COMPUTER METHODS FOR SOLVING A DIFFUSION BOUNDARY VALUE PROBLEM

by
V. S. GYLYS

September, 1967

Sponsored by
National Aeronautics and Space Administration
NsG 24
and
National Science Foundation
GP-411

Technical Report No. 32
Ionosphere Radio Laboratory

ELECTRICAL ENGINEERING RESEARCH LABORATORY
ENGINEERING EXPERIMENT STATION
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS 61801
COMPUTER METHODS FOR SOLVING A DIFFUSION
BOUNDARY VALUE PROBLEM

by
V. S. Gylys
September, 1967

Sponsored by
National Aeronautics and Space Administration
NsG 24
and
National Science Foundation
GP-411

Technical Report No. 32
Ionosphere Radio Laboratory

Electrical Engineering Research Laboratory
Engineering Experiment Station
University of Illinois
Urbana, Illinois
TABLE OF CONTENTS

1. Introduction 1
2. Normalization of Independent Variables 3
3. Finite Difference Methods 5
4. The Backward Difference Method 8
5. A Central Difference Method Based on Three Time Levels 11
6. The Crank-Nicolson Method 15
7. References 19

Appendix A Coefficients of the Differential Equation and of the Boundary Conditions in Terms of the Input Parameters

Appendix B Usage of the Computing Program

Appendix C Flow Charts
1. INTRODUCTION

This report describes three finite difference methods and a computer program for a boundary value problem which models the density of electrons in the ionosphere. Let the variables H and T represent the altitude (height) and time, respectively; let $N = N(H,T)$ represent the electron density in the ionosphere. Then this boundary value problem can be expressed in terms of the parabolic differential equation

$$\frac{\partial N}{\partial T} = a(H,T)\frac{\partial^2 N}{\partial H^2} + b(H,T)\frac{\partial N}{\partial H} + [c(H,T) + d(H,T,N)] \cdot N + q(H,T), \quad (1.1)$$

where $0 < H < H^*$ and $T > 0$, together with the following boundary conditions:

(a) $N(0,T) = 0 \text{ for } T > 0;$ \quad (1.1a)

(b) $\frac{\partial N}{\partial H} + kN = 0 \text{ at } H = H^* \text{ for } T > 0;$ \quad (1.1b)

(c) $N(H,0) = g_i(H) \text{ for } 0 \leq H < H^*, \text{ where } g_i \text{ is a known function of } H \text{ and } i = 1 \text{ or } 2.$ \quad (1.1c)

For the special case to be considered in this report, the differential equation (1.1) can be simplified to

$$\frac{\partial N}{\partial T} = a(H)\frac{\partial^2 N}{\partial H^2} + b(H)\frac{\partial N}{\partial H} + e(H) \cdot N + q(H,T) \quad (1.2)$$

We shall be interested in numerical solutions of this boundary value problem for the values of T restricted to $0 < T \leq T^*$, where T^* is some time constant (typically, $T^* = 24 \text{ hours}$).

Next we shall briefly outline the contents of this report. Section 2
discusses a normalization of the independent variables, H and T, and then formally restates the boundary value problem (1.1a) - (1.2) in terms of the transformed variables. Section 3 begins with an explanation of the notation and other concepts used in the formulation of the finite difference equations; then it briefly mentions some theoretical aspects, such as convergence, of the three finite difference methods to be introduced in Sections 4, 5, and 6. Appendices A, B, C, and D describe and illustrate the IBM 7094 computer program. Appendix A gives the expressions needed for the computation of the coefficients of the differential equation and of the boundary conditions.
2. NORMALIZATION OF INDEPENDENT VARIABLES

For positive constants H^* and T^*, set

$$h = \frac{H}{H^*} \quad \text{and} \quad t = \frac{T}{T^*}. \quad (2.1)$$

Since $0 < H < H^*$ and $T > 0$, we have $0 < h < 1$ and $0 < t$ (< 1 if $T < T^*$). The partial derivatives in the equation (1.1) or (1.2) can now be expressed in terms of the normalized independent variables, h and t, as follows:

$$\frac{\partial N}{\partial H} = \frac{\partial N}{\partial h} \cdot \frac{dh}{dH} = \frac{\partial N}{\partial h} \cdot \frac{1}{H^*}, \quad (2.2)$$

$$\frac{\partial^2 N}{\partial H^2} = \frac{\partial}{\partial H} \left[\frac{\partial N}{\partial h} \right] = \frac{\partial}{\partial h} \left[\frac{\partial N}{\partial h} \cdot \frac{1}{H^*} \right] \cdot \frac{dh}{dH} = \frac{\partial^2 N}{\partial h^2} \cdot \frac{1}{(H^*)^2}, \quad (2.3)$$

and

$$\frac{\partial N}{\partial T} = \frac{\partial N}{\partial t} \cdot \frac{dt}{dT} = \frac{\partial N}{\partial t} \cdot \frac{1}{T^*}. \quad (2.4)$$

Consequently, the boundary value problem will now formally be written in the form

$$\frac{\partial N}{\partial t} = A(h) \frac{\partial^2 N}{\partial h^2} + B(h) \frac{\partial N}{\partial h} + E(h) N + Q(h, t), \quad (2.5)$$

where $0 \leq h \leq 1$ and $t > 0$, with the boundary conditions:

(a) $N(0, t) = 0; \quad (2.5a)$

(b) $\frac{\partial N}{\partial h} + \frac{1}{2H_1} \cdot N = 0$ at $h = 1$ for $t > 0; \quad (2.5b)$

