis is based on the fact that

electron-atom collision rates greatly exceed other rates for those
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levels which are close to the ionisation Limit of the atom 1521- 1%).

Consequently these levels will establish equilibrium with the electrons.

Since the excited states of the argon atom are all within about 4 ev of

the ionization limit, the excited states of the argon atom are assumed

to be in thermodynamic equilibrium with the electrons.

Since the excited states are in equilibrium with the electrons,

their net rate of production of electrons is zero. All of the free

electrons must be supplied by the ground level. Ground state electrons

are released by electron-atom collisions, atom-atom collisions and

radiative interactions.

The collisional reactions depleting the ground state are

K (1)2)

A(1) + A	 .f.—_ A(2) + A
KA(2,l)	

(2.7G)

Ke(1,2)

A(1) + e	 A(2) + e	 (2,71)

Ke(2,1)

where index l d,tnotes the ground state and index 2 the excited state.

These reactions are followed by a rapid ionization from the excited

state.

The rate of change of population of state 2 due to atom-atom

collisions is

fi (2) = KA (1,2) na n (1) - N(2,1) n(2) na - n+ (2)

where n+ (2) is the rate of ionization f rrm state 2. Since state 2 is

in equilibrium with the electrons, its net ionization rate must be zero.

Consequently the rate of ionization by atom-atom collisions is



47

fiAA a KA(1,2) n& 	 - K, (2,1) n(2) %	 (2,72)

where the rate coefficient KA (1,2) is shown in Appendix A to be

	

20A 	 3/2 	 Tex- Tex/Ta
KA (1,2)	 (k Ta )	 I TQ + ;i a	 (2.73)

In equation (2.73) TeX - 1.34(105 ) *K is the excitation temperature

for the first excited state of the argon atom and C A - 7.5(10-8),m 2 /erg

is a constant used in the expression for the atom-atom excitation

cross section.

At equilibrium 
LAA must be zero and the population of the

etumic levels must be given by a Boltzmann distribution at the atom

temperature Td . In the limit of equilibrium equation (2.73) bhows that

KA (1 0 2) is related to KA (2.1) by

KA(102) _ ( 
n 

1 1
F P Ta

KA(2,1)'g2e-Tex/TaKA(2,1)
	 (2.74)

L
	

gl

where g  is the degeneracy of state A. Consequently the atom-atom

ionization rate may be written as

n	 - K (1,2) n n(1) I l _ n(2)/n(l)	 1
AA	 A	 a	 L	 [n(21/`n(1)jROT j

e

KA (1,2) n =n(1)1 1 -
n( 2) al T ex Ta

n1 g e
	 1

^	 J
(2.75)

Since state 2 is in equilibrium with the electrons, its population

may be found from the Saha equation.
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2	 3/2	 1tTne	 2(2x me k Te )	 X2/ e

n2 '	 e
92h 

where X2 is the ionization potential of state 2.

The population of state 1 which would exist if it were in

equilibrium with the electrons, n(1) S T: , is found from the follow-^ e

ing similar equation

ne	 2(2rt me k Te) 
3/2	

- X^kT0

n(+) : T	 h3e	 gl

Therefore the ratio of the population of states 1 and 2 my be written as

n(2)	 n(1)$ T 92 -Tex/Te
n ( l) * nl	 Bl z

The firs ' , excited level of the argon atom is separated from the ground

state by an energy gap of about 11.8 ev. Because of this large energy

gap, it is a good approximation Vat

n(1) - % - (1 - cX) o/ ma	 (2.76)

n(1)H IT -
	 a [1 - N ( Te )) P/ a	 (2.77)

e	 E, Te

where crg(T.) is the degree of ionization which would exist if the gas

were in equilibrium at the electron temperature and is given by the

following formula.

2(me)	 -	 pion .T 3/2 e- Tion/Te	 (2-78)
1 - acg (Te )	 Tio
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n(2 = 1 - % (Te) 
a
-TOX/Te 

82
__' _'	

1 - tic	 71
(2.79)

Using equation ( 2.79) in equation (2.75) the atom-atom ionization rate is
	1 	 1

`2	 1 - a (T )	 -T -g- - ---

;AA 	 a)2( - ma J KA (1, 2) [1 - i _tea ^- e	 e	 (2.80)
\ a

In a similar way the electron-atom ionization rate is

neA = 1 0	 Ke ( 1 , 2) a (ta .g (T.) - a )
e

(2.81)

where Ke ( 1,2) is the forward reaction rate constant for the electron-

atom reaction. It is shown in Appendix A to be

3/2J Tex	 -Tex/Te
Ke (1,2) 2C g^ ^^ m (kTe) t T + 2^ a	 (2.82)

e	 e	 ///

In equation ( 2.82) Ce = ^+.4 (10 
fi
 ) cm /erg is a constant used in the

formula for the electron -atom excitation cross section.

When the degree of ionization is small the atom -atom rate is

larger than the electron-atom rate. by substituting equation (2.80)

into equation (2.68) and assuming the degree of ionization is small,

it can be seen that as the degree of ionization decreases the electron

temperature also decreases. Consequently for small degrees of ioniza-

tion the collisior,al ionization rate reduces to

(n	 + n }	 (1 - ^) 2 ( m ) KA(1,2)
AA	 eA a J	 a

It may be that just behind the viscous shock the degree of

Ionization is so small that there are insufficient electrons to establish

equilibrium with the excited states of the atom. Equation ( 2.79) is
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then invalid. dust behind the viscous shock, however, it will be true

that

n(2) /n(l)	 1
Ja(2)/n(2)1'27a

	

and equation (2.75) abovs that the collisional rate will be the as 	 as

the expression just given for lov degrees of ionization. Therefore

although equations (2.60) and (2.81) are invalid for very small degrees

of ionization, their limiting values are correct. Consequently the ioni-

zation rates will be assumed to be those given by equations (2.80) and

(2.tlt for all degrees of ionization.

In the equations developed in the last section the ionization

rate always appears divided by the characteristic convection rate N.

Dividing equations (2.80) and (2.81) by i and expressing the result in

terms of nondimensional variables gives the following equations.

•	 t	 -2— 3f 2f hex	 ^^ - hex' 
"a 1 - tt^ {Te} -Tee

n^ -

(`
	 _ L^ (1- cx} p Ta ( 

T	
t 2 

J ^e	 - 1 - oc	
e

r	 \	 J
/•	 a

(2.83)

- reA- 	 a [a,(Te ) - a) p 2 Tea/2TeX * 2 e- T*X e

N	 eA	 C T
e

where 'AA and IeA are characteristic reaction lengths given by

^n	 Ce	
a

.6 AA	
2C A u2 a3/2	

CA	 a	 eA

A o 0

(2.84)

(2.85)
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Notice that the electron -atom rate depends on the electron

temperature and the atom-atom rate depends primarily on the atom tempera-

ture. When equilibrium is reached Te - s and of - aZ(Te ). The rates

then are zero.

The radiation ionization rate is derived after the next section.

NoNon-Grey Radiation E.2 M Transfer- ^+ter n 	 r r - - n ^..rr

The gays in which radiative interactions take place in a mon-

atomic gas are descrited by the following reaction equations.

A(p) + h v * A+ + e	 p = 1,2,3	 (2.86)

and

A (p ) + h v 4*10-' A (q)	 q > p	 p = JP 2 .. 3	 (2.87)

where A(p) denotes an atom excited to the p th electronic state.

Appendix B shows it is possible to write a radiation transfer

equation for each of the radiative reactions in equations (2.86) and

(2.87) and each eradiation transfer equation has the same form as equation

(1.24). Let the radiative reactions be labeled by the subscript j. The

rad+9tion transfer equation which corresponds to reaction j is

dI (x, µ,v)
µ:a	 _ - 1x,v

	
(I (x, N, v) - S 3 

(x, V)]	 (2.88)

The meaning of the terms in this equation is exactly the same as for

the corresponding terms in equation ( 1.24) except they apply to the

jth reaction only. For example 13 (x, µ, v) is the intensity of radia-

tion from the jth reaction alone.

i
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The total iateasity In the am of the individual, inteaaitiea

froze all the radiative reactions.

I(x, µ, v) _ zi i (X.- µ, V)	 (2.89)

If equation (2.86) is stmaed over all the radiative reactions, equation

(1.24) is obtained.

dI (x, µ, v)	 dI(x, µ, V)	 1

i	 I (x'V)
J	 4

where the penetration length A(x,v) and the source function S(x,v) are

the followin;; functions of the penetration lengths Ii (x,v) and source

functions S
i
(x,v) for the individual radiative reactions.

I	 = 7 1	 (2.90)
.t(' V	 J d^(X, V)

S(x,v) _	
(X. V)	 S (xp V) 	 (2.91)

Unce the individual penetration lengths A
j
(x,v) and source functions

Sj (x,v) have been specified, equations ( 2.9U) and (2.91) can be used in

equations (1.26) and (1.32) to calculate the radiative heat flux.

For the photoionization reactions (2.86) the following formulas

for the individual penetration lengths and source functions are derived

in Appendix b.

n(p)	 -hv/kTI lx'v = Bpc (v)n(p) 
1 - n(p^ a
	

e^	
(2.92)

P	 a
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x v	
n(P)S 2hv3 ehv/kTe - n(p)S.Y ( } w(P)cam. j	 n p 1

(2. 53 )

where u(p)g is the population of atoms in state p which would exist

if level p were in equilibrium with the electrons and ions. It is

found from the following formula.

neni 	2(2x me k Te) 3/2
a
 - p/k %

^ (^ y4),x 	 c.
g	 h g

P

In equation (2.$4) p is the ionization energy at level p and g p is
the degeneracy of state p.

