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FOREWORD 

This volume was prepared by t h e  Westinghouse Electronic Tube 
\ 

Division under subcontract t o  t h e  Westinghouse Defense and Space Center, 

P%erospace Division, Baltimore, Maryland on NASA Contract No. N k S  9-3548. :'he 

work was sponsored by t h e  Instrumentation Equipment Systems Division 01 t he  

Houston Manned Space Center. M a x  Engert was t h e  project engineer f o r  K!Si ( ,&) .  

The program r e s u l t s  presented began i n  October 1964 and were corizpletcd 

i n  December 1966. 

management of t h e  tube development and manufacture and H .  S . Ililcox was 

Engineering Director. 

Program Manager, 2. A .  I.Jhite,was responsible for the  progrmi 

The chief contributors and t h e i r  f i e l d s  of i n t e r e s t  were Dr. G. Goetze 

on t h e  overa l l  tube conception and design, L e  van der  Jagt on t h e  heater 

cathode, D r .  G. Goetze, A .  H. Roerio, R .  R.  Beyer, H.  il. D e  Vries, and 

K. F. Boll on t h e  t a r g e t ,  J ,  Vine on t h e  electron opt ics ,  6 .  J .  HaLey on 

r e l i a b i l i t y  and D .  E. Morehart on tube tes t .  

This report  is  t h e  f i n a l  "Technical Report" and includes a l l  work 

done on contract  N E  9-3548, Due t o  t h e  voluminous material and c l a s s i f i c a t i o n  

of some aspects of t h e  work, t h e  report  i s  composed of four  volumes. 

VOLUIa3 I This volume describes the  o v e r a l l  objectives and require- 

- ments and includes unclassif ied design, development and 

performance d e t a i l s .  

VOLrnB I1 This volume includes classified-:? design and performance 

d e t a i l s .  

VOLUT-E I11 This volume describes the  deve lopent  and qual i f icat ion 

tests and contains c l a s s i f  ied+c performance d e t a i l s .  
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VOLUME IV 

f 

This volume is classif ied* and describes development, 

manufacturing, and performance d e t a i l s  of t h e  SEC Camera 

Tube, 

* Clas ential. 

Declassified by NASA 8/1975
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1 . I NTRODUCT I ON 

Westinghouse Aerospace Division's Purchase Order No. 86KP-87- 

96641-0s provided for the fabrication and delivery of twenty Secondary 

Electron Conduction Lunar Camera Tubes. In addition to this, the 

Westinghouse Electronic Tube Division was required to conduct extensive 

environmental, electrical and life tests. As supplemental tasks,Westinghouse 

Electronic Tube Division carried out several investigations. They were: 

( 1 )  A Resolution Study for the Lunar Camera Tube 

(2) 

(3) 

(4) 

(5) Investigation o f  Target ltBurn-Inlt 

(6) The Influence of the Reading Beam Diameter on Resolution 

Moisture Damage to the SEC Target 

The Ribbon Cathode Development for the Lunar Camera Tube 

A SEC Target with High Storage Capacity 

Establ ishment o f  Re1 iabil it1 and Quality Control plans was required 

in addition to a high degree o f  documentation to provide traceability of  

. parts and processes. 

In spite of detailed electrical testing, there remains a subjective 

component in final evaluation o f  the tube for suitability to its ultimate 

use. 

from which tubes for the missions were selected. 

As a result, considerably more than twenty operable tubes were delivered 

1 



This report  deals w i t h  the production of tubes and Investi.gations 

t o  f a c i l i t a t e  t h i s  by increasing y i e l d  and improving performance. 
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2. DESIGN CONSID~RATIO~S 

Changes i n  design o f  the tube as descr ibed i n  the con t rac t  

proposal have no t  been r a d i c a l .  They have evolved o u t  o f  the necess i ty  f o r  

r e l i a b i l i t y  i n  manufacture and for op t im iz ing  performance w i thout  causing a 

tube/camera i n t e r f a c e  problem. 

The f i r s t  design (WX-30298) u t i l i z e d  a 1 w a t t  cath 

scanning sec t ion  to  get s ta r ted ,  s ince the  1 wa t t  design was a v e l l a b l e  f o r  

immediate use. This was subsequently replaced w i t h  a .2  w a t t  p e l l e t i z  

cathode assembly bought from Sylvania E3 t r i c Products 

was designed. Considerable e f f o r t  was expended to ruggedize thb$ c 

assuring a r i g i d  anchor o f  the heater and thode leads in f&.s r t ce r am i c e 

The amount o f  support i s  necessar i l y  l i m i t e d  s i  

heat conduc t i v i t y  of  suppor t ing members tends c iency d r a s t i -  

c a l l y .  

i n t e g r i t y  o f  the assembly as received from the supp l fe r .  

Development Report, Appendix C ) .  

The u l t i m a t e  performance o f  the assembly s t l d l  depends upon the 

(See Ribbon C 

The t a r g e t  mesh assembly was mod i f ied  t o  min i  &e s i g  

generated by a change i n  capacitance caused by a v a r i a t i o n  in spacin 

ta rge t  and mesh dur ing  v i b r a t i o n .  The e l i f i c e t i o n  consis ted o f  chan 

the unsupported area o f  ta rge t  and mesh from a c i r c l e  whose diameter was th 
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0 diagonal of the raster, t o  a rectangle only s l i g h t l y  larger in  each. 

dimension than the r a s t e r  area. The in tent  was t o  reduce the excursion o f  

the membranes and raise the resonant frequency. 

A major concern was the survival during v ibrat ion o f  the SEC 

material cleposited on the target substrate. Extensive tests beyond speci f ied 

l i m i t # . ;  indicate that the destruction level Is wel l  above our l im i ts .  

A requirement caused by the tube/camera interface necessitated 

change i n  suppliers o f  our f i b e r  op t i c  faceplate and resulted i n  a chemical 

incompat ib i l i ty  between the new f iber  op t i c  p la te  and photocathode processlng. 

An en t i re  new approach to  photocathode processing was required t o  produce a 

sat isfactory photocathode without damaging the target. (See Section 5 for  

fur ther deta i ls ) .  

The exhaust tubulat ion was removed from the button stem resul t ing 

i n  a net reduction o f  overa l l  length, an improved method o f  a f f i x i n g  f l y i n g  

leads, and improved r e l i a b i l i t y  through reduction o f  cracks and leaks i n  

that  area. Exhaust. i s  now carr ied out through a side-arm appendage which i s  

removed from the tube a f t e r  processing. 

4 



L- 

3 .  MANUFACTUR ING 

Product ion was i n i t i a t e d  i n  the Image Tube Technology Laboratory 

where assembly was c a r r i e d  ou t  by technic ians under the d i r e c t i o n  o f  the 

lunar camera tube engineer ing sect ion.  

In September 1965, the lunar camera tube manufacturing program was 

p h y s i c a l l y  moved t o  the image manufacturing dc7artment which up t o  t h i s  p o i n t  

had been concerned w i t h  the cons t ruc t ion  o f  image or th icons  and v id icons.  

The imposi t ion o f  d e t a i l e d  c o n t r o l ,  complete documentation and r igorous 

inspect ion was perhaps the most  d i f f i c u l t  face t  o f  t h i s  move, However, the 

assumption by the manufacturing organ iza t ion  o f  the scheduling and assembly 

d e t a i l s  permi t ted  the r a p i d  i n t roduc t i on  o f  mod i f i ca t ions  such as "side-arm 

exhaust", ruggedizat ion modif icat ions,and photocathode processing by the 

neer ing department. 

Manufacturing c a p a b i l i t y  was l i m i t e d  by t h e  a v a i l a b i l i t y  o f  exhaust 

t i o n s  and one o f  the f i r s t  changes was a reduct ion o f  the exhaust cyc le  

from 3 days t o  1 day through the  use of h igher  temperatures compatible w i t h  

the target .  Considerable a t t e n t i o n  was given t o  the  p o s s i b i l i t y  o f  gas or 

ion spots in  the tube due t o  res idua l  gas as a r e s u l t  o f  the shortened 

exhaust cycle. But t h i s  d i d  n o t  prove t o  be a problem, poss ib ly  due t o  

r igorous c leaning and a pre-exhaust vacuum bake and storage o f  the major tube 

subassembl ies under vacuum u n t i l  the day o f  f i n a l  assembly and exhaust. 
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As Is camron w i t h  image tube rnanufacturlng, ce r ta in  problems appear 

In epldemfc proportions from time t o  time. 

exception, but probably because of the precise documentation required of  US, 

causes were quickly discovered and remedial work i n i t i a t e d  a t  once although 

many tubes had t o  be "run through the m i l l "  before an e f fec t i ve  f i x  could 

be found. 

The lunar camera tube was no 

The next four paragraphs b r i e f l y  describe four o f  these problems. 

3.1 Cracked Button Stems 

stem a f te r  seal ing o f  the tubing to  the exhaust system and subsequent t 

The s i t ua t i on  was avoided by el iminat ing the tubulat ion from the button 

This problem was caused by the d i f f i c u l t y  of  annealing the button 

pof f . 
stem 

and using a Parker compression f i t t i n g  to  connect t o  the exhaust system 

through an appendage on the image section. Removal from the system was 

affected by pinching o f f  a connecting copper tubulation. 

I .  

3.2 Stripped Seals and Cracks i n  image Section 

This problem resulted in  high scrap in  assembly, and occasionally 

showed up i n  completed tubes. improved cleaning of parts p r i o r  t o  glassing 

not only reduced scrap i n  assembly, but permittea higher exhaust processing 

temperatures without r i s k  of cracks i n  f in ished tubes. 

3.3 Low Photoresponse 

This i s  an ever present problem that  required constant v ig i lance 

on the par t  o f  manufacturing engineering. As can be seen from the control  

d 
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cha r t  (Filril '., i j ,  the v a r i a t i o n  I n  s e n s i t i v i t y  from tube t o  tube can be 

greatct than the average value o f  s e n s i t i v i t y  for the tubes. The con t ro l  

char '  also demonstrates c l e a r l y  tha t  the average photoresponse increased 

: ~ b i f i c a n t l y  (beyond the 3 sigma l i m i t s  o f  the  con t ro l  char t )  as we gained 

experience making t h i s  photocathode. Three innovations are be l ieved responsible 

f o r  t h i s  improvement: 

(a) improved c leaning o f  the f i b e r  o p t i c  p r i o r  t o  

assembly i n  the 'tube, 

(b) Vacuum prebake o f  the image secL'3n o f  the tube a f t e r  

the f i b e r  o p t i c  assembly i s  h e l i a r c  welded on, and 

(c) Higher exhaust temperatures p r i o r  t o  photocathode 

processing. 

3 -4  Poor Cathode Emission 

An epidemic of tubes having no or low thermionic cathode emission 

was traced t o  improperly cured h igh  temperature cement which was used in 

the process o f  ruggediz ing the cathode. A change i n  the design o f  t h i s  

cathode was made which e l im ina ted  the cement e n t i r e l y  and features supports 

brazed t o  suppor t ing ceramics. 

processing on exhaust t o  minimize poisoning o f  the cathode by products o f  

Mod i f i ca t idns  were a l so  made i n  cathode 

photocathode processing and i n c i d e n t a l l y  t o  minimize poisoning o f  the 

photocathode by products of  thermionic cathode breakdown.(See Appendix e) .  

During the pe r iod  o f  manufacturing i n  the  fac to ry ,  the e n t i r e  

"clean room" area was r e - b u i l t  and equipment was upgraded t o  meet the r igorous 
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dmands for "Lunar Qual i tv'. 

Trainlnq and retention of trained assemblers was a serious problem 

During some periods produc- particularly durirg the sumner vacation period. 

tion was nearly shut down when refection of assemblles reduced yield almst 

to zero. Refections were solmtimas for appearance defects which probably 

would not affect performance or reliability. 

malntain an inflexible posture with r e , p e c t  to quality in  order to assure 

no relaxation in the more critical operations. 

However, it was necessary to 
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A t e s t  

o f  the tubes a t  

4. ELECTR I CAL TEST I N6 

s e t  was const ructed to operate and 

0,2*5 and .625 frames/second both 

eva 1 ua t e  

n a s t a t  

t he  performance 

c cond i t i on  

and under v i b r a t i o n  on a s ine  wave v i b r a t o r  i n  an area adjacent t o  the t e s t  

se t .  From the s t a r t  our major d i f f i c u l t y  was the  i s o l a t i o n  o f  our tube and 

t e s t  se t  from the e l e c t r i c a l  no ise  i n  the fac to ry .  Use o f  a screen room 

attenuated the noise bu t  d i d  no t  e l im ina te  i t ,  p a r t i c u l a r l y  when the tube 

was operated i n  the  .625 frames/second mode. 

E l e c t r i c a l  t e s t i n g  was performed i n  four  steps f o r  a shipped 

tube : 

(a) I n i t i a l  t e s t  t o  determine a d v i s a b i l i t y  o f  f u r t h e r  

processing and tes t .  

(b) 118 hours ope ra t i on  i n  overscan and reduced l i g h t  l eve l .  

This "dynamic aging" was designed to s t a b i l i z e  the tube 

opera t ion  p r i o r  to c h a r a c t e r i s t i c  t es ts .  

(c) Charac te r i s t i c  t e s t s  t o  determine i f  tube i s  p o t e n t i a l l y  

s u i t a b l e  for shipment. I f  so, i t  i s  subjected to  s ine  

wave v i b r a t i o n ,  thermal shock and h o l d  under a p o s i t i v e  

pressure o f  argon. 

(d) F ina l  "pre-ship" to  determine i f  any change has taken 

p lace du r ing  p r i o r  t e s t s  and operat ions.  



TllP CCAL PERFORMANCE AND DlSTR IBUTIOU O f  

OPERAT I NG PARMTERS WX-3 1034 

Figures 1 to 3 
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5. RELATED INVESTIGATIONS 

During the course o f  t h i s  contract ,  several  inves t iga t ions  were 

performed w i t h  the goal o f  improving the performance and/or r e l i a b i l i t y  

o f  the device. A b r i e f  summary fo l lows and the d e t a i l e d  repor ts  a re  

appended. 

5.1 E l e c t r i c a l  Breakdown Through The Faceplate 

As operated i n  the camera the f i b e r  o p t i c  facep la te  must wi thstand 

an e l e c t r i c a l  s t ress  o f  8 kV between the p lanar  ou ts ide  sur face and the 

spher ical  inner  sur face t h a t  provides the subs t ra te  f o r  the  photocathode. 

Ear ly  tubes demonstrated an i n t e r m i t t e n t  spurious s igna l  t h a t  

appeared as a f l a s h  i n  the r e s u l t i n g  p i c t u r e  presentat ion.  The source was 

t raced t o  an e l e c t r i c a l  d ischarge occur r ing  i n  the body o f  the faceplate.  

The Mosaic f i b e r  o p t i c  conducted about one nanoampere a t  8 kV i n  i t s  raw 

s t a t e  and up t o  10,000 nanoamperes on a f i n i s h e d  tube. S im i la r  t e s t s  o f  

Corning faceplates showed about .5 nanoamperes and 50 nanoamperes respec t ive ly  

w i thout  the discharge t y p  c a l  o f  the Mosaic p l a t e .  

Product ion was mmediately changed to  u t i l i z e  100% Corning p la tes  

and t h i s  immediately p r e c i p i t a t e d  a photocathode problem, s ince  i t  was found 

t h a t  the Corning f i b e r  o p t i c  was no t  compat ib le w i t h  the photocathode pro- 

cessing technique then i n  use. I t  was necessary to  devise a schedule t h a t  

15 
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incorporated a h igher  temperature and s t i l l  n o t  damage the ta rge t .  

was f i n a l l y  poss ib le  t o  ad jus t  the schedule to the psipt t h a t  photoresponse 

on the average equaled our prev lour  r e s u l t s  wi th  Mosalc p la tes  and ind i v idua l  

It 
r) 

tubes exceeded our best previous resu l t s .  

A copy o f  the  repo r t  on t h i s  i nves t i ga t i on  i s  included as Appendix 

A .  

5.2 Ribbon Cathode Development 

As prev ious ly  mentioned, the present design o f  thermionic cathode 

i s  purchased as an assembly and modi f ied t o  ruggedize i t .  But there have 

been inherent d i f f i c u l t i e s  w i t h  t h i s ,  no t  the l e a s t  o f  which i s  v a r i a t i o n  

o f  q u a l i t y  beyond our immediate con t ro l .  

A back-up design was i n i t i a t e d  by A. van der Jagt i n  September 

1965, the r e s u l t  o f  which i s  a d i r e c t l y  heated r ibbon cathode supported 

between two cant i levered  spr ings.  I t s  v i b r a t i o n  c h a r a c t e r i s t i c s  seem exce l l en t  

and r e l i a b i l i t y  would be v a s t l y  improved over present design. I t  has s u f f i c i e n t  

emission t o  operate the tube a t  the .2 wat t  inpu t ,  but  the necess i ty  o f  a 

d i r e c t l y  heated cathode posed s u f f i c i e n t  camera re-design problems t o  prevent 

incorpora t ion  i n t o  any tubes. This work i s  repor ted in  Appendix C. 

. 

5.3 Target Burn- In  Problems 

As the p r o j e c t  progressed, i t  was learned t h a t  intense l i g h t s  

would appear i n  the f i e l d  o f  view and be such a s i z e  t h a t  i t  would not  

a c t i v a t e  the automatic l i g h t  con t ro l  funct ion.  As a r e s u l t ,  a h igh  contrast ,  
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h igh  i n t e n s i t y  l i g h t  would be imaged through the lens o f  the camera t o  

the tube. Inves t iga t ion  showed t h a t  the photocathode was no t  a f f e c t e d  by 

inc ident  1 i g h t  o f  t h i s  magnitude (several hundred f o o t  candles). Our 

a t t e n t i o n  was then given t o  determining the to lerance of  the t a r g e t  t o  the 

r e s u l t s  o f  t h i s  exposure. Several tubes were subjected t o  condi t ions 

s imu la t ing  those descr ibed above and var ious combinations o f  photocathode 

vol tage, i l l u m i n a t i o n  and t ime were run to determine, i f  poss ib le ,  parameters 

f o r  the onset o f  damage. 

Wi th in  the l i m i t s  o f  our i n v e s t i g a t i o n  i t  was determined that  

i r r e v e r s i b l e  damage does n o t  take p lace when the tube i s  operated t o  produce 

an output  c u r r e n t  no h igher  than t h a t  o f  the maximum operat ing p o i n t .  The 

maximum opera t ing  p o i n t  being the s igna l  cur ren t  a t  E 

i l l u m i n a t i o n  ra ised  t o  the p o i n t  t h a t  r e s o l u t i o n  s t a r t s  t o  smear. A constant 

cur ren t  curve produced by decreasing photocathode vo l tage t o  compensate f o r  

increased i l l u m i n a t i o n  describes the A.L.C. and def ines the upper l i m i t  before 

= -8 kV and 
photok 

onset o f  damage. Above t h i s  p o i n t ,  the permanent reduct ion i n  ga in i s  a 

f u n c t i o n  of pr imary cur ren t ,  photocathode vo l tage and time. This work i s  

reported i n  Appendix D. 

5.4 Resolut ion Study 

A separate study t o  determine the r e s o l u t i o n  c a p a b i l i t i e s  o f  

the WX-31034 was c a r r i e d  on concurrent ly  w i t h  the product ion program. This 

study was va luable i n  p o i n t i n g  o u t  j u s t  which p a r t s  o f  the tube were l i m i t i n g  

the r e s o l u t i o n  and i n  e s t a b l i s h i n g  design centers.  

17 



The f indings o f  the  report  establ ished t h a t  the aperture respahsc 

and l i m i t i n g  reso lu t ion  for  the tube as produced was close t o  the theoret iedl  

l i m i t s  f o r  t h i s  design. The f i n a l  report  for the reso lu t ion  study i s  i n  

Appendix G .  

18 
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6. RELIABILITY 

The end use of the tube necessitated considerable experimentation, 

The goal of the 
- 
u 

test and evaluation toassure a high degree of  reliability. 

reliability program was control of manufacturing material and processes to 

assure that tubes delivered for the mission were, statistically speaking, 

from the same population as those tubes from which information was derived 

by destructive tests. 

6.1 Environmental Testing 

Environmental testing was used as a design tool to determine the 

optimum tube configuration as wel1.as a method of assurance that the tube 

as manufactured will operate and survive under conditions of the mission. 

6.1.1 Development of Ruggedized Design 

Mechanical design of the ruggedized tube was carried 

out by breaking the tube into three functionally different sub-assemblies. 

They are the image section, the target-mesh section and the scanning section. 

Mechanical samples of each section were subjected to 

vibration, analyzed and modified where necessary. This method permitted us 

to make many assemblies in a short time and eliminate the possibility of 

spurious results due to non-environmental defects. A number of complete 

d 



c 

operable t i b e s  were then tes ted  to des t ruc t i on  to v e r i f y  the d-sign. 

were devised to  i d e n t i f y  resonances i n  s p e c i f i c  s t ruc tu res  so t h a t  every 

tube cou ld  be v ib ra ted  a t  non-dest ruct ive l eve l s  and any i n c i p i e n t  problems 

could be detected and corrected. 

Tests J 

S p e c i f i c  changes made as a r e s u l t  o f  t h i s  program a re  

descr ibed i n  Sect ion 2. 

6.1.2 Q u a l i f i c a t i o n  Tests 

The fo l low ing  sec t ion  of the repo r t  covers the  program 

t o  determine the s u i t a b i l i t y  o f  design and cons t ruc t i on  o f  the WX-31034 w i t h  

respect t o  the environmental requirements o f  the q u a l i f i c a t i o n  t e s t s  s p e c i f i e d  

i n  paragraph 4.3.2 of Purchasing Department Spqc i f i ca t i on  21341, Revis ion C. 

The environmental t e s t s  a re  p a r t  o f  the l a rge r  q u a l i f i c a t i o n  t e s t  program 

which includes l i f e  t e s t  o f  7 o f  the 9 t e s t  samples. The remaining t w o  tubes 

are subjected to environmental t es ts  bu t  bo th  tubes are  not subjected to  the 

same tes ts .  

Cer ta in  environmentdl requirements are imposed as 

p a r t  o f  the acceptance tes ts  fo r  the 20 or so tubes shipped f o r  eventual 

opera t ion  i n  camera systems as w e l l  as the 9 q u a l i f i c a t i o n  t e s t  samples. No 

f a i l u r e s  occurred i n  q u a l i f i c a t i o n  samples or i n  tubes g iven acceptance tes ts  

and shipped. 

Operat ing environmental t e s t s  were performed w i t h  

considerable d i f f i c u l t y .  In no case was a p i c t u r e  comparable to t h a t  achieved 

20 
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i n  the t e s t  set .  

i n  sh ie ld ing .  I n  a l l  cases the opera t ing  environmental p i c tu res  ind ica ted  

on ly  t h a t  no pe rcep t ib le  change took p lace dur ing  o r  a f t e r  the t e s t  w i t h  tha t  

se t  up. 

This was p r i m a r i l y  due t o  long lead length and d i f f i c u l t y  

P ic tu res  o f  good d e f i n i t i o n  were taken i n  the  standard t e s t  set-up 

before and a f t e r  each environmental t e s t  

Humidity tes ts  were run i n  the opera t ing  mode f o r  

.only p a r t  o f  t h e  prescr ibed t ime on one tube (432), and the second tube (411) 

was subjected t o  humid i ty  tes ts  w i thou t  opera t ion  because o f  the e f f e c t  o f  

humidi ty on o p t i c a l  focus and associated equipment such as the d e f l e c t i o n  

yoke. De ta i l s  are g iven in Engineering Memo No. 88 included as Appendix 

I o f  t h i s  repor t .  

The procedure' fo l lowed in  q u a l i f i c a t i o n  t e s t i n g  was 

t o  perform the tes ts  in  the order s p e c i f i e d  and t o  check the tube i n  the t e s t  

se t  upon completion of each t e s t  and perform a f i n a l  t e s t  a f t e r  the l a s t  

environmental t e s t ,  comparing i t  w i t h  i n i t i a l  resu l t s .  To keep t h i s  presenta- 

t i o n  w i t h i n  reasonable s ize,  o n l y  the i n i t i a l  and f i n a l  t e s t  r e s u l t s  are shown, 

bu t  the condi t ions o f  t e s t  and app l icab le  suppor t ing data a re  included i n  order 

o f  the tes ts  o u t l i n e d  i n  the q u a l i f i c a t i o n  procedure l i s t e d  on the f o l l o w i n g  



QUALIFICATION PROCEDURE 

Acceptance Requirements Tube - t o  - Tube - to - 
41 1 432 

Test Pre l im inar ies  X 5/24 5/26 x 618 6/15 
E l e c t r i c a l  Tests X 5/26 5/26 X 6/15 6/15 
Argon Hold x 6/8 6/15 X 6/16 6/23 
Checked X 6/18 6/18 X 6/23 6/23 
V i b r a t i o n  I X 6/18 6/18 X 6/23 6/23 - 
Glass S t r a i n  X 6/18 6/18 X 6/23 6/23 
Checked X 6/19 6/19 x 6/24 6/24 

Environmental Tests 

V i b r a t i o n  I I  
Vib ra t i on  I I I 
Checked 
Mechanical Shock 
Checked 
Acoustic Noise 
Acce l e r a  t ion  
Checked 
Thermal Vacuum (low temp.) 
Thermal Vacuum (h igh temp.) 
Checked 
Temperature Cycl ing  
Checked 
Temperature Storage (low) 
Temperature Storage (high) 
Checked 
Humidity 
Checked 

Lead Bend 

6/29 
6/30 

813 
8/8 

a/ 1 

8/8 
8/ 23 
91 7 
9/13 
9/23 

454 
x 9/27 

6/29 
6/30 
8/  1 
813 
8/8 

22 

8/23 
91  7 
91 7 
9/23 
9/23 

X 
X 

6/29 
6/30 
7 1  1 
715 
7/27 
8/ 1 
8/8 
819 

916 
9/16 

293 
x 9/27 

6/29 
6/30 
7 1  1 
716 
7/28 
8/ 1 
8/8 
a19 

9/16 
9/16 . 



RESULTS FROM LCT NO, 432 

(Elmira LCT Test Set Model E 15414) 

1 .  E l e c t r i c a l  Set Up Parameters 

2.  E l e c t r i c a l  Tests Before O u a l i f i c a t i o n  

For Photographs. 

Program (Photographs) 

a .  Monitor 
b. Spurious Signal 
c .  Center Resolution 

3 .  L i s t  o f  Tests Performed on 

4. Post Humidity 

5 .  Post Thermal Cycling Photographs 

a.  Monitor 
b. Spurious Signal 
c .  Center Resolution 

LCT Tube No. 432. 
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, 

SET UP PARAMETERS FOR PHOTOGRAPHS 

Egl = -52 volts 
Eglco = -87 volts 
Eg2 = 300 volts 

Eg3,6 = 600 volts 
Eg4 = 97 volts 
Eg5 = 300 volts 
Eg7 = 25 volts 
EsJ = 35 volts 
Epc = -8 KV 

EH = 1.5 volts 
IH = I49 ma 

= -8 ma I HAL 

ISJ  = 7.5 x 10-9 amp. at 1 x 10-3 ft-c. ( I O  f / s )  

IVAL’ +7 ma 
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4. POST HUMIDITY 

Unable to remove yoke. 

