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VIBRATIONS OF A HOLLOW ELASTIC CYLINDER BONDED TO
A THTN CASING OF A DIFFERENT MATERTAL
By Vasant S. Kelkar*

Ames Research Center
SUMMARY

Exact solutions are obtained to determine the natural freqguencies and
mode shapes of a thin cylindrical shell supported by a hollow core of a dif-
ferent material. Materials for both shell and core are assumed to be homo-
geneous, isotropic, and linearly elastic. A perfect bond is assumed at the
Jjunction of the shell and the core. The composite cylinder is free from
stresses at its curved boundaries and is supported by a diaphragm at its flat
ends. The solutions for the core are based on three-dimensional elasticity
theory and for the shell on bending theory. Curves are plotted to show the
variation of the frequency with the variation in circumferential and axial
wave numbers and in the ratio of inner to outer radii of the core.

INTRODUCTION

Problems relating to vibrations of a thick cylinder bonded to a thin
casing of a different material arise during the flight or transportation and
handling of solid fuel rocket motors. It is therefore necessary to develop
solutions which determine the natural frequencies and mode shapes of vibra-
tions of such composite cylinders. Solid fuel tends to behave like a visco-
elastic material; however, an analysis based on the assumption of an elastic
core provides useful results.

Solutions for some particular cases have been obtained before as cited
below; however, a completely general solution of the problem using three-
dimensional elasticity theory for the core and bending theory for the shell
is difficult to obtain analytically and has not yet been developed. Such a
general solution, useful in its own right, could also be used to check the
solutions of approximate methods, such as the finite element method, which
could then be used to solve problems of more complicated core geometries. Chu
(ref. 1) gave frequency equations for simple axisymmetric axial shear and
radial vibrations of composite cylinders, while Achenbach (ref. 2) obtained
solutiong for torsional oscillations. These solutions are relatively simple
since they involve only one displacement component. Problems involving two of
the displacement components were also solved; Baltrukonis, Chi, and Gottenberg
(ref. 3) and Sann and Shaffer (ref. L) obtained frequency equations for plane
strain vibrations. Neither study considers displacement variations in the

*The research was accomplished while the author held a National Academy
of Sciences - National Research Council Postdoctoral Resident Research
Associateship supported by National Aeronautics and Space Administration.




axial direction which complicate the problem somewhat. Henry and Freudenthal
(ref. 5) presented solutions for vibrations of & thin shell with a visco-
elastic core of nonablating boundary. Their solutions are for axisymmetric
deformations and are based on the use of the correspondence principle.

For the present analysis, we shall ¢onsider a composite circular cylinder
of length 1 composed of a thin elastic shell supported by a hollow elastic
core of a different material (fig. 1). Materials for both shell and core are
assumed to be homogeneous, isotropic, and linearly elastic, and to be per-
fectly bonded at their Jjunction. The curved surfaces of the composite cylin-
der are assumed to be free from stresses. The flat ends of the cylinder are
assumed to be supported by a diaphragm which prevents displacements in its own
plane. The solutions presented are completely general and are based on a
three-dimensional elasticity solution for the core and on bending theory solu-
tion for the shell. In the analysis which follows, the core and the shell are
first considered separately. To solve the problem of the composite cylinder,
equilibrium and compatibility conditions are then satisfied at the Jjunction of
the shell and the core. The coefficient determinant of the resulting six
homogeneous equations ylelds the frequency equation from which numerical val-
ues of the natural frequency are calculated and plotted against variations in
axial and circumferential wave numbers for different values of the core thick-
ness ratio. TFrequencies of a composite cylinder with an extremely thin shell
are compared with those given by Gazis (ref. 6) for a thick cylinder and are
found to be in good agreement.