(c) $N(h, 0) = G_i(h)$ for $0 \leq h \leq 1$, where G_i is a given function \quad (2.5c)

of h and $i = 1$ or 2.
From now on when referring to the boundary value problem we shall have in mind the system described by the equations (2.5) through (2.5c). Expressions for computing the coefficients that appear in this system are given in APPENDIX A. The same appendix also contains information on the dimensional units used.
3. FINITE DIFFERENCE METHODS

Consider the normalized independent variables \(h \) and \(t \). Let \(L \) be a positive integer (to be provided as an input parameter). Introduce a rectangular grid over the region \(R \),

\[
t \geq 0 \quad \text{and} \quad 0 \leq h \leq 1 \quad ,
\]

in the \(ht \)-plane by subdividing \(R \) into rectangles of sides

\[
\Delta h = \frac{1}{L} \quad \text{and} \quad \Delta t \quad .
\]

Here the time step \(\Delta t \) is a positive real number and an input quantity. Then the coordinates \((h, t)\) of a representative grid point \(P_{i,n} \) are

\[
h = i \cdot \Delta h , \quad i = 0, 1, 2, \ldots , L
\]

and

\[
t = n \cdot \Delta t , \quad n = 0, 1, 2, \ldots ,
\]

The coordinates of \(P_{i,n} \) often will be written \((h_i, t_n)\).

In general, we shall use the subscripts \((i, n)\) for referring to the value at \(P_{i,n} \) of any quantity which is a function of \(h \) and \(t \). Thus we shall write \(N_{i,n} \) for \(N(h_i, t_n) \), the value at \(P_{i,n} \) of the exact (analytic) solution of our boundary value problem. To cite another example, \(A_i \) will denote the value at \(P_{i,n} \) of the coefficient \(A(h) \) of the partial differential equation; in the present case, the second subscript, \(n \), is missing because \(A \) is independent of \(t \).

Let the numbers \(W_{i,n} \) represent the exact solution of any one of the three finite difference schemes (backward difference, central difference, or Crank-Nicolson method). Here we use the adjective "exact" because as is well known
a numerical solution obtained on a digital computer will normally contain round-off error and thus will differ from the numbers \(W_{i,n} \).

The finite difference equations for the three approximation methods used by us are derived in the ensuing sections of this report. At this point one should note only the following.

1. Each of the three finite difference methods leads to a system

\[
\begin{array}{l}
\frac{\Delta W}{M_{n+1}} = \bar{U}(\bar{W}) \\
\end{array}
\] (3.4)

of linear equations, where \(M \) is a tridiagonal matrix. In the equation (3.4), \(\bar{W}_n \) represents the column vector consisting of the numbers \(W_{i,n} (i = 1, 2, \ldots, L) \). Our computer program solves this system of equations by using a well known version of Guassian elimination method specially adapted to tridiagonal matrices (see, for example, the reference [2], p. 104). If further investigation of the computational results indicated a need of different techniques to solve the resulting system of linear equations, our computer program has been so designed that any such method (an iterative technique, for example) could easily replace the present Guassian elimination procedure. We may also mention here that the program uses double precision floating point arithmetic. On the IBM 7094, this gives floating point numbers with the mantissas 54 bits long.

2. No theoretical treatment of the stability, compatibility (also called consistency by some authors), and convergence properties of the finite difference schemes used by us has been included in this report. These problems are presently under investigation and will be summarized in a forthcoming paper. For the time being the reader may refer to any of the four
references listed at the end of this report: they treat these theoretical questions for similar (but not exactly our) boundary value problems.
4. THE BACKWARD DIFFERENCE METHOD

The backward (implicit) difference analog of (2.5) is

\[
\frac{w_{i,n+1} - w_{i,n}}{\Delta t} = A_i \left[\frac{w_{i+1,n+1} - 2w_{i,n+1} + w_{i-1,n+1}}{(\Delta h)^2} \right] + \\
+ B_i \left[\frac{w_{i+1,n+1} - w_{i-1,n+1}}{2(\Delta h)} \right] + E_i w_{i,n+1} + Q_i,n+1 .
\] (4.1)

Write \(r = \Delta t/(\Delta h)^2 \). Then

\[
-(\Delta t)Q_i,n+1 + w_{i,n} = r[A_i - \frac{\Delta h}{2} B_i] w_{i-1,n+1} + \\
+ [-2rA_i + (\Delta t) E_i - 1] w_{i,n+1} + r[A_i + \frac{\Delta h}{2} B_i] w_{i+1,n+1} .
\] (4.2)

Thus for \(n \geq 0 \) and for \(i = 1, 2, \ldots, L-1 \) we can write

\[
P_i w_{i-1,n+1} + R_i w_{i,n+1} + S_i w_{i+1,n+1} = U_{i,n+1} ,
\] (4.3)

where due to the boundary conditions at \(h = 0 \) we can set

\[
P_1 = 0 ;
\] (4.4a)

the other coefficients for \(i \leq L-1 \) can be written by comparing (4.2) with (4.3):

\[
P_i = r[A_i - \frac{\Delta h}{2} B_i] \quad \text{for } i = 2, 3, \ldots, L-1 ;
\] (4.4b)

\[
R_i = [-2r A_i + (\Delta t) E_i - 1] \quad \text{for } i = 1, 2, \ldots, L-1 ;
\] (4.4c)
\[S_i = r[A_i + \frac{\Delta h}{2} B_i] \quad \text{for } i = 1, 2, \ldots, L-1; \quad (4.4d) \]

and

\[U_{i, n+1} = -[(\Delta t) Q_{i, n+1} + W_{i, n}] \quad \text{for } i = 1, 2, \ldots, L-1. \quad (4.4e) \]