See Appendix I 
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RESULTS FROM LCT NO. 41 1 

(Elmira LCT Test  Set Model E 154A) 

1. Electrical Set Up Parameters 
For Photographs. 

2. Electrical Tests Before Qualification 
Program (Photographs) 

a. Monitor 
b.  Spurious Signal 
c. Center Resolution 

3. L i s t  of Tests Performed on LCT 
Tube Yo. 41 1 .  

4.  Post humidity. 

a. Monitor 
b. S p u r i o u s  Signal 
c. Center Resol ut ion 
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1 .  TUBE # 4 1 1  
SET UP PARAMETERS FOR PHOTOGRAPHS 

Eg, = -14 v o l t s  

Egco = -53 v o l t s  

~g~ = 300 v o l t s  

E93,6 = 600 Volts 

Eg4 = 98.5 volts 

Eg5 = 300 v o l t s  

Eg7 = 25 vo l ts  

Esj = 25 v o l t s  

Epc = -8 KV 

EH = 1 . 5  v o l t s  

I H  = 144 M. 
= 0 ma. 

= +8 ma. 
' HAL ' VAL 
I r j  = 1 X loo8 amp. a t  I x I O - ~ Y ~ - ~ .  ( 1 0  f / s )  
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Test - 
Argon Hold 

Glass S t r a i n  

V i b r a t i o n  I 

V i b r a t i c n  I I  

Vib ra t i on  I l l  

a 
3 .  L I S T  OF TESTS PERFORMED ON LCT TUBE NO. 411 

Paraqraph Desc r ip t i on  Performed by 

3.4.4 168 h r s .  i n  4 P S I  Argon D. Morehart 

3.4.5.11 Thetmal Doyn Shock D .  Morehart 
100 c t o  0 c 

3.4.5.1 2.59 Non-operating 0. Morehart 
S i ne Wave 

2 
3.4.5.2 .25g /CPS Non-operating 

2 3 .4 .5 .3  .02g /CPS Non-operating 

D. Morehart 
Random A. Armstrong 

D .  Morehart 
Random A .  Armstrong 

Mechanical Shock 3.4.5.4 18 - 309 Shocks R .  Fleming 

Tempe r a t  u r e  S t o r  age 

Hum i d i t y  

3.4.5.10 15 <ays a t  -3O.C and 
+60 c 

D. Morehart 

3 .4 .5 .13  Operat ing 95%+ Hurnidi t y  0. Morehart 
See Eng. Memo #88 (Fig.2) 
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VIBRATION I (3 .4 .5 .1 )  
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VIBRATION I I (3.4.5.2) 

(plot of 2 ax is  and excerpt of  notes) 
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VlRRATlurJ  I I I ( 3 . 4 . 5 . 3 )  

(p1ot. CII: Z a x i s  and excerpt o f  notes) 
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TEST RECORD 
WKKTIWOWOU8K ?ORY 8#O# E .oO* 

TWC #PACE ABOVE tY I#  LINCI# POR CILINS AND YU.1 NOT BE WRIlTCN OW 

CU8TOYLR 

TEST NO. S?EC. N4?. NO. NO. 
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MECHANICAL SHOCK ( 3 . 4 . 5 . 4 )  

47 

d 



SHOCK TEST 

Date f f - 3 - d L  Tube Type 3 I o  34 

Tube No. f f I l  

The tube shall be suojecLed to 30 g, half-sine, 
and duration o f  // .,ii 1 1  iseconds. Apply ,? 
shock ( 5 )  in each direccion along each lateral axis. 
Apply 3 shock(s) in each direction along the 
longitudinal axis. Tota i  o f  1.43 shocks. 

The tube shall be visually inspected and electrically 
tested after shock test. 

Rema r ks : 

- Y  x+= + Y  

-2 
- w  
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ACOUSTIC NOISE (3 .4.5.5)  

Acoustic Noise P l o t  and Excerpt of Notes 

5 1  
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AC CE LERAT I ON ( 3 .4.5.6) 
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THERMAL VACUUM (3.4.5.7) 
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HUMIDITY ( 3 . 4 . 5 . 1 3 )  
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LEAD BEND (3.4.5.12) 
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6.2 Target Breakdown Voltage 

An experiment was conducted t o  determine the vo l tage t h a t  was 

requi red t o  cause a complete breakdown o f  the h igh  capaci ty  targets .  

A tube was se t  up a t  i t s  normal operat ing p o i n t  w i t h  a faceplate I l l um-  

i n a t i o n  j u s t  below the maximum operat ing po in t .  

the suppressor vol tage was increased t o  s p e c i f i c  values, an observat ion 

made, and the beam turned o f f .  The beam was then turned on again and 

;k 

Without changing the  beam, 

another observat ion made. The f o l l o w i n g  char t  i s  a summary o f  observations. 

EG7 

(A) 70 

(C)  105 

(D) Repeat 
(A) (6) 

(E)  120 

(F) 130 

(G) 140 

Observation before 
beam turned o f f  

Target s t a r t e d  t o  
charge i n  from edge 

Charged i n  from edges 
Br igh t  i n  center a f t e r  
15-20 sec. 

Extensive edge charging 
b r i g h t  cen t ra l  area 

Same as i n i t i a l  run  

Extensive edge charging 
B r i g h t  cen t ra l  area 

Same as (E) 

Breakdown 

$t Faceplate i l l u m i n a t i o n  9.5 x f t - c d l  

E s j  = 30V, E 6 7  = 28V 

Observation a f t e r  
beam turned on again 

Crossed over completely- 
a f t e r  discharge, cross- 
over p a t t e r n  remained 

Crossed over completely- 
a f t e r  discharge cross- 
over p a t t e r n  remained 

Crossed over completely 
No p a t t e r n  a f t e r  discharge 
Target appeared gra iny  

Crossed over completely - NO crossover p a t t a r n  
a f t e r  discharge 

Crossed over completely 
No r e t u r n  a f t e r  d ischarg ing 

Same as (E) . 

Not performed 
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6 . 3  Shelf L i f e  Considerations 

Due t o  the nature o f  the  Lunar TV Program, shel f  l i f e  on the  

order  o f  3 years o r  more can be an t ic ipa ted .  D i r e c t  data f o r  non-operating 

storage o f  Lunar tubes i s  not  ava i l ab le ,  s ince the  f i r s t  tube having 

e s s e n t i a l l y  the  f i n a l  design (.2 wat t  cathode) was not  made u n t i l  A p r i l ,  

1965 and the present  h i g h  capac i ty  t a r g e t  was n o t  incorporated u n t i l  

August, I965 - less than I8 months p r i o r  t o  the  w r i t i n g  o f  t h i s  repo r t .  

We must draw on experience w i t h  itpage tubes i n  general t o  

approach t h i s  problem: 

( 1 )  There are 4 general p o s s i b i l i t i e s  f o r  on-shel f  d e t e r i o r a t i o n  

(a) Loss o f  vacuum through leaks 

(b) D e t e r i o r a t i o n  o f  an unstable photocathode 

(c) Outgassing of  p a r t s  

(d) D e t e r i o r a t i o n  o f  thermionic  cathode 

(2) These modes o f  f a i l u r e  mani fest  themselves as fo l lows:  

(a) Disappearance or change i n  appearance o f  g e t t e r  f l a s h  

from m e t a l l i c  shine t o  cha lk  wh i te  and low o r  no photoresponse are  symptoms 

o f  loss o f  vacuum. There may a l so  be a gas discharge glow w i t h  the  app l ica-  

t i o n  o f  h i g h  vo l tage t o  tube elements. 

( b )  Experience has shown t h a t  unstable photocathodes 

genera l l y  slump w i t h i n  a mat ter  o f  a few days a,fter exhaust processing 

which e l im ina tes  t h i s  as a probable cause o f  s h e l f  l i f e  degradation. 

Photoresponse loss can a l so  be symptomatic o f  poor vacuum as noted under 

(a) and serves as a va luable check. 
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(c)  Outgassing of  p a r t s  dur ing  non-operating storage t o  

a small  degree i s  not unexpected and should be absorbed by the g e t t e r  f lash. 

Outgassing would cause an i o n  spot ( b r l g h t  cen t ra l  area i n  p i c t u r e )  f i r s t .  

Should i t  be more severe, the g e t t e r  f l a s h  would s t a r t  t o  disappear, and 

gasses i n  the  tube would glow w i t h  the a p p l i c a t i o n  o f  h igh  vol tage. 

Degradation of  the thermionic emission would be (d) 

detected by: 

( 1 )  A drop i n  beam cur ren t  ( 1  

(2) An i n a b i l i t y  t o  discharge h i g h l i g h t s  a t  

max.) 
G2 

moderate and h igh  l i g h t  l eve l s  

(3)  Poorer r e s o l u t i o n  

(4) A lowering o f  the maximum opera t ing  po in t .  

(3 )  Post exhaust t es t i ng ,  g lass s t r a i n ,  and storage under a 

p o s i t i v e  pressure of  i n e r t  gas as s p e c i f i e d  are the best means o f  deter-  

mining the i n t e g r i t y  o f  the  tube envelope as shipped. 

Preship t e s t i n g  a f t e r  a l l  preceeding operat ions w i l l  detect  any 

shor t  term d e t e r i o r a t i o n  or i n c i p i e n t  f a i l u r e  p a r t i c u l a r l y  w i t h  respect t o  

photocathode or thermionic  cathode i n s t a b i l i t y .  Fo r t y -e igh t  hour dynamic 

aging helps s t a b i l i z e  the SEC t a rge t .  Subsequent t e s t i n g  i n  the assernbly 

and f i n a l  t e s t  o f  the camera u n i t  f u r t h e r  assures t h a t  there  was no i n c i p i e n t  

f a i l u r e  b u i l t  i n t o  the tube. 

The remaining quest ion then i s  t o  determine t h a t  the tube was 

not  damaged o r  stressed dur ing  assembly i n t o  the camera u n i t .  Since the 

tube a t  t h i s  p o i n t  i s  not  accessible and v i r t u a l l y  inposs ib le  t o  see, 
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the on ly  method o f  assur ing t h a t  tube performance i s  unchanged Is t o  

operate the tube-camera system. 

a t  t h i s  p o i n t  include: 

Symptoms of  tube f a i l u r e  o r  degradation 

(a) loss o f  s e n s i t l v i t y  

(b) reduced r e s o l u t i o n  

(c) i on  spot 

(d) breakdown (noise) i n  p i c t u r e  

(e) i n a b i l i t y  t o  discharge h i g h l i g h t s .  

(4) Per iod ic  operat ion i s  the on ly  c e r t a i n  way o f  de tec t ing  

d e t e r i o r a t i o n  o f  the tube. There i s  c e r t a i n  degradation o f  the tube w i t h  

extended use as shown by l i f e  t e s t  r e s u l t s .  Th is  d e t e r i o r a t i o n  i s  associa- 

ted w i t h  reduc t ion  i n  ta rge t  w i t h  exposure t o  l i g h t  wh i le  scanning. 

In fo rmat ion  on l i f e  t e s t  tubes ind icates the p o s s i b i l i t y  t ha t  

h igh  opera t ing  temperatures are p a r t i a l l y  responsible f o r  d e t e r i o r a t i o n  i n  

l i f e  t e s t  operat ion.  Per iod ic  shor t  t ime operat ion,  then, may no t  a f f e c t  tube 

performance. 

A suggested operat ing check schedule Is 90 day i n t e r v a l s  f o r  the 

f i r s t  year and s i x  month i n t e r v a l s  therea f te r .  
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6.4 L i f e  Tests 
. ' I  

2 ,  

6.4.1. In t roduc t i on  

As requi red i n  Purchasing Department S p e c i f i c a t i o n  21341 

Revis ion C, Sect ion 3.4.6, 7 WX-31034 Lunar Camera Tubes were operated oh 

1 i f e  t e s t  f o r  a per iod  o f  1500 hours each. 

normal set  up condi t ions as described i n  Sect ion 3.4.2.1 o f  the P.D.S. and 

The tubes were operated under 

cycled a t  a r a t e  o f  50 minutes on, 10 minutes 

i n t e r v a l s  o f  approximately 50 hours f o r  the f 

f o r  the fo l l ow ing  cha rac te r i s t i cs :  t a rge t  ga 

cathode s e n s i t i v i t y ,  thermionic cathode emiss 

and s igna l  burn. 

o f f .  Tubes were checked a t  

r s t  250 hours the rea f te r ,  

n, s igna l  cur ren t ,  photo- 

on, center reso lu t i on ,  lag,  

The i n t e r n a l  cons t ruc t ion  o f  the tube includes a mask on the 

ta rge t  which l i e s  very c lose t o  the scanning ras te r .  This r e s u l t s  i n  

excessive shading i n  tha t  area, making r a s t e r  burn measurements meaningless. 

Readings o f  s igna l  cur ren t  were taken and recorded ra the r  than s igna l  t o  

noise r a t i o  as spec i f ied ,  s ince the noise i s  p r i m a r i l y  a f unc t i on  o f  the 

a m p l i f i e r  and remained constant throughout. 

The tube was removed from the l i f e  t e s t  se t  f o r  the p e r i o d i c  

measurements and could not be r e i n s t a l l e d  i n  p e r f e c t  r e g i s t r a t i o n  w i t h  the 

s p e c i f i e d  t e s t  pa t te rn .  This caused d i f f i c u l t y  i n  t r y i n g  t o  read r e s o l u t i o n  

as the i n t e n s i t y  o f  the burn approached the c o n t r a s t , o f  the t e s t  image and 

a p a t t e r n  us ing large b lack  and wh i te  areas was devised t o  e l im ina te  t h i s  

problem. With t h i s  new p a t t e r n  we def ined two areas: Area 1 i s  an area Jn 

which the  ta rge t  was exposed t o  photoelectrons as w e l l  as the scanning beam. 

Area 2 was exposed t o  on l y  the  scanning beam. 
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6.4.2 Test Condit ions 

I t  became apparent s h o r t l y  a f t e r  l i f e  t e s t  began t h a t  there  

was considerable degradation o f  t a rge t  ga in  and s igna l  burn under the  

s p e c i f i e d  cond i t ions  (50 3 5'C ambient temperature, 3 x IOe2 f t - c d l  

facep la te  i l l u m i n a t i o n ) .  We then va r ied  cond i t ions  to  determine, i f  poss i -  

b le ,  whether ambient temperature o r  facep la te  i l l u m i n a t i o n  were causal f ac to r s ,  

As a r e s u l t ,  we tes ted  3 tubes a t  s p e c i f i e d  condi t ions,  2 tubes 

a t  spec i f i ed  temperature and reduced l i g h t  l e v e l ,  and 2 tubes w i t h  bo th  ambient 

temperature and l i g h t  l eve l  reduced. 

6.4.3 Results 

The attached curves and tabu la t i ons  show the r e s u l t s  o f  tubes 

tes ted  and are grouped to show the var ious r e s u l t s  under cond i t ions  described 

i n  6.4.2. Readings o f  thermionic  cathode emission, center reso lu t i on ,  and 

lag  were not reduced t o  a cha r t  s ince they showed no s i g n i f i c a n t  change f o r  

any tube i n  any of  the th ree  t e s t  cond i t ions  w i t h  respect t o  time. I t  i s  

i n t e r e s t i n g  t o  note, however, t h a t  i n  a l l  seven tubes the  maximum G cur ren t  

and the aper ture response a t  200 l i n e s  was equal to  o r  b e t t e r  than the 

2 

i n i t i a l  readings a f t e r  1500 hours operat ion.  

6.4.4 Concl us ions 

Th is  i s  a very small sample from which t o  draw conclusions, 

bu t  i t  appears to  be necessary if o n l y  t o  g i ve  solllc i n d i c a t i o n  to the  d i r e c t i o n  

o f  f u r t h e r  i nves t i ga t i on .  The data suggests the  following statements: 
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a) Operation o f  the  tube w i t h  t he  standard setup cond i t ions  

causes degradation o f  t a r g e t  ga in  and produces a permanent 41burn41 o f  the  

ta rge t .  

b) The degradation i s  g rea ter  where the  ta rge t  i s  exposed 

t o  the  photoelectrons as w e l l  as the  scanning beam. 

c) Reduction of  facep la te  il luminat ion t o  approximately 

one ten th  the  s p e c i f i e d  i l l u m i n a t i o n  had no s i g n i f i c a n t  e f f e c t  on degrada- 

t i o n  o f  gain. 

d) Reduction of ambient temperature from 50'C t o  30'C had 

a marked e f f e c t  on loss  o f  gain, reducing t h i s  loss to  about 1/2 t h a t  

experienced on the  standard tubes. 

e) Lag, aper ture response, and maximum G current ,  were not  2 

noticeably a f f e c t e d  by opera t ion  under any of  the l i f e  t e s t  cond i t ions .  
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I Tube No. lAmbIent 
I I 

0 26 12 16 

Degradation except where Indicated I 

. _- - 

Liaht Level : 

0 400 800 I200 
Hours 

I600 

Decrease in Target Gain of Area Exposed to 
Primary & Scanning Electrons (Area 1 ) 
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60 

50 

40 

30 

20 

IO 

0 

J .4 

0 400 800 12 00 I600 
Hours 

Decrease in Target Gain of Area Exposed 
Only to Scanning Beam (Area 2 )  
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LCT LIFE TEST REPORT 

TUBE NO. 517 
4 10-3 ft-c 

30. C 

Elapsed Target P.C. 200 L Raster 
Burn Time Gain S e n s i t i v i t y  '62 Resolution Lag 

0 

63.9 
128.2 
1 ' jz 
283.7 
540 7 
787.5 
1068.7 
1401 
1561.5 

50 
46 
47.5 
43.7 
42.3 
42.3 
41.6 
39.1 
25.9 
41.6 

121 

121 

119 
1 I8 
118 
118 
118 
117 
114 
118 

1.55 
1.5 
1.6 
1.6 
1.6 
1.6 
1.63 
1.62 
1.65 
I .65 

46 
38 
39 
40 
46 
42 
43 
47 
40 
46 

1 1  
IO 
4 
0 

0 

6 
10 

0 

7 -6  
1 1  

0 

0 

0 

0 

0 

7 
8.5 
7.2 

9.6 
6 

Elapsed Tgt.Gain Tgt.Gain %Gain Loss %Gain Loss % PR 
Time Area 1 Area 2 Area 1 Area 2 Chanqe 

0 

63.9 
128.2 
192 
283 7 
540.7 
787.5 
1068.7 
1401 
1561.5 

50 
46 
47.5 
43.7 
42.3 
42.3 
41.6 
39.1 
25.9 
41.6 

50 
46 
47.5 
43.7 
42.3 
45.5 
45.5 
42.2 
28.7 
44.3 

d 

0 

8 
5 
12.6 
15.4 
15.4 
16.8 
21.8 
48.2 
16.8 
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0 

8 
5 
12.6 
15.4 
9 
9 
15.6 
42.6 
11.4 

0 12.2 

0 11.2 
-1.7 11.2 

2.5 10.2 

2.5 9.9 
2.5 9.9 
2.5 9.9 
3 03 9.24 
5.8 5.94 
2.5 9.9 



LCT LIFE TEST REPORT 

TUBE NO. 522 
1 x f t - c  

30. C 

Raster 
Lag Burn 

Elapsed Target P.C. 200 L * 
Time Gain S e n s i t i v i t y  '62 Resolution 

0 52.8 138 2.15 44 0 0 

63.9 47 138 2.15 41 0 0 
128.2 49.3 138 2.15 41 0 0 

192 47 138 2.15 41 0 0 

283 e 7 45.7 138 2.15 45 0 5 
540 7 45.7 138 2.1 41 0 13.0 
787.5 41.3 138 2.1 44 0 13.7 
1068.7 37.5 138 2.15 41 0 15 
1401 22.9 136 2.15 30 0 12.8 
1561.5 38.9 138 2.15 46 0 16 

Elapsed Tgt.Gain Tgt.Gain %Gain Loss %thin Loss % PR I .(nA) 
Area 2 Change S I  T'i me Area 1 Area 2 Area 1 

0 

63.9 
128.2 
192 
283.7 
540 7 
787.5 
1068.7 
1401 
1561.5 

_ _ ~  

52.8 
47 
49.3 
47 
45.7 
45.7 
41.3 
37.5 
22.9 
38.9 

52.8 
47 
49.3 
47 
48 
5.2 * 5 
48 
44.2 
26.3 
46.3 

0 
1 1  
6.6 

1 1  
13.5 
13.5 
21.8 
29 
56.7 
26.4 

0 

1 1  
6.6 

1 1  
9.2 
0 

9.1 
16.3 
50.8 
12.3 

0 
0 

0 

0 

0 

0 

0 

0 

1.5 
0 

14.8 
13.2 
13.8 
13.2 
12.8 
12.8 
11.6 
10.5 
6.3- 
10.9 



LCT LIFE TEST REPORT 

TUBE NO. 398 

Area 1 - Area covered by beam 
an t  pr imary s i g n a l  a t  
50 C ambient. 

o n l y  a t  50 C ambient. 
Area 2 - Area coverfd by beam 

-2  
I l l um ina t ion  = 1 x 10 Ft-C. 

Elapsed Target P.C. 200 L Ras te r  
Burn Time Gain S e n s i t i v i t y  '62 Reso lu t ion  Lag 

0 1 1 1  79.3 1.25 34 0 0 

49 118 80 1.25 33 0 0 

115.3 100 80 1.2 32 0 7 
374.5 95.8 81.5 1.2 32 0 13 
630.7 81 82.3 1.2 36 0 21.7 

1192.7 63 82.3 1.1 34 0 25.7 
1478 61.4 84.7 1 . I  36 0 25.7 

888.6 75 82.3 1.15 35 0 24.6 

Elapsed Tgt.Gain Tgt.Gain %Gain Loss %Gain LOSS % PR 
Area 2 Area 1 Area 2 Change Time Area 1 

0 

49 
115.3 
374.5 
630.7 
888.6 

1192.7 
1478 

1 1 1  

118 
100 

95 -8  
81 

75 
63 
61.4 

d 

1 1 1  

118 

108 

110 

103 
99.4 
84.8 
82.8 

0 

0 

9.9 
13.7 
27 
32.4 
43.2 
44.7 

79 

0 

0 

2.7 
.9 

7.2 
10.5 
23.6 
25.4 

0 17.8 
0 19.1 
0 16.2 
0 15.8 

0 13.5 
0 12.5 
0 10.5 
0 10.5 
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LCT LIFE TEST REPORT 

TUBE NO. 384 

Area 1 - Area covered by beam 
a n i  primary s igna l  a t  
50 C ambient. 

only a t  50 C ambient. 
Area 2 - Area coverfd by beam 

I l l u m i n a t i o n  = 4 x lom3 Ft-C. 

200 L Ras te r  * 

Lag Burn 
Elapsed T a r g e t  P.C. 

Time Gain Sens i t  i v i  t y  '62 Resol u t  ion 

0 

51.8 
141.7 
400.9 

657.1 
91 5 

1219.1 

1478.5 

91.5 
70.6 

59 
53.5 
50 
47.3 
41.8 

33.5 

1 .1  

1.1 

1 . 1  

t .2 

1.2 

1.2 

1.2 

1.2 

"END OF LIFE" 

44 
48 

45 
51 
49 
48 

51 
48 

0 

1 1  

20.5 
24.7 

27.9 
31.1 
28.4 
26.2 

Elapsed Tgt.Gain Tgt.Gain %Gain Loss %Gain Loss % PR 
Area 1 Area 2 Area 1 Area 2 Change Time 

0 91 05 91.5 0 0 0 21.4 

51.8 70.6 79.3 22.9 12.8 0 16.5 
141.7 59 74.3 35.6 18.8 0 13.8 

400.9 53.5 71 41.6 22.4 0 12.5 
657.1 50 69.3 45.3 24.3 0 11.8 

91 5 47.3 68.7 48.3 25 0 11.2 

1219.1 41.8 58.4 54.3 36.1 # o  9.9 
1478.5 33.5 45.4 63.4 50.4 0 7.9 
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LCT LIFE TEST REPORT 

TUBE NO. 428 

Area 1 - Area covered by beam 
anfi pr imary s igna l  a t  
50 C ambient. 

covered by beam 
o n l y  a t  50 C ambient. 

Area 2 - Area 

Raster Elapsed Target P.C. 200 L 
Time Gain S e n s i t i v i t y  'G2 Resolut ion Lag Burn 

~ 

0 

283 
537 5 
796 - 6  

1075.5 
1290.5 
1571 * 3  

59 72 1.5 41 
49.5 69 1.4 38 
43 68.5 1.5 48 

43 68.5 1.5 52 

43 68.5 1.3 53 
35.7 68.5 1 . 3  51 
32.5 67.7 1.6 41 

"END OF LIFE" 

0 

14.5 
22 

23 

28 
20.2 

22 

Elapsed Tgt.Gain Tgt.Gain %Gain Loss %Gain Loss % PR 
Area 1 Area 2 Change ' s i ( n A )  T.i me Area 1 Area 2 

~ ~~ 

0 59 59 0 0 0 9.4 
283 49.5 58 16 1.7 5.5 6.9 
537.5 43 55.2 27.1 6.4 6.2 5.9 
796.6 43 55.9 27.1 5 . 2  6.2 5.9 

1075-5 43 59.6 27.1 0 6.2 5.9 
1290.5 35.7 44.8 39.5 24.1 6.2 5 
1571 - 3  32.5 41.7 45 29.3 7.3 4.6 
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LCT LIFE TEST REPORT 

TUBE NO. 421 

Area 1 - Area covered by beam 
an t  pr imary s igna l  a t  
50 C ambient. 

only a t  50 C ambient. 
Area 2 - Area cover:d by beam 

~ ~~ 

200 L Ras te r  
Lag Burn 

Elapsed Target  P.C. 
T i m e  Gain S e n s i t i v i t y  '632 Resolut ion 

0 91 69  1.6 41 0 0 

50 70 65 1.6 37 0 13 
101 50 65 1.65 41 0 18.5 
26 1 44 63 1.65 43 0 28.5 
512.6 42 62.3 1.65 38 0 27.4 
771.8 36.7 62.3 1.7 40 0 33.3 

1027.3 28.8 62.3 1.7 40 0 35 
1 242 +3 28.8 62.3 1.7 43 0 41.2 

1523.1 28.8 62.3 1.6 44 0 38 

"END OF L IFE" 

Elapsed Tgt.Gain Tgt.Gain %Gain Loss %Gain Loss % PR 
I s  i (nA) Area 1 Area 2 Change Time Area 1 Area 2 

0 

50 
101 

26 1 

512.6 

771 -8  
1027.3 
1242.3 
1523.1 

91 
70 
50 
44 
42 

36.7 
28.8 
28.8 
28.8 

91 
80.5 
61.3 
61.5 

57. -8 
55 
44.3 

49 
46.5 

0 

23 
45 
51 -7  
53 -8  
59.7 
68.3 
68.3 
68.3 

82 

d 

0 

11 .S 

32.7 
33.5 
36.5 
39.6 
51 03 
46.2 
48.9 

0 11.5 
6 9.2 

6 6.6 

9 5.6 
9.7 5.3 
9.7 4.6 
9.7 3 .G 

9.7 3 .G 
9.7 3.6  



9 LCT LIFE TEST REPORT 

TUBE NO. 386 

Area 1 - Area covered by beam 
an! pr imary s igna l  a t  
50 C ambient. 

on l y  a t  50 C ambient. 
Area 2 - Area cover$d by beam 

Elapsed Target P.C. 200 L Raster 
Burn Lag T i me Gain S e n s i t i v i t y  '62 Resolut ion 

0 

41 

93.7 
183 
444.3 
679.7 
934.2 

1193.3 
1497.6 

69.2 
68.8 
61.2 

50 

41.2 
40 
40.2 
40.4 

35 .7  

82.3 
83.1 
82.3 
81.7 

79.3 
73 
73.2 

73.2 

73.2 

1.8 
1.8 
1.8 

1.9 
2.05 

2 

2.1 

2.15 

2.1 

"END OF LIFE" 

43 
46 
40 

38 
44 
46 
41 

37 
45 

0 

5 
9 

17 
18 
18 
24 
22 

29 

Elapsed Tgt.Gain Tgt.Gain %Gain Loss %Gain Loss % pp, 
Time Area 1 Area 2 Area 1 Area 2 Change ' S i t n A )  

0 

41 

93.7 
183 
444.3 

679.7 
934.2 

1193.3 
1497.6 

69.2 
68.8 
61.2 

50 
41.2 
40 
40.2 
40.4 

35.7 

d 

69.2 
69.2 

60. 
67.3 

50.3 
48.7 

527 

51 -7  
50.3 

0 

6 
11.5 

27.7 

40.5 
42.2 
42 
43.1 
48.4 

0 

0 

2.8 
15.4 

27.3 

29.6 
23.8 
26.8 

27.3 

0 

+1 

0 

-07  
-4  

-11.3 

- 1 1  . 
- 1  1 

- 1  1 

11.2 

11.2 

9.9 
8.25 
6.6 

5.9 
5.9 
5.9 

1 

5.3 
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TO: R. A. WHITE 

cc: A. S z i l a s i  
G. R. Feaster 
R. A. Shaf fer  
V. J. S a n t i l l i  
A. H. Boer io  
M. Green 
R. B. Randels 

INVESTIGATION OF ELECTR ICAL LEAKAGE 

THROUGH FIBER OPTIC FACEPLATES 

I NTRODUCT ION 

The f i b e r  o p t i c  facep la te  as used on the Lunar Camera Tube i s  subjected 
t o  a -8 kV p o t e n t i a l  on the inner or photocathode surface, w h i l e  the -u te r  
sur face i s  a t  ground p o t e n t i a l .  I n  t h i s  cond i t ion ,  a spurious s igna l  was 
noted i n  the monitor d i sp lay  which was u l t i m a t e l y  t raced t o  some s o r t  o f  
discharge phenomenon i n  the f i b e r  o p t i c .  The purpose of  t h i s  experiment 
wa's t o  i nves t i ga te  f i b e r  o p t i c s  o f  var ious manufacturers to see i f  t h i s  was 
pecu l i a r  t o  a p a r t i c u l a r  product, o r  a c h a r a c t e r i s t i c  o f  a l l  f i b e r  op t i cs .  