The quantities Bpc(v) in equation (2.92) represent cross sections
for photoionization from level p. In the derivation of equations (2.92)

and (2.93) the electron energy Was assumed to have a Boltzmann distribution

at temperature Teo

As in the sections on ionization rates all but the ground state

are assumed to be in equilibrium with the electrons.

n(P)g = n(P)	 P = 20, 4, ..0

and for the ground state

n(1) _ . s

n(1) $ 	1 - aE(Te)
nl	 1 - a

Using these simplifications the penetration length and source

d1T , v)

function for photoionization from the ground state are found to be

x	 a B^(v) a l- l- a e e	 e^	 (2.95)



1 -	 T) _ ^ -by/l^T	 1 . (T) - 1

(p•96)31(x, v)	 Ẑ--- .-?	 e	 e _	 1a a
c ^.

The source function given by equation (2.96) differs appreciably from the

Planck :unction only when a^(Te) is near one and a 0 cKz(Te).

For photoionization from excited states the following formulas

are found.

-hv/kT

^p x,y	 Bpc(V) A(P) ( 1 
- e	 e)	 p = x,3,4 ...	 (2.97)

2 hvJ1cT

Sp (x,v) _ 2h
	 (e	 e - 1}-1 = BV(Te } p = 2,3,4 ...	 (2.99)

72-

It is to be expected that the source function for photoionization

from excited states, equation (2.98), is the Planck function since the

excited state atoms have been assumed to be in equilibrium with the

electrons.

The penetration lengths and source functions for the photoioniza-

tion reactions (2.87) are shown in Appendix B to be

.
lx y	 n(p) pqs

n(q)

Spq(x,V)

r	 n(q)	 E3

P
(V) `1 -	 2) .^	 (2.99)q LL	 q

n(q)g ^	 1- 7 g J	 (2.100)

q	 q

Where Bpq is the total transition probability for the transition between

states p and q, and 0pq(V) is the line shape function.

Separation of Radiative Interactions

Radiation energy transfer is combined in the sense that the total

penetration length and source function depend on the penetration lengths
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and source functions for each of the individual radiative interactions

as shown by equations (2.90) and (2.91).

However, if for some range of frequencies one penetration length

is significantly smaller than all the others, the term in the sunsation

containing that penetration length will be dominant. For example if

sk(x,V) is considerably smaller than all other penetration lengths for

the frequency range v  S V S Vb, equations (2.90) and (2.91) will

simplify to

S(x,v) • Sk(X,V)

1	 1
x,V)	 1k x, j

Va S V S vb	(2.101)

VaSV 6 V	 (2.102)

These equations show radiation would be transferred in the frequency

range va s v S vb as if the kth reaction were the only radiative

Interaction taking place.

If the penetration length :tk(x,v) is assumed to be vanishingly

small compared to the scale of variation of gas properties, equations

(1.26) and (1.32) show the radiative flux for the kth reaction is zero.

Consequently reactions for which the penetration lengths are vanishingly

small may be eliminated from the summations in equations (2.90) and

Radiative reactions for which the penetration lengths are very

large may also be neglected since terms for which the penetration lengths

are large will not contribute to the su=atioas in equations (2.90) and

(2.91).
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Line Radiation. The photoexcitation reactions (2.87) produce

Una radiation. Huy of the lines may be eliminated free consideration

because the atomic levels free which the excitation proceeds are mot

populated. Squation (2.99) shove the penetration length is then very

large.

For those lines produced by photoexcitation from populated states

the penetration length at the line center is usually vanishingly Hall

and radiation energy transfer in the center of the line may be ignored.

However, the penetration length in the line wings my be such that

radiation energy transfer is important.

Murty (151 has examined line radiation in the precursor region

ahead of shock waves in hydrogen. He finds the excitation of atom

caused by the line radiation to be important to the ionization process

far ahead of the shock front. Biberman and Yakubov 1261 have concluded

that radiative excitation of atoms affects the approach to equilibrium

ionization for shock waves in argon.

However, it is advantageous to determine the effect of continuum

radiation without the considerable complication which accompanies the

analysis of live radiation ! For this reason further consideration of

line radiation is omitted.

Continuum Radiation. The cross section for photoionization from

the ground state, B 
1 

M, is zero for frequencies less than the fre-

quency of the ionization edge, v  - Xfh. ConsegAently for frequencies

in the range 0 S v S 
V  

only the radiation due to photoionization from

excited atomic states takes place. Squations (2.90), (2.91), (2.97), and

(2.93) then give
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S(x,v) ' Bv (T0 )
	

0< v< vl	 (2.103)

-hv1kT
lx'v a (

1 e	 e) ^ Bpc (v) n (p )	 (2.104)

pit
Shock tube experiments in argon show the continuum radiation is

well represented by the UnsOld formula [ 131, [1+1, [571. The basic

assumption used to obtain the Unsbld formula is that all the excited

levels are hydrogenic and closely spaced. Mies [ 581 and Dronov et al.

[591 improve this model by assuming all the levels to be hydrogenic

except for certain lower lying states which are treated in more detail.

In view of the good agreement of the Unsbld formula the refinements of

Mies and of Dronov et al. need not be used for the shock waves of

interest in this thesis.

The Uns6ld formula predicts the emitted radiation is constant at

all frequencies. Since the radiation must decay at the higher frequen-

cies, the radiation predicted by the Uns6ld formula is usually terminated

at some rather arbitrary cutoff frequency. However, in the formulas

developed below, which are based on the same assumptions as the Unsoid

formula, the radiation properly decays at the higher frequencies.

Assuming the excited states are hydrogenic, the Menzel and

Pekeris formula 1601 for the photoionization cross section may be used

in equation (2.104) to give

	

2 "V/'T	 A Z4	 - /kT
1	 =	

e n^	 off	 .^ l	 q a	 (2.105}
Y, v	

e

2hv 3	 e 2(2n mekTe ) 3/2 	
p 

4, e P3
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vhere K n m=e --2—^-- RY, Ry is the Fydberg constant, 7 n is the

^ 3
effective nuclear charge, 0 the Gaunt factor, I the energy of the photo-

electron. The suooation over the atomic state in equation ( 2.103) is to

be carried out at constant frequency• (basequeutly,the electron energy

is limited to values consistent with the requirement that the transition

energy, hv, be a constant

by = X  + n - constant	 (2.106)

where p is the energy of level p below the ionization limit

RY 2

X - ---- fr
P	 p2

	 (2.107)

Assume the states are closely spaced down to a level p, below

the ionization limit and regard the quantum number p as continuously

distributed in this range. Then from equations (2.107) it follows that

2h R Zeff
dX - - 3 - dp

p
and since by - constant = X + q

dX - - dn

The maxim,.,:. electron energy consistent With equation (2.106) is

that corresponding to X - 0 and is

Amex
= by

The minimum allowed electron ener&v consistent with equation (2.106) is

that corresponding to the largest value of X which ie XM.
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•0	 if hv<XM

%in I. by - ^	 if by >

Substitution of these results into equation (2.103) gives

	

^snx
2 hv/kTe	h3+ 

2

!a
	

0 

n f 
ea	

e

3	 e	 m kT 3 2	 R

	

;^(x,v)	 ?hv	 2(2^c a e	 '2hRI
^ia

Assuming the Gaunt factor to have a constant value and performing the

integration the result is

A z2
1	 K 	 a eff	

Gf	 {2.108)

(x, V)	 Bv(Te1	 rTe

where

	

K	 16 -- ^-Jt
-	 e 	 5.44 (-o`39 )
k m3 2 c 3

	

316	 e

1

f	 B (Te )	 V  
3

	H V Te	
(y )

M

ifV<VM =

if V Z V  = XM/h

At frequencies less than the frequency vM the penetration length

given by formula (2.108) is the same as that which would be fouad from

the Unsold formula. At frequencies greeter than v M the penetration

length given by equation: (2.106) differs from the Unsold result by the

factor f. Similarly for frequencies less than v M ,the intensity of

emitted radiation, which is B V(Te )/I(x,v),is independent of frequency,

but for frequencies greater than vM the intensity of emitted radiation

decays as 1/V3. The penetration length has a MrW frequency depeadsoee



through the Planck function MA VW faetOr.t.

Xov consider ground state photoionization, The cross section

for photoionization from the ground state of argon has been experi-

mentally deteralned 1611. It can be roughly represented by

60

= 0

B1C(V)
A

VBo V1 
,1

ifv<V1=X/h

ifV>VI=X/h

(2.log)

Where BO = 35( 10-18 ) cm  is the cross section at the ionization

threshold.

For frequencies equal to and larger than v1, the penetration

length for photoionization from the excited states,equation (L.1J8),

Will be very large. Consequently excited state photoionization

may be neglected compared to the ground state photoionization

When v z vl.

Collecting, the results of this section, the penetration length

and source function to be used in the calculation of the radiative

flux are

	

= BV(Te)
	 if09V9VI

'S (X,
	 (-.110)

1 - og(Te) 2hv3	
^(Te} -1

	

- a	 A 

(,hv/kTe

 - 1 - a

if V a V1
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2
K	 It off if0iygv

By	 IfTe	 K

1....

I(x,V)

i 
K'	

off G V14 5-----	
7)

if VM g V I Vl
V  

( Te ) I e	 \

.̂ 2 -	 1 -

v	

(Te) -hV/k2

anaRo 	 5	 1- 1-dc	
e	

e	
ifVI V

	

1)	
1

(2.111)

Clarke and Ferrari [5) have also studied non-grey radiation

energy transfer in shock waves with ionization. Their work differs

from this study in that they use different reactions to describe the

eollisional ionization process; they assume the electron and atom

temperatures are equal and they neglect photoionization from excited

states.