SYMBOLS
a radius of the middle surface of the shell
b inside radius of the core
o, _Ea
2(1 + v,)
D Egt
5 2
1 - Vg
Easve elastic constants for the core material
Eg,vg elastic constants for the shell material
e €y + e(p + €L
2
A
K2 2.2 _ A
L=P o2
2(1 - 2
Kk 2 ( ve) p2p2 %2




-k® and -k;2, respectively, when kZ and k;2 are less than
Zero

2

12a%

length of cylinder
circumferential wave nunber
axial wave number

frequency of vibration

L

pa

components of applied loading per unit area of shell's middle
surface in the x, ¢, and r directions

cylindrical coordinates
thickness of the shell

displacements of a point on the middle surface of the shell in
the x,p,r directions, respectively

displacements, respectively, in the axial circumferential and
radial directions of a point x,p,r in the core

displacements of a point on the outer curved surface of the
core

amplitudes of displacements wu,v,w, respectively

solutions determining the radiasl variation of stresses T

Tnm, and o

solutions determining the radial variation of u

rx’
r

sV, and Wa

strains at a point in the core

E%Q for a cylinder of length 1




(]— = EVC)(}L + vﬁc)_ [e}

2 c

l“" ———
1 -v, E.

o mass density of the material of the core

c

Py mass density of the shell material
0,0, ,0

X et r stresses at a point in the core
T2 T2

X" xp” 19
_¥ ’?}®,3¥ stresses at a point on the outer curved surface of the core

X

ANALYSTS OF THE CORE

The core is a hollow circular cylinder for which the governing equations
for the deformation are (ref. 7):

Equations of motion

2 N
BTrX L1 BTxm . do LLlr - . o) u,
dar f dp dx ¥ ¥X TC 4B
2
BTrw L1 80® . aTxm L2, 37, o
=p )
dr T 3p dx T TP e B
2
da,, L1 ST£Q,+ 0Ty . Op = 9 _ ; "w,
dor T o dx r C ot2
Kinematic relations
€ =auc c =1C_+;avc € =8_Wg 3
X ax’ () T I'Bcp’ T St
g = e, e
rx or ox
2
ov, 1 oug (2)
Yy = e TE
xp ox T oo
, 1% e Ve
R or X dr r ]




Hooke'l's law

Ox% €x
E v
G. % = c € ¢ e
¢ 1+ v, 1 -2y,
Op J €p
(3)
"r ~
P 7 xp
Ec
T =
o 2(L + ve) Trp
Trx 7rx
where
oue ov W ow
_ - e, 1L ¢, Tc, TV
€ =€, + ecp + €, = Sx + 7 0 =+ Se

Substituting equations (2) into (3) and then introducing the resulting
expressions for stresses into equations (l), we get three partial differential
equations in U,y Vs W, and e.

1 ée_ > _ 2(]_ + vc) azuc
1 -2y ox Ve E, Pe 52 (ha)
2
1 Ll de 2 _ 1 j;_éwc _ 2(1 + ve) v,
T-2v, T o <% 5§;h5 T e T T g, Pe 32 (ko)
2
T S QS -1 _ 2 avc - 2(1 + Vc) o Yo
1 -2y, 0r * <§2 v2)’c T 12 3 E. Pe 32 (he)

where V® 1is the three-dimensional Laplacian operator

The following operations on these equations

g% (he) + & (he) + % é% (kb)) + g% (4a)

r

give



Pe - u2 ¢ (5)

dt=
where
2 - (L - 2"0),(1,&% ve) Pq
1 - Ve Ec

We seek a solution of equation (5) which is periodic in ¢ with a
period 2x and periodic in x with a period 2ra/A:

= E(r)sin %? cos m @eipt (6a)

where a is a constant which we shall later take as the radius of the middle
surface of the shell. This gives

dZE <k2 >E -0 (6b)

where

The solutions of this equation are

E(r) = -(1 - 2v_)a(caPy + caRy) (7)
where c¢3; and c, are arbitrary constants and where

(1) for ¥® >0, that is, p® > (1/u®)(N\%/a®)

P

m = Ip(kr)

and

¥y, (kr)

By

where Jp and Y, are Bessel functions of the first and second kind,
respectively.

(2) for %2 <0, that is, p® < (L/u®)(A\E/a®)



and
R, = Ky(Er) , B2 = 2

where I and K, are modified Bessel functions of the first and second kind,
respectively.