Obtain the coefficients of the equation

\[P_L W_{L-1, n+1} + R_L W_{L, n+1} = U_{L, n+1} \quad (4.5) \]

from the boundary condition

\[\frac{\partial N}{\partial n} + \frac{1}{2H_1} N = 0 \]

at \(h = 1 \). The central difference representation with an accuracy of \(O(h^2) \) of this boundary condition at \(n+1 \) is

\[\frac{W_{L+1, n+1} - W_{L-1, n+1}}{2(\Delta h)} + \frac{1}{2H_1} W_{L, n+1} = 0 \]

or

\[W_{L+1, n+1} = -\frac{(\Delta h)}{H_1} W_{L, n+1} + W_{L-1, n+1}. \quad (4.6) \]

On the other hand, the backward difference equation (4.2) for \(i = L \) is

\[-[(\Delta t) Q_{L, n+1} + W_{L, n}] = r[A_L - \frac{\Delta h}{2} B_L] W_{L-1, n+1} + \]

\[+[-2rA_L + (\Delta t) E_L - 1] W_{L, n+1} + r[A_L + \frac{\Delta h}{2} B_L] W_{L+1, n+1}. \quad (4.7) \]

Replacing \(W_{L+1, n+1} \) in (4.7) by the right-hand side of (4.6) we get
\[-(\Delta t) Q_{L,n+1} + W_{L,n} = r[A_L - \frac{\Delta h}{2} B_L] W_{L-1,n+1} +
\]

\[+[-2rA_L + (\Delta t) E_L - 1] W_{L,n+1} + r[A_L + \frac{\Delta h}{2} B_L].[- \frac{\Delta h}{H_L} W_{L,n+1} + W_{L-1,n+1}].\]

Hence

\[P_L W_{L-1,n+1} + R_L W_{L,n+1} = U_{L,n+1},\]

where:

\[P_L = 2rA_L;\]

\[(4.9a)\]

\[R_L = -2rA_L + (\Delta t) E_L - 1 - \frac{r(\Delta h)}{H_L} A_L - \frac{r(\Delta h)^2}{2H_L} B_L\]

\[= -rA_L[2 + \frac{\Delta h}{H_L}] + (\Delta t)[E_L - \frac{1}{2H_L} B_L] - 1;\]

\[(4.9b)\]

\[U_{L,n+1} = -(\Delta t) Q_{L,n+1} + W_{L,n}.\]

\[(4.9c)\]
5. A CENTRAL DIFFERENCE METHOD BASED ON THREE TIME LEVELS

Since the coefficients A, B, and E of the differential equation (2.5) are independent of t and N, a central difference representation of (2.5) can be written in the form

$$
\Delta_t W_{i,n} = \frac{A_1}{3} \cdot \Delta_h (W_{i,n+1} + W_{i,n} + W_{i,n-1}) +
\frac{B_1}{3} \cdot \Delta_h (W_{i,n+1} + W_{i,n} + W_{i,n-1}) + E_1 \cdot W_{i,n} + Q_{i,n} .
$$

(5.1)

Here

$$
\Delta_h^2 W_{i,j} = \frac{W_{i+1,j} - 2W_{i,j} + W_{i-1,j}}{(\Delta h)^2} , \quad \Delta_h W_{i,j} = \frac{W_{i+1,j} - W_{i-1,j}}{2(\Delta h)} ,
$$

(5.1a, 5.1b)

and

$$
\Delta_t W_{i,j} = \frac{W_{i,j+1} - W_{i,j-1}}{2(\Delta t)}
$$

(5.1c)

are the finite difference approximations to $\frac{\partial^2 W}{\partial h^2}$, $\frac{\partial W}{\partial h}$, and $\frac{\partial W}{\partial t}$, respectively, at $(h,t) = (h_i, t_j)$. By expanding (5.1) in terms of these approximations and by, as before, writing $r = \frac{(\Delta t)}{(\Delta h)^2}$, we get

$$
3(W_{i,n+1} - W_{i,n-1}) = 2A_1 r[(W_{i+1,n+1} - 2W_{i,n+1} + W_{i-1,n+1}) +
+ (W_{i+1,n} - 2W_{i,n} + W_{i-1,n}) + (W_{i+1,n-1} - 2W_{i,n-1} + W_{i-1,n-1})] +
$$
Thus we obtain \(L-1 \) equations

\[
B_i \frac{\Delta t}{\Delta h} \left((W_{i+1,n} - W_{i-1,n+1}) + (W_{i+1,n} - W_{i-1,n}) \right) + \\
(W_{i+1,n-1} - W_{i-1,n-1}) + 6(\Delta t)[E_i W_{i,n} + Q_i,n]
\]

or

\[
r[2A_i - (\Delta h)B_i] W_{i-1,n+1} + [-4rA_i - 3] W_{i,n+1} + \\
+ r[2A_i + (\Delta h)B_i] W_{i+1,n+1} = -(2A_i r)[(W_{i+1,n} + W_{i+1,n-1}) - \\
2(W_{i,n} + W_{i,n-1}) + (W_{i-1,n} + W_{i-1,n-1})] - \\
- (B_i \frac{\Delta t}{\Delta h})[(W_{i+1,n} + W_{i+1,n-1}) - (W_{i-1,n} + W_{i-1,n-1})] - \\
- [6(\Delta t)(E_i W_{i,n} + Q_{i,n})] - 3 W_{i,n-1} .
\] (5.2)