Reduction to Grey Radiation

Non-grey radiation energy transfer can be reduced to an equiva-

lent grey radiation energy transfer if the penetration length can be

written as a function of x times a function of v. Assuming this

write

A ( x , V) : G(J^ ¢(V)
	

(2.112)

The contribution to the radiative heat flux in the frequency

range v  S V S vb is

(2.113)
f Vb

Qab(x) = J % (x, v)dv

Va
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where gf,(x, v) is given by equation (1.32). Using equation (2.112) in

equations (1.26) and (1.32) and reversing the order of integration in

equation (1.32), equation (2.113) may be written as

oe

('ab(x) 
s 2n J	 sgn (T(.X)	 T(X' )1Jab(x,xI) d T'(;t')	 (2.114)

where J ab (x ) x') is the following integral

	

J (x, x') =' ld µ	 vbdv	 3(x v
	 e	 µ	 v	

(2.115)ab	 J	 .I	 ^(y)
Va

and T(x) is an optical len^^tn which is independent of frequency.

x

	

Tl,X) = j	 x	 (2.116)

	

J	 o(x' )0

Equation (2.114) for the _ediative heat flux is in the form expected

for a grey Kas where J is to be interpreted as a combined attenuation

function and source funrtion.

	

Consider the frequency range	 vl SV < co.	 Voting ,.hat

hv/kTe << 1, equations (2.110) and (2.111) give the following relations

6(r.) = r l^
a o

	

ff,

	 ^ c

	

^(V)	 — 1\ V1 I

	

l - o^,(T j	 2hv3	 -hvikTe(x)

L7
c

Using these formulas the function J(x, x') may be written as
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1	 a	 -hv1
6-  L T ( X ) - T(X')l

Jl.( X, X') ` V1 
1 - ^(Te) A

v 
(Te ) d µ 	

akTe	 µ( 1+O)2

1	 J	 j d6(1.+A)

0	 0
where Z1 is defined by

V = V1 (1 + G)

Since ( h vl / kTe ) is large, the main contribution to the

integral will be foi • small values of n. Assuming '^ << 1 and

-hVl

kT >> I T(X) - T(A')I , J l. (x, x') simplifiES to
e

1 - cz (T )	 kT
J^(..^x') = 1 - ^E	

e	
ht b (Te	 2) E(IT(x) - T(x') )
1 

quation (2.114) then ;;fives the radiative heat flux in the frequency

range V  < v < cc as

a+

1 - C ►" (Te )	 kT
@ IM ( x ) = 2% I	 1 - u	 1by (T e )

e 	

2li '6n (T( k ) - T( x ')) E [IT(x)
J - 00

- T(X')II dT(x')
	

("-,117)

This expression is in the form of the radiative heat flux for a

grey gas with an equivalent grey source function

1 - a (T )	 kT

1 - Ct	 AV1 (Te ) h e

and optical thickness

T(X) (2.11Y )-J r a x' LO

0

A similar reduction can be carried out for the frequency range

vM < v < V 1 .	 Adsuwing the Gaunt factor G and effective charge Jeff
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to be one, and noting that- y >> i, the following relations are
e

found from equations (2.110) and (2.111).

BIV I (Te)	
T

I I 	 e
A(x)

nP

V

¢{v)	
vDS

2ny3	
-hv/xTe

Substituting these relations intu equation (2.114) dives the radiative

hear, flux from the frequznr:y MrAge v,^ < v < vl as

kT

lt 'ril (i.) = %1Ij by ( rE,J }1e s8n [T'(?:) - T'(X' )Ii',' [ IT'(X) - T'(X' ))dT' (X' )

M-CO
(2.119)

where T'(X) is the foliowing optical thL,.Lness

x	 ?
K' n (x')

T'(x) =	
e	

dx'	 (2.120)

o	
A ( 0 (X')) TI( x 'v	 )

M

For f.equenc.ies between 0 and vj . the penetration length is

not exactly separable i.nLu a function of x times a function of v because

the combination kTe ^^ occurs in the Pi gn:ck function. However, the

penetration length may be written in an approximate forni which is

sepsra'ole. The penetration length in this frequency range is

JTTee	 Bv(Te
I (x '

v)	 - r ►v kT

K  n`	 1 - e	 e
e

,[Te B  
(Te )	 r(hv/kTe)

2
-hv kT

K' ne	 1-e	 `



where BM(Te ) is the maximLo value of the Planck func°ion at the

electron temperature T e . It is a function only of the electron tem-

:)erature and is given by

65

2(kTe)3
B (T ) = 1.421436
M	 (he)2

(2.121)

The ratio of the Planck function to its maxiwum value is r I' liv	 +
\kre

which is a function only of by
k

e

ny

	

ti	 i

^hy ^^	 BV(le'	 1	 \kTe '-	
122

	

r ( kTJ a 
Bit Te	

1421T'b	 by kTe

	

e	 - 1

A uproximately, tri g penetration length is

r h y

	

,I Te 
BM ( T 	

r
^ kTa v /	 (2.123)

	

K e
	 1 - e

where Tav is a suitauly chosen average temperature.

Using the approximate penetration length the following relations

are obtained.

	

NfT	 i„(T )
E'	 .•1	

,

6(x)	 _

n^e

r( hv/ t,T )
8'J

av
1 - e

S(x,v) 
= Bv(Te

	 B!1(T`) 
t• ` 

by	
J

av /

Substituting these fori,,ulas into equation (2.115) gives

4
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by

j

vM 	 kT

JoM ( x , x ') - BMITe ( X ')) 	 dA J	 dv (1 - e	
av).

0	 0
_ by

T" X) - T" x'	 ( 1 _ P
	

kT av )

µ r by kTav

. e

hvM /kTav

av B ['r ( X ' ), dµ 1	 dt(1 - e -t ) 
e µ r

n	 ^'^ e	 J	 J
U	 V

KT

E 
av 

BM ['Pe ( ) F[ IT" (X) - T " (A	 ^ )

hvM
where, noting ttia*.	 = TeX

	
the function F may be written

Tex/Tav

	

F ( t ) = j	 dC,(1 - e - ^)c% 2 f t	 lr ^^ -C	 )	 (2.124)

0

and T" is the following frequency independent optical thickness

x K I n2 W) 3x1

	

-JT f '(x)	 (2.125)

0 r ) Bhi [Te  (x') )

The contribution to the radiative teat flux from the frequency

w•ange U 1 v -& v 	 is therefore

w	
k'P	

1
l^ 0JV1 (X) =	 1l J	 15 ^( Pe ) 11 av sgn [ T" ( x ) - T" ( x ') J r [ I T" ( X J _ Tf, ( x' ) I J dTx ' )

0.126)

Although equation (2.120) has the form of a radiative heat

flux for a grey gas, it does not have the attenuation function 92

appropriate to a grey gas. instead the radiation is attenuated
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according to the function, F.

The attenuation function F was evaluated on an IBM 7494 computer.

The results for Tav equal to ten thousand and thirty thousand degrees

Kelvin are shown on Figure 2.1. The grey gas attenuation function 
E2 

is

also shown for comparison. F is much more sharply peaked for small

values of its argument than is E_. Both functions rapidly diminish as
If

their arguments increase. At the larger values of the arguments shown

in the figure, F becomes independent of Tav•

The differences between the functions F and E,
2

	that the

widely practiced procedure of using frequency averaged penetration

lf:n6ths in grey bas radiation energy transfer equations in order to

approximate the radiation energy transfer in a non-grey gas may be

erroneous because the grey gas attenuation function may oe improper.

The total radiative heat flux is given by the buw of equations

(2.117), (2.115), and (2.126). Dividing the total radiative heat flux

by po u3 which is the way in which it appears in equation (2.66),

and expressing the result in terms of the non-dimensional variables,

the following formulas for the radiative heat flux are obtained.

qR a r [ Qom( X )	 qM1(x) + QI.i;)) = r qh	 (2.127)
u^

P^ 
o

71T 

where r =	 o,^ is a characteristic ratio of radiated energy to
p u-

convected energyoand y' _ --	 (1.421436)-y: 7 is the itefan-

n
Boltzmann constant. The separate terms in this equation are
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0
0	 I	 2	 3

Figure 2.1. Attenuation Function F.



69

ql^(x)	
jg j p (1 - a$ ( TQ )Ir+	 I T  a FSu( T ( x )'T( x ' 

)JE2 I F(-)

	

\ Te 	 /	 -T(x') I Jdx'	 (2.126')

m

hex I al p , ITe agn IT' (X)- T' (x^ JEs2 I IT' (X)-T' (x') I Jdx'	 (2.1^.5)

!' p

; (X) = L 
J a2-2 're sgn(T"(x)-T"(x') IF[ IT^(X)-T"(x')^ Jax' 	(2.130)

ex
-a)

In these equations 
1  

is a characteristic length for the ground state

photofonization process and 
Iex 

is a characteristic length for photo-

ionization from excited states.