Taking
u, = £(r)cos é? cos mpelPt (8)
we get from equation (4a)
2
u+_l_£+<kla_£2 po. L Ay (9)
dr2 r dr T L -2y, 8

where

2 _ 2(1 - ve) 22 A2

k
. 1 - 2vc a2

The solutions of the homogeneous part of equation (9) are

f(r) = coQy + csSy (10)

where c¢p and cs are arbitrary constants and where

1 -2y 2
1) for k.2 >0, that is, p? > — ¢ L A
( ) 1 2 Y, s P> 2(1 - Vc) ug -
Q’m=Jm(klr)
and
Sp = Y (kar)
1—21) 2
. 1 A
2) for k;2 < 0, that is, p® < — % = A
( 1= <0, ’ ‘E(l—vc)uzaz
Qu = Im(Elr)

and

Sy = km(Elr) ’ k2 = -ki®



When k12 > 0, k2 may be negative or not; hence, to the homogeneous
solutions of equation (9), we can add two different sets of particular solu-
tions. When k;2 < O, ¥¥ must be less than zero; hence, only one particular
solution can be added to the homogeneous solutions. All the different
solutions thus arising can be divided into three cases as follows:

Case I. Xi® >k% >0, that is, p%/p,® > N > NB(L - 2v.)/2(1 - v,)
Case IT. k® <0 < k%, that is, 3 > p®/p® > 22(1 - 2v ) /2(1 - v)
Case III. O > k% >k, that is, p®/p,2 < M(1 - 2v.)/2(1L - v,) < A8
where

Q)=lﬂm

Having obtained solutions for e and u, for each of these cases, we can
solve for the displacements v, and w, from equations (4b) and (Lc). This
procedure has been illustrated for case I in the appendix. Only the solutions
for the displacements obtained in the three cases are listed here:

u, = £(r)cos %% cos mpelPt (11a)
v, = g(r)sin %% sin mpelPt (11v)
W, = h(r)sin %% cos mpe-Pt (11c)

For a cylinder of length 1, A =mra/l (n =0, 1, . . ., ®). This gives v,
Woy, and oy as zero at the ends x = 0 and x = 1 corresponding to a diaphragm
support. For each I, g, and h, three of the six linearly independent
solutions are regular and three singular at r = O.

Regular solutions

f(r) = APy » Q or O
Al m a
- _m Al m -
g(r) = 2 aPp B %2 T Qy or -a — Qp (12)
_ d Al d m
h(r) = a o Py s T EEE o Qn or a - Qy




Singular solutions

f(r) = MRy , Sm or O
- _n Al m a 4

g(r) = z aRy , STE T Sm or -a - Sm (13)
- AL 4 m

h(r) = a é% Ry » -8R ar Sy or a sy

where P, Qy, Ry, and S, are replaced by the following Bessel functions for
the various cases.

Case Py Qp Ry Sp

I Ju(kr) Jplkar) Yp(kr) ¥, (kr)

II Im(TEr) Jm(klr) Km(Er) Ym(klr)

I I(kr) I,(kir) Kp(kr) K, (kir)

These solutions are the same as those obtained by Gazis (ref. 6) by using
scalar and vector potentials. It may be noted that the quantities kr, kr,
kir, and kKir are dimensionless, so also are the displacement solutions (11),
(12), and (13). We denote solutions (12) by ®i3(r) [i=1,2, 3, j=1, 2,
3] and (13) by ®iy(r) [1 =1, 2,3, j=14, 5, 6%. Then the general solution
for displacements can be written:

6
u, =j{1 Slj(r)cj cos %? cos m @eipt
J=1
e
v, =j{: 52j(r)cj sin %% sin m @elPt (1k)
J=1
)
- . M ipt
W, j{: 63j(r)cj sin ££ cos m ge
J=1

where ¢, « . . Cg are unknown constants. Corresponding expressions for
the stresses Ty, Tr®, and o, in the core can be expressed as:



6 3
D .
_Tc Ax ipt
Ty = = :{: alj(r)cj cos = cos m Qe
J=1
5 8
_ c . :)_\__'}E . lpt
Trp = = Z oazj(r)cj sin Z= sin m ge (15)
J=1
D .
- _¢& i AX ipt
o, = 3 onsj(r)cj sin 7= cos m ge
J=1 .
where
E a
c

D = — ¢
©2(1+ vy

The factors ai'(r) can be calculated for the three cases by substituting
equations (12) and (13) into equations (2) and (3). The constants
Ci,+ + +»Cs can then be determined from stresses and displacements prescribed
at the inner and outer curved surfaces at the core. This step completes the
analysis of the core. A few special cases are of interest.