Thus we obtain \(L-1 \) equations

\[
P_i W_{i-1,n+1} + R_i W_{i,n+1} + S_i W_{i+1,n+1} = U_{i,n+1}
\] (5.3)

for \(n \geq 1 \) and \(i = 1,2,\ldots,L-1 \). Since \(W_{0,j} = 0 \), due to the boundary condition

at \(h = 0 \), we can set

\[
P_i = 0 ;
\] (5.4a)

the other coefficients for \(i \leq L-1 \) are:

\[
P_i = r[2A_i - (\Delta h)B_i] , \quad i = 2,3,\ldots,L-1 ;
\] (5.4b)
\[R_i = -[4rA_i + 3], \quad i = 1, 2, \ldots, L-1; \quad \text{(5.4c)} \]

\[S_i = r[2A_i + (\Delta h)B_i], \quad i = 1, 2, \ldots, L-1; \quad \text{(5.4d)} \]

and

\[U_{i,n+1} = -x\left\{ [2A_i + (\Delta h)B_i] (W_{i+1,n} + W_{i+1,n+1}) + [2A_i + (\Delta h)B_i] (W_{i-1,n} + W_{i-1,n+1}) - 4A_i (W_{i,n} + W_{i,n-1}) \right\} - 6(\Delta t)[E_{i+1}W_{i,n} + Q_{i,n}] - 3W_{i,n}, \]

\[i = 1, 2, \ldots, L-1. \]

Remark: to evaluate \(U_{1,n+1}' \), set \(W_{0,n+1}' = W_{0,n} = 0. \)

In order to obtain the coefficients of the \(L \)th equation,

\[P_L \cdot L_{-1,n+1} + R_L \cdot L_{n+1} = U_{L,n+1}, \quad \text{(5.5)} \]

use the central difference representation

\[\frac{W_{L+1,j} - W_{L-1,j}}{2(\Delta h)} + \frac{1}{2H_1} W_{L,j} = 0 \]

of the boundary condition at \(h = h_L = 1 \); from this difference equation we get

\[W_{L+1,j} = -\frac{\Delta h}{H_1} W_{L,j} + W_{L-1,j}. \quad \text{(5.6)} \]

Next let \(i = L \) in (5.2) and replace the \(L_{n+1} \) on the right-hand side of (5.6) with \(j = n - 1, n \) or \(n + 1 \) as required. Thus,
\[r[2A_L - (\Delta h)B_L]W_{L-1,n+1} + [-4rA_L - 3]W_{L,n+1} + \]
\[+ r[2A_L + (\Delta h)B_L][-\frac{\Delta h}{H_1}W_{L,n+1} + W_{L-1,n+1}] = \]
\[= -r \left\{ [2A_L + (\Delta h)B_L][-\frac{\Delta h}{H_1}(W_{L,n} + W_{L,n-1}) + (W_{L-1,n} + W_{L-1,n-1})] + \right\} - \]
\[+ [2A_L - (\Delta h)B_L](W_{L-1,n} + W_{L-1,n-1}) - 4A_L(W_{L,n} + W_{L,n-1}) \]
\[-6(\Delta t)[E_LW_{L,n} + Q_L,n] - 3W_{L,n-1} \]

It follows that
\[p_L = 4rA_L , \quad (5.7a) \]
\[r_L = -[2rA_L(2 + \frac{\Delta h}{H_1}) + \frac{(\Delta t)B_L}{H_1} + 3] , \quad (5.7b) \]

and that
\[u_{L,n+1} = -r \left\{ 4A_L(W_{L-1,n} + W_{L-1,n-1}) - [2A_L(2 + \frac{\Delta h}{H_1}) + \right\} - \]
\[+ \frac{(\Delta h)^2}{H_1}B_L(W_{L,n} + W_{L,n-1}) \}
\[-6(\Delta t)[E_LW_{L,n} + Q_L,n] - 3W_{L,n-1} \]

\[(5.7c) \]
6. THE CRANK-NICOLSON METHOD

In the present case, the finite difference representation of the differential equation (2.5) is

\[
\frac{W_{i,n+1} - W_{i,n}}{\Delta t} = \frac{A_i}{2} \cdot \Delta_h^2 (W_{i,n+1} + W_{i,n}) + \\
+ \frac{B_i}{2} \cdot \Delta_h (W_{i,n+1} + W_{i,n}) + \frac{E_i}{2} (W_{i,n+1} + W_{i,n}) \\
+ \frac{Q_{i,n+1} + Q_{i,n}}{2},
\]

(6.1)

where the operators Δ_h^2 and Δ_h are defined by (5.1a) and (5.1b), respectively.

Then writing $r = \frac{\Delta t}{(\Delta h)^2}$, we have

\[
2[W_{i,n+1} - W_{i,n}] = A_i r [(W_{i+1,n+1} - 2W_{i+1,n} + W_{i-1,n+1}) + \\
+ (W_{i+1,n} - 2W_{i,n} + W_{i-1,n}) + \frac{B_i}{2} (\frac{\Delta t}{\Delta h}) [(W_{i+1,n+1} - W_{i-1,n+1}) + \\
+ (W_{i+1,n} - W_{i-1,n})] + [E_i (W_{i,n+1} + W_{i,n}) + (Q_{i,n+1} + Q_{i,n})] \Delta t
\]

which leads to

\[
2[W_{i,n+1} - W_{i,n}] = A_i r [(W_{i+1,n+1} + W_{i+1,n}) + (W_{i-1,n+1} + W_{i-1,n}) - \\
-2(W_{i,n+1} + W_{i,n})] + \frac{B_i}{2} (\frac{\Delta t}{\Delta h}) [(W_{i+1,n+1} + W_{i+1,n}) - \\
-2(W_{i,n+1} + W_{i,n})]
\]
\[-(W_{i-1,n+1} + W_{i-1,n}) + [E_i(W_{i,n+1} + W_{i,n}) + Q_{i,n+1} + Q_{i,n})\Delta t].\]