^r ,rC O )
=	 l	 teA	

o 	
(2.131)

po	 li' (P /m )2
a BO	

c) a

In terms of the nondA imensional variables the optical thicknesses

are	 7

	

T 	 I	 (1 - Co A dx'

o

x
C12	 dx

ex	 o	 r	 r(T 
ex	

)
e	 e

X
L -C

	

T it 	 _	 1	
a 7 /2

	

 dx'	 (2.13k)
ex ^J o	 ;FTe

It should. he noticed that these equations depend only on the

electron temperature, not the atom temperature. Thermal nonequilibrium

of the gas will therefore affect the radiative flux.
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The Radiative Ionization Rate

The rate of radiative energy absorption per unit volume of gas
dgR(x,v)

in the frequency range v, v + dv is - dx
	

Since the line

radiation nae Keen igno.ed, all the radiative energy that is absorbed must

produce ionizations. Each absorption process, that is, each ionization,

requires energy hv. The total rate of production of photo-electrons

is therefore

1	 d`ifi (~ 	 d	 gh(X'y)
nred - - J by	 ( iX	

d v	 - 77 J	 by	 dv

O	 U

%xccjA for the factor1 y , ttie inte,,ral in this equation is ,just like

that In Equation (2.113). Consequently the procedures used in the last

section to evaluate the integral in equation (2.113) are applicable

this integral. to tFr ►ns of the uondirrnensional variaL ,.es the radiative

ionization rats retioed U., the .aiara^teristic ,--onvective rate N is found

to be

ri	 1`• )	 la

Ml,
^X)	 ^

0:4 
`X)1

Iai -	
r d	 ^^'	 - 	 I	 (2.1'5)

N	 AA	
Irion	 Tex	 rav	 J

whert 
Q., 

Ls the Sallie 
aL;oI1 

given in equation (2.130) except that

the attenuation function F iti to be replaced by the function F' written

below.
00

^ _2	 (

U

R,IX) = f	 ( u^

	

IF Sfin ^T^^
/
?)	 T^^(X^)) F ^^ ITnIX) - 

T ^ i / X t ) I,^t
l	

ex _J	
1	 \	 \	 /

(2.136 )

reX^ rav	 -f
F' (t)  	 t	

] r-fie	
l	 (c.137 )

0

l^
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Numerical evaluation of f' shove it to be F.imilar to the function

F as may be seen in Figure 2.2.

Method of Solution,

The radiation flux and the radiative ionization rate are in the

form of integrals which have integrands containing variables which are

not known until the problem has been solved. Yet the problem may not be

solved until the radiation flux and radiative ionization rate are "own.

This ailemws is avoided by uufuW; a startit:6 solution to calculate the

radiative terms. The equations are then solved using the radiative

terms determined by the starting solutiun. The resulting solution is

used to re—valuate the raniative terms whicti are then used to generate

still another solution and so forth.

The starting solution which was used is that obtained by omitting

all radiative terms from the equations.	 The radiative terc:s determined

from this radiationless solution may not be directly used in the equa-

tions to generate another solution because this procedure does not con-

verge to the true solution rapidly enough to ee practical. instead the

radiative terms, obtained from the radiationless solution are inserted

in the equations arui multiplied by factors which make them artificially

small but not negligible. 	 The factors are chosen so that the next

solution does not appreciably differ from the starting solution. This

procedure is repeated, each time increasin g,; the factors which multiply

the raniative terms. In this way a series of solutions are generates,

each of which is not greatly different from the preceding solution.

When the factors are one the true solution is obtained by iteration.
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Figure 2.2. Special F'Luiction Fl.
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Knoving the values of the variables at an initial point x ,
1

the values of the variables at any point x may be found as follovs.

Using equation (2.135) the electron mass conservation equation

(2.69) becomes

	

Cx( 
x) = a 

+ r	 l.^ i ^ - 41. (x ) +
	

;M.,(;-,)   + 40M (i l ) - ^N (X )

	

i a	
T̀	 T	 T
ion	 ex	 av

X

	

+ -	 rl eA + n
AA \ dX'

	x.	 Ni
0.1311)

where c,,i is the initial value of the degree of ionization and the terms

and ^o,i are to be regarded as known functions of 2-from the

preceding solution. The integral in equation (2.138) was evaluated

using; a standard Runge-Kutta integration procedure. The integrana of

this integral is found from equations (2.83) and (2.84). It must be

evaluated at the values of a and x generated by the Runge-Kutta

method. This is accomplished in the following way.

!-.quations (2.64) and (2.66)may be combined to give

r
5C	 ^2a(C,.- aTion a gR )1 2 1

r _	 L	 2 5 c`	 J
4a (CB - ct Tion a qR )	

P

(2.139)

(C - 1 )	 1
ma +u re 	p	 Pa	 p (2.140)

The density p can be calculated from equation (2.139) using the

values of c and x generated from the Runge-Kutta integration. proce-

dure (qR is a known function of : from the preceding solution ).

Then equation (2.140) can be used with the electron energy equation.
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(2.68) to give T  and Ta.

The average energies ^A.A and 
trad 

which appear in the electron

energy equation are shorn in Appendix C to be of the order kT a or less.

When the electron-atom rate heA is the dominant rate, the terms in the

electron energy equation which contain the average energies are com-

pletely negligible. Just behind the viscous shock front the atom-atom

rate will be the dominant rate. There will then be some error in

determining the electron temperature if the terms containint; TAA and

frad are omitted from the electron energy equation. However, when the

atom-atom rate is the dominant ionizatiun rate an accurate determination

of the electron temperature is unimportant because then the atom-atom

ionization rate is independent of the electron temperature. In the

precursor region, where only the radiative rate is important, the

electron temperature need not be calculated because the degree of ioniza-

tion in the precursor region is so small that the terms containing the

electron temperature are eliminated from the equations. Consequently

the terms cuntaining the average energies ^ AA and ^ Ia ^ were omitted

from the electron enerE;y equation.

The constants Cy and (,g are J,of coursl determined from the

initial conditions at point xi.

Theoretically the initial conditions are known at x = - co ahead

of tnu shock wave. To start a numerical solution of the problem, however,

initial conditions must be knuwn at a finite distance in front of the

shock wave. In urder to find the conditions at a finite distance ahead

of the shock wave from those which are known at - co ) an analytical

solution valid far ahead of the shock wave is used.
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In the precursor region far ahead of the shock wave the gas will

be cold. The temperature will be so low that the radiative ionization

rate will be much larger than the collisional ionization rate. Further-

more Y the number of excited atoms will be small and consequently the

radiation emitted by electron recombination to excited states in the

shocked gas will not be absorbed. Accordingly equation (2.59) can be

integrated to read

CO

	

ma	
dv

+	 f — gh (x,v) = constant

	

1 	 hV

	

p,
	 J

o o	
vi

(2.141)

In the far precursor region the emitted radiation Will be neF,116i-

ble compared to the absorbed radiation. Consequently e q uation (1.21+),

the radiative transfer equation, uecomes

dl ( x Pi 
v	 - i (x, V, µ)
	

(22.142)

The radiation intensity at x = 0 is found from equation (1.z7) to be

OD

3(x,, v)e -T ( x ,v)/µ dT (x' ) V) if -1< µ 0

r	 ^
I(0,P JIV)	 _	 o

0	 if U < µs l

(2.143)

The solution of equation (:.142) with the requirement that the solution

at x = 0 be given by equation (2.143) is

I(x, µ, v) = 1(0, µ, V)e	 T(x' V)14	 (2.144)

Using the Eduington approximation the rndiafive flux can be

µ

related to the average intensity as follows.
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1

gR(X'V) - 2 I µ I ( x , µ,V) d µ - 4x µ I (X, V)	 (c^. 145)
-1

where µ is an average value for µ, assumed to bej, and the average

intensity, I, is defined by

1

I( X,V) = 2 j I(x, µ, v)d µ	 (2.146)

-

t;quation (2.142) may be integrated over µ to give

dgtt(X'v)	 = 4n dI(X,V)	
= - 4n I(x,v)

dT X,^!)	 dT X,V

Thr. solution to this equation is

I ( x ,v) = I ( O,v) e	
T(X,V) /4
	

(2.147)

Collecting these results the integral in equation (2.141) may he

written as

P u '

00	

so

 by q^ (x, V) = p u 2Yc^ 
by 

e
	 j
	 cl µ .

U O'	 O U
V1	 V1 O

	

W	 -T(X"v)/u 
dT (X' V

'	 `'(x^''') C	
µ

Using the penetration lengths and source function appropriate to fre-

quencies greater than v 	 from equations (2.110) and (2.111) this may be

written in the form

nia	
dv q(x,V) _ _ e	 ^1 ( )	 (2.148)

P u	 J by h	 a

V1	 ion
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In this equation all quantities have been referred to the known initial

conditions at z = - w

Po ` P( -o) , To ° T ( -•^),	 u0 . u(-..), etc.

except t and the variables in the integrand of Q(o) which are referred

to values typical of the hot shocked gas downstream from the precursor

region. Using 
1  

for the characteristic length 1, the optical thickness

which appears in equation (2.143) may be written as

X

T(x)	 J (1 - P dx	 (2.14;0

0

In a similar way, the radiative flux is found to be

W_
	 -T(X)/4	 _

qH ( x )	 4% J I (x v) dv	 e	 r ;	 (o)
a

V1

The degree of ionization in the precursor region far ahead of

-the shock will be negligible compared to one. Since the electron

temperature always appears in the equations multiplied by the degree

of ionization, the electron temperature may be omitted from considera-

tion in the far precursor region. The equations become

1 +a 
p a _ ^p

P	 T/ µ
Ta 

+ a ion ^	 1-2 + — e	 Q ( 0 )	 C E
ca P	 a

(2.150)

0.151)

( L:	 I )
r  /T µ ^^t0)

cz -+ & e	 _	 - constant
T.
ion

	

At x = - W, p = Ta = 1.	 The solution to these equations is
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P( X )	 Ta(x)	 1
	

0.153)

-T(X)^ Fl

a	 oc(o) e
	

(2. 1.54)

(2.155)

a Tion

'Phis solution gives the finite value

solution and the initial values for p, Ta

ratio	 ct/ct(o) at which the solution is to

integral QLM(o).

The full equations are then integrat

of x needed to start the

and Ci in terns of the

be started and the flux

ed., using the procedure

previously discussed, to the point x = 0, where the gas passes through

a shock wave caused by viscosity and heat conduction effects. The

radiative flux is constant and no ionization takes place across the

viscous shock wave. The fluid conservation equations then give the

Jump conditions.