SET-UP 

An experimental s e t  up was const ructed to t e s t  several types o f  
faceplates i n  the  as-received cond i t ion .  
D.C. supply, an as t rodata  manovoltmeter and two r e s i s t o r s  arranged as shown 
i n  the  at tached f i gu re .  

The c i r c u i t  cons is ted o f  an 8 kV 

PROCEDURE 

The facep la te  t o  be 
a lcohol  and placed (outs 
a c i d  so lu t i on .  The towe 
p o s i t i v e  s ide  o f  the 8 k 

tes ted  was cleaned i n  blacosolv, r i nsed  i n  isopropyl 
de surface) on a paper towel sa tura ted  w i t h  b o r i c  
was on an aluminum p l a t e  which was connected t o  the 
supply through the  nanovoltmeter. A small amount o f  

A - 2  
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' LCTTM - 66-001 - 2 -  March 21, 1966 

mercury (7.9 grams) was placed on the photocathode sur face t o  serve as the 
contact  leading to the negat ive or ground s ide  o f  the power supply through 
a 100 megohm r e s i s t o r .  The vo l tage was then s low ly  app l ied  across the f i b e r  
o p t i c  facep la te  w h i l e  observing the meter and the f i b e r  o p t i c  i t s e l f  f o r  
ind ica t ions  o f  a discharge. 

RESULTS 

Mosaic f i b e r  o p t i c s  were the f i r s t  t o  be tested, i t  was found t h a t  the 
average leakage cu r ren t  was approximately one nanoampere and t h a t  an e r r a t i c  
discharge was present i n  a l l  f i v e  Mosaics tested. 

Cvrning f i b e r  o p t i c s  showed no evidence o f  a 
average leakage o f  about .5 nanoamperes. 

discharge and had an 

American Opt ics and Opt ics Technology,were a s o  tes ted  and i t  was found 
tha t  both had a leakage of a l i t t l e  less t h m  .5 nanoamperes, w i t h  DO 

discharge c h a r a c t e r i s t i c .  

As a f i n a l  t e s t ,  t w o  complete processed tubes o f  both Mosaic and 
Corning were tested (Mosaic (229 and 147) and Corning (216 and a 
WX-30152)).lt was found t h a t  both Mosaic f i b e r  o p t i c s  had leakages above 
10,000 nanoamperes, and t h a t  the  Cornings had o n l y  50 nanoamperes leakage. 

CONCLUS I ON 

Since the t w o  f i b e r  o p t i c s  most ex tens ive ly  used i n  the  SEC Camera Tubes 
Corning and o the r  tubes r e q u i r i n g  f i b e r  o p t i c s  a re  e i t h e r  Corning or Mosaic. 

would be a b e t t e r  choice between the two consider ing the main t roub le  to  
be e r r a t i c  discharges. 

D. E. Morehart 
LCT Depa r tmen t 

/cah 

Approved by: 
t 

En& neer i ng D i rec to r ,  LCT 
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I 

From: IMAGE TUBE E & M DEPT. 

Dutc: JULY 26, 1966 

. 'hhject: THERMIONIC CATHODE EMISS I O N  

1 .  Descr ip t ion:  The thermionic  cathode used i n  the  Lunar Camera Tube i s  an 
i n d i r e c t l y  heated . 2  wat t  cathode cons is t i ng  o f  a s in te red  l t p i l l l l  suspended 
on a c o i l e d  heater. The heater  leads pass through a ceramic and ace 
fastened down w i t h  "sauereisen" h i g h  temperature cement. 

2. Ruggedization: The cathode as manufactured by Sylvania i s  no t  designed 

o f  another ceramic s i m i l a r  t o  the support 
for environmental use and must be ruggedized p r i o r  t o  assembly. 
ruggedized s t r u c t u r e  cons is ts  
ceramic which has supports brazed in to  i t  adjacent to the holes through 
which the  f i lament  leads pass. 
t h e i r  movement. Many of the cathode assemblies as received and more a f t e r  
ruggedizat ion have the "sauereisen" chipped and cracked. 
r e s t r i c t  the movement i t  was necessary t o  l l repair t '  the cathodes by app ly ing  
a h igh  temperature cement to  rep lace the  "sauereisenI1 which was chipped 
o f f .  
the t w o  ceramics to a r r e s t  any poss ib le  s h i f t i n g  o f  the t w o  ceramics. 

The 

These are  welded t o  the supports to  r e s t r i c t  

In o rder  t o  - 

A t  a l a t e r  per iod,  an add i t i ona l  layer  of cement was placed between 

3 .  The cathode emission i s  g iven  a numerical value by record ing maximum G2 
cu r ren t  w i t h  G = 0. Spec i f ied  m i n i m u m  i s  1.2 ma, average was 1.5 ma. 
S t a r t i n g  w i t h  lube #423, the  con t ro l  char ts  show a s i g n i f i c a n t  d i f f e rence ,  
A t  the same time, a new l o t  of cathodes was p u t  in to  product ion.  

4. Readjustment o f  a c t i v a t i o n  and aging schedules appeared to g i ve  temporary 
improvement; however, emission dropped again a f t e r  tube #459 and d i d  no t  
y i e l d  to  any o the r  e f f o r t s .  

5. We then made up 9 dumny t r i odes  as f o l  lows : 

Lot  (A) - 3 from new l o t  as received; 
Lo t  (B) - 3 taken from guns i n  product ion;  
L o t  (C)  - 3 made up from new l o t  and ruggedized i n  normal manner. 

The r e s u l t s  were t h a t  the 3 dummies in  l o t  (A) met or exceeded spec l i m i t s ,  
wh i l e  no dummy i n  l o t  (B) or (C) exceeded 1 ma, and 3 showed no emission 
whatever. 

Lots (A) and (C) were f r o m  the same cathode. Lo t  (B) was f r o m  a d i f f e r e n t  
l o t .  Lots  (6 )  and ( C )  bo th  had a l aye r  o f  h i g h  temperature cement between 
the ceramics. L o t  (A) had none. 

6 .  Conclusions: The cement i s  h i g h l y  suspect and mounts a re  now be ing  made 
w i thout  t h i s  layer  between ceramicsh 

/cah 
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ET-20 

August 10, 1966 

The Ribbon Cathode Development 

f o r  the Lunar Camera Tube 

Anton van der Jagt 

This work was supported by the Manned Spacecraft Center 
o f  the Nat ional  Aeronaut ical  and Space Admin is t ra t ion on Contract 
No. NAS9-3548. This repor t  i s  issued as a specia l  technical  repor t  
as requi red by contract .  

Approved by: 

R.  A. White 
Program Manager 
Lunar Camera Tube 

WESTINGHOUSE ELECTRON IC TUBE D l V l S  ION 

E.LMIRA, NEW YORK 
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ET-20 The Ribbon Cathode Development 

f o r  the Lunar Camera Tube 

A .  van der Jagt August 10, 1966 

I I n t r o d u c t i o n  

One o f  the requirements f o r  the Lunar Camera Tube, 

WX 31034 

been des 

n i c k e l  c 

i s  low heater wattage. Therefore, t h i s  tube type has 

gned w i t h  the well-known Sylvania .2 Watt powdered 

thode. However, s ince t h i s  cathode i s  p e r i o d i c a l l y  of 

poor q u a l i t y ,  a dec is ion  was made i n  September, 1965, t o  design 

and i-velop a d i r e c t l y  heated cathode as a back-up. Although 

the use 01 '  such a cathode necessi tates changes i n  the camera 

c i r c u i t ,  i t  was f e l t  a t  t h a t  t ime t h a t  these changes would be 

j u s t i f i e d  i f  the design would g ive  a b e t t e r  performance. 

c- 3 
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I I  The Heater Wattase7Temerature Charac te r i s t i c  
1 

A very important requirement f o r  t h i s  newly designed 

cathode i s  a low heater wattage which, however, should g i ve  the  

proper emission cu r ren t .  

K. Cooper had p rev ious l y  done some work on f i lamentary 

cathodes. (A repor t :  "50 ncI Filamentary Cathode f o r  Cathode 

Ray Tubes" i s  ava i l ab le . )  I t was decided t o  use t h i s  work as 

the s t a r t i n g  p o i n t  o f  the new design. Due t o  the  l ow current  

dens i t y  o f  the f i lamentary cathode, i t  was necessary t o  use a 

r ibbon cathode, as advised i n  h i s  repor t .  

Most o f  the f o l l o w i n g  t e s t s  have been made w i t h  a 

Cobanic r ibbon w i t h  dimensions .0005 x .025" except as otherwise 

noted. A l l  tubes were measured f o r  br ightness temperature and 

heater wattage. 

The f i r s t  t e s t ,  made by M r .  A.  Hanna, contained a 

r ibbon cathode supported by micas and kept under tension by a 

s i n g l e  spr ing of  .005" n i c k e l  c lad  molybdenum ( s i m i l a r  t o  the  

cons t ruc t i on  used by M r .  Cooper). 

p o r t  micasewas .150". The r ibbon had been c a t a p h o r e t i c a l l y  

The d is tance between the sup- 

coated w i t h  emission coat ing.  

The emission o f  the tubes was good, i. e., comparable 

w i t h  the Sylvania cathode. 

Wattage vecsus temperature curves were measured. 

I n  order t o  get  a r ibbon temperature of 8OO'C, 

(See 

f i g .  1, Curve I . )  

a wattage o f  .4 Watt was necessary. This  was f a r  t oo  h igh  

since we were aiming a t  .2  Watt ( the  same as for the Sylvania 

cathode) . 
c-4 
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The t e s t  had a l s o  the disadvantage t h a t  micas were 

used, which we would ra ther  avoid s ince i t  i s  always poss ib le  

t h a t  mica p a r t i c l e s  may come loose and r u i n  the performance of 

the tube. 

I n  the next t e s t  the r ibbon had been mounted on a 

ceramic d i s k ,  again supported by a s i n g l e  spr ing.  The wattage- 

temperature curve i s  shown i n  F i g .  1 ,  Curve 2 .  For a tempera- 

t u r e  o f  800'C a wattage o f  .38 Watts i s  needed. 

t i o n  has the disadvantage t h a t  the support o f  the r ibbon by a 

s i n g l e  tension spr ing  i s  mechanical ly unre l iab le .  Therefore, a 

new cons t ruc t ion  had t o  be designed ( the  same cons t ruc t ion  as 

i n  F ig .  6 but w i t h  the r ibbon welded t o  the spr ings and not  t o  

the support rods).  The r ibbon i s ,  i n  t h i s  const ruct ion,  sup- 

por ted by two s p e c i a l l y  formed spr ings.  Each spr ing has a f l a t  

surface which w i l l  keep the r ibbon f l a t .  Since the  spr ings are  

c o i l e d  on each end around a .020" N i l v a r  rod, the tens ion i s  

equa l ly  d iv ided i n  each leg; and, due t o  the r e l a t i v e l y  la rge  

d is tance between the legs, the spr ings are ra ther  s t a b l e  f o r  

v i b r a t i o n  i n  a perpendicular plane through the r ibbon. The use 

o f  a spr ing on e i t h e r  end o f  the r ibbon has the  e f f e c t  t h a t ,  dur-  

i ng  v i b r a t i o n ,  e i t h e r  each spr ing has a damping e f f e c t  on the 

o ther  spr ing  ( t h e  s p r i n g  ampli tude dur ing v i b r a t i o n  not  i n  same 

This  construc- 

d i r e c t i o n )  o r  that '  the tension on t h e  r 

ing v i b r a t i o n  (spr ing  ampli tude i n  same 

The wattage-temperature curve 

Curve 3 .  For a temperature o f  800°C, a 

needed. 

1 

c-5 

bbon i s  maintained dur- 

d i r e c t i o n  dur ing  v i b r a t i o n ) .  

i s  shown i n  F ig .  1 ,  

power o f  .S6 Watts i s  
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fore,  steps were taken t o  reduce the wattage by 

spr ing  design, as we l l  as the  dimensions o f  the  

o f  t e s t s  were made w i t h  d i f f e r e n t  spr ing  dimens 

and spr 

coat ing  

The w a t  

UNCLASSIFIED 

Although it i s  evidscrt t h a t  the wattage should be higher 
0, 

than fo r  a s i n g l e  sgriwg design, t h i s  cons t ruc t ion  i s  necessary 

t o  warrant good performance dur ing  environmental t e s t i n g .  There- 

changing the  

r ibbon. A ser ies  

ons, r ibbon length 

ng ma te r ia l .  The ribbons were not  coated w i t h  emission 

i n  order t o  speed up the processing o f  the  t e s t  tubes. 

age-temperature curves are  given i n  F i g .  2. I n  Table I 

the c h a r a c t e r i s t i c s  o f  the t e s t  tubes corresponding t o  the curves 

a re  l i s t e d .  

TABLE 1 

SPRlNG I RIBBON 

LENGTH 
I 

N i C r  

N i C r  

N i C r  

N i C r  

N i C r  

N i C r  

W 

and a smal 

i s  def ined 

.080 .200 

.110 .200 

.OB0 .150 

.110 . i 5 0  

.080 .110 

,110 .110 

.080 .110 

WATTAGE FOR 
T = 800'C 

.415 

.42 

.44 

.445 

.48 
- 495 

CURVE # 
- I N  FIG. 2 

1 

2 

3 
4 

5 
6 

7 

The lowest wattage f o r  800'C was achieved by us ing a long r ibbon 

spr ing  he igh t .  However, the maximum r ibbon length  

by the diameter o f  the ceramic and by the  v i b r a t i o n  

performance. It i s  no t  advisable t o  use a longer r ibbon than 

.200". The spr ing  he igh t  i s  main ly  def ined by the  c h a r a c t e r i s t i c s  

o f  the spr ing  i n  view o f  environmental t e s t i n g .  A spr ing he igh t  

C-6 
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% \ess than .080" woutd g i ve  a higher tens ion but less ampl i tude 

dur ing  v i b r a t i o n .  The thermal conductance o f  N i C r  spr ing w i r e  

i s  s i g n i f i c a n t l y  lower than tungsten w i r e  so t h a t  the necessary 

wattage could be reduced d r a s t i c a l l y  by us ing N i C r .  

Approximately a t  the same t ime a new t e s t  had been 

made w i t h  the same r ibbon cathode but etched t i l l  the  r ibbon 

thickness decreased approximately 30%. The wattage-temperature 

curve i s  shown i n  F ig .  3 ,  Curve 2. I n  the  same f i gu re ,  Curve 1 

o f  F ig .  2 has been drawn ( t h i s  tube had the same dimensions, 

except the th ickness o f  the r ibbon) .  

prox imate ly  .04 Watts a t  800'C. 

T5- wattage decreased ap- 

The e tch ing  d i d  not  improve the r e l i a b i l i t y  o f  the  

design. The burrs  and roughness on the sides o f  the r ibbon, 

caused by c u t t i n g  the  r ibbon t o  the  proper w id th  became ragged 

due t o  the  etch ing and weakened the  r ibbon. Therefore, the 

spr ing  tens ion i n  t h i s  t e s t  had t o  be reduced t o  less than 5 grams 

( i n  a l l  o ther  t e s t s  the tens ion was a t  l eas t  12 grams). 

c a l c u l a t i o n  revealed t h a t  the  cathode wattage was approximately 

equa l ly  d iv ided between the  r ibbon and the spr ings.  

a reduct ion i n  the e l e c t r i c a l  res is tance o f  t he  spr ings would 

reduce the t o t a l  wattage. I t was not  poss ib le  to increase the 

spr ing  w i r e  diameter ( t oo  much tens ion on the  r ibbon) .  Therefore, 

a t e s t  was made with the r ibbon supported by the  top o f  the  spr ing  

but  w i t h  the r ibbon ends welded t o  the  N i l v a r  support rods (F ig .  6) .  

By doing t h i s  the  t o t a l  e l e c t r i c a l  res is tance o f  the  spr ings was 

reduced because the  res is tance o f  p a r t  o f  the r ibbon was i n  para l -  

l e l  w i t h  the res is tances o f  the spr ing  legs. 

A rough 

Consequently, 

c-7 
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F ig .  4, Curve 2 shows the  wattage-temperature curve 

o f  t h i s  t e s t .  Curve 1 of the  same f i g u r e  shows a p a r a l l e l  t e s t ,  

run as t h e  t e s t  o f  Curve 1, F ig .  2. The l a t t e r  curve does not 

agree very w e l l  w i t h  t he  o the r  curves. Th is  i s  very l i k e l y  due 

t o  processing ( res idua l  a i r  in  t h e  tube). The cons t ruc t i on  of  

Curve 2 seems t o  reduce the  wattage approximately .05 Watts for 

T = 800'C. 

The wattage-temperature curve, g iven i n  F ig .  5, shows 

the  l a t e s t  cons t ruc t i on  w i t h  all improvements combined. We used 

.OO5" N i C r  spr ings w i t h  .080" he igh t  and mounted on .020" n i l v a r  

rods. The tens ion on the  spr ings i s  approximately 10 gram. The 

r ibbon ma te r ia l  was cobanic n i c k e l  (dimension, .0005" x ,015"). 

The d is tance between the  spr ings i s  .200". The r ibbon i s  guided 

across the  spr ings and welded to  the  n i l v a r  support rods. The 

r e s u l t  shows -18 Watts for a temperature o f  800.C or .16 Watts 

for 750.C. 

the  t o t a l  cur ren t  o f  a Sy lvania cathode). 

The emission was q u i t e  s a t i s f a c t o r y  (comparable w i t h  
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1 1 1  Environmental Tes t i nq  

Three tubes o f  the  t e s t s  shown i n  F ig .  2 were env i ron-  

mental tes ted  by D. Morehart. The purpose o f  the  t e s t  was to  

determine the resonance frequency o f  the  r ibbon and to  determine 

whether the  r ibbon cathode would f a t i g u e  when subjected t o  15 g ' s  

on. 

7. I n  F i g .  8 

f o r  5 minutes a t  the  resonance frequency o f  t he  r i b  

set  up as shown i n  F i g .  The equipment was 

the  heater  i s  drawn schernat 

ind ica ted .  

c a l l y  and the  a x i s  o f  v b r a t  ion 

The th ree  tubes had very s i m i l a r  t e s t  resu 

and 1 1  show the  measurement r e s u l t s  f o r  one o f  these 

t s .  F 

tubes. 

9. 9, 10, 

The resonance frequency o f  t he  r ibbon cathode was ap- 

prox imate ly  1800 c/s.  

t i o n  w i t h  15 g ' s  dur ing  5 minutes w i thout  any d i f f i c u l t y .  

The cathodes were ab le  t o  stand the  v i b r a -  

d 
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I V  Emission and L i f e  Tests 

A l l  p rev ious l y  mentioned tubes which were coated w i t h  

emission coat ing  were measured for  emission cha rac te r i s t i cs .  

The emission q u a l i t y  o f  the r ibbon cathodes was, i n  general ,  

s a t i s f a c t o r y .  The l e v e l  o f  the emission cu r ren t  was a t  l e a s t  

as good as for the  Sylvania . 2  Watt cathode. 

One tube was l i f e  tested under s t a t i c  cond i t ions .  

A f t e r  600 hours the  emission l e v e l  was s t i l l  sa t i s fac to ry ;  the  

slump i n  emission was not s i g n i f i c a n t .  

One tube has been cyc led a t  a heater vo l tage equal t o  

1.5 x nominal heater vo l tage.  A f t e r  38000 cyc les the  tube was 

s t i l l  operable, and the  emission l e v e l  o f  t he  cathode was very 

good. 
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V Conclusion 

The design o f  the ribbon cathode is satisfactory. Some 

more work is necessary i f  the design has to be produced in large 

quantities. 
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TARGET BURN- I N 

I NVESTI GAT1 ON 

In t roduc t i on  

The use o f  the Lunar Camera tube involves a s i t u a t i o n  i n  which 

intense, small l i g h t s  may be i n  the f i e l d  o f  view o f  the camera f o r  consider- 

ab le  length o f  t ime .  Consequently, the tube may be subjected t o  small area 

h i g h l i g h t  i l l umina t ion .  imaged on the faceplate.  I f  the  area i s  not  large 

enough, the automatic l i g h t  con t ro l  c i r c u i t  may no t  be ac t i va ted  and damage 

t o  the tube i s  l i k e l y .  The purpose o f  t h i s  i nves t i ga t i on  i s  t o  study the 

e f f e c t s  o f  such exposures and t o  determine, i f  poss ib le ,  the l i m i t s  o f  safe 

operat ion.  There were four  p a r t s  t o  the study: 

a) I n v e s t i g a t i o n  o f  photocathode damage 

b) Damage t o  ta rge t  a t  normal (-8kv) photocathode voltages 

c) Damage a t  reduced photocathode voltages 

d) Determinat ion o f  on-set o f  damage 

Set-Up 

a) The tube non-operat I ng except f o r  -8kv between photocathode 

and anode was exposed t o  small area i l l u m i n a t i o n  w i t h  exposures i n  excess 

o f  500 f t - c d l  f o r  30 minutes. The photocathode was masked o f f  except f o r  

the small area exposed and measurements o f  photocurrent were made before and 

a f t e r  exposure. 

b) The tube was se t  up i n  the  t e s t  se t  i n  normal opera t ing  conf igura-  

t i o n  imaging a r e s o l u t i o n  p a t t e r n  t h a t  produced an i l l u m i n a t i o n  o f  approximately 

1 x f t - c d l  on the photocathode. A microscope l i g h t  was then placed i n  
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the f i e l d  o f  view and i t s  vo l tage adjusted t o  g ive  the des i red i n t e n s i t y .  

I l l u m i n a t i o n  was determined by s e l e c t i n g  a l i n e  o f  the d i sp lay  t h a t  included 

the l igh t  and measuring i t s  s igna l  r e l a t i v e  t o  the  1 x 10 f t - c d l  background. 

Other exposures were made by vary ing t h e f - s t o p  of the lens and ad jus t i ng  the 

-2 

background i l l um ina t ion .  The l i g h t  was moved about i n  the f i e l d  of  view t o  

expose var ious areas o f  the ta rge t .  

c), d) The set-up was i d e n t i c a l  w i t h  b) except the photocathode 

vol tage was var ied  t o  determine the e f f e c t  o f  d i f f e r e n t  pr imary energies. 

P rocedu res 

A f t e r  the exposures yere made, a l i n e  was se lected from d i sp lay  

and the change i n  s igna l  o f  the exposed area from the unexposed area was 

determined. 

c a l l y  t o  determine the r a t e  o f  decay. 

I n  the  case o f  temporary damage, measurements were made p e r i o d i -  

Resul ts 

a) No apparent change was detected from exposure o f  the photo- 

cathode t o  the 500 f t - c d l  i l l u m i n a t i o n  and a f t e r  several  r e p e t i t i o n s  o f  the 

exposures, t h a t  p a r t  o f  the  i n v e s t i g a t i o n  was terminated. 

b) This  second ser'ies o f  t e s t s  was made w i t h  moderate photocathode 

I l l u m i n a t i o n  and f u l l  (-8kv) photocathode vo l tage f o r  per iods up t o  30 minutes. 

I n  t h i s  mode, permanent damage resu l ted  i n  a l l  cases. The i l l u m i n a t i o n  was 

reduced to  1 f t - c d l  wh i l e  the photocathode was run  a t  -6kv f o r  a 40 minute 

exposure. 

hours of normal operat ion.  

This  resu l ted  i n  temporary damage t h a t  recovered w i th in  a few 
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c) I n  t h i s  ser ies  the  photocathode was run  a t  considerably 

reduced vo l tage (33.5 kv) wh i l e  i l l u m i n a t i o n  was increased t o  12-1/2, 25, 

50, and 100 f t - c d l  f o r  various exposures on the  ta rge t .  A t  the  end o f  the 

exposures, the camera and tube was focused on a wh i te  screen f o r  1 hour 

be fore  the "burned" areas were evaluated. Target degradation consis ted 

o f  darker areas ( less  sens i t i ve )  where the  l i g h t  had been imaged. 

degradation was, i n  the worst case, a decrease i n  s igna l  o f  25% although i t  

apparently d i d  no t  degrade reso lu t i on .  I n  some instances, as when the  

Th is  
* 

f i l ament  o f  the l i g h t  was imaged, the  damaged area produced a wh i te  s igna l  

and a complete loss o f  in format ion.  