Therefore,

\[\left[rA_i - \frac{B_i}{2} \left(\frac{\Delta t}{\Delta h} \right) \right] W_{i-1,n+1} + \left[- (2 + 2rA_i) + \Delta t E_i \right] W_{i,n+1} + \]

\[+ \left[rA_i + \frac{B_i}{2} \left(\frac{\Delta t}{\Delta h} \right) \right] W_{i+1,n+1} = \]

\[\left\{ \left[rA_i - \frac{B_i}{2} \left(\frac{\Delta t}{\Delta h} \right) \right] W_{i-1,n} + \left[2 - 2rA_i + \Delta t E_i \right] W_{i,n} + \right. \]

\[+ \left. \left[rA_i + \frac{B_i}{2} \left(\frac{\Delta t}{\Delta h} \right) \right] W_{i+1,n} + (Q_{i,n+1} + Q_{i,n})\Delta t \right\}. \tag{6.2} \]

Hence for \(n > 0 \) and \(i = 1, 2, \ldots, L-1 \) we obtain \(L-1 \) equations

\[P_i W_{i-1,n+1} + R_i W_{i,n+1} + S_i W_{i+1,n+1} = U_{i,n+1}. \tag{6.3} \]

Due to the boundary condition at \(h = 0 \), we have \(W_{0,j} = 0 \) for all \(j \). Thus we can set

\[P_1 = 0. \tag{6.4a} \]

Then the other coefficients for \(i \leq L-1 \) are as follows:

\[P_i = r[A_i - \left(\frac{\Delta h}{2} \right) B_i], \quad i = 2, 3, \ldots, L-1; \tag{6.4b} \]

\[R_i = \Delta t E_i - 2(1 + A_i r), \quad i = 1, 2, \ldots, L-1; \tag{6.4c} \]

\[S_i = r[A_i + \left(\frac{\Delta h}{2} \right) B_i], \quad i = 1, 2, \ldots, L-1; \tag{6.4d} \]

and
\[U_{i,n+1} = - r[A_i - \left(\frac{\Delta h}{2} \right) B_i] W_{i-1,n} + \left[\Delta t E_i + 2(1 - rA_i) \right] W_{i,n} + \]
\[+ r[A_i + \left(\frac{\Delta h}{2} \right) B_i] W_{i+1,n} + (Q_{i,n+1} + Q_{i,n}) \Delta t , \]
\[i = 1, 2, \ldots, L-1 . \]

(6.4e)

Remark: to evaluate \(U_{1,n+1} \), use \(W_{0,n} = 0 \).

In order to obtain the coefficients of the \(L \)th equation,

\[P_L \cdot W_{L-1,n+1} + R_L \cdot W_{L,n} = U_{L,n+1} , \]

(6.5)

use the central difference representation

\[\frac{W_{L+1,j} - W_{L-1,j}}{2(\Delta h)} + \frac{1}{2H_1} - \left(\frac{\Delta h}{H_1} \right) W_{L,j} = 0 \]

of the boundary condition at \(h = h_L = 1 \); this difference equation implies

\[W_{L+1,j} = - \left(\frac{H_1}{\Delta h} \right) W_{L,j} + W_{L-1,j} . \]

(6.6)

Next set \(i = L \) in (6.2) and replace the \(W_{L+1,j} \) by the right-hand side of (6.6), where \(j = n, n+1 \). This gives us

\[\left[rA_L - \frac{B_L}{2} \left(\frac{\Delta t}{\Delta h} \right) W_{L-1,n+1} \right] + \left[-2(1 + rA_L) + \Delta t E_L \right] W_{L,n+1} + \]
\[+ \left[rA_L + \frac{B_L}{2} \left(\frac{\Delta t}{\Delta h} \right) \right] \left[- \left(\frac{\Delta h}{H_1} \right) W_{L,n+1} + W_{L-1,n+1} \right] = \]
\[= - \left\{ \left[rA_L - \frac{B_L}{2} \left(\frac{\Delta t}{\Delta h} \right) \right] W_{L-1,n} + \left[2(1 - rA_L) + \Delta t E_L \right] W_{L,n} + \right. \]
\[+ \left[rA_L + \frac{B_L}{2} \left(\frac{\Delta t}{\Delta h} \right) \right] \left[- \left(\frac{\Delta h}{H_1} \right) W_{L,n} + W_{L-1,n} \right] + (Q_L,n+1 + Q_L,n) \Delta t \right\} . \]
It follows that

\[p_L = 2r_A L, \]

(6.7a)

\[r_L = \left[-2 - 2r_A L + \Delta t E_L - r_A L \left(\frac{\Delta h}{H_1} \right) - \frac{B_L \Delta t}{2 \left(\frac{\Delta h}{H_1} \right)} \right] \]

\[= -[r_A L \left(2 + \frac{\Delta h}{H_1} \right) + \frac{B_L \Delta t}{2 \left(\frac{\Delta h}{H_1} \right)} + 2 - \Delta t E_L], \]