P( o ) = 4 P( o )

cr(o+ ) = U(o )

Tu (o + ) + a Te (o+ ) - 
	

a k	 o- --
JP(	 )

where the - and + signs denote values ,just before and gust after

the shock respectively. The last equation must be solved with the

electron energy equation to get T a (o+ ) and Te (o +).

From behind the shock the equations are integrated until

equilibriiun is reacted to within some predetermined accuracy. The
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definition of equilibrium used for the calculations was that the degree

of ionization equal the local equilibrium degree of ionization within

five percent and the electron and atom temperatures be equal within one

percent. The equations are very difficult to integrate near equiAAbriiim

because then the ionization rates are sensitive to small chanj;es in the

varisnl,s.

After equilibrium has been reached the degree of ionization can

be calculated from the Saha equatiun, and the system of equatiuns

becomes entirely aleebrule. The variahles ctia nge in this region because

of ra-!iation c-)oling. The radiative cooling, continues until a steady

state is reached.

In this way a new solution is generated from the preceding solu-

tion. This process is repeated, each time increasi4; the fector which

multiplies the radiative terms, until the factor is one and the solutions

converge. Successive steps for the Mach number lb solution presented in

Chapter III are shown in Appendix U.
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CHAPTER III

RESULTS, AND DISCUSSION

Computer codes uoing the method of solution outlined in the

previous chapter were developed and calculations were carried out on

an IBM 7094 computer.

The argon gas ahead of the shock wave was taken to be at a

presc;ure of 1 cm HK and 300"K temperature. Calculations were performed

for shock waves having Mach numbers of 12, 13, and 30, which correspond

to shock velocities of 3.87, 3.11 and 9.68 mmµ sec respectively.

The reference state used for the calculations was that given by

the strcing shock Rankiae -Hugoniot relations applied to the cold gas far

ahead of th!t shock wave. The reference values found by this procedure

ere shown in Table 3.1.

Table 3.1. Reference Conditions.

po(10 )
u 

T  (10 -4 ) czo r e

(,A/C.m5 ) (III	 sec)in14 0K

M = 12	 1.0yu .75Li 1.096 .o344 7.533 3.;0

.,1	 =	 1>i	 1'7.'(4 1.425 .2o2h lb- .yl 6.078

M = 50	 2t).:c .f',ln'j J..'	 7 .74£37 P8.11 6. -2o?

These reference conditions give the characteristic lengths shown

in Table 3.2.
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Table 3.2. Characteristic Lengths

1A.A IeA (104 ) 1g (102 ) 'hex

(cm) (cm) (CM) (cm)

M = 12 2.387 1.1105 1.739 1.7y1

M = 18 .9112 .498L 1.o68 1.693

!M -	 30 .4i36 .2480 .7494 2, 6,r4

At each Mach number solutions Were first obtained by neglecting

thermal nonequilibrium and radiation effects. Then the calculations were

abain performed with thermal nonequilibrium, or radiation, or both included

in the analysis. In this way the effects of radiation and thermal non-

equilibrium can be evaluated by comparing the solutions obtained. when

radiation and thermal nonequilibrium have been included with the solutions

obtained when radiation and thermal nonequilibri uun have been excluded.

RadiationlPss, Thermal Eauilibrium Sulutions

When radiation is omitted from the analysis and the electron and

atom temperatures are assumed to be equal the sulutions shown in Fibures

3.1, 3.2 and 3.3 are found.

The temperature and density are to be road from the linear scale

on the left. The electron-atom and atom-atom ionization rates ar ,. shown

divided by the to+.al ionization rate gust after the viscous shock, n .
s

The ionization rates are to be read from the logarithmic scale at the

right as is the ratio ec/cto.

I''wc scales are used on the abscissa. Fur the extent of the first

scale the atom-atom ionization rate exceeds the electron-atom ionization

rate and the characteristic length is chosen to be ,AAA .	 For the extent
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of the following scale the electron-atom rate exceeds the atom-atom rate

and the characteristic length is taken to be leA. The portion of the

shock wave where the atom-atom ionization rate is dominant is small

compared to the portion where the electron-atom rate is dominant. The

length of the region in which the atom-atom rate is dominant, x
AA

, and

the length of the following region in which the electron-atom rate is

dominant, x
eA

, is shown in Table 3.3. The region where the a ^A process

is dominant is terminated when the degree of ionization is within 5% of

the local equilibrium degree of ionization.

Table 3.3. Length of A-A and e-A Regions

for Radiationless Shock Wave with T = T
e	 a

xAA (cu)	 xeA(cm)

M = 12	 .5571 	 56.3

M = 18	 6.36(lo-4) 	 8.71(10-2)

M = 30	 2.72(10-5)	 1.92(10-3)

In all cases the a-A ionization rate quickly rises to a peak

value and then slowly diminishes. The peak and decrease in the rate is

due to the increased importance of recombination as an equilibrium degree

of ionization is approached. The A-A ionization is unimportant except

right behind the visc , us shock.

The betovior of the other variables follows that of the e-A

ionization rate, a region of abrupt change followed by a much slower

variation. The shock waves all have long tails where the values attained

by the variables are close to their final values.
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Thermal Equilibrium with 'Trapped radiation

For the solutions shown in Figures 3.4, 3.5 and 3.6 the only

radiation process allowed was photoionization from the ground state.

This radiation is completely absorbed in the shock wave ., i.e., the

radiation is trapped. As in the last section the gas is assumed to be

in thermal equilibrium and the electron temperature is equal to the

aturu temperature. These same assumptions were used in the solutions

obtained by ClarKe and Ferrari [5).

Ionization taxes place in the precursor region due to the absorp-

tion of the radiation emitted by the gas behind the viscous shock at

x = 0. The degree of ionization in the precursor region is shown divided

by the degree of ionization at the viscous shock wave, p 9 , in Figures

3.4, 3.5 and 3.6 arA is to be read from the logarithmic scale at the

extreme left. The abscissa in the precursor region is x divided by

the ground state characteristic length evaluated for conditions at

x - w r $ ;r = .08878 cm. The precursor degree of ionization is shown on

a larger scale in Figure `5 .7 where it can be seen that the variation of

the degree of ionization is nearly exponential except close to the

viscous shock wave and in the far precursor region.

Because of the precursor ionization the atom-atom rate behind

the viscous shock at x = 0 is much less than the electron-atom rate.

In contrast to the radiationless solutions discussed in the last section

there is nc; region where the atom-atom ionization rate is the dominant

rate. 'Me peak value of the electron-atom rate is re.luced. anci slight ly

shifted, but it still has the same features as for the radiationless

case, a rapid rise to a peak value followed by a region where it

slowly decreases.



w o

a a ^
m a ^

O 10 10 100

N
O 10

to

It

a
a^

M In

1O

N

O

I
I

N ^'
I ^
^ X

I

I
M I
10

87

.cm

.,4
s

Q,

m

^c

0

<n

c
0
Y^

a^

v
w
w

F

cj
14

.r
K\

a

w

N



O
N

^H

88

sA	 N•C 	 •C	 O
t ^m t ^

•C •C ^
a	 M

O	 O	 _	 10	 10	 10_
ti

t0	 Eu
r

Q u
O H

X
^	 u
1O o-^3q

UQ

U)

A
O

M	 b

b

a
N	 Q'4

C9

r

Ki

u

O I
CP wN

I X

i
—a in

i0 b b

cn



Q
_d

• X

N
ID

n

^	 1

`V
1 X

V

Fp

r

u
H

nN

u
m

u
0n
U1

G
O

r)

2J

.d

CL
f^

r

u

D
M\

QI

IV
rl

N FO1O b 10

N

p.^./
V

89

N10

N N
•C .0 O

a a N.
•C •C

_ 10
M10

i11%.C-	 ni ^ 
s^^ac..	 _	 •a. ^. .^	 =`.^uK. _ ..1 '	 -'.ci:	 ,^ riR!•%?^f^.^fu. ^. '_ ^^!'=.±.: 	 _



10-1

10-2

10- 3

CY

10-4

10- 5

10
_E

50

10 -7 L0 2	 3	 4	 5
-X/Ig_

Fibre ^.1. ?re_urbor Degree of ioniz&Uun.

Tv-:	 -	 .



The distance required for the degree of ionization to come within

5% of its local equilibrium value is only slightly different than when

trapped radiation is excluded Prom consideration as in the last section.

The distances are 56.3, 8 .97( 10-2 ) and 1.84(10-3) cm including trapped

radiation compared to 5 7.3, 8.77(10
-2, 

and 1.95(10-3 ) cm when trapped

radiation is excluded, for Mach numbers 12, 18 and 30 respectively.

Thermal None quilibrium with Trapped Radiation

As in the last section the only radiation process which is con-

sidered in the calculations is photoicnization from the ground state.

However, the gas is not assumed to be i.n thermal equilibrium and the

electron temperature may be different than the atom temperature. The

solutions obtained by employing this model are shown in Figures 3.8,

3.9 and 3.10.

The electron temperature is much lees than the atom temperature

right behind the viscous shock. It then rises and becomes equal to the

atom temperature farther downstream.

The electron-atom ionization rate depends principally on the

electron temperature. The lower electron temperature causes the

electron-atom rate to be considerably reduced from the value it would

have if the electron temperature were Pqual to the atom temperature.