When m = 0O, we get four linearly independent solutions for each f and
h from (12) and (13) corresponding to the axisymmetric deformation problem,
while the two nontrivial solutions obtained for g are for a problem with

torsional symmetry.l

When A = 0, both k2 and k;2 are non-negative. Hence, only case I is
valid. From solutions (12) and (13), we get four linearly independent solu-
tions for g and h' for the resulting plane strain problem. The two lin-
early independent solutions for I correspond to pure axial shear vibrations.

EQUATIONS FOR THE SHELL

The shell has a midsurface radius a and thickness t which is
considered to be small compared to a. Using bending theory with Donnell's
simplifications and neglecting the effect of rotatory inertia, the following
equations of motion of the shell can be written in terms of its midsurface
displacements u, v, and w (refs. 8, 9, and 10).

1Tt is understood that relevant sines and cosines are interchanged in
solutions (14) by a simple coordinate transformation.

10



1 -v 1L+ v 2 2 B
u" + S utt o+ Syt + v wt + 2_ = g2 2%
5 5 Pxp, T Ps D, " 32
1L+ 1 - ] 2 2 2
Sutt + v+ Sv'"+w +p .2 =p B ¢ 9V L (16)
2 2 ?Dg S D, 2
: - 2 2, 32
. 1v LA .0 a
veu' + v w o+ k(v 2w+ wtT) - pp B= aDt atg
s s

where

and

and Py p@, p, are loads acting per unit area of the middle surface of the
shell.

ANALYSTS OF THE COMPOSITE CYLINDER

We have a shell of midsurface radius a supported on a core of radius
a(l - t/2a) which we denote by ad. We shall satisfy equilibrium conditions
at the Jjunction of shell and core. Also, for no slip, the displacements of
the shell and the core must be compatible at their Junction. Displacements
and stresses at the outer surface r = afd of the core are:

N 1

a = = X ipt
u, = uc(x,®,a9) = zg: Slj(ae)cj cos £X cos m ge
J=1
6
— . . ipt
v, = v (x,0,80) = j{: 82j(a9)cj sin %% sin m qet? (17)
J=1
6
- _ _ . AX ipt
W, = W (x,0,20) = j{: asj(ae)cj sin 2% cos m e
J=1 ’

11



6
= _ _ D¢ AX ipt ]
Ty = TrX(X,@,ae) b j{: alj(ae)cj cos — cOs m Qe
J=1
6
— D s
= = Zc . sin X si ipt
T Trw(x,@,ae) = /) aaj(ae)cJ sin 2£ sin m ge (18)
J=1
6
- D ' X ipt
G, = or(x,@,ae) = ;% j{; cc3j(a9)cj sin ~= cos m pelP
J=1 )

Displacements U,, V., W, must be the same as those of a corresponding point
on the inner surface of the shell. These displacements are related to the
midsurface displacements u, v, w of the shell as follows (ref. 10)

~

— t
u, =u+ —w'
¢ 2a
— t -
v =6v+ — W 19
. = (19)
W =W
c

We write solutions for wu, v, w in the form:
u=u_ cos XX cos m peiP?

v = v._ sin MX gin m gelPt (20)

t

s AX ip
W = sin £& cos m Qe
Wmn a P

J

wherein we may take A = nna/l in order to satisfy diaphragm support condi-
tions at the ends of a cylinder of finite length 1. Substituting
equations (20) and (17) into (19) we can express Uy, Vyn, Wy, 88

