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L. Introduction

In the present paper an attitude servo is defined as a control system
which adjusts the attitude and angular velocity of the spacecraft sc as to
follow the reference which may be varying in time. Such systems are multi-
dimensional multivariable, nonlinear, and nonautonomous with infinite sets
of forcing functions and initial conditions. A procedure for designing
such systems for spacecraft which are controlled by means of an arbitrary
angular momentum exchange and storage device is presented in the paper.

The discussion is restricted neither to small angle motion nor to single
axis motion of the spacecraft. Indeed, the nonlinear effects arising from
kinematics and gyroscopic action, the presence of bounds on angular momen-~
tum exchange rate and storage capacity of the controlling device, and vari-
ations in system parameters are taken into account. The proposed control
scheme forces the spacecraft into the desired attitude by generating toriue

about all three axes simultaneously.
2. A Model of Attitude Servos

Consider three right-handed orthonormal triplets of vectors §, &, and
d vhose common origin is the fixed point of rotation of the spacecrift.
Let & and & be fixed in inertial space and spacecraft, respectiqély, and
let 4 represent the reference. The servo input, output, and error will

be defined by direction cosine matrices: the input Ay, defines d rela-

tive to §; the output A, defines & relative to §; the error
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R = AasAzS (superscript t denotes transpose) defines & relative to d.
Servo null occurs when R = I, the identity matrix.

The model shown in figure 1 is proposed for the description of an
attitude servo in which the controller is an arbitrary angular momentum
exchange and storage device. The body coordinates of the angular momentum
exchange rate are assumed to be the controlling variables of the serﬁo.
External torques are assumed to be negligible.

STATE @ = (Agg, R, Wy, hg)
0= {a:AggAlis == RRY lwg 11 S Wingy, Il h IS hgmay }
Ads = S (Wy) Ags
R =S (Wy-Rwg)R
Wo = Jg! z(@) + n(a, \)
hg=0
we{wg:llwg (h IS Wy, 120}
A-{A:UNhis, t20}
Z={@,m: 12(@) IS Zpg ON O AND Il Wg 'S O FOR Il Wg Il = Wy }

Fig. 1 A model of attitude servos.

The states of the servo are imbedded in a 24-dimensional space whose
points @ are represented mmemonically by the quadruplet whose elements
are the input matrix, error matrix, body coordinates of angular velocity of
spacecraft, and inertial coordinates of total angular momentum of the sys-
tem. The subset @ 1is the region of operation of the servo on which ortho-
gonality and saturation constraints are satisfied. The latter arise becaﬁse
any practical controlling device has limited angular momentum storage capac-
ity which will be assumed to be spherically bounded by hpygy.
homax * dmaxmax = Bmaxs Where Jpax 1s the maximum principal moment of
inertia of the main body.

The state equations are defined on 6. The first two are the kinematic

equations of input and error, respectively (for any column x, S(x) is

defined by the skew symmetric matrix whose entries in the upper triangle
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are Xs, -Xs, and X;). Kinematic equations automatically preserve the
orthogonality of Agy and R« The second pair of state equations are the
dynemic equations. The controlling variable is zy = -(d/dt)(Agghg - JgWg)
where the matrix J, represents the moment of inertia of the main bedy in
body coordinates. The angular acceleration depends on the control law z
which is assumed in the form of a state feedback z(a), and on the pertur-
bation function n which is assumed to depend on o and the perturbation
variable A. The last dynamic equation is a consequence of the assumption
that external torques are negligible, and automstically preserves the norm
of hs'

There are two forcing functions. One is the angular velocity of the

reference whose d-coordinates are denoted by the matrix The other is

L e
the perturbation variable A. They are restricted to the sets of vector
functions of time which are spherically bounded by LA and 1,
respectively.

The set Z of admissible control laws and perturbation functions is

defined by two conditions. One requiring the control to be spherically

bounded everywhere on 8 accounts for the fact that a practical control-
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imited angular momentum exchange rate. The other requir-
ing the time rate of change of the megnitude of angular velocity to be not
greater than zero on the velocity boundary of 8 forces the servo to

remain in 6.
3. Global Description of Attitude Servos

Suppose that a definite admissible control law and perturbation
function are given. The question whether the servo is fast enough for the
mission requirements of the spacecraft may be resolved as follows.

It is a consequence of Euler's theorem on rotations that an angle
(error angle @) and an axis (error axis c) determine R. Thus,

R = exp[pS(c)]. Conversely, ¢ = arc cos[0.5(tr(R) - 1)], and for
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® e (0, 1), c = 0.5 csc ¢(rag ~ ras, rsy - ris, ris - rgl)to The error
angle ¢ is a mathematically convenient and intuitively appealing scalar
representation of attitude servo error, and forms a basis of the notion
of & response envelope introduced next.