Because of the lower e4 ionization rate,the point at which the a-A rate

attains its peak value is much farther downstream from the corresponding

point when thermal equilibrium is assumed. Also the length of the

region where the atom-atom rate is dominant, xAA
, and the length of

the following region where the electron-atom rate is dominant, x..,

are much greater than the corresponding lengths when thermal equilibrium

91



N C^
•C •C O

m
•C •C

a M_

N	 =	 O	 0)	 DO	 f^

l^

-",l

cD

u.

z

Q v
_m m

X nb ^

OM — o

nl	 y
a

.v

s

'r

MO
N ^

X ^'
O

IF-^ wy IQ



N N
•C O

^y \
•C .0 ^

O O ^O O O

a^

;tQ
C) w

^M

CV
C•O

— Q
-r1

m

T7

h
a
a

Q -^
^ u

X :t:

J1O

Kl

a,

w

N O w 0 V N O m cp	 N OCV N — — _ — —

9)



It

N

O
C^

OD y

.s

(D X
a
ia

^
^^

n

N

^ O Q1

b.r

r^
W

QI

Y.

tl

t^

Q
^^

.-1

X

O

Q^

O

N N
•C .0 O

^
•C

a
•C

\
^

N
O

10
1O O_

U') O	 O	 p 
LQ 

p ul

M f6 N Cj

IFS wy I'QL-



9 

is assumed. 1aese lengths are shown in Table 1,A.

Table 3.4. length of A-A aud a-A regions for

Trapped Raliation Shock wares with T  1 Ta.

XKA ( :m j	 XeA ( CM)

M	 7.17	 64.2

M ^ 1d	 .205	 . 54 ;,

M	 30	 3. lb t 10-- i	 3.47 ( 10-C)

Because of the lower electron temperature the intensity of the

radiation emitt(-d from the gas just behind t.iP viscous shock will be

significantly less titan the intensity of radiation which would be t•mitte,i

were tLe gas in thermal equilibrium. The penetration length for ground

state continuum radiation is less than or of the order of the Length re-

quired for the electron temperature to become equal to the atom tempere-

.ure and all of the ground state continuum radiation is =I t_ted into the

precursor region from right behind the viscous shock. Cocsequeutl.,, the

intensity of grouna state continuum radiat:on is reduced. The precursor

ionization for Mach number lc is so much curtailed it is negligible. For

the Mach numbers 16 and 30 reduced precursor Ionization occurs. The

degree of ionization produced by the Mach numbers 18 and 30 thermal non-

equilibrium shock wave is shown in Figure 3.7.

The preceding, results show the ratio of the penetration length to the

length required for the electron temperature to attain the atom r,empc-ra-

ture is an important parameter in analyzing the precursor ionization

caused by eaission of ground state continuum radiation. It can a?so

0



t	 -
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be an important parameter in determining precursor- ionization due to

emission of radiation caused by other radiative reactions involving

electrons.

Since the calculations show precursor ionization due to emission

of ground state continuum radiation is negligible at Mach number 12, and

considerable precursor ionization is measured at Mach numbers and

pressures sijailar to those used in the calculations, [37], 138", [40],

precursor ionization must be caused by some other radiative reaction.

Thermal Nonequilibrium with Complete Radiation

The analysis of this :section includes radiation resulting from

photoionizat•fon and radiative recombination involving excited bound states

of the atom in addition to the radiation due to photoionization and ra-

diative recombination involving only the atonic ground state which was

considered in the previous s.:ction. The equations then incluue the

integrals specified by equations (2.1,19) and (2.130).

The gas is not assumed to be in thermal equilibrium and the

electron and atom temperatures may be different. Since the radiation

integrals in equations (2.129) and (2.130) depend on the electron

temperature, as do the equivalent optical thicknesses given by equations

(2.133) and (2.134), the contribution of these terms is affected by

the thermal nonequilibrium of the gas. Equations (1.26), 1.2.133) and

(2.134) show the effect of lowering the electron temperature, all other

factors being the same, is to decrease the penetration lengths of the

excited state continuum radiation. Equations (2.129) and (2.130) show

the excited state continuum radiative flux will be reduced if the

electron temperature is lowered. Accordingly the radiative flux and



97

penetration lengths of the excited states continuum radiation is changed

by the cool layer of electron gas just behind the shock discontinuity

when thermal equilibrium is not established.

The solution for a Mach number 18 shock ware is shown in Figure

3.11. It consists of an atom-atom ionization region and an electron-

atom ionization region, just like the corresponding solution without the

excited state continuum radiation shown in Figure 3.9, followed by a ra-

diation cooling region. The length t" chosen to nondimensionali-,^e

the coordinate x in the radiation roolin L; region is a typical penetra-

tion length for the continuuu raaiation in the frequency range

0 1 v s v^. It is the distance in the uniform slab which would result

after the shock if there were no radiation cooling for the optical

thickness T" to be one. Yo,- the Mach number 18 shock wave Z" - 42.7

cm. The optical thickness T' corresponding to continuum raaiation in

the frequency range 
V  

9 v ii 
V  

is always much larger than T" and

the radiative flux term Q 
M1	

is negligible comparea to (4oM'

Up to the beginning of the radiation coolin,; region the solu-

tion is almost identical to that found excluding the excitea states

continuum radiation. At the beginning of the radiation cooling region

the solutions for these two cases are within 1* of agreement. The

equilibrium degree of ionization, nowever, is very sensitive to small

changes in the solution and at the beginning of the radiation ccciing

zone, wnere without the excited :,tates continuum raaiation the solu-

tion wab within 5% of the equilibrium deE;ree of ionization, the degree

of ionization is only within about yq6 of the equilibrium aegree of

ionization. Furthermore, as equilibrium is approached, the collisional

^i	 'i'	 wrn '^ ^i^3y.^:ttisar^ r Z ^^1.°^^TT	--`•w'^'"s'-•-
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ionizational rate becomes small and the radiative rate becomes relative -

ly more important. The radiative rate is a recombination rate. It

opposes the collisional ionization rate. As a result the point at

which the degree of ionization reaches % of its equilibrium value is

considerably delayed. For the solution shown in Figure 3.11 this point

is at x/1" = . 1045 which is 4.46 cm from the end of the a-A region

where the 5% equilibrium point was attained when excited state con-

tinuum radiation was excluded from the analysis. The end of the e-A

region is .545 cm. from the shock wave discontinuity and corresponds

to S.38 µsec. laboratory time. This compares well with the time to

reach equilibrium ionization measured by Petschek and Byron (191 of

6.5 µsec. and that measured by Wong (20] of 4.7 µsec. The analytical

solution of this section suggests, however, there is an extensive region

beyond this point where the gas has not attained equilibrium, but is

near equilibrium.

The distance to reach an equilibrium degree of ionization cal-

culated in this section is that corresponding to T av = 30,000 'K. This

is a conservative estimate. Smaller values of Tav will result in longer

distances to reacn an equilibrium degree of ionization. Since line

radiation, which has been excluded from the analysis, can cause an

increased ionization rate and shorten the distance required to reach

an equilibrium degree of ionization, the extent of the chemical non-

equilibrium region is uncertain. It is clear, however, the relative

magnitudes of collisional and radiative ionization rates are important

when chemical equilibrium is approached.

+-"''°',V-W! *



CHAPTER IV

SUWARY AND CONCLUSIONS

A gus, initially composed only of atoms, becomes a mixture of

atoms, ions, and electrons in the process of ionization by a shock wave.

The ways In wh.'.ch mass, momentum and energy may be transferred within

such a mixture are different than for the unionized gas. The shock wave

is profoundly affected if the transfer processes occur slowly compared to

ionization. This is indeed the situatiun for the shock waves investigated

in this thesis. The electrons lose translational energy in the process of

ionizing neutral atoms. Furthermore ., 	 electrons are inefficient in

exchanging energy with the atoms and ions, they regain energy slowly,

being effectively insulated from the atoms and ions. On the other hand

the atoms and ions readily exchange energy. In this situation the gas

may be thought of as a combination of two component gases, a gas composed

of only electrons and a gas composed of both atoms and ions. The tempera-

ture of the electron gas may be different from that of the atom-ion gas,

that is, the electron gas and the ato p,-ion gas may not *0e in thermal

equilibrium. The inability of the electron gas and the atom-ion gas to

establish equilibrium greatly affects the rate of ionization and radia-

tive emission behind the shock wave.

Viscosity and heat conduction are changed by ionization. The

electron gas is an especially good conductor of heat. For the shock

waves of interest in this thesis, viscosity and heat conduction effects

i00
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are only important in a very thin portion of the shock wave. In this

case the effect of viscosity and heat conduction can be thought of as

discontinuously changing the temperatures and density at a point in the

gas. Following the discontinuity the atom-ion gas cools because it

loses energy by creating further ions, heating the electron gas and by

emitting radiation. The temperature of the electron gas, however, is

less than that of the atom-ion gas after the discontinuity. Subse-

quently there is a net ,-ain of energy,  by the electron gas, heating it

until thermal equilibrium, is established with the atom-ion gas.

Two collision&! processes are responsible for ionization, the

atom-atom process and the electron-atom process. The rate of ionization

due to the atom-atom process depends on the properties of the atom-ion

gas, but the rate of ionization due to the electron-atom process depends

on the properties of the electr ,.)n das. Since the electron gas is

cooler than the atom-ion gas, the ionization rate due to the electron-

atom process will be retarded compared to the rate which would he

predicted asswaing the electron ,a: and the atom-ion gas were in thernw l

equilibrium. Phe results presented in Chapter III show the ionization

is si6nificantly different in these two cases.

Arne grey gas assumption implies that radiation energy transfer

can he described by a single frequency independent penetration length.

For argon, however, there are .nany different penetration lengths because

there are ,aany possible radiative interactions which can occur. Conse-

quently a grey gas model for argon is open to question.