12




o
|

6 6
t
—_— j{: Slj(ae)cj -5 A j{: 6sj(a6)cj

J=1 J=1

[S) [S]
1 tm . 2
—_— j{: Szj(ae)cj + =5 j{: 63J(a6)cj (21)

J=1

<
il

Ssj(ae)cj

=
B
fl
Ce
o .
*_l

To satisfy equilibrium at the junction of the shell and the core, consider
the shell to be acted upon on its inner surface by loads -Tpy, —?f¢, and -Op.
The moments caused by these forces about axes through the midsurface of the
shell will be neglected since they will be of rather small magnitude. Hence,
in equations (16) p can be directly replaced by -Tpx, '?f¢ and
-0, Trespectively. xMorgover, since in the derivation of equations (16) quan-
tities of the order t/2a have been neglected compared to 1, we take 6 ~ 1
(ref. 10). When equations (21), (20), and (18) are substituted into equa-
tions (16), the following three equations result for the constants

Ciye » » Cai

(&)
L-vs o 82t 2)(s. .t >
EZ: [( 2 Ps "o, ¥ > < td o oa a3

j=1

[

l+VS £ D
- — . . - L) . . =
> %m,<$2J + oa mﬁsj> vgN\Bgy + 5§ “13] c5 0

(22a)

UIU
0

. . =0
23] €3

(221p)

1~y 2
+(mf + 8 N2 a“t 2> <§ .+ ;E-nﬁ )+ md, . +
< 2 Ps p P 25 7 5, Maj) T May

13



[S)
z wx(a.-_t_xa +m(o.. + 2 m..
s 13 2a T3] 25 7 55 T3
a2t

D
4 2 4y _ 2 c -
+[1+ks(7\ + 23%m2 + m*) og DSPJSSJ+5—a3j}Cj 0
S

(22¢c)

where 8:: = 8;:(a) and o;: = a..(a). We prescribe zero stresses at the
1] 1J 1d 1J

inner surface r = b of the core. This gives us three additional equations
for the constants ciy,. « «Cg as follows:

Z alj(b)cJ =0 (224)
J=1
[S]
}: agj(b)cJ =0 (22e)
J=1
6
z ags(b)ey = 0 (227)

J=1

Equations (22) together form six homogeneous equations for the six
constants Ci,. . . Cge They will have a nontrivial solution only if the
determinant of their coefficients is zero. This gives us the frequency equa-
tion - a transcendental equation for p, the roots of which can be calculated.
For each frequency p we can calculate from equations (22) the ratios cz/cl,
ca/c1y+ « +»Cefci- The mode shapes are then obtained from equations (1k),
(20), and (21). Problems wherein boundary conditions at the inner and outer
curved surfaces of the composite cylinder are different from those considered
here can also be solved in an analogous manner.

NUMERICAL RESULTS

The results of our analysis are illustrated by numerical values of the
frequency calculated for case I which covers a wider range of frequency spec-
trum than case IT or III. Numerical values of frequency in these cases can |
be calculated in a similar manner. In case I the dimensionless factors |
aij(r) have the following form:

1k

-
e

¢
mnmim R | i




ar1(r) = 2 % mAT (kr) - 2kaldy, ; (kr) A

ara(r) = <} - 2 %) lEr Ip(kar) - klaJnHJ(klr)’
ki%a
a1a(r) = mh T Jm(klr)

ani(r) = 2(x2 - m) :_2 g (kr) + 2m kl;i Ty ()
- 5 (@ - m)A 2m\ (23)
apa(r) = 2 e I (kar) - i:% T (E1T)
asa(r) = -2(uf - m) & 5 (k1r) + k1222F (kqir) - 2 k6% T (k1)
23 P2 Ym\EL 1 m\ €1 T mry VA

agi(r) = 2(x® - m) a2 g (kr) + 2k 82 7 (kr) + (W& - klzaz)Jm(kr)

I‘2 m T m-1
_ (m® - m)A 2\
ags(r) = 2 e Ip(kar) - T Jm+1(klr) + 2N (kar)
2 mk a2
0433(I') = 2(1’1’@ - m) —EE Jm(klr) -2 ;:a Jm_l_l(klr) J

The remaining a3 (i =1, 2, 3, J =4, 5, 6) are obtained by replacing Jy
by Y, and Jyu, by Yy, in equations (23).