Not a l l  exposures resu l ted  i n  damage to  the ta rge t ,  bu t  no co r re la -  

t i o n  o f  i l l u m i n a t i o n ,  time, o r  the  product o f  i l l u m i n a t i o n  and t ime t o  degree 

o f  degradation was apparent. 

voltages ranging from 2 - 2.5 k v  and small area i l l u m i n a t i o n  o f  200 f t - c d l  

dur ing  exposure. A f t e r  exposure, the photocathode vo l tage was ra i sed  t o  -8 kv  

and the photocathode un i fo rm ly  f looded w i t h  6 x lom3 f t - c d l  du r ing  the  recovery 

per iod.  

Tests were a l s o  performed w i t h  photocathode 

No damage was observed for any exposure (up t o  200 f t - c d l )  w i t h  

photocathode voltages less than -2.5 kv. A t  -2.5 k v  t a r g e t  damage appeared, 

however, t h i s  was not permanent damage and recovered. 

d) The f i n a l  se r ies  o f  t e s t s  were pesformed t o  determine the onset 

p o i n t s  of permanent damage i n  the  2.5-3 k v  range, and determine i f  there  i s  

c o r r e l a t i o n  between the  A.L.C. and damage onset. 

recoverable damage occurs when the  tube i s  operated a t  any p o i n t  equal t o  or 

Resul ts  show t h a t  non- 
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greater than the A.L.C. curve. The A.L.C. curve i s  defined as the constant 

slgnal current curve which begins a t  the maximum operating point  (or the 

point  j u s t  below which the p i c tu re  s ta r t s  t o  lose resolut ion as i l lumina- 

t i o n  i s  increased) and maintains constant signal output as photocathode 

voltage Is reduced while l i g h t  input i s  Increased. 

Sumnary 

1 )  The photocathode i s  not the l i m i t i n g  factor t o  survival  

from exposure t o  high in tens i ty  small area i l luminat ion.  

2) High primary energy (photocathode voltage) appears t o  be 

a necessary condit ion f o r  permanent damage t o  the target. 

3) Onset o f  damage can be expected where I 1  luminat ion- 

photocathode parameters exceed those defined by the A,L,C, curve. 

4) Tempor.ry, recoverable damage can occur a t  exposures below 

that  defined by the A.L.C. curve. 

5) It Is not known whether there i s  a time-brightness reciproc- 

i t y  f o r  e i t he r  permanent or  temporary damage or  recovery from temporary damage. 
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Purpose 

The SEC ta rge t  i s  normal ly  operated w i t h  a suppressor mesh 

adjacent t o  the scanning surface o f  the ta rge t .  This mesh i s  used t o  

. l i m i t  the vol tage excursion o f  the ta rge t  which, f o r  intense s ignals ,  

could exceed safe leve ls .  However, even w i t h  the presence o f  t h i s  mesh, 

the t a r g e t  can be damaged due to exposure t o  ntense s ignals .  I f  a 

s igna l  great  enough t o  d r i v e  the ta rge t  we l l  n t o  s a t u r a t i o n  i s  impressed 

f o r  some t i m e ,  a temporary and perhaps permanent reduc t ion  i n  ga in  i s  

observed i n  the exposed area. Since i n  some app l ica t ions  intense expo- 

sures are i nev i tab le ,  q u a n t i t a t i v e  data i s  needed. Thus, the  purpose o f  

t h i s  i n v e s t i g a t i o n  was t o  determine: 

1 .  The i 1 1  uminat i on  l eve l s  an SEC camera tube can be exposed 

t o  before f i r s t ,  a temporary loss, and second, a permanent 

reduct ion i n  ga in resu l t s .  

The e f f e c t  o f  the  du ra t i on  o f  such s igna ls .  2. 

3 .  Whether o r  not an i n i t i a l  loss i n  ga in  "ages" the ta rge t  

so t h a t  much more intense exposures are requi red t o  cause 

a f u r t h e r  loss i n  gain. 
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Met hod 

Two WX-5419A SEC camera tubes were used f o r  these experiments. 

Both tubes employ a suppressor mesh spaced 10 m i l s  f r o m  the ta rge t .  I n  

a l l  cases, t h i s  mesh was operated a t  I5 v o l t s  so  t h a t  no mat ter  how 

intense the exposure, the ta rge t  could not  cross over.  A 0.1 cm t-ec- 

tangular  aper ture was focused one-to-one on the photocathode and the 

r e s u l t l n g  photocurrent was measured. The e f f e c t i v e  l i g h t  leve l  kas then 

ca lcu la ted  on the bas is  o f  a 100 uamp/lumen photocathode response. A l l  

l i g h t  \eve15 s p e c i f i e d  i n  t h i s  memo were determined i n  t h i s  manner. 

2 

I n  a l l  cases, the s igna l  cur ren t  f r o m  the area t o  be exposed was 

measured a t  a photocathode i 1 luminat ion o f  foot-candles. Then the 

appropr ia te exposure was made and the s igna l  cur ren t  was re-measured under 

the same cond i t ions  of  the i n i t i a l  measurement. Dur ing the exposure o n l y  

a 0.1  cm area was i l lumina ted .  A f t e r  the exposure, a somewhat l a rge r  

area was i l l um ina ted  such t h a t  the exposed area was contained i n  the l a rge r  

area. I n  t h i s  way, ga in  d i f fe rences  o f  a few percent  could be observed on ~ 

2 

the monitor.  The absolute value o f  the s igna l  cur ren t  was measured by 

comparing i t  w i t h  a reference s igna l  which was generated by apply ing a 

va r iab le  vo l tage pulse acr'oss the v ideo load r e s i s t o r .  Th is  pu lse  was 

app l ied  t o  each v ideo l i n e  so t h a t  a v e r t i c a l  bar  was generated on the 

monitor.  

of the s igna l  cur ren t  by comparing the  two on a 1 ne se lec to r  osc i l loscope.  

This  absolute measurement was accurate t o  20.5 db 

The amplitude o f  the pulse was adjusted t o  match the  amplitude 
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Resu 1 t s  -- 

A ser ies  o f  experiments was conducted w i t h  the ga in  o f  the 

-8 tube adjusted t o  g ive  a s igna l  cur ren t  o f  2.8 x 10 amps a t  a photocathode 

i l l u m i n a t i o n  o f  foot-candles.  Without changing any o f  the tube opera- 

t i n g  parameters, p rogress ive ly  longer t ime exposures were made a t  a g iveh 

. l i g h t  l e v e l .  A f t e r  each exposure, the  s igna l  cur ren t  was re-measured 

under un i fo rm i l l u m i n a t i o n  a t  foot-candles.  F igure 1 shows the re -  

s u l t s  f o r  exposures a t  IO foot-candles.  Each o f  these exposures was made 

on the same ta rge t  area. As ind ica ted  i n  the f i gu re ,  the s igna l  cur ren t  

was noted immediately a f t e r  the exposure and again some t ime l a t e r .  The 

measurements made immediately a f t e r  the exposure are ra ther  inaccurate 

s ince the g a i n  o f  the  ta rge t  began t o  recover. 

t ime i n  minutes i s  ind ica ted  f o r  each exposure. 

The approximate recovery 

I n  general ,  the recovery r a t e  was r a p i d  a t  f i r s t ,  then decreased 

roughly exponent ia l l y .  The t o t a l  t ime requ i red  f o r  recovery increased w i t h  

the i n t e n s i t y  o f  the  exposure, however, i n  no case d i d  i t  exceed 5 minutes. 

Uni form i l l u m i n a t i o n  a t  foot-candles f o r  f u r t h e r  per iods o f  up t o  an 

hour were not  successful i n  improving the s i t u a t i o n  t h a t  ex i s ted  a f t e r  5 

minutes. 

Figures 2 ,  3 and 4 show the r e s u l t s  obtained f o r  exposures a t  1 ,  

10-1 and foot-candles respec t ive ly .  These curves, along w i t h  several  

o thers,  each measured on a d i f f e r e n t  area of the  ta rge t ,  were used t o  

const ruct  F igure  5. Exposures i n  reg ion  1 of F igure 5 have no harmful 
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e f f e c t s  on the t a r g e t  whi 

image". Exposures i n  reg 

e those i n  reg ion 2 r e 9 u l t  i n  a temporary " a f t e r  

on 3 r e s u l t  i n  a permanent loss i n  gain. 

A l l  the data presented i n  Figures 1 through 5 was taken from 

the same WX-5419A (6444036) operated i n  a1 1 cases a t  a pr imary vo l tage o f  

6 kV. 

t a r g e t  gains of from 35 t o  50. These v a r i a t i o n s  i n  ga'in requ i red  to  g ive  a 

constant s igna l  current  were due t o  inadver tant  changes i n  the area scanned. ' 
As we s h a l l  see l a t e r ,  the permanent "burn in1' c h a r a c t e r i s t i c  i s  e s s e n t i a l l y  

independent o f  ta rge t  vo l tage so t h a t  combining the data taken a t  s l i g h t l y  

d i f f e r e n t  voltages i s  j u s t i f i e d .  

Target vol tages of  from 14 t o  17 v o l t s  were used, corresponding t o '  

The t r a n s f e r  curve f o r  t h i s  ta rge t  was measured and i s  shown i n  

F igure 6. I n  order t o  f u r t h e r  character ize the ta rge t ,  pr imary penet ra t ion  

measurements were attempted w i t h  l i m i t e d  success. I n s t a b i l i t y  i n  the image 

sec t ion  l i m i t e d  measurements t o  5 kV where 6% penet ra t ion  was measured. This 

measurement along w i t h  a measured capaci ty  of about 110 pF/cm ind ica tes  a 

" th in"  t a r g e t .  

2 

Addi t ional  exposure s tud ies were made on a second WX-5419A camera - 0  

tube i n  order t o  determine whether the r e s u l t s  described above are  t y p i c a l  

f o r  SEC ta rge ts  o r  whether they are p e c u l i a r  t o  tha t  ta rge t  on ly .  F igure 7 

shows the r e s u l t s  o f  a ser ies  o f  exposures made w i t h  t h i s  tube. 
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The condi t ions and procedures were i d e n t i c a l  t o  those used i n  

ob ta in ing  the curves i n  F igure 3 except t h g t  the ta rge t  vo l tage was 10 v o l t s  

i n  t h i s  case. The t a r g e t  ga in  a t  10 vo l t s ,  was 90, corresponding t o  a s igna l  

current  o f  4.0 x 10 amps. -8 

I n  order  t o  determine the e f f e c t  o f  reducing e i t h e r  the t a r g e t  

vo l tage o r  the pr imary vo l tage dur ing  the exposure, two a d d i t i o n a l  curves 

were measured w i t h  t h i s  tube. For both o f  these curves, the ta rge t  ga in 

was reduced by a f a c t o r  o f  10 dur ing  the exposure only .  Otherwise, the 

condi t ions were the same as those o f  F igure 7. I n  the f i r s t  case, the ga in  

was reduced t o  9 by lowering the t a r g e t  vo l tage t o  1 v o l t  and mainta in ing 

the pr imary vo l tage a t  6 kV. The r e s u l t s  are shown i n  F igure 8. A compari- 

son o f  Figures 7 and 8 shows t h a t  the permanent "burn in" c h a r a c t e r i s t i c  i s  

e s s e n t i a l l y  unchanged. While thetemporary reduct ion i n  ga in was s i g n i f i -  

cant a t  a t a r g e t  vo l tage o f  10 v o l t s ,  none was detected a t  1 v o l t  f o r  

exposures up t o  10 minutes. 

The second curve made a t  reduced ga in  dur ing  exposure was 

accomplished by mainta in ing the t a r g e t  vo l tage a t  10 v o l t s  and reducing 

the pr imary vo l tage to '3 .25  kV corresponding to a g a i n  of 9. I n  t h i s  case, 

no "burn in", e i t h e r  temporary o r  permanent, was observed f o r  even the 

longest exposure time, 60 minutes. 
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Conclusions 

The two ta rge ts  used f o r  these measurements are f a i r l y  representa- 

The r e s u l t s  obtained w i t h  exposures a t  IO-' t i v e  of  SEC ta rge ts  i n  general .  

foot-candles and 6 t<V pr imary vol tages f o r  each t a r g e t ,  Figures 3 and 7, 

do not  d i f f e r  f rom each other  by an amount s i g n i f i c a n t l y  greater  than the -  

experimental accuracy. Thus, w i t h i n  an order o f  magnitude, the exposures 

t o  which a t y p l c a l  SEC t a r g e t  can be subjected wi thout  s u f f e r i n g  a loss i n  

ga in are g iven i n  F igure 5. The permanent "burn in", e s s e n t i a l l y  independent 

o f  t a r g e t  vol tage, i s  a s t rong f u n c t i o n  o f  pr imary voltage. I t  has been 

measured o n l y  a t  6 kV. The temporary "burn in" c h a r a c t e r i s t i c ,  shown i n  

Figure 5 f o r  a ta rge t  vo l tage o f  about 15 v o l t s ,  var ies  w i t h  t a r g e t  vol tage. 

This dependence as we l l  as t h a t  on pr imary vo l tage has not  been measured. 

The curve i n  F igure  1 shows t h a t  an i n i t i a l  loss i n  ga in  due t o  

an intense exposure does not enhance the a b i l i t y  o f  the t a r g e t  t o  wi thstand 

f u t u r e  exposures. This f a c t  and the f a c t  tha t  the permanent loss i n  ga in  ~ 

depends on the bombarding energy ind ica tes  t h a t  "burn in t1  i s  an appropr ia te 

term. I t  seems l i k e l y  t h a t  the heat generated i n  the exposed area causes a 

damaging s t r u c t u r e  change. Fur ther  exposures producing the  same o r  higher 

temperatures would then cause f u r t h e r  damage and an associated loss i n  gain. 

The l a c k  o f  r e c i p r o c i t y  i n  exposures causing permanent damage a l s o  ind ica tes  

tha t  the e f f e c t  i s  a thermal one. 
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An i n t e r e s t i n g  phenomenon was observed dur ing  the course o f  

the experiments. Tube #6444036 i n i t i a l l y  showed a very pronounced p a t t e r n  

of coarse blemishes. A f t e r  each successive exposure i n  a g iven area, the 

blemishes i n  t h a t  area grew less and less pronounced. Since o n l y  r e l a -  

t i v e l y  smal 

was general 

i l l umina ted  

areas o f  the t a r g e t  were i l luminated,  the r e s t  o f  the ta rge t  

y unobserved. However, a t  one p o i n t  the whole t a r g e t  was 

and the e n t i r e  p a t t e r n  o f  blemishes was gone, even those i n  

the unexposed areas. The f i n e r  "grain" s t r u c t u r e  was not a f fec ted .  

Unfor tunate ly ,  no photographic record o f  these observations was made. 

Since the tube was operated cont inuously f o r  q u i t e  lengthy per iods o f  t ime, 

i t  i s  poss ib le  t h a t  the heat generated by the focus and d e f l e c t i o n  c o i l s  

subjected the ta rge t  t o  a m i l d  bake. 
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MOISTURE DAMAGE TO THE SEC 

TARGET 
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TO: G. W e  GOETZE, MANAGER 
Image Tube R & D 

PURPOSE : 

The purpose of the invest igat ion was t o  determine i f  blemishes are 
produced i n  an SEC target by exposure t o  moist air. 

EXPERIMENTS : 

An SEC ta rge t  was evaporated under standard conditions and placed 
i n t o  a demountable camera tube with the  least possible  handling time. 
camera tube was pumped continuously with a Vac Ion pump and kept a t  a typical 
pressure of lo-' Torr. The t a r g e t  was operated i n  a standard manner, the 
video signal displayed on a monitor and photographs taken frm the monitor 
with an exposure time of 0.5 - 1 sec. 
placed i n  a humidity chamber f o r  a given time. 
r e l a t i v e  humidity o f  30% by a saturated solut ion of aqueous CaC12 i n  
equilibrium with so l id  CaC12. 
the humidity chamber for  a fu r the r  period. 

The 

The system was opened and the  t a rge t  
The chamber was kept a t  a 

The t a rge t  was re tes ted  and then exposed i n  

RESULTS : 

Figure 1 shows a series of photographs of the same target .  Photograph 
A shows the  t a r g e t  with no previous exposure t o  moist a i r  at a t a r g e t  voltage 
of 20 V with no input illumination. The ta rge t  was overscanned and the  white 
nnd black r ings are the  r e s u l t  of beanlanding on the t a rge t  mount. Photograph 
B was taken a f t e r  a 15 minute exposure t o  a r e l a t i v e  humidity of 30%. The 
ta rge t  was operated under the  same conditions as for  Photograph A. Photograph 
C was obtained af ter  a second.exposure, t h i s  time f o r  one hour a t  30% r e l a t i v e  
humidity. 
voltage of 10 V but with a uniform input illumination. 
ta rge t  t o  humidity in the  p a i r s  of  photograplis A and D, B and E, and C and F 
a r e  the same, 
dark areas in  photographs E and F are caused by var ia t ions  i n  photocathode 
emission and are not relevant t o  the  present discussion, 

Photogrpphs'Dthrough F show the same t a r g e t  operated a t  a t a r g e t  
The exposure of t he  

I t  should be noted t h a t  t he  s l i g h t  nonuniformities and the 
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"Dr. Goetze Page 2 March 1, 1965 

As can be seen, an SEC t a rge t  once exposed t o  moist a i r  develops 
white blemishes and grain.  

The extent  of  the damage t o  t h e  t a rge t  depends on the level of humidity 

(1) 
and t h e  exposure time. 
becomes progressively slower and the TSE gain falls  under these circulnstances. 

I t  should be noted tha t  a r e l a t ive  humidity of 30% can be produced by 

I t  is a l so  observed t h a t  the  t a rge t  readout speed 

inser t ing  1 mg water i n t o  a volwire equal t o  tha t  of t he  LCT at  25OC. 

R. R. Beyer 

m l r  
Attach. 

REFERENCE : 

(1) bl. Green, R. R. Bcyer Second Interim Engineering 
Report Contract No. AF 33 (615)-1271 
(February 1965) 
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MONITOR PIiOTOGRAPHS OF AN S C  TARGET 

A: VT : 20 v 
No illumination 
No exposure 

B t  VT : 20 V 
No illumination 
1, Exposure: 15 mine 

30% relative humidity 

c: VT : 20 v 
No il luminathm 
2, Exposure: 1 hour 

30% relative humidity 

r 

D: VT t 10 V 
I1 lumination 
No exposure 

E: VT : 10 v 
I 1 lumination 
1, Exposure: 15 min, 

305 relative humidity 

F: VT 10 v 
I 1 lwninat ion 
2. Exposure: 1 hour 

30% relative humidity 
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A RESOLUTION STUDY PROGRAM 

FOR THE LUNAR CAMERA TUBE 
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RESOLUTION STUDY PROGRAM 

FOR THE LUNAR CAMERA TUBE 
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ABSTRACT 

Th is  study program was undertaken t o  improve understanding o f  

the  e l e c t r o n  optic.al p roper t i es  o f  the  Lunar'Camera Tube and t o  de ter -  

mine the  f e a s i b i l i t y  o f  extending the r e s o l u t i o n  o f  the  tube beyond the  

l eve l  o f  t he  o r i g i n a l  s p e c i f i c a t i o n .  Separate s tud ies  o f  the reading 

sec t ion  and the  image sec t ion  were c a r r i e d  or,t by the  cons t ruc t i on  and 

t e s t i n g  o f  experimental hyb r id  v id icons  and image i n t e n s i f i e r s .  Work on 

the reading sec t ion  was concerned p a r t i c f A 1 a r l y  w i t h  the  e f f e c t s  o f  the  

suppressor mesh. The r e s u l t s  o f  these experiments are discussed i n  

d e t a i l ,  and conclusions are drawn regarding design changes favorable to  

reso lu t i on .  

i n t o  the  Lunar Camera Tube. The o r i g i n a l  r e s o l u t i o n  s p e c i f i c a t i o n  i s  

shown t o  be very c lose  t o  the l i m i t i n g  performance t h a t  can be a t t a i n e d  

i n  t h i s  tube, w i thout  some Dasic improvement t o  the  t r i o d e  gun, o r  w i t h -  

Some o f  t he  suggestions made have already been incorporated 

ou t  a mod i f i ca t i on  t o  the  SEC ta rge t  t h a t  w i l l  permi t  i t  t o  operate 

w i thout  a low vo l tage suppressor mesh. 
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FOREWORD 

The author o f  t h i s  repo r t  was the  p r o j e c t  leader on the study 

program descr.ibed, under the  superv is ion of M r .  R i  A .  White, Lunar Camera 

Tube program manager. The he lp  o f  many col leagues, both w i t h i n  and ou t -  

s ide  the  Lunar Camera Tube team, i s  g r a t e f u l l y  acknowledged. In p a r t i c u l a r ,  

M r .  R .  P. Carpent ier  was responsible f o r  the  cons t ruc t i on  and t e s t i n g  o f  

a l l  the experimental v id icons,  and many o f  the graphs presented i n  

Sections 2 and 3 are reproduced d i r e c t l y  from h i s  resu l t s .  The met iculous 

work o f  M r .  W. E. M e r r i t t  i n  the cons t ruc t ion  and measurement o f  the  

experimental image sect ions was , instrumental  in  c l e a r i n g  up d i f f i c u l t i e s  

i n  t h a t  area o f  the tube. D r .  G. R.  Feaster cont r ibu ted  s i g n i f i c a n t l y  

i n  the e a r l y  stages o f  t h a t  work. S p e c i f i c  con t r i bu t i ons  from several 

o ther  people a re  mentioned i n  the  t e x t .  
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1 .  INTRODUCTION 

The resolution study program on the Lunar Camera Tube was 

started in July, 1965, as a result of disappointment with the performance 

of early tiibes. The original resolution specification called for a 

40% aperture response at 250 TV lines/picture height and 5% at 400 TV 

lines/picture height, these figures having been based on data available 

on the image section and the 1"  hybrid vidicon. The deficiency of the 

early tubes appeared to be attributable to two factors that had not been 

fully appreciated. One of these factors was the critical dependence of 

the image section resolution on the precise shaping of the anode cone 

tip, and the other was the degrading effect of the suppressor mesh on 

the resolution of the reading section. The objective of the study program 

was to imprQve our understanding of  these and other factors, and so t0 

re-assess the potentialities of the tube. We wished to consolidate the 

performance of production tubes at the level of the original specification 

and to determine the feasibility of going beyond that level. The TV sys- 

tems group had indicated a desire to raise the resolution specification 

to a 40% response at 300 TV lines/picture height and 5% at 600 TV lines/pic- 

ture height. 

Work was started on the electron optics of the image section 

and the rearlinq section. The resolution capability of the image section 

being inherently h i g h ,  effort in that area was directed towards establishing 

the correct dimension; and the constructional accuracy necessary to realize 
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t he  f u l l  p o t e n t i a l  in  product lon tubes. 

as the prime l i m i t a t i o n  t o  reso!ut ion i n  the complete tube, and i n  t h i s  

The reading sect ion was recognized 

area the p o s s i b i l i t y  o f  basic redesign was contemplated i f  an advantageous 

e l e c t r o n  o p t i c a l  c o n f i g u r a t i o n  could be determined. Work an t h i s  sec t i on  

included a study o f  the e f f e c t s  o f  var ious parameters on the performance 

o f  hyb r id  v id icons both w i t h  and w i thou t  suppressor meshes. 

No study o f  the SEC t a r g e t  r e s o l u t i o n  c a p a b i l i t y  was made, t h a t  

being the  subject  o f  o ther  research programs i n  progress. 

stage o f  development the t a r g e t  does not  appear t o  be an important l i m i t a -  

A t  the present 

t i o n  t o  r e s o l u t i o n  i n  the Lunar Camera Tube. 
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2. V I D I C O N  STUDY 

A diagram o f  the e lec t ron -op t i ca l  components o f  an orthodox 1.0'l 

v i d i con  i s  shown i n  F i g ,  1 .  T h i s  diagram shows schematikal ' ly the a c t i o n  

on the e lec t ron  beam o f  t he  focus lens (63-64-65), the  d e f l e c t i o n  yoke, 

'and the  c o l l i m a t i o n  lens (65-66). The t a b l e  shows the nominal operat ing 

vol tages fo r  th ree  cases which w i l l  be re fe r red  t o  as low, medium, and 

h igh  vo l tage operat ion.  

d i r e c t l y  t o  66 and ca r ry ing  the  h ighest  p o t e n t i a l  i n  the tube. 

methods o f  opera t ion  are  poss ib le  and some o f  them w i l l  be discussed i n  

the f o l l o w i n g  pages. 

Normally the tube i s  operated w i t h  63 connected 

Other 

I n  p r i n c i p l e ,  the  e lec t ron  o p t i c a l  a c t i o n  o f  the  tube may be 

described as an imaging, w i t h  approximately u n i t  magn i f i ca t ion ,  o f  the  

small source o f  e lec t rons  represented by the beam-l imit ing aperture,  onto 

the  ta rge t .  I n  d e t a i l ,  the  a c t i o n  i s  ra ther  complex and i t  i s  not  we l l  

estab l ished whether the  beam-l imit ing aper ture ac ts  simply as a small ob jec t ,  

* o r  p a r t l y  as an aperture-stop as w e l l .  Apart from the aper ture s i z e  and 

the magn i f i ca t ion  f a c t o r ,  the  s i z e  o f  the spot a t  the ta rge t  i s  a f fec ted  

by spher ica l  aber ra t ion  i n  the focus lens, and poss ib ly  by chromatic aber- 

r a t i o n  (spreading e f f e c t s  due t o  the va r iab le  emission energies of  the 

e lec t rons) .  P r a c t i c a l  eva lua t ion  of  these d e t a i l s  i s  g r e a t l y  complicated 

by the poor mechanical al ignment tha t  i s  achieved w i t h  e x i s t i n g  construc- 

t i o n a l  techniques, due t o  which i t  i s  necessary t o  employ e l e c t r i c a l  
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Voltages C G I  
(Typica I )  

4 

62 63 64 G 5  G 6  Target 
( Approx-1 (Ty pica I 

Aperture 

669 3 D-VA- 2 2 

FIG. I ELECTRON OPTICS OF THE VIDICON 
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alignment of the beam during operation. This is done by means of small 

coil.- ivi the vicinity of the 61-62 gap. ideally, the beam needs to be. 

c-~l:*:red on the 1 imiting aperture for maximum transmission of current. 

I t  should travel centrally through the focus lens for nonastigmatic focus- 

ing and emerge centered along the axis of the collimation lens for good 

landing uniformity. Since only one alignment adjustment is available for 

* each of two perpendicular directions, some compromise between these various 

objectives has to be accepted. 

rents is probably the most critical single factor affecting resolution 

Optimum adjustment of the alignment cur- 

performance of the tube. 

described here because mechanical alignment represents an uncontrolled 

This has an important bearing on the study 

variable which may be respmsible for appreciable resolution differences 

between tubes. 

The principal geometrical parameters that are electron-optically 

significant can be listed, together with what will be referred to as their 

standard values: 

beam-limiting-aperture diameter 0.00 18" 

66 - Larget spacing about 0.100" 

field mesh (66) pitch 750 line/inch 

During the program variations of these parameters were studied, together 

with variations of operating potentials and electrode interconnections. 

A total of 25 orthodox vidicons were built, details of which are summarized 

in Table 1. 

for a special expel iment in the suppressor mesh study (see Section 3.6), 

were capable of operation as orthodox vidicons with very small 66-target 

spac i ng . 