The excited states of argon are closely spaced witi.in e few

electron volts of the ground state ionization limit. it follows that
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the energy levels may be approximated as continuounly distributed and

hydrogenic. The radiation energy transfer due to photoionization and

radiative recombination of all the excited states may then be found by

integrating over the continuously distributed levels. The resulting

radiation transfer equation has a marked frequency dependence. it

agrees with the Uns8 ld result for small values of frequency, but at

large values of frequency, where the Unsold model fails, it has the

proper forru.	 For the shock waves considered in this thesis the pene-

tration length for photoionization and radiative recombination from the

excited states is large compared tc, longth3 typical of other processes

whicrr may take place. In the precursor region it may be regarded as

infinitely large.Consequently continuum radiation caused by photo-

ionization and radiative recombination of the excited status results

only in the radiation coolin,, of the gas bel.ind the dlscontinuity. The

penetration length for photoionization and radiative recombination of

the ground state, however, is sufficiently small that the continuum

radiation from the ground state. is Lrapped, causing precursor ioniza-

tion.

The total radiative flux and the radiative ionization rate are

in the form of multiple integrals. These integrals can be reduced to

the form they would nave if' the gas were grey, but the source functions

and attenuation functions contained in these integrals in general are nut

those, of a grey pas. Consecuently the practice of using grey radiation

trans fer formulas to describe radiation energy transfer in a non..;rey

Gas is not justified for the shock waves investigated in this thesib.
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Radiation energy transfer depends on the behavior of the electron

gas. ,rust after the shock discontinuity the radiative flux is less than

the value it would have if thermal equilibrium were established, because

the electron temperature there is lesF than the atom temperature. For

the calculations performed in this thesis all of the radiation which is

traipped in tr,e precursor region comes from the cool layer of electron

gab gust behind the shuck discontinuity. Consequently the precursor

ionizati ,an is much re(luced from that which would be estiwated if t}4ermal

equilibrium were established. in fa^:t the precursor ionizati,•n for the

nzaul;rr 12= shock wave is ioun-. to :,u 1eeligiUly sn ►all beceuser thermal

=^at1i nlwr, is not estabiiolleu. Consequentlj the measured --ref-ursur

ionize ,ion ; 7)71 P	; , [1o], fo. • Vlach numbers near 12 . i s not caused by

cc.rrtit:utut, ra , !iatior traphec, in the precursor re^:,ior^.

The penetraTic n lcrgth for :-aakatiurl caused by pr,otuluniza tiurn

froia the ground state is indcperuirnt of temperature, but the penetration

length for radiation caused by photoionization from excited states depends

on the temperature of the electron t.as. the excited state penetration

.length is an cquivaient penetration length for photuionization for ail

excited levela and all possil)le. frequen:.ies of radiation. As shown by

equation (2.111) it depends on the numuer density of el ,:cti, or.s and is

;..^n,rtiunaJ. to the Plectron temperature. As ti result the penetration length

for excitea state continuum; cbdiFatior, is much sncaller in tht: cool layer

as	 gas near uie S-Lock wave Iisuontinult; than it would : . e if

the ;herital equilibrium were esi,ablishea. This layer is tnerei'r;re ranch

more absorbent when thermal equilibrium is n o t establishea In the-

shock wave.
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Radiation energy transfer, therefore, depends on the relative

extent of the thermal and chemical nonequilibrium regions compared to the

penetration lengths of radiative processes. The extent of the thermal

and chemical nonequilibrium regions is reduced when the Mach number is

increased.

Radiation has little effect on the ionization until equilibrium

ionization is approached. Then the collisional rates decrease and the

radiative rate becomes relatively r►wre important. Since the radiative

rate opposes the collisional rates the effect is to delay the point at

which equilibrium ionization will ue reached. There is an extensive

region where the has properties are nearly constant but not in chemical

equilibrium. Since photoexcitation processes, which could increase the

ionization rate and cause equilibrium to be reached more quickly, have

been excludea from the calculations, the existence of the quasi-

equilibrium region is questioi,able. It is certain, however, that the

rate of ionization near equilibrium ionization is a delicate bPlance

of collisional and radiative ionization rates.
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APPENDIX A

DERIVATION OF OOLLISIONAL RATE CONSTANTS

The number of collisional encounters per unit vol:une and time

between particles of species X having velocities in the r;Ange

V  v1. + dv 
4 

and particles of species k having veluci t.ies in the
.0	 •

:an;e v X „ v k , + d%, is given by the folloi-rind; classical kinetic theory

^:^.pression (421.

n  n
'k
, f  f X, gt; -it) dA u v X a v X,	 (A.1)

where I' X is the :velocity :iiStribution function

I	
`k'r

(A.21

m	 l^/`'	 -	 tII v J1 /?^
f	

\ c J( 
k'i, A	 1	 C	 N

b is the impact parameter, 9 is the anE,le between the Slane of motion

and a reference plane, and F is the relative velocity of the particles.

Let	 E1
X
I 2 (b,g) be the provability twit it the X ,jarticle i

excited from state 1 to state 2 during the collision -ith the particle.

nijmrer of excitations per unit volume and time is therefore

1 ;	 y r

i'IlE: toti.L numn r̂ r of e— u-i t 3tions for 311 or ien^atiuns and magni-

tudes of the vector, v ana' v' i.e.
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r	 r
1 +-q	 J d~AfA J d`'1' f X , g S AAI (8)	 (A• 3)

where S A ^,(g) is the diffusion cross section

I2

	
OO 1 + 2

	

S AA0 ( g ) - 	d@ JFdb E X1I	 (b,g)b	 (A.4)
0	 0

and t, All .= 1 if species A is different than species A', zero otherwise.

Consider the collisions between atoms. Fixcept for the small

number of particles that become excited, translational energy is

oonser y ed in a collision so ttia a (4^'

^	 1

	

!. .`; ( T '. t •ray / — ink [G	 t	 !^)

.0	 .0	 r r

.dv
a 

.zv
a
	- ,iG dg
'

Where G is Lrie -enter of mass tie1JC11,y. SX-lstituUon is	 egtwtion (A.4)

gives the ns„L,mher of ex-citations per unit volume and time as n aKA(1,2)

where

ma	 r 00 L	 -4 mag` 11 Ta
IiA (1, 2) = 2 ( ?n k'I'	 J	 4n g,ag a	 t, Sae (t)	 (^+ .

H i
c,

Bo is defined by requi rin, : 1 n,a g^ to be the threshold ene rgy Eer.

required for the excitation.	 Since kTa« 9 x < , ma g` , the cross

section need only oe known near the excitation threshold to obtain an

accurate value of the iategrai in Equation (A.5). Substituting

	

aa = a	 - 
dFx

in ^^quation (A.`)) gives the rate constant uses iii equat.icil (2.7;).
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2C 
KA(1,2)

til x ma

where r =
ex	 ex

E /k.

thesis is that dete

m
a(k .r ) 3^2 	TeX + 2	 (A.h)a	 C Ta 	 e -Tex^

`P'he value of CA = 7.5(10 3 } cm 3 erg used in this

rmined by Kelley [22].

For collis i-ons between electrons and atoms the velocity distribu-

tion functions are riven by equation (A.2) at the temperatures T and ,rn	 a

respectiveij. Since the electron and atom temperatures are of the

same order of magnitude and the electron mass is much swaller than the

atC:ri crass, [.he electron v elocit., roust be much larger than the atom

his is the basis of the following approximations.

11	
-

r
= V 

	
+ ... 1	 1ti.7}

V
n

d b

ea	 ea e	 a ` dt;
d = ve

v .v	 dS
e 8	 ea	

(A ,

e

1sing these approximations equation (A.;) becomes

M

n_ n 
i 

!{:t v` dv f (v	 S (v )	 (A. y)
a	 e e a' ea. e

\;r

	

wi:ere z m o v2	 in the tflreshoLd ener t;^, E	 required for the exciuL-
	e e	 ex

G
lLon. As in the previous result, the cross section need only i)e known

near threshold to give an accurate value for the integral in Equation

(A.q). Near the threshold energy the cross section may be represented by



u3

2
9 ea (ve )	Ce(I meve - E

eX ).	 (A.10)

With this approximation for the cross section equation (A.9)

gives the number of electron-atom excitations per unit volume and time

as Ke (1,2) nena where

C	 '/2 T	 -T /T
Ke (l^r) =	

e	 (2k're)	 ( Tex + 21 e	 ex e	 (A.11)
\ e	 /J

v

The value ur the constant in the excitation cross section formula

employed 6jy Petschek and Eyron [1G] 1s % e = 4.4(10-4 ) em erg. This

value is used for I.he coin^,utations In this thesis.



APPENDIX E

RADIATIVE, MWTION TRANSFER 04UATIONS

It follows from equation (A.G) in Appendix A that the number of

collisions between electrons with energy in the range ii, Tl + dry and

ions per unit voliuue and time is n  n  f e (TI)d-9 where fe (TI) is the

el ner;;: , distribution functiun for the electrons.

^n	 r	 --q i kTe
i'e (r,' _	 , r	 s'rl	 e

(n k'rP;

ua

L,--t A
cp

electron will

solid angle

electron will

_0 bz the probability *,hat

lose enere,v by = ^Cp + 1 1 oy

iw of a direction specified

then be in the oth atomic

in such an encounter the

(:wi tin ° radiation .;ithin a

by a unit vector L. Vie

state. The total radiation

intensil.,y owitted iii the frequen ,•,j interval v, v + av per unit vulwi,e

and time by all su,--% cullisions is

by A ^p nY i fe( 71) h dv dw
	

(b.l)

in addition to the spontaneous emissiun gust discussed emission

of radiation may be induced by the radiation field. Let P cp be the

probability that in an ion-electron encounter the radiation f .eld causes

the recombination. Tile radiation intensity emitted at point P within

A
solid angle du of the direction -pecified by L and in the frequency

range v, v + dv induced in electron-ion encounters is



1Z

A

	

by Bcp I(P ) L, v ) n  n  f e W h dv dw	 (B.2)

Let Bpc be the probability per unit intensity that an atom in

state p will be photoionized creating an electron with ener tV in the

range Yl, ri + dry and causing a loss of radiation energy equal tc by

X + ,l from the radiation within solid angle dm about the direction
i^

A
specified by the vector L. The total intensity of radiation absorbed

fruin the radiation fic-ld within a solid angle	 &D of tine direction
A

specified by L and the frequen%y range v, v + dv due to photuionization

from rtt'oluic state p at point ° in

A

	

by n(p) Bpc I(P ) L, v) (10 dv
	 (B.