The frequency equation obtained by equating to zero the coefficient
determinant of equations (22) was expressed in terms of the dimensionless
quantity ka. Numerical work was carried out on an IBM 7094 computer. Values
of v, and vy were fixed at 0.45 and 0.30, respectively. A relatively weak
core was considered by taking Ec/Es = 107% and pc/ps = 0,25, The radius to
thickness ratio (a/t) of the shell was taken to be 1000, For various values
of A, m, and a/b, roots ka of the frequency eguation were obtained by plot-
ting the value of the determinant against ka. From the definition of k a
dimensionless fregquency ratio p/pO is then given by the relation

(p/pg)2 = K22 + N2 (2k)

where
P, = l/ua

In all calculations, the range of values of p/pO considered was such
that it satisfied the condition p/p, > A (or k®a® > 0) for case I. The
results are shown in figures 2 to 6.

15



For purposes of comparison, numerical values of frequency were also
obtained for some cases considered by Gazis (ref. 6) for the vibrations of a
thick cylinder. Here, the ratios EcéEs: pc/ps, and Vc/Vs _were taken to be
unity, and a/t was assumed to be 10¥, With these values it was expected
that the roots obtained from the frequency equation for our composite cylinder
would be very close to those given by Gazis for a thick homogeneous cylinder.
Other parameters assumed to correspond to those used by Gazis were:

v, = Vg = 0.30, a/b =3.0, A=1.88, m=2

The value A = 1,885 corresponds to the cylinder thickness to axial wave

length ratio of 0.2. Values of p/pc, where

pC_
a-> 2p(|+v)

were obtained from the frequency equation and compared with those obtained
from Gazis' curves as follows:

p/p
from frequency | --- | 0.789 [1.058 | 1.415 | 1.758 | 2.037 | 2.257
equation ol R . . ~
p/ps from
Gasis% curves 0.425{ 0.80 |[1.07 J 1.43 11.76 |2.06 |2.26

The first frequency of 0.425 given by Gazis corresponds to a negative
value of ka and, hence, is out of the range of case I. ©Since it will be
obtained from case IT or IIT, it 1s not given in the comparison above. It
can be seen that all other roots agree very closely to those given by Gazis
with a maximum error of 1.375 percent. Similar agreement was also found in
other cases considered for comparison with Gazis' results.

DISCUSSION

For fixed values of the quantities v,, v, and the ratios pc/ps and
a/t, figures 2 to 6 represent the variation of the dimensionless frequency
p/po for different values of A, m, and the radius ratio a/b. Figures 2 to
4 show the variation of p/pO against A for m = 0, 1, and 2, respectively,
and a/b = 2.0, whereas figures 3, 5, and 6 show variation of p/pO against
A for a/b =2, 1.5, and 2.5, respectively. Straight lines p/po = A and
0.3015 N are drawn on each figure to indicate the domains covered by the
three cases, However, all the curves are plotted for case I only. Therefore,
curves are stopped at the dividing line p/pO = A. In some cases, curves

16




are stopped very close to the dividing line and are extended up to the
dividing line by dotted lines.

When m = O (fig. 2), the frequency equation degenerates into two
separate equations, one corresponding to the axisymmetric vibrations (shown
by solid lines) and the other to pure "torsional" vibrations (shown by dashed
lines). Furthermore, when A 1s also equal to zero, the axisymmetric vibra-
tion frequency equation degenerates further into two equations, one for simple
radial vibrations and the other for simple axial shear vibrations. When both
m and A are zero, we expect two of the frequencies to have zero values corre-
sponding to a rigid body axial translation and rotation of the cylinder.