(6.7b)

and that

\[u_{L, n+1} = -\left\{ [2r_A L] w_{L-1, n} + [2 - 2r_A L + \Delta t E_L - r_A L \left(\frac{\Delta h}{H_1} \right) - \frac{B_L \Delta t}{2 \left(\frac{\Delta h}{H_1} \right)}] w_{L, n} + (Q_{L, n+1} + Q_{L, n}) \Delta t \right\} \]

\[= -\left\{ [2r_A L] w_{L-1, n} + [-r_A L \left(2 + \frac{\Delta h}{H_1} \right) - \frac{B_L \Delta t}{2 \left(\frac{\Delta h}{H_1} \right)} + 2 + \Delta t E_L] w_{L, n} + (Q_{L, n+1} + Q_{L, n}) \Delta t \right\}. \]

(6.7c)
7. REFERENCES

APPENDIX A: COEFFICIENTS OF THE DIFFERENTIAL EQUATION AND OF THE BOUNDARY
CONDITIONS IN TERMS OF THE INPUT PARAMETERS

A.1 The Input Parameters and their Dimensional Units

In order to specify the dimensions of the input parameters and the
coefficients of the boundary value problem, let \(\hat{\lambda} \) and \(\hat{\tau} \) denote the units
of height (length) and time, respectively. The normalized dimensional units
for \(h \) and \(t \) used by the program internally are \(1_{\hat{\lambda}} = 1,000 \) kilometers and
\(1_{\hat{\tau}} = 24 \) hours, respectively. The units of \(h \) and \(t \) to be used for external
input are described in APPENDIX B.

The following parameters must be provided as a part of input information:

- \(H_0 \) in \([\hat{\lambda}] \),
- \(H_1 \) in \([\hat{\lambda}] \),
- \(D_0 \) in \([\hat{\lambda}^2 / \hat{\tau}] \),
- \(Q_0 \) in \([\hat{\lambda}^{-3} \cdot \hat{\tau}^{-1}] \),
- \(N_0 \) in \(\text{[number of electrons]}/[\hat{\lambda}^3] \),
- \(\beta_0 \) in \([\hat{\tau}^{-1}] \),
- \(F = 1 \) or \(2 \)
- angle \(\phi \) in radians,
- angle \(\delta \) in radians,
- \(\tau \) in \([\hat{\tau}] \).

A.2 Coefficients of the Differential Equation

First let us define the following quantities:

\[
D_1(h) = D_0 \cdot \exp\left(\frac{h-H_0}{H_1}\right) \quad \text{in} \quad [\hat{\lambda}^2 / \hat{\tau}];
\]
\[\beta(h) = \beta_0 \cdot \exp\left(\frac{-F(h-H_0)}{H_1}\right) \quad \text{in} \quad [\tau^{-1}] ; \]

\[\cos \chi = (\sin \phi \cdot \sin \delta) + (\cos \phi \cdot \cos \delta \cdot \cos t') , \]

where \(t' \) is in radians and for the unit of time in \(\tau(=24 \text{ hours}) \), \(t' = k \cdot t \)

with \(k = 2\pi \) radians/\(\tau \).

Then, in our special case, the coefficients \(A, B, E, \) and \(Q \) of the differential equation

\[\frac{\partial^N}{\partial t^N} = A(t,h) \frac{\partial^2 N}{\partial h^2} + B(t,h) \frac{\partial N}{\partial h} + E(t,h,N)N + Q(h,t) \]

are defined by

\[A(h,t) = A(h) = D_1(h) \quad \text{in} \quad [\lambda/\tau] , \]

\[B(h,t) = B(h) = \frac{3D_1(h)}{2H_1} \quad \text{in} \quad [\lambda/\tau] , \]

\[C(h,t) = C(h) = -\beta(h) + \frac{D_1(h)}{2(H_1)^2} \quad \text{in} \quad [\tau^{-1}] , \]

\[D(h,t,N) = 0 , \]

and so

\[E(h,t,N) = C(h,t) + D(h,t,N) = -\beta(h) + \frac{D_1(h)}{2(H_1)^2} \]

is a function of \(h \) only. \(Q(h,t) \), the only coefficient dependent both on \(h \) and \(t \), is of the form

\[Q(h,t) = Q_0 \cdot \exp \left\{ 1 - \frac{h-H_0}{H_1} - (\sec \chi)\exp\left[\frac{h-H_0}{H_1}\right] \right\} \quad \text{in} \quad [\lambda^{-3}/\tau] \quad \text{when} \quad |\chi| < \pi/2 ; \]
The boundary condition \(N(h,0) = G_i \), where \(i = 1 \) or 2, at \(t = 0 \) and for \(0 \leq h \leq 1 \) is either

\[
G_1(h) = N_0 \cdot \exp\left\{ \frac{1}{2} \left(1 - \frac{h-H_0}{H_1} \right) - \exp\left[-\frac{2(h-H_0)}{H_1} \right] \right\}
\]

or else

\[
G_2(h) = \begin{cases}
0 & \text{when } 0 \leq h \leq H_0 \\
N_0 \cdot \left\{ \exp\left[-\frac{h-H_0}{2H_1} \right] - \exp\left[-\frac{2(h-H_0)}{H_1} \right] \right\} & \text{when } H_0 < h \leq 1
\end{cases}
\]

Both \(G_i(h) \) represent the number of electrons/\(\lambda^3 \). At the input time one should specify which \(G_i (i = 1 \) or 2) will be used.

For \(t > 0 \), the boundary condition at \(h = 1 \) is

\[
\frac{\partial N}{\partial h} + \left(\frac{1}{2H_1} \right) N = 0
\]

where \(H_1 \) is an input parameter already mentioned in the present appendix.