Also included are tubes 264 and 265 which, although built 

6-11  
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1 

Tu be 
No. 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

55400 12 

55400 1 3 
5540040 
6540046 
6540050 
6540058 

199 
228 

229 
264 
265 
255 
259 

660809 1 
6608005 
297 
3 04 

Internal 
Cbnn. Apert u r  c 

.OD 18" 
- - .- 

. CJG i 344 

. OiIO8" 

. 00 18" 

. 00 18" 

. 00 I 8" 

. 00 18" 

.ooiall 

. 00 18" 

.oo 10" 

. oo I a" 

. 00 18" 

.0018" 

. 00 1 a" 

. oo 1 a" 

.oo 1 a" 

.00071t 

. oo 1 a" 

. oo 1 at1 

. 00 18" 

.0006" 

.0007" 

. 00 18" 

. 00 18" 

.OO 18" 

. 00 18" 

.0018" 

TABLE 1 V I D I C O N  DETAILS 

Heater- 
Cath 

1 watt 
Type 

I1  

I t  

I 1  

I t  

I t  

I 1  

? I  

I t  

I t  

I 1  

I t  

I t  

I t  

( I  

11 

1.2 watt  

1 watt  
11 

1.2 watt 
l t  

t t  

t t  

1 watt 
I t  

1.2 watt  
t l  

Special 
Features 

Sb S photoconductor 
I 1  I t  

11 11 

2 3  

Se target unless Sb S 2 3  
Standard t r i d  unless prec is ion  specif ied. 

specif ied. 

i e l d  Mesh 
ines/lnch 

750 
750 
750 
7 50 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 

1000 

1000 

2000 

750 
500 
500 
500 

750 

G6- 
rarget 
jpac i ng 

.205" 

. 140'' 

. 135" 

.080 

.050 
,075 
.I90 

.115 

. oao 

.085 

. 130" 

. 130" 

.210" 

.3  10" 

. 105" 

. 100'' 

. 125" 

. 100" 

. 105" 

.010" 

.030" 

. 105" 

. 125" 

. 135" 

. 115" 

.12511 

. 130" 

Norma 1 
Response 

t t  300 Lines 

34% 
38 
44 * 

44 

47 . 

44 
46 
44 
45 
52 
4a 
48 
44 

39 
62 
38 
52 
60 
62 
41 
49 
43 
48 
39 
30 
44 
47 

6 6 9 3 D- VA - 2 3 
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2.1 Operating P o t e n t i a l  

I t  i s  w e l l  known t h a t  v i d i c o n  r e s o l u t i o n  improves w i t h  increas- 

ing tube vol tages, and t h i s  e f f e c t  has been observed c o n s i s t e n t l y  on a l l  

v id icons tested. Examples are shown i n  F ig.  2, which gives aper ture 

response curves f o r  v id icons 35 and 36. The i r  performance i s  t y p i c a l .  

. A  steady improvement i n  r e s o l u t i o n  i s  obtained w i t h  increasing vo l tage 

and a considerable f u r t h e r  improvement when magnetic focusing i s  employed. 

Poth these f a c t s  a r e  consis tent \  w i t h  the theory t h a t  sperh ica l  aber ra t ion  

o f  the main focusing lens i s  a prime l i m i t a t i o n  t o  r e s o l u t i o n  of the  h y b r i d  

v id icon .  A t  h igh  vo l tage operat ion the lens e f f e c t  bewteen 62 and 63 i s  

increased (because the G2 vol tage remains f i x e d  a t  300 w h i l e  63 vol tage 

increases). This has the e f f e c t  o f  reducing the beam angle i n t o  the main 

focusing lens, which can expla in ,  a t  leas t  q u a l i t a t i v e l y ,  the improved per-  

fomrance as due t o  reduct ion o f  the aber ra t ion  d i s c .  I t  should be r e a l i z e d  

t h a t  t h i s  reasoning i s  ra ther  s u p e r f i c i a l ,  because the conjugates o f  the  

m u l t i p l e  lens system change, as w e l l  as the beam angle. A f u l l  exp lanat ion 

o f  t h e  e f f e c t s  o f  vo l tage changes would there fore  r e q u i r e  a much deeper 

anal ys i s .  
- s  

2.2 Field-Mesh Tarqet Spacing 

A number o f  tubes have provided evidence on the  e f f e c t  o f  vary- 

ing t a r g e t 4 6  spacing. Resul ts from 12 tubes, i d e n t i c a l  except f o r  t h i s  

parameter, a re  summarized i n  F i g .  3 .  The th ree  graphs correspond t o  three 

d i f f e r e n t  operat ing vol tages; 300, 600, and IO00 v o l t s .  Each curve con- 

nects aper tu re  response values a t  a f i xed  l i n e  number f o r  tubes w i t h  var ious 
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spacings. Curves f o r  100, 200, e tc .  TV l i n e s  per  r a s t e r  he ight  a r e  shown. 

No c l e a r  cu t  t rend i s  ind ica ted  by these resu l t s .  The tube wi th  ,310 spacing 

i s  a l i t t l e  worse than o ther  tubes a t  low voltages, but a t  1000 v o l t s ,  

i t s  performance i s  about average. The spread i n  response i s  q u i t e  la rge  - 
as much as 15% i n  the  300 TV l i n e  reg ion,  This  r e s u l t s  from small uncon- 

t r o l l e d  v a r i a t i o n s  i n  the  tubes, and the inaccuracies inherent in  the  t e s t  

procedure, 

wh i l e  the  tube w i th  0.100'' spacing ( tube 6540058) i s  ra ther  poor. 

One tube w i t h  0.125" spacing ( tube 199) i s  pa r t i cu . fa r l y  good, 

Tubes 32 and 33, which have the cor rec t  geometrical p roper t i es  

f o r  i nc lus ion  i n  t h i s  graph, were omit ted.  These two tubes, the f i r s t  

constructed i n  t b f z  study, have Sb S photoconductors instead o f  the selenium 2 3  
type used i n  the  o ther  tubes, and both show poor reso lu t i on .  It seems 

doubt fu l  t h a t  the  poor r e s o l u t i o n  can be a t t r i b u t e d  t o  the photoconductor, 

but  i t  does no t  seem wise t o  inc lude the  tubes i n  F ig .  3 .  Together w i t h  

tube 34, which a l so  has an Sb S photoconductor, they can be considered 2 3  
as a separate group (see Sect ion 2.4). 

From the data in  F ig .  3, we conclude t h a t  resoPution i s  no t  

sens i b 1 y dependent on target-G6 spac i ng over the  ran ge 0.050'' t o  0.300". 

I t  should however be rea l i zed  t h a t  un i fo rm i t y  problems might a r i s e  w i t h  

veryllarlge spacings, due t o  poss ib le  non-uni formity of  the dece le ra t ing  

f i e l d .  Th is  would depend on the  l oca t i on  o f  o ther  tube members ou ts ide  

the  la rge  gap. Such e f f e c t s  were not  observed i n  t h i s  study, but  they 

were no t  s p e c i f i c a l l y  sought. 
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*The range o f  permiss ib le  spacings can be extended down to  

0.010" as a r e s u l t  o f  experiments on tubes 264 and 265. 

were b u i l t  f o r  a specia l  experiment which w i l l  be described i n  Sect ion 3.6 

but were capable o f  operat ion as orthodox v id icons  w i t h  very small t a rge t -  

66 spacing, i n  which mode they gave reso lu t i on  comparable t o  o ther  v id icons 

w i t h  0.001" beam l i m i t i n g  apertures.  

These two tubes 

The conclusion reached here impl ies t h a t  there i s  no s i g n i f i -  

cant chromatic aber ra t ion  e f f e c t  i n  the tube. Spot-spreading due t o  

emission energies should be dependent on t r a n s i t  t ime which, f o r  a given 

vol tage, increases w i t h  target-G6 spacing. This  f u r t h e r  supports the 

suggestion made i n  Sect ion 2.1 tha t  r e s o l u t i o n  improvement w i t h  increas ing 

operat ing vo l tage i s  due t o  reduct ion o f  spher ica l  aber ra t ion .  I n  an 

attempt t o  study f u r t h e r  the  spher ica l  aber ra t ion  e f f e c t ,  tubes 6540012 

and 6540013 were bui  1 t (See Table 1 ) .  

located i n  f i e l d - f r e e  space i n  the  G 3  cy l i nde r ,  such as t o  l i m i t  the  i n -  

c ident  beam t o t a l  angle t o  0 04 and 0.10 radians respec t ive ly .  The r e s u l t s  

These tubes have aper ture stops 

, from these tubes are  not  inc uded i n  F ig .  3. Both showed good but  not  

except ional  reso lu t i on .  I t  s l i k e l y  t h a t  ne i the r  aper ture stop was 

r e a l l y  e f f e c t i v e  i n  r e s t r i c t i n g  the inc ident  beam angle, a l though the 

smal ler  of t he  t w o  appeared t o  i n te rcep t  the beam t o  some extent,  making 

alignment d i f f i c u l t  and r e q u i r i n g  l a r g e . g r i d  d r i v e  vo l tage.  The alignment 

d i f f i c u l t y  would probably v i t i a t e  any experiment w i t h  s t i l l  smal ler  aper ture 

stops w i t h  which e f f e c t i v e  beam-angle l i m i t a t i o n  might be obtain'ed, and 

so t h i s  approach was not  pursued f u r t h e r .  

d 
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2.3 Beam L i m i t i n g  Aperture 

A l l  r e s u l t s  g iven i n  F igs.  2 and 3 are  f o r  v id icons w i t h  beam 

l i m i t i n g  apertures o f  approximately .0018" diameter. Several v id icons 

have been bui  It w i t h  smal ler  apertures.  Three v id icons w i t h  d i f f e r e n t  

aper ture s izes are compared i n  F ig .  4. Each graphelcorresponds t o  a d i f -  

f e ren t  mode o f  operat ion.  I n  the  hyb r id  mode, a t  a l l  operat ing vol tages, ~ 

there i s  a c lea r  subs tan t ia l  r e s o l u t i o n  improvement w i t h  decreasing aper ture 

s i ze .  Tube 40 i s  t y p i c a l  o f  v id icons  w i t h  .0018'1 apertures (see F i g .  3). 

I t  was constructed a t  t he  same t ime as tube 41, the  aper ture s izes being 

the  on ly  intended d i f f e r e n c e  between the two. 

a l a t e r  date and d i f f e r s  from the others in thav ing  a s l i g h t l y  la rger  

target-G6 spacing, and a p rec i s ion  t r i o d e  instead o f  the  standard t r i o d e .  

i)  

Tube 6540050 was made a t  

Nei ther  o f  these fac to rs  i s  thought t o  in f luence reso lu t i on .  

F ig .  4((c) compares the  performance o f  the  tubes when magnet ica l ly  

focused. There does no t  appear t o  be any c lea r  t rend.  I t  seem l i k e l y  

t h a t  the  important a c t i o n  o f  the  smal ler  aper ture i s  reduct ion o f  the  beam 

angle i n t o  the focusing lens, r e s u l t i n g  i n  improvement i n  the  hyb r id  mode 

through r e d u c t i o n  o f  the  spher ica l  aber ra t ion  d i sc .  

Tubes 228 and 229 prov ide f u r t h e r  evidence on the  e f f e c t  o f  

smal ler  apertures.  These tub.es have apertures o f  O.OOQ7" diameter and 

show r e s o l u t i o n  s i m i l a r  to tube 6540050.. A f u r the r  comparison i s  made i n  

F ig .  5, between tubes 33 and 34 which have beam l i m i t i n g  apertures o f  

0.00181~ and 0.0008" respec t ive ly .  

i s  less marked i n  t h i s  case. As mentioned e a r l i e r ,  these tubes and tube 32, 

Super io r i t y  o f  the  smal ler  aper ture 
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as a group; e x h i b i t  r e l a t i v e l y  low reso lu t ion ,  poss ib ly  due t o  use o f  an 

Sb S photoconductor instead o f  the  standard selenium. 2 3  
A disadvantage o f  the  smaller aperture i s  the  need t o  d r i v e  the 

cathode harder i n  order t o  mainta in  the requi red beam cur ren t  a t  t he  t a r -  

get .  Th is  i s  evidenced by the GI vol tages o f  38 and I8 on tubes 41 and 

6540050 respec t ive ly ,  compared w i t h  the more t y p i c a l  value o f  55 on 

. t u b e  40. These tubes had 1 wat t  cathodes, which were able t o  supply the  

add i t i ona l  t o t a l  cur ren t  w i thout  d i f f i c u l t y .  

2 .4  Focusinq Mode 

The p o t e n t i a l  values l i s t e d  i n  F ig .  1 are those used i n  the 

standard method o f  focusing a v id icon .  I n  t h i s  cond i t i on  the  main focusing 

lens,  63-64-65, i s  an unsymmetrical three-cy l inder  lens.  Various other 

poss ib le  arrangements e x i s t  and some study was made o f  t h s i r  r e l a t i v e  mer i t s .  

2.4.1 - A l t e r n a t i v e  63 Connections 

I n  the past v id icons have been constructed a l t e r n a t i v e l y  w i t h  63 

i n t e r n a l l y  connected t o  65 o r  t o  66. I n  t h i s  program tubes were b u i l t  

w i t h  a l l  three o f  these e lect rodes i so la ted  on separate p ins  so t h a t  the 

mer i t s  O F  the two a l t e r n a t i v e  connections o f  G3 could be examined. This  

study was inconclus ive.  O f  s i x  tubes, th ree  showed sys temat ica l l y  s l i g h t l y  

b e t t e r  reso lu t i on  w i t h  63 connected t o  GS, and one was b e t t e r  w i t h  63 con- 

nected t o  66. The other  two performed almost i d e n t i c a l l y  i n  the  two modes. 

Wi th 63 connected t o  65, t he  focus lens becomes a symmetrical three- 

cy l i nde r  lens.  
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Typica l  operat ing vol tages are: 

62 6 3  64 G 5  66 

Low vol tage 300 180 40 180 300 

Medium vo l tage 300 300 60 300 600 

High vo l tage 300 500 100 500 1000 

A p o i n t  which may have some bear ing on t h i s  quest ion concerns 

the  motion o f  p o s i t i v e  ions.  Wi th  the 63-66 connection, ions formed i n  

the  main volume o f  t he  tube w i l l  tend t o  be trapped, whereas w i t h  6 3  a t  

the  lower G 5  p o t e n t i a l ,  some ions formed i n  the 66 reg ion would be capable 

o f  penet ra t ing  t o  the thermionic cathode. 

2.4.2 "Inverted" Focus Lens 

The orthodox operat ion o f  the th ree-cy l inder  lens sets  the  

cen t ra l  cy l i nde r  G4 a t  lower p o t e n t i a l  than i t s  neighboring cy l i nde rs  63 

and 65. 

mode) i s  thought t o  r e s u l t i i n  lower spher ica l  aber ra t ion .  F ig .  6 shows 

Operation w i t h  G4 a t  higher p o t e n t i a l  than 6 3  and 65 (" inverted" 

r e s u l t s  o f  an i nves t i ga t i on  o f  t h i s  e f f e c t  in  tube 40, an orthodox v id i con  

w i t h  .0018" beam l i m i t i n g  aper ture and .080" target-G6 spacing. F i g .  6(a) 

i s  a s t r i k i n g  i l l u s t r a t i o n  o f  the  improved performance o f  the focus lens 

i n  the inver ted mode. The lower curve i s  f o r  o rd inary  low vo l tage opera- 

t ion ,  f o r  which i t  represents t y p i c a l  performance. The upper curve was 

obtained immediately a f t e r  t.he lower, simp.ly by r a i s i n g  the G4 p o t e n t i a l  

u n t i l  the  tube was refocused. This  curve i s  comparable t o  t h a t  obtained 

i n  orthodox h igh  vo l tage operat ion,  'as can be seen from the d i r e c t  comparison 

made i n  F ig .  6(b).  However, i t  i s  t o  be noted t h a t  i n  the inver ted  mode 

the  improved r e s o l u t i o n  i s  obtained w i thout  increased scanning power, s ince 

the  65 and 66 p o t e n t i a l s  remain low. Scanning power requirement i s  roughly 
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propor t i ona l  t o  the  G 5  and G6 p o t e n t i a l s  and so i s  normal ly  increased by 

a f a c t o r  o f  3 i n  changing t o  h igh  vo l tage operat ion,  F ig .  6(3,b.)I shows 

t h a t  orthodox and inver ted  lens opera t ion  o f f e r  about the  same r e s o l u t i o n  

fo r  a given maximum vo l tage i n  the  tube. I n  the inver ted  mode apar t  from 

the reduc t ion  i n  scanning power, t he  f a c t  t h a t  66 i s  se t  a t  a low p o t e n t i a l  

has add i t i ona l  s ign i f i cance i n  tubes having a suppressor mesh, as w i l l  be 

discussed i n  Sect ion 3 .  The e lec t rode voltages used i n  t h i s  experiment 

a re  l i s t e d  i n  F ig .  6, 

Tests on o the r  tubes l a r g e l y  confirmed the  conclusions drawn 

from F ig .  6. Tubes 255, 259, 6608091 and 6608009 a l l  performed i n  the  

inver ted  mode as w e l l  as,  o r  s l i g h t l y  b e t t e r  than, i n  the  normal mode f o r  

a given maximum app l ied  vo l tage.  The l a s t  two v id icons  b u i l t ,  297 and 304, 

performed less w e l l  i n  the  inver ted  mode. 

2.4.3 B i p o t e n t i a l  Lens Operation 

The focus lens o f  t h e  v id i con  can be made i n t o  a b i p o t e n t i a l  

lens by connecting G4 e i t h e r  t o  G3 o r  t o  G5. 

e i t h e r  w i t h  the acce le ra t i ng  o r  w i t h  the  dece le ra t ing  form o f  lens. Four 

Focusing can be achieved 

d i f f e r e n t  types o f  b i p o t e n t i a l  focusing a re  thus poss ib le .  No extens ive 

study o f  these opera t ing  modes was made i n  t h i s  program. 

obtained from tube 41 a r e  shown i n  F i g .  7. F ig .  7(a) shows the  r e s u l t s  

o f  dece le ra t ing  b i p o t e n t i a l  opera t ion  a t  . three vo1tag.e leve ls ,  w i t h  64 

connected t o  G3. 

Some r e s u l t s  

The curves are  q u i t e  s i m i l a r  t o  those f o r  normal opera- 

t i o n  a t  the  equ iva len t  vo l tages.  A d i r e c t  comparison between normal, in- 

ver ted and b i p o t e n t i a l  modes o f  opera t ion  i s  made in  Fi.9. 7(b) f o r  the  
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1000 volt case. Bipotential operation appears' slightly worse than the 

other two, although limiting resolution i s  about the same In all three 

cases. The main operating potentials used for the bipatential d e  are 

shown in Fig. 7(a). The 63 potential was held at 300 volts in all cases, 

and G 5  was maintained at about half the 66 potential for nsrh l  action of 

the collimation lens. A test was also made on tube 41 w i t h  @4 connected )I 

to G 5 ,  which has the effect of moving the bipotential lens further from 

the target. Resolution in this case appeared to be cons 

2 . 5  Field-Mesh Pitch 

derably degraded. 

Towards the end of the study some orthodox vid cons were bul'it 

with non-standard field meshes. 

could be used without affecting resolution, This would provide higher 

transmission of the beam, which is beneficial. In a suppressor mesh tube, 

It was hoped that a coarser field mesh 

for example, it would permit the use of a finer suppressor mesh to improve 

resolution without reduction in overall transmission of  the two meshes 

The six tubes involved in this experiment were Nos'.1.6608091, 

6608009 and 297 wrth 500 line mesh, Nos. 259 and 304 with 750 line mesh, 

and No. 255 with 2000 line mesh. Further details of the tubes can be 

found in Table 1 .  All have .0018" beam limiting apertures and target- 

mesh spacings i n  the range . i05!' to ,135".  Apart from field-mesh pitch, 

therefore, they do not differ in any respect that is thought to influence 

resolution. Tube 6608009 differs from all other.sinvolved in this work 

in having a cataphoretically deposited cathode. 
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Table 2 compares the aperture response figures obtained from 

these tubes in normal operation at (a) 600 volts and (b) 1000 volts on G6. 

The 500-line mesh tubes show wide differences--19% in the 300-line figures 

at 1000 volts. Tube 6608009 looks particularly bad (it does not seem 

reasonable to attribute thiis in any way to the cataphoretic cathode) 

t w o  750-line mesh tubes are similar to each other, and comparison with 

. Fig. 3 shows that they can be regarded as fairly typical standard vidicons. 

The 

I t  i s  not easy to draw any firm conclusions f r o m  these results. Tube 297 

is the best of the 500-line mesh tubes. At higher line numbers it falls 

sorewhat sho r t  of the 750-line mesh tubes (both in Table 2 and Fig, 3) 

and so there is some suggestion that the coarser field mesh degrades reso- 

luricn. The suggestion is not supported by tube 255 with 2000-line mesh, 

w h i r +  ihods results similar to typical 750-1ine mesh tubes. This experiment 

is t h e r e f o r e  rather inconclusive, but change to mesh coarser than 750 lines/inch 

does Rot appear advisable. lniprovement in resolution by use of finer field 

rresh, as has been claimed"), seems unl ikely. 

Neither does it appear likely from these results that improved 

resolution i s  obtainable by the use o f  smoothed cathodes(2). The cata- 
' 

phoretically deposited cathode used in tube 6608009 was probably as smooth 

as any cathode obtainable, but this tube showed unusually poor resolution, 

although its performance was normal in ather respects. We cannot, of 

course, draw firm conclusions on the basis of results from only one tube. 
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TABLE 2 

Variation o f  Field Mesh Pitch. Aperture Response. 

600 Volt Operat i c m  

297 

259 
304 750 line mesh 

2000 line mesh 255 

\ 

1000 Volt Operation 

660809 1 

500 line mesh 600800gf~ 
297 

. I )  259 
304 750 line mesh 

I2000 1 ine mesh 255 

+$Cataphoretic cathode 

- 
100 

96 
97 
98 

98 
93 

- 

95 

c 

100 

99 
99 
99 

98 
99 

99 

- 
200 

70 

65 
79 

- 

80 
75 

- 
200 

81 
67 

- 

a4 

80 
84 

83 - 

- 
300 

39 
30 
44 

49 
47 

41 

- 

- 
300 

48 
33 
52 

58 
59 

- 

53 - 

7 

400 

18 
1 1  

21 

- 

26 
25 

22 - 

- 
400 

24 
15 
27 

34 
36 

- 

33 - 

500 

12 
7 

6 
12 

I8 
20 

- 
600 

3 
- 

3 

8 
7 

5 - 

- 
600 

5 
2 

5 

- 

8 
IO 

8 - 
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3.  SUPRESSOR MESH V I O I C O N  

The t y p i c a l  e f f e c t  o f  in t roduc ing  a suppressor mesh i s  i l l u s -  

t r a t e d  i n  F ig ,  8, which compares aper tu re  response curves from tube 207 

a t  two d i f f e r e n t  suppressor mesh voltages w i t h  a curve from tube 36, which 

i s  representa t ive  o f  orthodox v id i con  performance. The t w o  tubes are  

anominally t h e  same apar t  from the  suppressor mesh, which i s  placed a t  the 

standard .010" from the  ta rge t .  I t  i s  seen t h a t  over 20% response i s  

l o s t  a t  200 t o  300 l i n e s  w i t h  the  suppressor mesh a t  30 v o l t s ,  a normal 

opera t ing  value i n  the  Lunar Camera Tube. L i m i t i n g  r e s o l u t i o n  i s  reduced 

by about a hundred and f i f t y  l i n e s .  Th is  degradation i s  serious, and i t  

can be seen why the  o r i g i n a l  est imates o f  LCT reso lu t i on ,  which were based 

on knowledge o f  orthodox hyb r id  v id i con  performance a t  t h a t  t ime, were 

ra the r  o p t i m i s t i c .  The s u r p r i s i n g l y  severe e f f e c t  o f  the  suppressor mesh 

i s  revealed as the  primary cause o f  disappointment i n  the  r e s o l u t i o n  per-  

formance o f  t he  e a r l y  Lunar Camera Tubes. Since conf i rmat ion  o f  t h i s  f a c t ,  

the  suppressor mesh e f f e c t  has been the  main ob jec t  o f  i n v e s t i g a t i o n  i n  

t h i s  study. 

F ig .  9 shows the  cons t ruc t i on  adopted f o r  suppressor mesh v id icons.  

The add i t i ona l  mesh i s  mounted on top o f  the  standard 66 by means o f  a 

ceramic r i n g  w i t h  metal tabs ( sp ide r ) .  The requ i red  separat ion o f  the  

meshes i s  se t  by the  i n t r o d u c t i o n  o f  ceramic spacers. i n s u l a t i o n  o f  the  

suppressor mesh from the  t a r g e t  i s  provided by a mica washer, which auto- 

m a t i c a l l y  sets  the  spacing between the two e lect rodes when the  complete 

mount i s  inser ted  i n t o  the  tube envelope. A washer thickness o f  0.002" 

i s  requi red t o  achieve the  standard target-G7 spacing o f  0.010". 
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FIG. 8 COMPARISON OF VIDICONS W I T H  AND WITHOUT 
SUPPRESSOR MESH (600 VOLT OPERATION)  

T a r g e t  Field - Mesh Spacing 0. I IO" ( Approx. 1 
Beam L imi t ing  A p e r t u r e  - .0018" 
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.002" Mica Washer r 

FIG. 9 CONSTRUCTION OF SUPPRESSOR MESH VIDICON 
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3.1 Variation of Suppressor Potential 

To some extent, the degradation produced by the suppressor mesh 

can be explained by the lenslet action that occurs at the mesh openings 

when the field strengths on the two sides of the mesh differ. 

has been analyzed quantitatively el~ewhere'~). 

however. The lenslet action can be eliminated by adjusting the suppressor 9 

mesh to such a potential that the field strengths on either side are equal- . 

This effect 

It is not the full story, 

ized. This field-equalization point may be two high for satisfactory 

operation of an SEC camera tube, but it can always be attained in the 

vidicon tubes being described here. In.variably it is found that resolution, 

although improved, still falls short of that of an equivalent vidicon with- 

out suppressor mesh. The curve for V = 60 volts shown in Fig. 8 

illustrates this point. 
SUPP 

Surprisingly, it is found that resolution continues to improve 

as the suppressor mesh voltage is raised above the equalization point. 

This effect is illustrated in Fig. 10 which shows, still for tube 207, 

how the response at 300 TV lines increases with suppressor mesh potential. 

The two curves correspond to 600 and 1000 volt operation, and the suppressor 

mesh voltages for field-equalization in the two cases are marked with 
L-' 

corresponding symbols. For 600 volt operation resolution improves as the 

suppressor mesh potential i s  raised to 80 volts, where it still is not 

equal to the resolution of a vidicon without suppressor mesh. 

appear to be leveling off at the upper end. The crossing of the two curves 

is an interesting feature. It appears that at low suppressor mesh voltages 

The curves 
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the r e s o l u t i o n  improvement normal ly observed in  the  1000 v o l t  opera t ion  

mode i s  more than cancel led out  by aggravat ion o f  the l e n s l e t  e f f e c t .  The 

advantages o f  the 1000 v o l t  mode can be rea l i zed  a t  h igher suppressor mesh 

po ten t i a l s ,  and a t  V 

v id icon  w i thout  suppressor mesh ( t y p i c a l l y  about 5S%--see F ig .  3 ) .  