Thus, the first two curves in figure 2 go to zero; the dotted curve is for
torsional motion and the other is expected to be for predominantly
longitudinal motion,

Figures 3 and 4 show the variation of frequency with A for m = 1 and
m=2, It seems that for higher values of m the frequency variation with
A is substantially decreased. From figures 3, 5, and 6, one can see the
effect on the frequency of changing a/b. This change simulates the different
stages during the burning of the solid fuel. It can be seen that the charac-
ter of the curves remains the same, however; the magnitude of the frequency
decreases with increase in a/b ratio. This is as expected since the mass
increases as a/b increases; however, the stiffness remains substantially the
same as that of the shell. :

CONCLUDING REMARKS

Analytical solutions were obtained to determine the natural frequencies
and mode shapes of a thin cylindrical shell supported by a hollow core of a
different material. The solutions, obtained by using three-dimensional elas-
ticity theory for the core and bending theory for the shell, were in closed
form. Roots of the transcendental frequency equation were obtained numeri-
cally and durves were plotted to show a typical variation of the frequency
with variation in circumferential and axial wave numbers and in the ratio of
inner to outer radii of the core. The solutions can be used to obtain the
natural frequencies of cylinders with curved surfaces free from stresses and
flat ends supported by diaphragms. They can also be used to check frequencies
obtained by approximate methods, such as finite elements, which, in turn, can
be used to solve problems of complicated core geometries.,

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, May L4, 1967
124 -08-06-01-00-21
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APPENDIX A
SOLUTIONS FOR U, Ve, AND W,

We shall now illustrate the procedure for obtaining the solutions for
displacements u,, V., W, by considering case I in detail. For this case,
the regular solution for E(r) of equation (7) becomes

E(r) = -(1 - 2v)ac,J,(kr) (A1)

We shall write only the regular solutions since, for case I, the singular
solutions can be obtained merely by replacing J by Y. Substituting equa-
tion (Al) into (9), we get

d2f 1 4af 5 m2>
—— + ==+ | k -2 ) f = ci NI (kr A2
=gy NG o AT (r) (22)

The general solution of this equation is given by

C1
f(r) = Cng(k.lr) + '2—}{2' 7\Jm(kr) (A3)
.2 -
Now from the definition of e
ov ou )
L%c_ o e Yo o (Ak)
T o ox T or
Substituting equation (AL) into (4ec), we get
2 2 2
3w, .3 oW, L1 (s é) . o~ w, L2 du, _2.
dr2 T dr r2\° dp= 3xF Y dx T
2
L1 de _ 5 2(1+v,) 0=, (45)
1-2y  or ¢ E. dt2

Substituting for e, u, and w from equations (6a), (Al), (11), and (A3), we
get

L
g,



d2h 39114_(1{2_1112-1 h = 27\2(1'2V)1Jkr_21_2 a kr
ar? | T ar * r2 e p2p2 r m{5) ( v) 3 m( k)

+ad Jm(kr):, + eo 2—7\ T ker) (A6)

Letting H = rh, we can write the left side of equation (A6) as

a®g |, 1 a" 2 2
==+ = = + -
dr2 r dr <%l r2

Equation (A6) can then be solved for H; hence,

h(r):-ﬁ:cl(—lu—;ng) < g (kr) -

ml>

1 4 m
i{? E; Jm(klr) + Cg 7 Jm(klr)

K

(A7)

Introducing equation (11b) into (AL4) one obtains

g(r) = %f;i B on(kr) + cg 2 s F Iy(mr) - e L (kr)  (48)

dr

RIB

Equations (A3), (A6), and (A8) form three sets of linearly independent solu-
tions for f, g, and h 1in case I. Three more sets are obtained by replacing
the Bessel functions of the first kind by those of the second kind. Simi-
larly, solutions for the other two cases were also obtained. All these solu-
tions are summarized (within a multiplicative constant) in equations (12) and

(13).
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Axisymmetric modes

—— — Torsional modes
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Dimensionless frequency, p/po

Figure 2,- Frequency versus A; m = O, a/b = 2,0,

22




Dimensionless frequency, p/p,
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Figure 4.- Frequency versus

Aom=2, af/b = 2.0.




Case |

Dimensionless frequency, p/p.

Figure 5.- Frequency versus A; m = 1, a/b = 1.5,
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Dimensionless frequency, p/p,
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Figure 6.- Frequency versus A; m = 1, a/b = 2,5,
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