The boundary condition at \(h = 0 \) for \(t > 0 \) is

\[
N(0,t) = 0
\]
APPENDIX B: USAGE OF THE COMPUTER PROGRAM

B.1 Computer Program

First let us review some basic features of the computer program for the numerical solution of our boundary value problem which should be of interest to its prospective user. Almost all of them have already been mentioned in and are scattered through other parts of this report. However, in order to make APPENDIX B relatively independent from the rest of the report, we summarize this useful information below:

1. The program has been coded in the symbolic language (SCATRE) for the IBM 7094 computer of the Digital Computer Laboratory of the University of Illinois.

2. Double precision normalized floating point arithmetic is used internally. The mantissa of a double precision floating point number on the IBM 7094 is 54 bits long.

3. Three finite-difference methods (backward difference, central difference, and Crank-Nicolson) are incorporated in the program. The user must indicate by an input signal which one of them he intends to use. How to choose values for this signal is explained in the description of the input.

4. The central difference method is of experimental nature. Its final acceptance or rejection will depend on the results of further testing and theoretical work. This method uses three time levels and thus has to be started by some two-times-level method which in our use happens to be the backward difference method.
B.2 Composition of the Input Data Deck

By a run we mean an integration (numerical solution) sweep executed from the initial time \(t = 0 \) through some final value of \(t \), say \(t_{FN} \). Each run may be segmented into one or several stages. One specifies a stage, say the \(i^{th} \), by fixing a constant time step, \(\Delta t_i \), to be used throughout it and by giving its final (or end) time point \(t_{Fi} \). In a run consisting of \(N \) stages, the \(t_{Fi} \) must be ordered such that

\[
0 < t_{F1} < t_{F2} < \ldots < t_{FN}.
\]

During the execution time the last stage of a run will be recognized by the current value of the so-called exit flag: the value of that flag associated with the last stage should be \(= 1 \); for any other stage, it should be \(= 0 \).

A machine job will consist of one or several runs depending on for how many runs the input data has been furnished.

Using the terminology introduced above we can now speak of the stage or run data subdecks of a job input data deck. The composition of a typical job input data deck is illustrated by the following diagram.
$ Data card.

Data subdeck for the 1st run.

Data subdeck for the 2nd run.

Data subdeck for the last run.

The end-of-job card.

Fig. B.1: Composition of a job input data deck
The "$ DATA" and the end-of-job cards are always of the same fixed format and should always be present in the data deck.

Warning: the user should become familiar with the current rules of the Digital Computer Laboratory concerning other "$" system cards that may have to be added to or omitted from the job input data deck.

The composition of a run input data subdeck is as follows:

<table>
<thead>
<tr>
<th>CARD</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run ID (title) card:</td>
<td>an arbitrary alphanumeric message in columns 2-72; "1" should be punched in col. 1.</td>
</tr>
<tr>
<td>Run control card:</td>
<td>L; the integration-mode-signal; the write-mode-signal; BCFLG (= the boundary condition flag).</td>
</tr>
<tr>
<td>Card 1 of floating point numbers:</td>
<td>$_0; H_1; D_0; \beta_0$</td>
</tr>
<tr>
<td>Card 2 of floating point numbers:</td>
<td>$\phi; \delta; \tau$</td>
</tr>
<tr>
<td>Card 3 of floating point numbers:</td>
<td>$F; N_0; Q_0$</td>
</tr>
<tr>
<td>Stage (#1) card:</td>
<td>$t_{F_1}; \Delta t_1; \Delta t_{W_1}; \text{SWMODE} (= the stage-write-mode signal); EXFLG (= the exit flag) = 0.$</td>
</tr>
<tr>
<td>Stage (#2) card:</td>
<td>$t_{F_2}; \Delta t_2; \Delta t_{W_2}; \text{SWMODE} (= the stage-write-mode signal), EXFLG (= the exit flag) = 0.$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Stage (#N) card:</td>
<td>$t_{F_N}; \Delta t_N; \Delta t_{W_N}; \text{SWMODE} (= the stage-write-mode signal), EXFLG (= the exit flag) = 1.$</td>
</tr>
</tbody>
</table>