= 80 v o l t s  the  response i s  approaching t h a t  o f  a 
SUPP 

Complete aper ture response curves f o r  var ious suppressor vol tages 

a t  two d i f f e r e n t  f i e l d  mesh p o t e n t i a l s  are g iven i n  F ig .  11 .  

The s a l i e n t  features i l l u s t r a t e d  i n  Figs.  8, IO, and 1 1  a re  no t  

pecu l i a r  t o  tube 207. 

const ructed, to  a degree which depends on some o f  the  tube parameters, as 

They are  observed i n  a l l  the  suppressor mesh tubes 

w i l l  be fu r the r  discussed i n  fo l low ing  sect ions.  The l e n s l e t  e f f e c t  

a l ready mentioned i s  not  adequate to  exp la in  these features,  a l though i t  

undoubtedly cont r ibu tes  t o  them. Add i t iona l  c o n t r i b u t i n g  e f f e c t s  may be 

e lec t ron  sca t te r i ng  o r  secondary emission a t  the  suppressor mesh, e i t h e r  

of which would con t r i bu te  t o  reduc t i on  o f  con t ras t .  However, i t  seems 

u n l i k e l y  t h a t  these e f f e c t s  would reduce as the  suppressor mesh p o t e n t i a l  

is increased. F ig .  12 shows schematical ly how the  f i e l d  tends t o  d i r e c t  

more e lec t rons  t o  the  mesh bars the  h igher  the mesh p o t e n t i a l  so t h a t  

sca t te r i ng  e f fec ts  could be expected t o  get worse. I t  might be argued 

t h a t  the improvement w i t h  increas ing suppressor mesh p o t e n t i a l  i s  simply 

the  r e s u l t  o f  increas ing the  f i e l d  in  f ron t  o f  the ta rge t  and hence reducing 

e lec t ron  t r a n s i t  time. However, experiments w i t h  o rd inary  v id icons,  already 

described i n  Sect ion 2.2, tended to  show t h a t  t h i s  e f f e c t  i s  no t  as in-  

f l u e n t i a l  as i s  sometimes claimed. A t  the present time, therefore,  there 

i s  no s a t i s f a c t o r y  explanat ion o f  the suppressor mesh e f f e c t s  on r e s o l u t i o n  

descr ibed here. 
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FIG. 12 INTERCEPTION OF ELECTRONS 
BY SUPPRESSOR MESH 

( a )  H i g h  Suppressor Potent ia l  

(b )  Low Suppressor Potent ia I 
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The most important details of all the suppressor mesh vidicons 

built during this program are listed in Table 3. 

3.2 Field-Mesh Target Spacinq 

Variation of the separation of field-mesh and target is closely 

related to the question of suppressor mesh potential. Experiments described 

.in Section 2.2 have suggested that field-mesh spacing ordinarily has no 

significant influence OR viddjcon resolution. In suppressor-mesh vidicons, 

therefore, the field-mesh position would be expected to affect resolution 

only through its influence on the lenslet effect at the suppressor mesh. 

On this basis spacings that tendto equalize the field strengths on the 

two sides of the suppressor mesh should provide best resolution. 

Tube 207 discussed in the preceding section has a target field- 

mesh spacing of 0.112" and so, in normal 600 volt operation, requires a 

suppressor mesh potential of 54 volts for fiald-equalization. Tocreduce 

the fietd-equalization potential, larger field mesh spacing i s  required. 

To investigate this, tubes 6544010 and 206 were built, nominally identical 

with 207 except for field mesh spacings of .:!OO" and .296" respectively. 

Resolution performances of the three tubes are compared in Fig. 13 for 

operation with 30 volts on the suppressor mesh. There appears to be a 

steady improvement with increasing spacing. The improvement is more pro- 

nounced in the high voitage mode of oper'ation, which is consistent with 

the fact that the lenslet effect is stronger in that case. For 600 vo t 

operation the field-equal ization spacing is .200", corresponding exact y 

to tube 6544010. HOWeVeF, there i s  further improvement in performance 

d 
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TABLE 3 SUPPRESSOR MESH V I D I C O N S  

Tube 
No. 

65440 10 

206 

207 

250 

25 1 
268 
269 
266 

6608026 
6608 1 10 
6608 10 1 
6608 109 

€6080 12 

264 

265 

lper t u re 

.OO 18" 

. 00 1811 
,001 8" 
. 00 18" 
.0007" 

,000713 

. 00 10" 
* 00 10" 

. 00 1 0'. 

. 00 1 0' I 

. 00 10" 

.oo 10" 

. 00 10" 

.oo 10" 

'00 18" 

00 1811 

Heater- 
cath type 

1 watt 
I t  

0.2 watt 
I t  

1 watt 
f t  

t l  

1 1  

I1 

1 1  

t l  

I t  

I 1  

I 1  

0.2 watt 

11 

Spec i a 1 
Feat u res 

.030" suppressoi 
spac i ng 

single mesh 
a O I O ' '  spac 

single mesh 
.030" 

'ield Mesh 
. i nes/ I nch 

750 

750 

750 

750 

750 
750 

750 

750 

750 

5 00 

750 

500 
500 

500 

--- 
--- 

-e - 

- 
Target 

.200' 

.200 

.296 

.112 

.232 

.232 

.lo8 
197 
.293 

, 233  
,232 
,298 
.389 

253 

- s l -  

-__- 

All have Se targets and standard triode assemblies. 
All have .010" nominal supp. mesh spacing unless other specified. 
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FIG. 13 APERTURE RESPONSE VARIATION WITH FIELO- 
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w i t h  s t i l l  l a rger  spacing such t h a t  the  f i e l d  on the  ta rge t  s ide  o f  the 

suppressor becomes stronger than the f i e l d  on the 66 s ide.  T h i s  e f f e c t  

may be analogous t o  the  improvement obtained by operat ing the suppressor 

a t  p o t e n t i a l s  above the equa l iza t ion  value. A poss ib le  explanat ion o f  

both e f f e c t s  i s  t h a t  the  t a r g e t  surface i s  not  a t  zero p o t e n t i a l ,  as 

assumed i n  t h i s  discussion, but a t  some p o s i t i v e  p o t e n t i a l  o f  perhaps 10 

t o  30 v o l t s .  

F i g .  14 compares three f u r t h e r  tubes which again are nominal ly 

i d e c r i c a l  except f o r  f ield-mesh ta rge t  spacing. The same trends are  

ev ident .  Tube 6608109 has a spacing o f  .389", considerably greater  than 

t h a t  needed for  f i e l d - e q u a l i z a t i o n  even i n  the 1000 v o l t  operat ion mode, 

yec i t  shoirJs higher r e s o l u t i o n  than the ot.her two tubes. These three 

tubes d i f f e r  from the th ree  represented i n  F i g .  13 i n  having smal ler  beam 

l i T i t i n g  aper ture,  coarser f i e l d  mesh, and f i n e r  suppressor mesh. 

Tzbe 6608026, w i t h  .233" spacing, seems t o  have s u r p r i s i n g l y  poor resolu- 

t i c n  con;;a.-ed w i t h  the other  tubes and i s  regarded w i t h  some suspic ion. 

I t  h a s  t o  b e  borne i n  mind throughout t h i s  work t h a t  v i d i c o n  performance 

car! vary q u i t e  no t iceab ly  from one tube t o  ai-,other f o r  reasons t h a t  a re  

co t  w e l l  understood. The d i f f i c u l t y  is t o  see through these random var ia -  

t i o n s  and detect  any t rends t h a t  may be due t o  i n t e n t i o n a l l y  var ied  parameters. 

Sometimes the t rend may be masked t o  the extent  t h a t  i t  could be detected 

o n l y  by s t a t i s t i c a l  ana lys is  o f  the  r e s u l t s  from a l a r g e  number o f  tubes. 

I n  the case o f  F ig .  13,  on the other  hand, i t  may w e l l  be t h a t  the t rend 

i s  accentuated by unaccountably poor performance o f  tube 6608026. 
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Further evidence on field mesh target spacing i s  given in Fig. 15. 

The three tubes compared there are similar to those of Fig. 13 except that 

they have smaller beam-limiting apertures. Because of this, each tube in 

Fig. 15 would be expected to be better than its counterpart in Fig. 13. 

This is true o f  tubes 268 and 289 but not of tube 266, which has the largest 

spacing of the three. Tube 266 theref3re looks like a bad tube, and we - 
are icclined to'discount it. The remaining two tubes of Fig. 15 conform 

satisfactorily to the pattern of improving resolution with increasing field- 

mesh target spacing. 

3 . 3  Suppressor-Mesh Pitch and Spacinq 

Several tubes provide evidence on the effect o f  varying suppressor 

mesh pitch. The first two suppressor mesh vidicons made, tube nos. 6544009 

and 6544010, were nominally identical except for their suppressor meshes, 

which were 1000 and 750 lines/inch respectively. Some of the results from 

these tubes are shown in Fig. 16. Fig. 16(a) compares the 300 TV line 

response of the two tubes in normal 600 volt operation as the suppressor 

mesh potential is varied. The tube with the finer mesh is clearly superior. 

Both tubes show improvement in resolution beyond the field-equalization 

point, the characteristic already discussed in Section 3.1. Fig. 16(b) 

compares the complete aperture response curves for the case of 20 volt sup- 

pressor potential. Observation of limiting resolution on the test monitor 

showed tube 6544009 to be generally the better tube by about 100 TV lines. 
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Shown i n  F ig .  17 are r e s u l t s  from another p a i r  o f  tubes, a so 

i d e n t i c a l  except f o r  suppressor mesh p i t c h .  

mesh has somewhat b e t t e r  reso lu t ion .  These tubes have b e t t e r  reso lu  ion  

than the  previous p a i r  because o f  the  very small l i m i t i n g  aper ture used 

(.0007~1 diameter). 

Again the  tube w i t h  the  f i n e r  

Tube 250 has the  h ighest  r e s o l u t i o n  o f  a l l  the  sup- 

. pressor mesh v id icons constructed,dJe t o  i t s  combination o f  small beam 

l i m i t i n g  aperture,  very f i n e  suppressor mesh, and la rge  f ield-mesh ta rge t  

spacing. I t i s  i n  f a c t  s l i g h t l y  super ior  t o  the  orthodox v id icons  repre- 

sented i n  F i g ,  3 .  However, the 200U l i n e  mesh used in  tube 250 has a 

t ransmission r a t i n g  o f  on l y  22% which, i n  con jun t t i on  w i t h  the small beam 

l i m i t i n g  aperture,  severely reduces the beam cur ren t  ava i l ab le  t o  discharge 

the ta rge t .  Because o f  t h i s ,  i t  was necessary to operate the  tube a t  near- 

zero b ias  vol tages and l o w  l i g h t  leve ls .  The s igna l  cur ren ts  poss ib le  

were about h a l f  those f o r  a more normal tube. These l i m i t a t i o n s  weigh 

against  the i n t roduc t i on  of the  features o f  t h i s  tube i n t o  the  LCT. 

From our r e s u l t s  i t  seems reasonable t o  conclude t h a t  some reso- 

l u t i o n  improvement i s  obtained by use o f  f i n e r  suppressor meshes. This  

conclusion Is lm agreement w i t h  p red ic t i ons  made on the  bas is  o f  an analys is  

o f  the l e n s l e t  e f f e c t  g iven e l ~ e w h e r e ' ~ ) .  

t h a t  tubes 6608110 and 269, which e s s e n t i a l l y  d i f f e r  on ly  i n  suppressor 

mesh p i t c h  (1500 and 1000 1 i n e d i n c h  resp.ect ively)  show very c l o s e l y  

I t  should however be mentioned 

s i m i l a r  aper ture response curves. 

Considerat ion o f  the  l e n s l e t  e f f e c t  suggests that r e s o l u t i o n  

should be a q u i t e  s e n s i t i v e  func t i on  of suppressor-target spacing. A s  a 

d 
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r e s u l t  o f  t h e  l e n s l e t  ana lys is (3 )  and some e a r l y  work on SEC camera tubes, 

i t  now seems t o  be genera l l y  assumed t h a t  the  smallest poss ib le  spacing 

i s  des i rab le .  Th is  assumption inf luenced the  present study t o  the  ex ten t  

t h a t  nea r l y  a l l  t he  suppressor mesh v id icons  were b u i l t  w i t h  the  standard 

.010" suppressor t a r g e t  spacing. However, towards the  end o f  the work, 

. t ube  6008012 was made w i t h  a .030" spacing, A t y p i c a l  comparison o f  i t  

w i t h  two o ther  tubes i s  shown i n  F ig .  18. The other  two tubes have stand- 

ard .010" suppressor spacing and s l i g h t l y  d i f f e r e n t  f i e l d  mesh spacings; 

they have a l ready been considered i n  Sect ion 3.2. As mentioned there, 

one o f  them, tube 6608026, seems t o  have unaccountably poor reso lu t i on .  

I f  we discount t h i s  tube and compare the  remaining two, i t  appears tha t  

the .030" suppressor spacing may be responsib le  f o r  q u i t e  a l a rge  degrada- 

t i o n .  However, f i r m  conclus ons cannot be drawn from t h i s  evidence. 

4 3.4 Focusing Mode 

Resul ts  presented i n  Sect ion 2.4.2 ind ica ted  t h a t  a v id i con  

performs as w e l l  i n  the " inverted" focus lens mode as  ilr the  normal mode, 

for a g iven maximum vo l tage i n  t h e  tube. I n  the inver ted opera t ion  the 

maximum vo l tage i s  app l ied  t o  the  G4, ana the  GL i s  he ld a t  a r e l a t i v e l y  

. low p o t e n t i a l  compared w i t h  t h a t  i n  the normal focusing mode. One would 

expect t h i s . t o  be b e n e f i c i a l  i n  a suppressor mesh v id i con  s ince the  l e n s l e t  

e f f e c t  should be reduced. Tests c a r r i e d  ou t  on the  e a r l i e s t  suppressor- 

mesh v id icons  b u i l t  confirmed t h i s  expectat ion. F ig .  Ig(a) shows r e s u l t s  

obtained from tube 6544009 when operated in  two a l t e r n a t i v e  h i g h  vo l tage 

modes, compared w i t h  performance i n  t h e  normal low vo l tage mode. The 
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suppressor mesh p o t e n t i a l  was he ld  f i x e d  a t  30 v o l t s  f o r  a l l  th ree  cases. 

App l i ca t i on  o f  the  1000 v o l t  p o t e n t i a l  t o  64 r a t h e r $  than t o  66 i s  seen 

t o  be b e n e f i c i a l ,  p rov id ing  over 10% increase i n  response and an add i t i ona l  

100 l i n e s  on the l i m i t i n g  reso lu t i on .  A s  w i t h  the  o rd ina ry  v id icon ,  t he  

inver ted  focus mode a l so  reduces the  scanning power requirement. 

I n  tube 207, r e s u l t s  f o r  which are  shown i n  F ig .  I g (b ) ,  t he  ad- 

vantage o f  the  inver ted  lens i s  s l i g h t l y  g rea ter .  Th is  tube has a smaller 

t a r g e t 4 6  spacing o f  0.112", which apparently accentuates the  l e n s l e t  

e f f e c t  t o  the p o i n t  where the normal h igh  vo l tage mode a c t u a l l y  degrades 

reso lu t i on .  

shows s i m i l a r  e f f e c t s .  On the  other  hand, tubes w i t h  very la rge  target-G6 

spacing, such as tube 206 (0.296"), d i sp lay  very l i t t l e  d i f f e r e n c e  between 

normal and inver ted  modes o f  operat ion.  

Tube 268, which a l so  has a ra ther  small target-G6 spacing, 

The m a j o r i t y  o f  suppressor mesh v id icons  b u i l t  conform reasonably 

t o  the  pa t te rns  described above. However, th ree  tubes b u i l t  l a t e  i n  the  

program, r los. 6608110, 6608109, and 6608012, d i d  no t .  These tubes per- 

formed war": i n  the  inver ted  mode than i n  the  normal mode, the reasons 

f o r  which a r e  not  known. 

Tubes 6608101 and 6608109 were b u i l t  w i t h  a l l  e lect rodes con- 

nected t o  separate p ins  t o  p rov ide  complete f l e x i b i l i t y  o f  operat ion.  I n  

a d d i t i o n  t o  the  normal and inver ted  modes, these tubes were operated i n  

both acce le ra t i ng  and dece le ra t ing  b i p o t e n t i a l  modes, w i t h  63 connected 

t o  64. For a g iven maximum vo l tage i n  the  tube, very l i t t l e  d i s t i n c t i o n  

i n  performance wbs found among these var ious methods o f  focusing. I n  
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tube 6608101 the  normal focusing mode was s l i g h t l y  worse than the  others,  

w h i l e  i n  tube 6608109 i t  was s l i g h t l y  b e t t e r .  

acce le ra t ing  b i p o t e n t i a l  modes provided i d e n t i c a l  performances w i t h i n t t h e  

l i m i t s  o f  experimental e r r o r .  

The dece le ra t ing  and 

We conclude from these experiments t h a t  the  " inverted" focus 

lens w i t h  64 a t  h igh  p o t e n t i a l  provides b e t t e r  reso lu t i on  than the  normal 

method o f  focusing i n  suppressor mesh tubes w i t h  target-G6 spacings less 

than about 0.200''. 

t he  same. I t should be mentioned t h a t  the  non-standard focusing methods 

appeared t o  be more genera l l y  t roubled by extraneous problems. 

i on  bombardment of the ta rge t  becomes more pronounced when the f i e l d  mesh 

p o t e n t i a l  i s  l ow,  as i n  the "Inverted' '  mode o r  the dece le ra t ing  b i p o t e n t i a l  

mode. Also,  problems w i t h  tube alignment and astigmatism are  o f t e n  increased 

w i t h  non-standard focusing. 

A t  la rger  spacings the  two methods are  p r a c t i c a l l y  

For example, 

3.5 Magnetic Foaus 

Tube 6544009 was tested w i t h  magnetic focusing t o  prov ide informa- 

t i o n  on the poss ib le  advantages o f  t h a t  mode f o r  SEC camera tubes genera l l y .  

F ig .  20(a) shows r e s u l t s  f o r  suppressor mesh p o t e n t i a l s  o f  30 and 40 v o l t s  

i n  comparison w i t h  normal e l e c t r o s t a t i c  focusing. As w i t h  orthodox v ld icons,  

a marked r e s o l u t i o n  improvement r e s u l t s  from magnetic focusing. 

the  curve f o r  67  = 40 v o l t s  i s  compared.with r e s u l t s  from an equiva lent  

I n  F ig .  20(b) 

tube w i thou t  a suppressor mesh. The reso lu t i on  degradation due t o  the  

suppressor mesh i s  not so marked here as t h a t  shown i n  F ig .  8 f o r  e lec t ro -  

s t a t i c  focusing. The tubes concerned here, however, have la rger  target-G6 

spacing than those o f  F ig .  8. 
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i t  appears from these r e s u l t s  t h a t  magnetic focusing can prov ide  

a subs tan t ia l  r e s o l u t i o n  improvement i n  tubes w i t h  a suppressor mesh. The 

r e s u l t s  were obtained w i t h  a magnetic f i e l d  o f  about 40 gauss and a 

p o t e n t i a l  o f  450 v o l t s  app l ied  t o  63, 64, 65 ,  and 66. Possib ly  b e t t e r  

r e s u l t s  could be obtained from a tube i n  which the f i e l d  mesh (66) could 

be operated a t  an independent vo l tage as i s  normal ly  done i n  magnet ica l ly  ~ 

focused tubes. 

3.6 S inq le  Mesh Tube 

I t  i s  genera l l y  accepted t h a t  meshes degrade r e s o l u t i o n  and t h e i r  

use i n  tubes i s  t o  be avoided wherever poss ib le .  Since the  SEC ta rge t  

does not  a t  present permi t  s a t i s f a c t o r y  opera t ion  w i thout  a low vo l tage 

suppressor mesh, i t  i s  l o g i c a l  t o  i nqu i re  whether t h a t  mesh can simultaneously 

per form the  func t i on  o f  t he  f i e l d  mesh i n  a standard v id icon .  Apart from 

expected r e s o l u t i o n  advantage, such a s i n g l e  mesh tube would p rov ide  

super ior  u t i l i z a t i o n  o f  beam cu r ren t .  

study by redesign o f  the  c o l l i n l a t i o n  lens, and a l though r e s u l t s  obtained 

were d isappoint ing,  a b r i e l  d e s c r i p t i o n  o f  t h e  experiment i s  appropr ia te  

a t  t h i s  p o i n t .  

The o b j e c t i v e  was achieved i n  t h i s  

Since the  beam leaves the  focusing lens a t  h i g h  p o t e n t i a l  and 

i s  decelerated t o  a p o t e n t i a l  o f  about 30 v o l t s  a t  t he  suppressor mesh, 

t h e  bas ic  requirement i s  a p o s i t i v e  dece le ra t i ng  e l e c t r o n  lens. The standard 

c o l l i m a t i o n  lens o f  a vidicon, as dep ic ted  i n  F ig .  2:1(a), i s  p o s i t i v e  o n l y  

i f  the  beam i s  accelerated as i t  passes from 65 to  66. I f  66 i s  placed 

a t  a p o t e n t i a l  lower than G 5 ,  the  lens becomes negat ive  and so accentuates 
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the scanning angle instead of reducing it to zerb. To get a positive lens 

effect in the decelerating condition, it is necessary to attach a short 

cylindrical section to the 66, as shown in Fig. 21(b). 

a modified two-cylinder lens, 

66 could become the suppressor mesh, and an operable single-mesh SEC camera 

tube could be made. However, the cylinder length chosen for 66 would dic- 

tate the voltage ratio required for best collimation, and the ratio of G 5  

potentia to suppressor mesh potential would thus be set. To overcome 

this inf exibility, it is better to separate the cylindrical 66 from the 

The lens becomes 

With this configuration the mesh part of 

mesh. Fig. 21(c) shows the practical form of decelerating collimation 

lens that was used in vidicons 264 and 265. In this form, adjustment of 

the 66 potential for best beam landing can be made independently o f  the 

65 and 67 potentials. 

vide approximately the required strength of lens when set at a potential 

close to that of the suppressor mesh. 

aid of the ray-tracing computer program, No attempt was made to be very 

precise since it was only desired initially to obtain a working tube on 

which the resolutioh could be observed. The cylinder length chosen is 

therefore not necessarily optimum for beam landing uniformity. 

The 66 cylinder length of 0.55" yas chosen to pro- 

This design work was done with the 

As stated above, the results of the experiment were disappointing 

Vidicons 264 and 265 differed only in respect of their target-67 spacings, 

which were respectively .010" and .030". Both tubes showed satisfactory 

beam collimation but resolution was very poor. Aperture response curves 

for the two tubes are shown in Fig. 22. Both are rather worse than the 

d 
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orthodox suppressor mesh v id i con  such as tube 6544009, the curve f o r  which 

i s  shown i n  F ig .  

pursued f u r t h e r .  

shown i n  F ig .  22 

The 66 p o t e n t i a l  

16. Because of t h i s ,  the  s i n g l e  mesh approach was not 

The operat ing vol tages employed i n  ob ta in ing  the r e s u l t s  

were 62 = 300, 63 = G5 = 600, 64 = 140, 66 = 65, 67 = 30. 

o f  65 v o l t s ,  a t  which best beam landing was obtained, 

was somewhat higher than had been pred ic ted  from the design computations. 

Both tubes 264 and 265 were operated also as orthodox v id icons 

by connecting G 5  t o  66 and running the mesh a t  h igh  p o t e n t i a l ,  i n  which 

cond i t i on  they performed s a t i s f a c t o r i t y .  
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4, IMAGE SECTION 

Three lines of investigation were followed in the image section 

study,- as follows: 

(i) Construction of a series of diodes with dimensions con- 

trolled as closely as possible. 

Construction of a diode with a bel lows permitting the (i i) 

phosphor position to be varied. 

( i  i i) Conversion of the image section design to a triode, the 

third electrode to allow individual focusing of each tube. 

It was intended that the bellows tube should provide information 

on the correct positioning of the output surface ( i .  e. target in the lunar 

camera tube), while the diode work would determine the dimensional toler- 

ances on the image section construction and our ability to achieve them 

consistently in production. The triode seudy was essentially a back-up 

program intended to provide a ready alternative if the accuracy require- 

.merits on the diode proved too stringent. 

Because of constructional problems experienced with the bellows 

diode, the program did not develop quite as it had been foreseen. In 

. fact, satsfactory design centers for the image section were determined 

quite early in the program from the diode study, and it proved to be not 

difficult to maintain the constructional tolerances required fof: good 

resolution. Results subsequently obtained from the bellows diode work 
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and the t r i o d e  

provided usefu 

4.1 

work confirmed conclusions drawn from the diode study and 

add i t i ona l  in format ion regarding to lerance requirements. 

lmaqe Sect ion Construct ion 

4.1.1 lmaqe Diode 

A sketch o f  the  image diode i s  g iven i n  F ig .  23. I t  i s  b a s i c a l l y  

a lunar camera tube image sec t ion  w i t h  the  s igna l  f lange cu t  t o  a s u i t a b l e  

length f o r  mounting a p l a i n  glass output window as shown. The output  

window f lange was brazed t o  the s ignal  f lange p r i o r  t o  the f r i t  sea l ing  

o f  the output  window. F ina l  steps i n  the  tube cons t ruc t ion  were the  two 

h e l i a r c  welds which f i x  the  input  and output window assemblies t o  the  main 

tube body. The output  windows were most ly o f  l ime g lass which was of poor 

q u a l i t y ,  inhomogeneities being c l e a r l y  v i s i b l e .  Tube performance d i d  not 

s u f f e r  t o  any detectable extent  due t o  t h i s .  La ter  tubes were provided 

w i t h  output  windows o f  1045 pol ished crown glass o f  considerably b e t t e r  

q u a l i t y .  Both types o f  window were mounted t o  f langes o f  Carpenter 49 

s tee l  w i t h  standard f r i t - s e a l i n g  techniques. 

4.1.2 Bellows Diode 

As shown i n  F ig .  24, cons t ruc t ion  o f  the  bel lows diode i s  s i m i l a r  . 

t o  t h a t  o f  the ord inary  diode except t h a t  the s ignal  f lange i s  considerably 

shortened t o  permi t  i n s e r t i o n  o f  the  bel lows between i t  and the anode sup- 

p o r t  f lange.  Complications arose here because the r e a d i l y  a v a i l a b l e  vacuum 

bel lows were made o f  s ta in less  Steel and were o f  too small a diameter f o r  

easy connection t o  the  o ther  members o f  the tube. 

was simply reduced t o  t h a t  o f  the  bel lows f lange f o r  d i r e c t  h e l i a r c  welding. 

The s ignal  f lange diameter 
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The anode support f lange could not  be s i m i l a r l y  reduced because o f  the 

c lose  proxim.i.ty. o f  t h e  glass seal o f  the tube body, and so i t  was necessary 

t o  b u i l d  up the  diameter o f  the bel lows f lange a t  t h i s  j o i n t .  Th is  diameter 

increase was achieved by f i r s t  h e l i a r c  welding t o  the bel lows f lange a kovar 

washer o f  the  same outs ide  diameter. To t h a t  washer a second kovar washer 

was brazed o f  ou ts ide  diameter equal t o  t h a t  o f  the  anode support f lange 

to  which i t  was then h e l i a r c  welded. The d e t a i l  o f  t h i s  connection i s  

shown i n  the  inset  i n  Fig. 24. 