For fixed admissible control law and perturbation function the state

equations determine the history ¢ = o(t, o, W ZQ, t > 0 of the error

d’
angle for each admissible initial state a, reference velocity ¥ and
perturbation variable A. The response envelope ¢@** 1is defined as the

envelope of all such histories. That is, @¥** = w**(t), t > 0, where
. max max .
cp**(t) T o € Q[Ed € E’ ?-\ c -—/-\ (P(t, Q, Ed’ Z\_)] fixed ¢t

An approximation, which is in the spirit of the Liapunov theory, of
the response envelope may be obtained as follows. Consider the surface
V(a) = v(t). The function V(a) is assumed to be given explicitly, to have
a gradient with respect to o everywhere on 6, and to include ¢ for
some finite v(0). Let the expansion rate of the surface be defined by

v = W(v), where

Wv) = e ouy i < 13 (Ta¥(®)&)

An upper estimate Pu of the response envelope @** such that
o,(t) > ¢**(t) for every t > 0, may be obtained by maximizing at each t

the error angle ¢ on this moving surface thus,

%) < o ¢ orvla) = (0} ©

L, A Set of Control Laws

Buler's theorem gives rise to the concepts of error angle and error
axis. The first was used above to describe an attitude servo. The second
1s used next for control. The set of control laws having the form

indicated by the following equation (1) is proposed
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z(2) = -Jalg1(®)ez(([val®)e + galp)wal (1)

Qualitatively, a control of this form may be thought as a generalization of
the familiar position plus rate feedback used in one-dimensional servos.
The first term in the brackets in equation (1) acts along the error axis;
the second term acts along the velocity vector. The scalar functions gi,
82, and gz are restricted only by the two conditions defining Z.

An upper estimate of the response envelope corresponding to any con-
trol law of this form may be computed by means of the V-function given by

the following equation.

CP x 1 “Wana dx Cp t
V({a) = k/- [gl(x) + pga(x)sin —J dx + —'J[ +pusinZec’w
o} 2 2Jo ga(x) 2 &

B is an adjustable parameter. The actual computation of an upper estimate

may be performed in & three-dimensional space whose points are related to

states in 6 by the function
R t
q(a) = <§, “waHZ, sin % c Wa)
5. Example

Consider the Orbiting Astronomical Observatory {OAC). It is con-
trolled by means of three identical orthogonally placed reaction wheels.
The ith component of zg is the negative of the i1th motor shaft torgue.
Jg 1s the moment of inertia of the spacecraft with locked wheels minus
the moment of inertia of the wheels about their spin axes. In what follows,
hpax and Zpo. will denote the bounds on angular momentum storage cepacity
of each wheel and torque capacity of each motor, respectively.

Let the spacecraft be controlled by (2), below, which is a special

case of (1).

z(a) = -Jg Z?;:x Lsat(@, o )c + Wéﬁx Wa] (2)
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sat(p, ¢g) equals @/pg for ¢ < g and 1 for ¢ > @g. The dimensionless
constant g = (ghiax)/(jmaxzmax)' For OAO, 9. = O.l.
Upper estimates of several response envelopes were computed on a

digital computer using the following V-function.

o 2
= _g_ - ) 1 Wa . 2 t Wa
V(a) = L/; sat(x, g)dx + 7 1 - cos §> + 5 9 ﬁ£;;> + sin £ ¢ (?ma

The following plots show the results in dimensionless form. Conseguently,

they apply to any spacecraft, with ¢ = O.l, which is controlled by (2).
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Fig. 2 Spacecraft response.

Figure 2a shows upper estimates of response envelopes for the nominal
servo for various bounds Vimax ©OR angular velocity of the input. The
case with b = O corresponds to the state regulator. The plots indicate
that regardless of in which admissible state the servo is initially, the
attitude error will be less than 6° after about 5 units of time (28 minutes
for the OAO) even when the input varies arbitrarily with one quarter of
meximim angular velocity allowed for the spacecraft.

FPigure 2b is relevant to the design of angular momentum exchange and
storage devices. For example, suppose that the spacecraft is to be con-
trolled not by reaction wheels but by a set of control moment gyros in some

configuration. If the angular momentum of each gyro is approximated by its
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spin momentum, the angular momentum stored in the complete device may be
expressed as a function h(x) of the gimbal angles x of the gyros. The
control zg = -(3h/dx)%. Let the exchange law of the device be

X = F(x)z(a). If 3z(a) is given by (2), @4 = 0.1, and the following
inequality holds for all possible x, then the response envelope of the
spacecraft is bounded from above by the curve b = 0.3.

= - @l

=b <0.3
jmin

Two reasoné why b may be greater than zero are desired simplicity of

F(x) and failure of some gyros in the device.
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(a) Spherical error in error axis. (b) Gyroscopic effects.

Fig. 3 Spacecraft response.

Part (a) of figure 3 is relevant to the design of attitude sensors.
For example, let the attitude of the spacecraft be measured with a set of
star trackers. The gimbal angles x wmay be expressed as & function
g(AaS, xo) of the attitude of the spacecraft Ay; and inertial coordinates
X, Of the guide stars. Let the output y of the gimbal processor be some
function f(x, Ajss %X5). Suppose that y 1is used in place of sat(p, 9g)c
in the control law (2). Then for g = 0.1 the response envelope of the
spacecraft is bounded from above by the curve b = O.4 if the following
inequality holds for all orthogonal R and all expected inputs and guide

stars.
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f(g(RAds) Xo)) Ads} XO) = sat(cp, CPS)C
sat(p, 9g)

Two reasons why b may be greater than zero are the desired simplicity
of the processor f and failure of some trackers.

Part (b) of figure 3 shows the influence of gyroscopic coupling
arising from nonzero total angular momentum. The perturbation function
n{a, A) defined in the figure generates a set of vectors which always
includes the gyroscopic terms. It is seen that in the case of the 0AO
gyroscopic coupling is not very significant even when the system is loaded

with as much as 0.3 of its angular momentum storage capacity.