The rate of change of intensity at point F within solid angle
n

dw about the dir p --r.ion specified b;; L in the fr ,.quenc; p rnngp

v, v + dv is the sum of the intensities given by eq.iations (1.1),

(B.2) and

[nlp) b	 - n n f (TI ) h B ) by I(Y L v)d's	 P^:	 e a e	 ep

+ by Ac 
p 

n e n i fe(rl)h

	

n n.	 Br I	 n

	

s-n(P) Bp=^1 -
e1
	 fe 0l) n -BB-- Ihv1 (Y, L, v)

n

	

(1)	 p	 J

A	 n_n.

+ by ^Y	 n-	 fc(^l) ^i
pc

(F'.4)
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Bcp c 

11P
_a c 2 hv3

PC	 gf	 Bcp	 c`

where 
g 
	 is the d.egeneraty of the free electron states [60)

3/2
41( me	 f--

6 =	 2 ^1f	 he

and Np is the degeneracy of the ptn atomic state, equation (3.;)

can t)e wriLt.rn to ..he form (;f equation

dI_(x1p, v;

µd	 _
y/ '

 V) [It.:,µ, V) - Sp(.^^V/ )	 (^•5)
P

tiv:iC^ n

1	 n^p)h^	 hv/Kre

	

(x v) - n( p ) BPc I 1 -	 r	
1

I	 (B.6)
f -	 L	 n(p)	 .I

n(P)E chy
rre 	 n(p,) E -1

:.	 /

c

in these equations rl(j.') is the population of state p which would exist

if state p were in equilibrium with the ions and electrons.

512
nevi	 ^(2x m

e 
KT 

e ) X IKre

'77	 e 
P	

(xlj)
P

The radiation, ener , -, transfer equation for radiative excitations

can be uerived in a similar way. Let 4 qp be the 1-roba6ility .for

spontaneous emission, aqj, that for indur.ed emission an
y: h 

Pq 
that for

absorption for a radiative transition between atu4IiC Gtat , s p ann q.

The radiation transfer equation for priotoexcitation rca,^tion between
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states p and q is

dI	 ^
U = -n (P) B	 DPq(v) I ( 1', L, v) + n(B)Lgb, Ppq(v) + r ( q ) ^^, BNq(v)
ds

	

s - n(N) H (v) 0 (v)
L
I(P, L, v)	 ) 	 ($•y)pq	 Pq	 n(P) 

6q	 TA(N) (q	 c`

Where 0pq(v) is the line shape function. `Phis may he written in the

form of equation ( .

dI (x ' µ' v)
N pq - — 1-- [I(^ µ v) -	 (x v) )	 (L. L))J x	 , k;. ^ ti ,	 pq

pq

wtic:y•e

1	 = n(p) B	
I'
(v) l 1-	 -E 1	 (5.11;

^ f , v ,	 pq 	 L	 ntP^	 ^.I •,
pq

 -1
,x	

n cl ^ 'hv I 1 - n i &P	 (^ If-) v 1 = n	
r y	 nn'. P) gq /



APPFNPIX C

AVh:RAGE MERGIES OF CREATM EUCTRONS

Assume the primary way in which electrons are created in the

atom-stow ionization process is b,i collision:, between electrons Rnd

excited argon etonw. An electron of energy T on collision with An

e..c ted nto ►n will produce an electron of f.:neri., y C, and lose energy

- X,	 In ;he Process.

11C,

+ A(<)	 A+ + e - e.TI	 rl	 l n - X2 - S )
(c.1)

whe re the Energies of the electrons sr'e indiCate,t Ll.,'their sut,scrij,Ls.

It folluws from Appendi.^ B that. the rate at whict, ele%trunci Ar-,

created is

Wa ne f ( T1) ^i m	 R,. 
♦ v ('1, ^) dr) dS

where S L y c (rj,t) Jrj d^	 is the cross section for the t,roeesc described

by equation (C.1) and f(Tj) is the electron energy distrinution function.

1 (T1) _	
1n ^ g	 ^-n	

ee
-r) ^kT

(n KT^)^ `

The total rar, of production of energy in the forty of created

electrons is therel'orc

-q - k

Wa ne j f (T1 + I m
X	

d71 1	 Sty , ('1, ^) u^
v e

2
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Dividing this by the rate of production of electrons gives the

average energy of a collisionally created electron.

X_

i

X2	 0

S =
	Go	

n_2

1J fh) T1 2 cin	 S^	 c ( n , S)dt

X	 o

Usinb the Taotapson cro ps st-^c cion

u
( TI,

r

q ( X- + S)`

the integration, over ^ can easily be performed. The remaining inte-

oratlon .an be Carried out by noting n >> k.Te and expanding the

intezrand about the value ri = X ..
r.

so

-71/ kTe
e	 (In

G

x
T1 )]do

°D - ' kT	 X^

J
^^ 

e	
Xe	

1 _ P` ):1n

X-

- 	 xT	 °D -TI''KTee

e	 1 e	 (2 (	 -)^+... ]dn
u	 ^

c	 •1f
0

.
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- X- /kT
c e	 kT c

e	 kTe ^( X e )+	 ]

- X^ kTA	
kT	

e

Consiaer next the electrons produced b y photoionization fruru the

around :tale. Assume the radiative intensity is given by the Planck

fune'.ion. Tire number of absorption-3 prot.ucinE; electron..3 with enerE;y in

the range t, ^ + ,l^ i , then (c.f. Appenuix S).

h(l) B1.r
hV	 By (T= )	 it

Tne average energy of photoelectron.3 created by photoionization

from the groun,, state is therefore

r60

	 B1^ [a d_i
^, v	 v ( Te ) ii

0
_	 (C.4)

m

i 	 Blc B ( T )
0 h v	 V e it

Making the followin6 JUGJtitutiun;:

by - X

vl cBlc = Bo ( v 1

-Liv; kT
211V

hv(2,,.)	
_	 c

c`

equation (C.4) can be written as

^t



^	 -hv; kTer
J (hv - X) e
vl

ID

 -hv/kTe

J e	 dv

V 

T

kT
e

= z (C-5)
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As in Chapter II assume the excited states are closely spaced

and hytirogenic. Assuming the . •adiative intensity to be given by the

Planck function, the rate of produc „iur. of electrons with energy in

the range ^, ^ + Rfrom a -r ,,Uj) of e.<cited lev-1s having ener.;y in

ti. , .-anise A., X + uX below the ionization Umit is

z -t 'kT
n^h-	 K ',`	 e	

e	
dXd^	 (G.b)t

( gin tx 1S'1 ) 	 ch^^l	 X +
e

The rate of production of electrons :4itt, energy in the range

+ d^ from all the excited levels is

Y	

dS 
2	 h3 	 ka2	 - S /kTe	 i	 1X

ne	
5/=	 2 e	 J	 X-

c (21(me ATe )	 2h it	 u

Therefore the average energy of an election c eated by photo-

ionization from the excited states of the atom is

	

00^ e -^ kTe In 

	 S \^
C	 / d^

G

+ S
- / k1'e	

In \
	 1	 ' d^

0
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p

U e - 	In	

XM/kT + U ^,

J	
; aU	 u

0
(C-7)

p ^/kT + U ^e -U in^	 z	 d J
U J

0

Numerical integration of the integrals in ::quation (C.7) for the

representative value X, 1,/kTe = 4 drives

T = .64; kTe 	 (C.i^)

The average energy of eleczruns created in tize atom-stow ionization

process a1• by p}iutoi^,nization is of the order kT e or les as was stated

in Chapter 11.
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APPhMIX D

CAIGUTATIOAAL DETAILS

As explained in Chapter II, the radiative terms are made arti-

ficially small by a multiplying factor. Such a factor multiplies each

of 4lft, QM1, 140M and QoM.	 Starting with the radiationless so.'.ution

tiie factors for Q J." and QMI ruay bc immediately, set to one since they

have iittle effect on the solution behind the shock discontinuity. The

factors for 
qoM 

and QoM must be small, however, since these terms

control the radiative cooling and ionization rate. The procedure used

was to keel, the factor for QoM small (usually zero) until the solution

was found for which the factor for 
Q'oM 

was one. In this way the long

quasi-equilibrium region caused by the radiative ionization rate op-

posing the collisionsl ionization rate near equilibrium need not be

calculated each time, resulting in a considerable reduction in computer

time.

Successive steps in the solutioLi are shown in Figure D.1 where

the degree of ionization in the radiative cooling region is shown. The

degree of ionization is only slightly affected by the excited state

radiation elsewhere. Curve number 1 is the solution obtained with the

('oM factor .1 and using as ttre previous solution that obtained with the

QoM factor zero. Curves L and 3 show the solutions obtained when the

('oM factor is increased to .3 and then to .5 each time using the previous
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solution to estimate the radiative terms. (The larger value of the

degree of ionization for curve 2 eras caused by an error in the input

values to the computer program, subsequently corrected.) The factor

Was then held at .j and convergence was rapidly obtained resulting to

curve 4. Using this solution and increasing the Q OM factor to .7

results in curve 5. The QOM factor was then made one and the average

of the latest solution and the previous solution was used to generate

t ie next solution. Convergence vas rapid. The fa ,:tor for QOM was

then ma,Ae one. The oolution was little cnanF;ed ex(:EPL for the delay

of equilibrium which occurred. The result is shovni as curve 6.

It required about thirty minutes of IBM 7054 computer time to

reach the Final solution.
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