Th is  cons t ruc t ion  was no t  s a t i s f a c t o r y ,  and out  o f  several attempts 

on ly  one proper ly  operable bel lows tube was obtained and a second t h a t  was 

operable f o r  a shor t  per iod.  

dflTthe output  window f r i t - s e a l  dur ing  h e l i a r c  welding o f  the output assembly 

t o  the bel lows, which occurred on 4 tubes. 

s t i f f e n i n g  of the  output f lange r e s u l t i n g  from braze mater ia l  between i t  

and the s igna l  f lange. 

mater ia l  i n  t h i s  j o i n t  d i d  r e s u l t  i n  the s i n g l e  successful tube. However, 

an attempt t o  repeat t h i s  f a i l e d  j u s t  as had the  e a r l i e r  tubes. 

I t  should be emphasized t h a t  the  f a i l u r e s  experienced i n  these 

tubes were due t o  design mod i f i ca t ions  inc identa l  t o  t h e  i n t r o d u c t i o n  o f  

the bel lows and not  i n  any way t o  the bel lows themselves. 

components appeared to  be completely s a t i s f a c t o r y ,  and the s i n g l e  successful 

tube confirmed e n t i r e l y  t h e  value o f  t h i s  method o f  e l e c t r o n  o p t i c a l  

i n v e s t i g a t i o n .  

d i f f e r e n t  from t h a t  described here t h a t  would prov ide a more s a t i s f a c t o r y  

The main t r o u b l e  experienced was f a i l u r e  

This may have been due t o  a 

A d e l i b e r a t e  reduct ion o f  the q u a h t i t y  o f  braze 

. 

The bel lows 

i t  should cer ta in ly i lbe  poss ib le  t o  devise a d e t a i l e d  design 
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y i e l d  o f  successful tubes. D i f f i c u l t i e s  w i th  p a r t s  procurement p r o h i b i t e d  

such a redesign w i th in  the  scope o f  the  reso lu t i on  study program. 

For accurate adjustment o f  the phosphor screen p o s i t i o n  i n  the  

bel lows tube, a specia l  f i x t u r e  was designed. Fig.  25 shows a bel lows 

diode mounted i n  the f i x t u r e .  

f i n e  inner edges t h a t  f i t  between the  flanges of  t he  bel lows. The p la tes  

are  pu l l ed  apar t  by means o f  the  th ree  micrometer screws. A t o t a l  move- 

ment o f  about 0.150" was poss ib le .  

The two heavy p la tes  of the f i x t u r e  have 

4.1.3 Tr iode lmaqe Sect ion 

Three d i f f e r e n t  methods of cons t ruc t ion  were developed dur ing 

the  program f o r  e l e c t r i c a l  i s o l a t i o n  o f  the cathode s h i e l d  from the cathode 

i t s e l f .  The o r i g i n a l  design due t o  H. Glaser i s  shown i n  F ig .  26(a) .  

The ou ter  cathode s h i e l d  was cu t  down t o  the small  r idge,  leav ing a l i p  

wh 

of  

o f  

Th 

ch could be brazed t o  the  metal ized ceramic r i n g .  To the  other  s ide  

the ceramic and t o  the  input-window f lange were brazed metal washers 

equal ou ts ide  diameter, between which the  f i n a l  h e l i a r c  weld was made. 

s cons t ruc t ion  was sa t i s fac to ry  and was used i n  4 t r i o d e  tubes. 

A ra the r  neater design due t o  W .  M e r r i t  i s  shown i n  F ig .  26(b). 

Here the ou ter  s h i e l d  i s  d i v ided  i n t o  two par ts ,  between which i s  inser ted  

a t h i n  ceramic r i n g .  With t h i s  design the f i n a l  tube i s  almost i d e n t i c a l  

w i t h  a diode tube, dimensional ly and i n  appearance. This  form o f  construc- 

t i o n  was employed successfu l ly  on 2 t r i o d e  image sect ions on experimental 

lunar camera tubes. 
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A t h i r d  design due t o  R. Nelson was used on a s i n g l e  image t r i o d e .  

A s  shown i n  F i g .  26(c), t h i s  design insu lated the cathode from the input 

f lange by means o f  a ceramic insert,to which the  i n p u t  window i s  f r i t -  

sealed. E l e c t r i c a l  contact  from the  cathode t o  t h e  metal ized surface o f  

the ceramic i s  achieved by s i l v e r  p a i n t i n g  across t h e  f r i t .  The m e t a l i z i n g  

runs under the f r i t  t o  the inner c y l i n d r i c a l  sur face o f  the ceramic f o r  

external  contact .  Th is  cons t ruc t ion  was s a t i s f a c t o r y ,  and r e s u l t s  i n  a 

tube dimensional ly i d e n t i c a l  t o  a diotfr , I d e a l l y ,  a special  connector 

would be designed t o  f i t  between the input  window and Lne ceramic f o r  con- 

t a c t  t o  the photocathode which i s  otherb1i.e d i f f i c u l t  t o  achieve. 

4.2 Determination o f  Desiqn Centers 

A summary o f  the important d e t a i l s  o f  a l l  the experimental image 

sect ions b u i l t  i s  g iven i n  Table 4 .  In  the column headed "tubell syrnbcris u, 

T,*and B a re  used f o r  diode, t r iodt . ,  and bel lows tubes. The l i s t  i s  i n  

chronological  order .  The three diriiensions g iven are  those labeled G ,  Q ,  

I 

and T i n  F i g .  23. I f  the shapes of the tube components are assumed not  

t o  vary s i g n i f i c a n t l y ,  then these three dimensions are  the most important 

e l e c t r o n  o p t i c a l  parameters i n  the  design. A l l  th ree  o f  them can be ad- 
-. 

j u s t e d  dur ing  assembly o f  the tube. The o r i g i n a l  design s p e c i f i c a t i o n  

f o r  t h i s  image sec t ion  gave the  fol lowing'values f o r  the dimensions: 

dimension G 0.769" 

dimensinri Q 0, 882'l 

dimension T 2.  169'' 

During the  LCT program some d i f f i c u l t y  had been experienced i n  

ob ta in ing  anode cones o f  the c o r r e c t  shape, and v a r i a t i o n  o f  the  above 
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dimensions had been t r i e d  i n  an attempt t o  compensate f o r  inaccurate cone 

shaping. E a r l i e r  experiences on the P I P  program had ind icated t h a t  the 

e l e c t r o n  o p t i c a l  pel formance o f  the  design i s  q u i t e  s e n s i t i v e  t o  s l i g h t  

v a r i a t i o n  o f  the format ion o f  the anode t i p .  From the s t a r t  o f  t h i s  study, 

therefore,  great  a t t e n t i o n  was p a i d  t o  t h i s  component. A number o f  anode 

cones were selected f o r  t h e i r  s i m i l a r i t y  by c lose  inspect ion on a shadow- 

graph comparator. 'This ensured cont ro l  over t h i s  important e lec t ron  o p t i c a l  

f a c t o r .  The se lecLcd components were very c lose t o  the design s p e c i f i c a t i o n  
E 

requirement, and so  they are re fe r red  t o  as "spec'' i n  the colucn headed 

"anode cone" i n  Table 4. 

w i t h  anodes i n t e n t i o n a l l y  d i f f e r e n t  from the s p e c i f i c a t i o n ;  tubes B 1  and 

03 had anodes w i t h  . , i ther  rounded t i p s .  

During the study on ly  two tubes were constructed 

The dimenr;ions recorded i n  Table 4 are  those measured before 

the two f i n a l  h e l i a r c  \velds tha t  complete assembly. By measurinq the  tube 

o v e r a l l  dimension belc,-e and a f t e r  weld, the changes occur r ing  due t o  the 

weld can be recorded. This was done on a l l  but  the f i r s t  two tubes. The 

most inpor tan t  change was found t o  occur on welding the input  window 

assembly s ince t h i s  a f f e c t s  the cathode anode spacing G, the most c r i t i c a l  

dimension. Th is  change i s  there fore  recorded i n  Table 4, and i t  a f f e c t s  

a l l  three l i s t e d  dimensions. Dimension T i s  a l s o  a f f e c t e d  by welding o f  

the output window assembly, but  t h i s  was found t o  produce o n l y  very small 

changes which can be ignored. Dimension T i s  ra ther  less c r i t i c a l  than G. 

Amongst t h e  f i r s t  7 tubes, diodes 1 ,  2 ,  and 4 and t r i o d e  2 were 

reasonably successful attempts t o  achieve the prev ious ly  s p e c i f i e d  design 
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centers.  O f  these 4, o n l y  diode 2 showed center r e s o l u t i o n  o f  less than 

80 l i n e  p a i r s  per mm. I n  diode 2 . t h i s  peak r e s o l u t i o n  was observed a t  a 

radius o f  5 mm, approximate y h a l f  way t o  the edge o f  the tube, which 

ind icates too small a value f o r  dimension G. This  tube does have the 

smal lest  recorded value f o r  G out  o f  the  4 tubes, and i t  i s  l i k e l y  t h a t  

the dimension was f u r t h e r  reduced by a ra ther  la rge  shrinkage on welding. 

Tr iode 2 has a s i m i l a r  pre-weld f i g u r e ,  $but because o f  the d i f f e r e n t  con- 

s t r u c t i o n  o f  the t r i o d e  (see F i g .  26(a)) ,  the shrinkage a t  weld i n  t h i s  

case i s  n e g l i g i b l e .  

center reso lu t ion ,  one w i t h  the s h i e l d  a t  cathode p o t e n t i a l  (unfocused) 

and one w i t h  the s h i e l d  adjusted t o  the optimum p o t e n t i a l  V f o r  center 

r e s o l u t i o n  (focused). For t r i o d e  2 these two condi t ions a r e  the same, 

conf i rming the correctness o f  the  dimensions i n  t h i s  tube. The r e s u l t s  

from these four  tubes seemed t o  e s t a b l i s h  t h a t  the o r i g i n a l l y  s p e c i f i e d  

dimensions were s a t i s f a c t o r y ,  provided care was taken t o  ensure proper 

shaping o f  the anode. 

conf i rmat ion o f  t h i s .  The t r o u b l e  w i t h  d iode 2 suggested t h a t  the pre- 

weld value f o r  dimension G could advantageously be increased a l i t t l e  so 

as t o  p lace the f i n a l  dimension achieved nearer to the center o f  i t s  

- For the t r i o d e  tubes Table 4 shows two values of 

f 

Resul ts f r o m  diode 5 subsequently provided f u r t h e r  

permi t ted range o f  v a r i a t i o n .  Chances o f  r e j e c t  tubes due t o  unusual ly 

h igh  dimensional changes dur ing  welding should thus be reduced. 

The importance o f  the anode shape had been i l l u s t r a t e d  a t  t h i s  

stage by tubes 61 and 0 3 .  There were a v a i l a b l e  a l a r g e  number o f  anode 

cones which, al though s l i g h t l y  d i f f e r e n t  from the s p e c i f i e d  shape, were 
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a l l  very s i m i l a r .  It was thought expedient to  u t i l i z e  these components, 

provided a compatible se t  o f  dimensions could be determined. Two of t he  

cones were the re fo re  used i n  tubes 61 and 03.  I n  the  bel lows tube 

dimension G was d e l i b e r a t e l y  increased by about 0.015" i n  an attempt t o  

compensate f o r  the  d i f f e r e n t  anode con f igu ra t i on .  

was underestimated, however, and the  foca l  leng th  f i n a l l y  determined f o r  

The e f f e c t  o f  t he  l a t t e r  

t h i s  tube was s t i l l  near ly  0.200" longer than s p e c i f i c a t i o n .  This  tube 

a c t u a l l y  had a s l i g h t  leak a t  t he  output  f r i t  seal, which l a r g e l y  destroyed 

the  photocathode, but i t  was operable j u s t  long enough f o r  the  foca l  

leng th  determinat ion t o  be made. Unfor tunate ly ,  diode 3 had already been 

assembled a t  t h i s  p o i n t ,  o r  a l a rge r  dimensional compensation could have 

been t r i e d .  I n e v i t a b l y ,  very poor center r e s o l u t i o n  was obtained i n  

d iode 3 .  These r e s u l t s  ind ica ted  the  s e n s i t i v i t y  o f  the  design t o  changes 

i n  the  anode con f igu ra t i on .  Because o f  t he  excessive dimensional ad jus t -  

ments necessary t o  compensate f o r  t h i s  e f f e c t ,  i t  was decided no t  t o  pur-  

sure f u r t h e r  study o f  non-standard anode cones. Rather, steps were taken 

t o  f a c i l i t a t e  the  procurement o f  c o r r e c t l y  shaped anodes. 

was changed s l i g h t l y  t o  s i m p l i f y  accurate s p e c i f i c a t i o n  of i t s  shape. 

The manufacturers were then suppl ied w i t h  accura te ly  drawn comparator 

char ts  o f  the  new design, and the  c o r r e c t  inspec t ion  procedure t o  be 

fo l lowed was d e t a i l e d  t o  them by M r .  C .  B e r i s t a i n .  Subsequent suppl ies 

o f  anode cones have proved s a t i s f a c t o r y .  

The anode design 

Anode cones conforming t o  the  changed s p e c i f i c a t i o n  are  ind,icated 

as ''new spec" i n  Table 4. The s l i g h t  change o f  shape from the  o r i g i n a l  
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s p e c i f i c a t i o n  was not  expected t o  have much e f f e c t  on the  e lec t ron  o p t i c s .  

Subsequent experimental r e s u l t s  and a computational ana lys is  which w i l l  

be described i n  a f o l l o w i n g  section,have confirmed t h i s .  The r e s u l t s  

from the  second bel lows tube suggest t h a t  the  foca l  (length i s  somewhat 

greater  than i s  impl ied by the  o r i g i n a l  design centers. However, exce l l en t  

performance was obtained from diodes 7 and 8 w i t h  ra ther  smaller dimension 

"T" than i s  suggested by the  bel lows tube. The l a t t e r  r e s u l t s  were p a r t i c u - '  

l a r l y  p leas ing  since the  tubes were constructed from image sec t ion  assemblies 

taken a t  random from the  camera tube product ion l i n e .  Diode 6 should 

have y ie lded s i m i l a r  r e s u l t s ,  but  the  phosphor i n  t h i s  tube was spo i led  

dur ing  photocathode processing and l i m i t e d  the  r e s o l u t i o n  t o  60 l i n e  p a i r s  

per mm so t h a t  no judgment o f  the focusing i n  th$s tube was poss ib le .  On 

the  bas is  o f  these r e s u l t s  the appropr ia te  design centers  f o r  use w i t h  the  

new anode cones are es tab l i shed as: 

dimension G 0.775@' + .003" 

dimension Q 0.880'' + - .010@' 

dimension T 2. 180'' + - .O2Ot1  

These are  pre-weld t a r g e t  values, a shrinkage o f  about .005" i n  dimension G 

being a n t i c i p a t e d  du r ing  weld. 

4.3 Reso lu t ion  Measurements 

Resolut ion measurements made on image sect ions included both 

observation of l i m i t i n g  r e s o l u t i o n  w i t h  a standard USAF t e s t  p a t t e r n  and 

record ing o f  the  modulat ion t rans fe r  funct ion.  The l i m i t i n g  reso lu t i on  

observat ion was made a t  n ine  p o i n t s  f o r  each o f  two perpendicular d i r e c t i o n s .  
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Fig .  27 shows some t y p i c a l  r e s u l t s .  These observat ions were made on 

bel lows diode 2 operat ing a t  6 kV, the  three diagrams corresponding t o  

three d i f f e r e n t  pos i t i ons  of  the phosphor screen. Diagram (b) corresponds 

t o  the  screen loca t i on  t h a t  was judged t o  givel lbest center reso lu t ion ,  

wh i l e  (a) and (c) correspondr. t o  pos i t i ons  .050" e i t h e r  s ide  o f  t h a t  

optimum. In (a) the foca l  surfaces f a l l  short  o f  the screen and resolu-  

t i o n  i s  degraded a t  a l l  po in t s .  I n  (c)  the focal surfaces i n te rsec t  the 

screen, r e s u l t i n g  i n  improved reso lu t i on  i n  some o f f - a x i s  regions. A t  the 

maximum reso lu t i on  o f  100 l i n e  p a i r s  per mm, i t  i s  probable t h a t  the main 

l i m i t a t i o n  i s  set  by the f i b e r  o p t i c  input  window. The phosphor, and 

probably the e lec t ron  o p t i c s  also,  are 06 ra ther  higher reso lu t i on  

c a p a b i l i t y .  

been observed on specimens of the  phosphor screens used in these tubes 

when u l t r a v i o l e t  e x c i t a t i o n  i s  used. I n  diagram (b) i t  can be seen tha t  

L i m i t i n g  reso lu t ions  up t o  about 200 l i n e  p a i r s  per mm have 

reso lu t i on  of  r a d i a l  l i n e s  i s  cons i s ten t l y  b e t t e r  than reso lu t i on  o f  tan- 

g e n t i a l  l i n e s .  This  i s  t y p i c a l  o f  such tubes w i t h  f l a t  output  screens, 

and r e s u l t s  from astigmatism, the curvature of the tangent ia l  image surface 

being ra ther  sharper than curvature o f  the s a g i t t a l  surface. 

The modulat ion t rans fe r  funct ions o f  the experimental image tubes 

were measured w i th  the a i d  o f  a scanning microdensitometer i n  the experimental 

arrangement depicted in  F ig .  28. 

cedure than the observat ion o f  l i m i t i n g  reso lu t ion ,  i t  i s  nevertheless a 

ra the r  vague measurement due t o  the  very complicated dependence o f  the 

performance o f  each component upon the manner i n  which i t  i s  used. For 

Although t h i s  i s  a less sub jec t ive  pro-  
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(a) Cathode - Phosphor Qistance = 2.241" 
(ib) Cathode -Phosphor Qistance = 2.191" 

( c )  Cathode - Phosphor Qistance = 2.141'' 
(Peak Center) 

BELLOWS DIODE 2. LIMITING RESOLUTION 6 K V  
( Line Pairs / m m )  
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FIG. 28 EXPERIMENTAL ARRANGEMENT FOR MEASUREMENT 
OF MODULATION TRANSFER FUNCTION. 
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example, the angular d i s t r i b u t i o n  and the  spect ra l  d i s t r i b u t i o n  o f  t he  

l i g h t  a f f e c t  t he  performance o f  the  f i b e r  o p t i c  and o f  the microdensitometer 

o p t i c s .  The spect ra l  d i s t r i b u t i o n  a lso  a f f e c t s  the  image tube performance 

s ince i t  determines the energy d i s t r i b u t i o n  o f  the  photoelectrons. To 

minimize the  var iab les  i n  the  system no o p t i c a l  focusing need be employed 

on the  input  s ide  o f  a tube w i t h  a f i b e r  o p t i c  input  window. I n  the 

present study a Westinghouse diminishing-bar p a t t e r n  was placed i n  d i r e c t  ' 

contact  w i t h  the  window, present ing an e s s e n t i a l l y  100% cont ras t  square 

wave input  o f  spa t i a l  frequency vary ing from 5 t o  50 Ip/mm. This was 

i l l um ina ted  by o l i g h t  box placed about 30 inches away. The inc ident  

l i g h t  i s  thus r e s t r i c t e d  t o  f a i r l y  small angles (quasi-col l imated) as i t  

i s  when the  input  p i c t u r e  i s  imagedby a lens. T h i s  corresponds t o  normal 

operat ing cond i t ions  f o r  a lunar camera tube. Performance o f  the input  

f i b e r  o p t i c  i s  s i q n i f i c a n t l y  b e t t e r  under these cond i t ions  than i t  would 

be w i t h  d i f f u s e  l i g h t .  

The output  o f  the  image tube i s  scanned by the microdensitometer, 

which r e g i s t e r s  the i n t e n s i t y  v a r i a t i o n s  by means o f  a pho tomu l t i p l i e r  

placed behind a f i n e  analyz ing s l i t .  To determine the performance of  the  

image tube alone, some co r rec t i on  o f  the  r e s u l t s  should be made t o  a l low 

f o r  the  degradation introduced by the o p t i c s  o f  the  microdensitometer. 

I n  determining the performance o f  t h e ' l a t t e r ,  care should be taken t o  

ensure tha t  the operat ing cond i t ions  are the same as dur ing  the  tube t e s t .  . 
This was done simply by moving the  bar patterm from the input  o f  the  image 

tube t o  the  output .  The microscope o b j e c t i v e  was thus presented w i t h  a 
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100% cont ras t  p a t t e m  i l luminated  by the  phosphor o f  the image tube. The 

modulat ion t rans fer  curve obtained i n  t h i s  way was used t o  cor rec t  those 

obtained i n  the  tube tes ts .  Only curves corrected i n  t h i s  way are  presented 

i n  t h i s  repor t .  

F ig .  29 shows sane modulat ion t rans fe r  funct ions taken from the 

second bel lows tube f o r  three d i f f e r e n t  pos i t i ons  o f  the phosphor screen. 

The top curve corresponds t o  the center focus p o s i t i o n  determined by 

l i m i t  

p o s i t  

those 

ng reso lu t i on  observat ion,  wh i l e  the  other  two curves are  f o r  

ons . loo' '  on e i t h e r  s ide  o f  t h a t .  The focus curve i s  t y p i c a l  o f  

measured on good tubes dur ing  t h i s  program, showing about 20% 

response a t  50 l i n e  pairs/mm. The curve has a very long t a i l ,  s ince 

l i m i t i n g  reso lu t i on  i n  the reg ion o f  90 t o  100 l i n e  pairs/mm was observed 

i n  t h i s  cond i t ion ,  F ig .  30 shows how the response a t  var ious s p a t i a l  f re -  

quencies var ied  w i t h  screen p o s i t i o n .  These curves suggest a foca l  length 

about 0.025" longer than t h a t  determined from l i m i t i n g  reso lu t i on  observa- 

t i ons .  There i s  no known reason why the curves should be other  than sym- 

me t r i ca l  about the focus p o s i t i o n .  This  graph ind ica tes  a safe depth o f  

focus o f  + - 0.025'' on e i t h e r  s ide  o f  t r u e  focus. 

where o v e r a l l  r e s o l u t i o n  performace i s  l i m i t e d  t o  25 l i n e  pairs/mm, a 

to lerance o f  + - 0.050" would probably be reasonable on dimension "TI', 

I n  the  lunar camera tube, 

although the  recommended f i g u r e  i s  reduced t o  + - 0.020" i n  recogn i t i on  o f  

the f a c t l t h a t  o ther  dimensions a l s o  w i l l  vary. 

Va r ia t i on  o f  r e s o l u t i o n  w i t h  anode p o t e n t i a l  was found t o  be 

q u i t e  slow. I n  a p roper ly  focused tube a p o t e n t i a l  change from 7 kV t o  
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FIG. 29 BELLOWS DIODE 2. MODULATION TRANSFER FUNCTION 
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i b 

15 kV 

two e 

In th 

typically results in a limiting resolution improvement of one or 

ements on the USAF charf, e.g. from 90 to 100 or 110 line pairs/mm. 

s focuC;I'I condition the electron optical resolution is limited by 

chromatic dberration and so should be directly proportional to the voltage 

g r z : ? i e n t  at the cathode. The slow variation observed is thus an indica- 

that the tube resolution capability i s  still a lot short of the 

electron optical limit. Fig. 31 shows modulation transfer curves measured 

on diode 1 at three different anode potentials. At low resolution the 

variation is even less noticeable than it is near the limiting resolution. 

In the lunar camera tube, where response is limited by the read-out section 

to below 10% at 25 line pairs/mm, it is evident that no detectable resolu- 

tion variations will occur with changes in the image section potential, 

at least in the range 5 to 15 kV. 

In the triode image section variation of the shield potential 

produces effects similar to movement of the screen of a bellows tube. 

Some results from triode 2 are shown in Figs. 32 and 33. The dimensions 

of this triode were such that center focus occurred when the shield was 

connected to the cathode. The highest curve in Fig. 32 corresponds to 

this condition, while the other curves illustrate the degradation as the 

shield i s  made negative with respect to cathode. Similar degradation 

occurs with positive shield voltages, as can be seen from the curves in 

F i g .  33. Comparison of Fig. 33 with Fig. 30 is made difficult because 

the peak response values do not match. They are nearly the same at 15 line 

pairs/mrn, however, and comparison of the separations of the 80% points 
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i nd ica tes  t h a t  a change o f  s h i e l d  p o t e n t i a l  o f  138 v o l t s i s  equiva lent  t o  

a screen movement of' 0.110~'. For the t r i o d e  design, therefore,  the  move- 

ment o f  t he  imaqe surfaces i s  s l i g h t l y  less than 0.001" per v o l t  change 

i n  s h i e l d  p o t c n t i a l  a t  10 kV anode p o t e n t i a l .  

4.4 Computational Analys is  

The ray t r a c i n g  computer program was app l ied  t o  the  image sec- 1 

t i o n  t o  evaluate the  e f f e c t  o f  the  anode-t ip con f igu ra t i on .  The general 

imaging c h a r a c t e r i s t i c s  o f  the design are  f a i r l y  we l l  known from e a r l i e r  

work on the  P I P  program. Some d i f f i c u l t y  i s  experienced i n  computing the  

p roper t i es  o f  t h i s  p a r t i c u l a r  design because o f  the small s i z e  o f  t he  

anode aper tu re  and the  very h igh  f i e l d s  i n  the  v i c i n i t y  o f  i t .  F ig .  34 

shows the  e lec t rode model superimposed on the  r e l a x a t i o n  net (73 .5  mesh/inch) 

and some computed p r i n c i p a l  rays on which are  marked the  tangent ia l  and 

s a g i t t a l  foca l  po in ts ,  The sca t te r  o f  the  foca l  po in ts  r e f l e c t s  computa- 

t i o n a l  e r r o r s  incurred i n  the  h igh  f i e l d  reg ion  near the  anode t i p .  However, 

i t  i s  thought t h a t  the a x i a l  focal p o i n t  i s  probably more r e l i a b l e  than 

the  o thers ,  and s ince the  curvature and astigmatism p roper t i es  a re  we l l  

known from e a r l i e r  s tud ies,  we w i l l  no t  be concerned here w i t h  accurate 

determinat ion o f  the  complete image surfaces. The a x i a l  foca l  leng th  

determined from t h i s  computation i s  2.12411, about 0.045" shor te r  than the  

spec i f i ed  cathode t o  t a r g e t  dimension. The computation was repeated w i t h  

a l a rge r  sca le  model (100 mesh/inch) and the va lue 2.141" was obtained. 

Agreement between these t w o  computations , is s a t i s f a c t o r y .  

G-82 

d UNCLASSIFIED 

P r c 



UNCLASSIFIED 

0 cu 0 0  
Q rr) 

d 

0 0 0 0 
0 cu M e In 

0 

0 - 
G- 83 

UNCLASSIFIED 



UNCLASSIFIED 

, 

With the same dimensions the computation for the new anode 

specification (scale 73.5 mesh/inch) showed a focal length of 2.157", 

i.e about 0.0301 longer than with the original anode. This increase 

agrees with the findings of the experimental study discussed in Section 4.2. 

The focal length value itself is about 0.025'' shorter than that indicated 

by bellows diode 2, which had dimensions almost identical to those used 

in the computation. In view of the computational difficulty the agreement 

with practice i s  very satisfactory. 

To examine the action of the triode form of the image tube, 

computations were also made with small potential differences between 

shield and cathode. The results are summarized in Table 5. 