Fig. B.2: Composition of a run input data subdeck
The following table provides sufficiently detailed information needed to design and punch the input data cards. In the event that the user is not familiar with the definitions of the I-, E-, and H-fields as used in input format statements, he is advised to consult the SCATRE manual issued by the Digital Computer Laboratory of the University of Illinois.
<table>
<thead>
<tr>
<th>FIELD</th>
<th>COLUMNS & TYPE</th>
<th>ADJUST</th>
<th>TYPE OF INPUT QUANTITY</th>
<th>SYMBOLIC NAME OF STORAGE LOCATION</th>
<th>INPUT QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run ID (title) card</td>
<td>01 (1H)</td>
<td>Right</td>
<td>Alphanumeric</td>
<td>TCARD</td>
<td>Pos. integer "1" should be punched</td>
</tr>
<tr>
<td></td>
<td>02-72 (71H)</td>
<td>Arbi- trary</td>
<td>Alphanumeric</td>
<td>TCARD + 6</td>
<td>An arbitrary ID message 71 alphanumeric characters long (including blanks); for example, "THE ELECTRON DENSITY IN THE IONOSPHERE, STUDY NO.XX".</td>
</tr>
<tr>
<td></td>
<td>73-80</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run control card (of fixed point parameters)</td>
<td>01-06 (16)</td>
<td>Right</td>
<td>Positive integer</td>
<td>L</td>
<td>$L = \text{the no. of } \Delta h \text{ subintervals in } 0 \leq h \leq 1$. Range: $4 \leq L \leq 256$.</td>
</tr>
<tr>
<td></td>
<td>07-12 (16)</td>
<td>Right</td>
<td>Integer</td>
<td>MODE</td>
<td>The flag for determining the mode of the numerical solution. The value 0 \Rightarrow backward difference method. The value 1 \Rightarrow central difference method. The value 2 \Rightarrow Crank-Nicolson method.</td>
</tr>
<tr>
<td></td>
<td>13-18 (16)</td>
<td>Right</td>
<td>Integer</td>
<td>WMODE</td>
<td>The control flag for writing the input data and the results of the preliminary calculations. The value 0 \Rightarrow the input data, h_3^{-1}, and H_j-tables written; The value 1 \Rightarrow in addition, other preliminary calculations written. Normally, the user should use the value = 0.</td>
</tr>
<tr>
<td></td>
<td>19-24 (16)</td>
<td>Right</td>
<td>Integer</td>
<td>BCFLG</td>
<td>The control signal for the choice of boundary conditions at $t = 0$. The value 0 $\Rightarrow G_1(h)$; The value 1 $\Rightarrow G_2(h)$.</td>
</tr>
<tr>
<td></td>
<td>25-80</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIELD</td>
<td>TYPE OF INPUT QUANTITY</td>
<td>SYMBOLIC NAME OF STORAGE LOCATION</td>
<td>INPUT QUANTITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMNS & TYPE</td>
<td>ADJUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-18 (E18.8)</td>
<td>Right Fl. point</td>
<td>H₀</td>
<td>H₀ in [1,000 km].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-36 (E18.8)</td>
<td>Right Fl. point</td>
<td>H₁</td>
<td>H₁ in [1,000 km].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-54 (E18.8)</td>
<td>Right Fl. point</td>
<td>DOU</td>
<td>D₀ in (1,000 km)²/hr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-72 (E18.8)</td>
<td>Right Fl. point</td>
<td>BETAOU</td>
<td>β₀ in [hr⁻¹].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73-80</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card 2 of floating point numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-18 (E18.8)</td>
<td>Right Fl. point</td>
<td>PHI</td>
<td>φ in [radians].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-36 (E18.8)</td>
<td>Right Fl. point</td>
<td>DELTA</td>
<td>δ in [radians].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-54 (E18.8)</td>
<td>Right Fl. point</td>
<td>TAUU</td>
<td>τ in [hr].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-80</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card 3 of floating point numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-18 (E18.8)</td>
<td>Right Fl. point</td>
<td>F</td>
<td>F = 1.0 or = 2.0 [dimensionless].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-36 (E18.8)</td>
<td>Right Fl. point</td>
<td>NO</td>
<td>N₀ in [no. of electrons/(1,000 km)³].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-54 (E18.8)</td>
<td>Right Fl. point</td>
<td>QUO</td>
<td>Q₀ in [(1,000 km)⁻³ hr⁻¹].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-72 (E18.8)</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage card</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-18 (E18.8)</td>
<td>Right Fl. point</td>
<td>TFU</td>
<td>t_F in [hr].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-36 (E18.8)</td>
<td>Right Fl. point</td>
<td>DELTU</td>
<td>Δt in [hr].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-54 (E18.8)</td>
<td>Right Fl. point</td>
<td>DELTWU</td>
<td>Δt_w in [hr].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIELD</td>
<td>TYPE OF INPUT QUANTITY</td>
<td>SYMBOLIC NAME OF STORAGE LOCATION</td>
<td>INPUT QUANTITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage card</td>
<td>Blank</td>
<td>SWMODE</td>
<td>The control signal for writing the output of the stage. The value = 0 or 1 ⇒ standard output; The value > 2 ⇒ in addition, intermediate quantities dependent on t written; The value > 3 ⇒ in addition, the coefficients of the system of linear equations written. Normally, the user should use the value = 0 or 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79 (II)</td>
<td>Integer</td>
<td>EXFLG</td>
<td>The flag for indicating the last stage of a run. It should be = 1 for the last stage and = 0 for any other stage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 (II)</td>
<td>Integer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End-of-job card</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(to follow the input data subdeck of the last run in a job)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (1H)</td>
<td>Alphanumeric</td>
<td>TCARD</td>
<td>"-", the minus sign, should be punched.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02-11 (10H)</td>
<td>Alphanumeric</td>
<td>TCARD + 6</td>
<td>The message "END OF JOB" should be punched.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-80</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C: FLOWCHARTS

The flow charts contained in this appendix are presented in the same order as the corresponding subprograms appear in the program. The name by which a subprogram, including the master control, is referred to is its symbolic entry address. For the convenience of the user, we list next the names of all subprograms in the order indicated above:

MCNTRL (the master control)
ERREX
IA000
IB000
SB000
EQ000, EQ100
ME000, ME100, ME200, ME300, ME400, ME500, ME600
PR000, PR100
DE000
WC000
WT000, WT100, WT200
WP000
WX000

Each subprogram is entered from a higher level subprogram (the master control in this respect is the highest level subprogram) by using a basic linkage of the following type:

\[\alpha \text{ TSX (name of subprogram), } 4 \]

\[\alpha + 1 \text{ (normal exit)} \]

There are subprograms which do not return the control to the location \(\alpha + 1 \). Such cases are clearly indicated.

A reference to a lower level subprogram from a higher level subprogram is indicated by
brief description of the function of
the subprogram referred to

in the flowcharts contained in this appendix.