TABLE 5 

Triode image section. Original spec. anode, IO kV 

Cathode to anode 0.770" 

Cathode to shield 0.875" 

Shield voltage - I50 0 150 300 

Focal length 2.005'' 2, 124" 2.257" 2.407" 

Magnification ,842 ,917 1.002 1.098 

Movement of the image surfaces is 0,00084'' per volt change in shield 

potential, which agrees closely with the value deduced from practical 

results in Section 4.3. 

The distortion of the image section can be determined from c m -  

puted results such as those of  Fig. 34. Distortion is the variation of 
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magni f i ca t ion  w i t h  p o s i t i o n  i n  the  f i e l d  of view. Wi th a f l a t  output 

surface, as i s  o f  i n t e r e s t  here, e l e c t r o s t a t i c  image sect ions almost in -  

ver tab ly  d i sp lay  pincushion d i s to r t i on - -magn i f i ca t i on  increases s t e a d i l y  

w i t h  red ius r from the ax i s .  F ig .  35 shows the r e l a t i o n s h i p  of r t o  

r fo r  p r i n c i p a l  rays i n  the  LCT image sect ion.  The slope o f  t h i s  curve 

i s  the magni f icat ion, ,and i n  the absence o f  d i s t o r t i o n  the curve would 

out  

i n  

drout be a s t r a i g h t  l i n e .  The second curve p l o t t e d  shows the  slope M = 

d r i n  
as a f unc t i on  of r 

edges o f  the f i e l d .  The maximum radius used i n  the  LCT i s  0.31" w i t h i n  

Severe d i s t o r t i o n  i s  evident,  p a r t i c u l a r l y  a t  the i n '  

which d i s t o r t i o n  does not  appear t o  be object ionable.  
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5 .  LCT RESOLUTION 

On the  bas is  of the  work on the  readout sec t ion  and the  image 

section, repor ted in  Sections 3 and 4, the  r e s o l u t i o n  performance t o  be 

expected from the  lunar camera tube can be estimated. F ig .  36 i l l u s t r a t e s  

the  procedure fo r  t he  case of a standard LCT operated normally, w i t h  

30 v o l t s  on the  suppressor mesh. The dashed curve represents the  per-  

formance o f  a good image sect ion,  as g iven by the  bel lows d iode r e s u l t s  

i n  F ig .  29. The broken curve for the readout sec t ion  i s  taken from sup- 

pressor mesh v id i con  6544009, which has a 0.0018" beam-1 i m i  t i n g  aper ture 

and 0.200" target-G6 spacing as are now standard i n  the LCT. The f u l l  

curve i n  F ig .  36 i s  the  point -by-point  product o f  the o ther  two curves, 

which ind ica tes  the  performance t o  be expected from a LCT. S t r i c t l y  

speaking, t he  m u l t i p l i c a t i o n  procedure should be app l ied  on ly  t o  s ine  

wave response curves, bu t  the  e r r o r s  invo lved i n  apply ing i t  t o  square 

wave,,responses are  q u i t e  small and w i l l  here be ignored. For comparison 

i s  shown the  performance of LCT 239, which i s  a f a i r l y  t y p i c a l  good tube. 

Agreement i s  s a t i s f a c t o r y ,  being w i th in  experimental e r r o r .  I t  appears 

t h a t  because o f  the  h i g h  r e s o l u t i o n  o f  t he  image sect ion,  the  r e s o l u t i o n  

o f  t h e  LCT i s  e s s e n t i a l l y  t h a t  o f  the  readout sect ion.  

e r r o r  t he  r e s u l t s  presented fo r  suppres.sor mesh v id icons  i n  Sect ion 3 

should i n d i c a t e  d i r e c t l y  t he  v a r i a t i o n  o f  LCT performance w i t h  changes 

i n  the  var ious parameters considered. 

W i th in  experimental 

From F ig .  36 the  assumption t h a t  
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the SEC ta rge t  i s  no t  an important f ac to r  l i m i t i n g  the r e s o l u t i o n  appears 

t o  be reasonable. Further,  i t  appears t h a t  the requirement i n  the  LCT 

s p e c i f i c a t i o n  for  40% response a t  250 l i n e s  i s  d i f f i c u l t  t o  achieve even 

' w i t h  the design improvements t h a t  have already been made. The l i m i t i n g  

reso lu t i on  requirement f o r  5% a t  400 l i n e s  should be r e a d i l y  a t ta inab le ,  

however. 

The two most promising ways t o  improve reso lu t ion ,  according 

t o  r e s u l t s  i n  Sect ion 3 ,  are  reduct ion o f  beam-l imit ing aper ture and re -  

finement o f  suppressor mesh. Unfor tunate ly ,  because o f  beam l i m i t a t i o n s  

and the poor q u a l i t y  o f  avai1ab;r *OOO l i n e / i n c h  mesh, ne i the r  procedure 

was considered p r a c t i c a l  i n  the LCT, 

w i t h  a 0.0007'' beam-l imit ing aperture.  

However, one LCT was constructed 

This was tube 282, which a l so  

had increased target-G6 spacing o f  0.264l1, and a t r i o d e  image sec t ion  

(16 i n  Table 4, Sect ion 4 .2 ) .  The image sec t ion  was found t o  focus w i t h  

the s h i e l d  a t  approximately -65 v o l t s  w i t h  respect t o  photocathode. Depth 

o f  focus i s  so la rge tha t  i t  was d i f f i c u l t  t o  loca te  the  focus p o t e n t i a l  

by observing the moni tor .  F ig .  37(a) shows aper ture response curves taken 

w i t h  the  s h i e l d  a t  the determined focus vo l tage and then a t  50 v o l t s  on 

e i t h e r  s ide o f  i t .  I t  appears t h a t  the image sec t ion  defocusing i s  j u s t  

about detectable.  

t o  be s l i g h t l y  less than 0.001" per v o l t  change i n  s h i e l d  p o t e n t i a l  a t  

I n  Sect ion 4,4 the  image surface movement was establ ished 

10 kV anode p o t e n t i a l .  

so tha t  a to lerance of  +0.050" - on placement o f  the  ta rge t  w i t h  respect 

t o  the foca l  p o i n t  i s  suggested by these r e s u l t s .  Th is  experiment was 

F ig .  37 corresponds t o  anode p o t e n t i a l  o f  8 kV, 
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ca r r i ed  out  w i t h  h igh  vo l tage operat ion of  the readout sec t ion  i n  order 

t o  maximize the s e n s i t i v i t y  o f  the  performance t o  changes i n  the image 

sect ion.  Performance o f  the tube i n  the normal 600 v o l t  operat ion mode 

i s  shown i n  F ig ,  37(b).  I n  normal operat ion the tube reso lu t i on  i s  very 

c lose  t o  t h a t  o f  suppressor mesh v id icon  251, which has very s i m i l a r  phys i -  

ca l  p roper t i es  (see Table 3, Sect ion 3.1).  With the  readout sec t ion  

operated i n  the  inver ted focus mode, the reso lu t i on  o f  the tube was found 

t o  be comparatively poor, as shown by the lower curve i n  F ig .  37(b). 

No explanat ion i s  known f o r  t h i s .  The same ef:ect was noted i n  some sup- 

pressor mesh v id icons  i n  Sect ion 3.4. 

Another LCT w i t h  a t r i o d e  image sec t ion  was no, 277. This was 

a standard tube i n  other respects, having a .OOP8" beam-l imi t ing aper ture 

and a 0.200" target-G6 spacing. I n  s p i t e  o f  the l a rge r  aper ture t h i s  

tube performed very near ly  as  w e l l  as tube 282, S i m i l a r  conclusions re-  

garding the image sec t ion  focusing were drawn, Th is  tube showed t h a t  

40% response a t  250 l i n e s  i s  j u s t  about poss ib le  w i t h  the present tube 

conf igura t ion .  

Fur ther  s tud ies o f  the r e l a t i v e  mer i t s  of normal and inver ted  

focusing o f  the readout sec t ion  were made on a number of  tubes, w i t h  vary- 

ing r e s u l t s .  Tube 277, l i k e  282, showed the inver ted  mode t o  be con- 

s iderab ly  worse, w h i l e  tube 222 showed i t  t o  be o n l y  s l i g h t l y  worse. 

Tube 220 showed no detectable d i f fe rence between the  two modes, and tubes 227, 

239 and 258 a l l  showed some improvement i n  the inver ted  mode, Apart from 

282, a l l  the  tubes had standard readout Sections, and so, no explanat ion 

d 
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r d i f f e r i n g  performances can be given. 

dicons some d i f f i c u l t i e s  were expdrienced in  the  inver ted focus 

th  alignment and ion  spots, and i t  i s  poss ib le  t h a t  these fac to rs  

As w i t h  the suppressor 

may have a bear ing on the r e s u l t s  obtained. 

Arc unexpected observat ion was a s i g n i f i c a n t  v a r i a t i o n  o f  resolu-  

t i o n  w i t h  G 5  p o t e n t i a l  i n  the normal mode o f  operat ion.  The standard 

p o t e n t i a l  f o r  the 65 e lec t rode i s  300 v o l t s ,  which provides sa t i s fac tocy  

scan l i n e a r i t y  and beam landing un i fo rm i t y .  I t  was found t h a t  reduct ion 

o f  the  p o t e n t i a l  below 300 v o l t s  (w i th ,  o f  course, accompanying adjustment 

o f  focus) produces a steady improvement i n  reso lu t i on .  F ig .  38 shows 

aper ture response curves from LCT 258 i l l u s t r a t i n g  t h i s  e f f e c t .  

G 5  = 200 v o l t s  l i m i t i n g  r e s o l u t i o n  improved by over 100 l i n e s .  Unfor tunate ly ,  

t h i s  r e s o l u t i o n  gain i s  accompanied by loss o f  scan. . l inear i ty ,  r e s u l t i n g  

i n  severe d i s t o r t i o n  o f  the monitor p i c t u r e ,  and the  e f f e c t  there fore  

cannot be exp lo i t ed  i n  p rac t i ce .  

G S  p o t e n t i a l  be held a t  as low a value as i s  cons is ten t  w i t h  a geometr ica l ly  

s a t i s f a c t o r y  p i c tu re ,  perhaps i n  the  v i c i n i t y  o f  250 t o  275 v o l t s .  

A t  

I t  can,however be recommended t h a t  the 
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6. CONCLUSIONS 

T h i s  study has enabled the image sec t ion  o f  the LCT t o  be 

c l o s e l y  spec i f ied .  The importance of the anode shaping was demonstrated, 

and s a t i s f a c t o r y  sources o f  supply of w e l l  shaped components were estab- 

l i shed.  Proper design centers f o r  the image sec t ion  and the  important 

tolerances associated w i t h  them have been determined. Our a b i l i t y  t o  

meet the to lerance requirements c o n s i s t e n t l y  i n  product ion assembly has 

been confirmed. Doubts about the  image sec t ion  should there fore  be e l i m i -  

nated, i t  i s  hoped permanently, and the quest ion o f  conversion t o  a t r i o d e  

no longer a r ises .  I t  i s  worth remarking, however, that  t h i s  p o s i t i o n  

could have been reached much e a r l i e r  had the o r i g i n a l  tube design been 

such as t o  permi t  t r i o d e  operat ion o f  the image sect ion.  

The main c o n t r i b u t i o n  from the study o f  the readout sec t ion  

was conf i rmat ion o f  the correctness o f  changes recommended e a r l i e r  i n  

the LCT program, namely, ref inement o f  the suppressor mesh from 750 t o  

1000 l ines / inch  and increase of the target-G6 spacing from 0.100'' t o  

0.200". The modi f ied values are  now standard i n  the LCT. Resul ts sug- 

gested t h a t  s t i l l  f i n e r  meshes may be advantageous, but  the  d i f f i c u l t y  

o f  ob ta in ing  them w i t h  reasonable t ransmission and good q u a l i t y  p r o h i b i t s  

t h e i r  incorpora t ion  i n t o  the LCT. Also, i t  seems l i k e l y  t h a t  the target-G6 

spacing has now been increased t o  a p o i n t  of d imin ish ing  re tu rns .  A 

value o f  0.250" would probably be a reasonable value a t  which t o  s e t t l e ,  

a l though i t  i s  quest ionable i f  the advantage o f f e r e d  j u s t i f i e s  the change 

a t  t h i s  stage of  the program. 
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Because o f  the troubles experienced with alignment and ion 

spots in some tubes, non-standard focusing modes in the readout section 

cannot be generally recommended. The "inverted" focus mode may provide 

improved resolution in part:icular tubes, however. In the normal mode of 

operation resolution can be improved slightly by reducing the operating 

potential of G 5  below the normal value of 300 volts at some sacrifice 
1 

of geometrical uniformity. 

Reduction of the beam-limit 

promising method of improving resolut 

vid 

mod 

ng aperture appeared to be the most 

on in electrostatically focused 

cons. but,because of  accompanying reduction of beam current, such a 

rication could not be made in the 1unar.camera tube. The finding 

be useful in connection with other SEC camera tubes, however. This 

result suggests that further studies o f  the triode gun design should be 

made with the objective of achieving higher currents through, th.e small 

diameter apertures, if possible without increasing the beam anglle. Higher 

resolution tubes with undiminished signal level could then be designed. 

This kind of work on triode guns is difficult and probably requires the 

. construction of special deinountable apparatus. The setting up of such 

apparatus being initially costly and time consuming, no study of triode 

gun modifications was considered within the scope of the present program. 

The main objective of the resolution study program has been 

achieved in that the original resolution specification has been shown to 

be realizible, although only in a fairly small percentage of  tubes. The 

limiting resolution requirement for 5% response at 400 lines i s  more 
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r e a d i l y  a t t a i n a b l e  than the requirement f o r  40% response a t  250 1 ines. 

To improve the y i e l d  O F  such tubes would require  modif icat ions tha t  w i l l  

reduce beam current  and so r e s t r i c t  the signal c a p a b i l i t y  o f  the tube. 

Without fur ther  research along the l i n e s  suggested above i t  would be 

u n r c a l i s t i c  t o  accept the improved resolut ion spec i f ica t ion  requested 

by the systems group. 
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Elementary considerations suggest t h a t  t he  t r ans fe r  function of an 

SEC camera tube ( the  r e l a t i o n  between s igna l  current  and photocathode 

i l lumination o r  primary current densi ty  a t  the  t a rge t )  should show two 

d i s t i n c t  regions. 

w i l l  be proportional t o  the  primary current  density. A t  a high primary 

current  density the  s ignal  current w i l l  be substant ia l ly  independent of 

t he  primary current density.  

t r ans i t i on  region where the  gradient of t he  t ransfer  function w i l l  f a l l  

fram uni ty  t o  zero on a log-log plot.. 

A t  a low primary current density the  s igna l  current 

These two regions w i l l  be linked by a 

The above charac te r i s t ics  have been observed i n  the measured t ransfer  
1 

functions of SEC ccmera tubes a c h  a s  the  WX-5419 (see Figure 1). 

measurements made more recent ly  on other types of SEC camera tubes have 

However, 

shown s igni f icant ly  d i f f e ren t  behavior. In  par t icular ,  the region where 

the  s ignal  current i s  indepenaent of the primary current  ciensity has been found 

t o  be smal1,or even non-existent,and i s  of ten followed by a fur ther  upward 

swing i n  the  s igna l  current  (see Figure 2) .  This flsupersaturationll region 

of t he  t ransfer  function is  a l so  observed i n  image orthicons with a wide- 

spaced t a r g e t  mesh. 

capacity of t he  orthicon t a rge t  However, interelement capacity effects 

Here it is  produced by l l l inell  storage i n  the  interelement 
192 

do not appear t o  be la rge  enough t o  account f o r  the  supersaturation regions 

of the  SEC camera tube t r ans fe r  functions shown in t h i s  report .  

ments on image orthicons it is known t h a t  interelement capacity effects a r e  

From measure- 
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negligible (with 250 t o  525 scanning l ines)  when thesatorage capacity per 

r a s t e r  is  greater  than 400 pF, This i s  the  case fo r  the SEC camera tube 

whose t ransfer  function is  i l l u s t r a t e d  i n  Figure 6 (storage capacity per 

r a s t e r  650 pF) ye t  t he  supersaturation region is c lear ly  present. 

Figure 3 demonstrates t h a t  the supersaturation region is contml led  

by fac,ors other than interelement capacity, 

"normal" t ransfer  curve (e i rc lea)  with a flat plateau is obt,fitined showing 

t h a t  interelement capacity effects a r e  negligible. However, i f  the  bias  

i s  reduced t o  OV, a supersaturation region develops (crosses) 

of the  % bias  pr'oduces an increase .in beam diameter,and t h i s  increase i s  a 

l i k e l y  cause fo r  the appearance of a h u t h e r  upward swing i n  the s ignal  

current.  

function of an SEC camera tube a r e  studied i n  some d e t a i l  and a re , in  fact,shown 

t o  be responsible for the  behavior of the  signal current i n  the  supersaturation 

With a GI bias  of -WV, a 

The reduction 

In t h i s  repor t  the effects of beam diameter var ia t ions on t h e  t ransfer  

region, 
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2. THEXIRE”r1CAL ANALYSIS 

2.2 CHARGING OF THE TARGET DURING THE FRHME PERIOD - NORMAL SIGIvkL CURREm 

We w i l l  review first the mechanism responsible f o r  the ‘normal’ 

response curve. Let the frame period be T and the charge built  up on 

u n i t  area of the  ta rge t  during t h i s  period be Q, 

a r e  the horizontal  and ve r t i ca l  scanning eff ic iencies ,  the reading time 

w i l l  be E&,T. 

Then, i f  % and % 
. 

The s ignal  current, 1s is  given by: 

where A is  the  area of the ras te r .  

incremental build-up of charge over the  frame period T. 

instantaneous gain: 

To calculate  Q w e  must integrate  the 

If G is the  

where 3 is t he  primary current density, 

of an SEE t a rge t  has a maximum value, Go, when the  t a rge t  surface potent ia l ,  

V, is zero and f a l l s  t o  aero when the ta rge t  surface reaches i t s  maximum 

potent ia l  Vs. 

or  the  suppressor mesh voltage, whichever is higher. 

Ekperiment shows that the gain 

This maximum potent ia l  is  set’ e i the r  by the  t a rge t  voltage 

For a given primary 
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voltage we may write: 

and since V =A where C is the capacity per unit area of tihe target we 
may rewrite equation (3) as 

C 

Therefore, from equation (2) we have 

The total charge is found by integrating this equation for the appropriate 

integration period, in this case the frame period, T, f(r  F A ,  vs )=f*dT ' 

0 0 

( 4 )  

Equation ( 4 )  is expressed in the most general terms. In order to 

clarify the discussion it is convenient to introduce a simple empirical 

expression for the gain equation, equation (3)* 
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Substituting in equation (4)  and integratdg, we find that: 

Further substitution in equation (1) gives: 

f o r  the normal transfer function, When G JT 4 1 equation (8) reduces w - 
to .tho following expressionr 

Is = JAG, 
EH% 

and when 1 
VSC 

Is = && 
Q%rT 

Equations ( 9 )  and (10) represent the two distinct regions of the transfer 

function described in the summary. They are shown schematically at the 

H-11 

d UNCLASSIFIED 



UNCLASSIFIED 

l e f t  of Figure 4 .  

t r ans i t i on  region where nei ther  equation (9) or  (10) i s  applicable but 

The dotted l i n e  joining the two curves represents t h e  

where equation ( 8 ) ,  o r  one similar,  must be used, 

The significance of equations (9) and (10) i s  t h a t  they represent 

two ra ther  simple physical s i tua t ions  i n  the ta rge t .  

when the  voltage excursinti during the frame period, V, is  small and the  

gain has a value close t o  Go throughout integration. 

Equation (9) appl ies  

Equation (10) appl ies  

when the  voltage excursion reaches i t s  maximum value, Vs, before t h e  end 

of t he  integrat ion pui-iod and a fur ther  increase i n  the  primary current  

density does no t  a f f e c t  the  amount of s igna l  charge or  s igna l  current. 

Although w e  have derived these two asymptotic equations f o r  a par t icu lar  

form of the  gain var ia t ion,  it can bo seen t h a t  they apply whenever the 

gain var ia t ion satisfies the following conditions; G = Go when V = 0 

and G = 0 when V = 'Is, 

2.2 CHARGING OF T U  TARGET DURING THE: LINE PMIOD - FIRST COI?PONE&T OF 

THE SUPkXSATUM'I'1ON SICl4kL C U W N T  

It would appear from the  discussion presented so f a r  t h a t  t he  

s igna l  current should reach the  so-called ' sa turat ion '  value given by 

equation (10) and then increase no fur ther  unless the  primary current densi ty  

a t t a i n s  a la rge  enough value t o  ac tua l ly  change the  physical s t ruc ture  of 
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the  target.  However, t h i s  argument turns  out t o  be incorrect.  We may 

ident i fy  two f i r t h o r  contributions t o  the  signal current which we w i l l  

call  the I'irst uncl second components of the supersaturation s ignal  current, 

Is' and Jg" e The first component occurs i n  any SEC camera tube where the 

djafieler of the  scanning beam is  greater than the  spacing of the scanning 

l i nes ,  

of the  beam diameter may be best  understood by reference t o  Figure 5 .  

(This is  a normal s i tua t ion  i n  many camera tubes.) The importance 

If the  beam diameter i s  greater than the l i n e  spacing only a small 

portion of the  beam i s  normally responsible f o r  depositing charge on the  

target .  

the  beam cross-section when scanning takes place i n  the direct ions indicated. 

The reason f o r  the  inac t iv i ty  of the r e s t  of the beam cross-section is  t h a t  

In  Figure 5 t h i s  region i s  shown shaded and l i e s  a t  the bottom of 

it is  covering a s t r i p  of t a rge t  t h a t  has only recently been scanned and is, 

therefore, a t  cathode potent ia l  (provided no s igni f icant  charging has taken 

place during the l i n e  period). 

This l a s t  statement i s  the key t o  the or igin of the first component 

of the  supersaturation s ignal  current. 

high enough, s ign i f icant  charging w i l l  indeed take place during the l i n e  

period. 

of the ta rge t  t h a t  has been returned t o  ground only one line period ago, 

If the primary current density i s  

The normally inactive upper portion of the beam, covering an area 
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The Relation of Beam Diameter and Line Spacing 
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w i l l  deposit  fu r the r  charge :md ~ ~ i i ~ ~ ~  r i s e  t o  a fur ther  contribution t o  the 

s igna l  current. 

the  normal s igna l  current.  

number of scanning l ines .  

This contriLution is  calculated i n  a similar fashion t o  

The reading time is EHT/IJ, where IJ i s  the  

Since the ac tua l  number of l i n e s  i n  the r a s t e r  

i s  E?, tho sigiial charge covers an area (n - 1) A/E+,N. Thus: 

Q inay be calculated,  a s  before, by integrat ing equation ( 4 ) ,  but i n  t h i s  

case t h e  in tegra t ion  time is Llie l i n e  period, T/N. 

function given i n  equation ( 5 )  

For the spec i f ic  gain 

I n  genernl, f o r  every point 011 the  normal t ransfer  curve, there  i s  a 

corresponding point on t h i s  supersaturation current curve a t  1J times the 

primary current  densi ty  and (n - 1) times the  signal current. 

When 

H-16 
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when 

These LWO curves are shown a t  the  center  of Figure 4. 

two terms, IS and Is , the  f'uI.1 s igna l  current can be obtained. 

By adding the  
I 

The following points  are 

of the supersaturation current: 

(a )  The current  i s  only 

where "here i s  simultaneous read 

reading and writ ing,  charging of 

taka place. 

cha rac t e r i s t i c  o f  the first component 

observed i n  normal continuous scanning 

ng and writing. 

t he  t a rge t  during the l i n e  period cannot 

Where there  i s  sequential  

(b) For a given beam diameter and a given r a s t e r  size,  increasing 

t h e  number o f  scanning l ines ,  N, w i l l  also increase the  number of l i n e s  

covered by the  beam, N. 

higher signal current  valut-s along a l ine  a t  45 

'J'tto r e s u l t  is  t o  s h i f t  the  t r ans fe r  function t o  
0 

t o  t he  two axes on a 

log-log plot.  

(e) Since an increasing f r ac t ion  of * the  beam cross-section i s  

involved i n  generating the  supersaturation current, there  should be a 
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simultaneous decrease i n  resolution, 

(d) The normal signal current is not affected by an increase i n  the 

beam curreat beyond t h a t  required t o  discharge the ta rge t ,  

true of the supersaturation current. 

spot s i ze  tends t o  grow and hence both N and the signal current increase. 

This i s  not 

Be the  beam current i s  increased, the 

(e) Both the  onset of normal saturat ion and of Supersaturation w i l l  

be easier  t o  observe when the h.ame period, T, i s  long because they occur 

a t  lower current densifies.  

COMPONEUT OF THE SUPMSATURATIOW CUHKEfJT 

The second contrilnttion t o  the supersaturation current occurs a t  such 

high primary current dens i t ies  that it has l i t t l e  prac t ica l  significance. 

It  is, however, included i n  t h i s  treatment for  the  sake of  completeness. 

The normal s igna l  current is produced by charging during the  frame period. 

The first component of the supersaturation current i s  produced by charging 

during the l i n e  period. 

t h e  result of charging during the dwell time of t he  reading beam on the 

individual picture element. 

The second component discussed in this section is  

Over an area, a ,  of the t a rge t  equal t o  the cross-section of the 

reading beam there  w i l l  be a charging current, JaGo, Plowing i n  the t a rge t  

H- 18 

.i UNCLASSIFIED 



UNCLASSIFIED 

even tlt~ the redint; l~eam holds the t a rge t  eurfaoe a t  cathode potential .  

he the beam del ivers  a current t o  replace this charge flow, there  w i l l  

be a corresponding s ignal  current,  

1;' = JRG,, 

For a standard 4 x 3 aspock r a t i o  r a s t e r  

Therefore: 

Is" = 3 p G 2  

This contribution t o  the  s ignal  current is shown a t  the r i g h t  of Figure 4 .  

It has similar charac te r i s t ics  t o  the first component of  the supersaturation 

current,  

(a) 

(b) 

It is only observed i n  continuous scanning. 

The resolution w i l l  be limited by the  fill beam diameter. 
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Let us  first make a d i r e c t  tes t  of the supersaturation current 

theory by compnring transfer curves obtained from the same SEC camera 

tube w i t h  simultaneous read and write (normal scanning) and with sequen- 

t l a l  rend and write. I n  the l a t t e r  case a 'normal' plateau should be J. 

observed. 

The 1,ransfer curves shown i n  t h i s  Figure were measured with a 320 l i n e  

A comparison of the experimental r e s u l t s  is given i n  Figure 2. 

non-interlaced scan and a frame time of 1/10 second. 

operated with a t a rge t  voltage of 50 V, a suppressor mesh potent ia l  of 40 V, 

The tube was 

and a photocathode potent ia l  of 8 kV. 
2 Up t o  a primary current density, J, o f  lom8 A/cm , simultaneous 

and sequential operation give the same output current, (only one s e t  of 

points  is shown i n  the  Figure). 2 Above lo4  A/cm simultaneous operation 

r e s u l t s  i n  a short  plateau followed by a fur ther  increase i n  signal 

current a s  is normally observed with t h i s  type of tube. 

ments made during sequential  operation (marked by crosses) show the well 

However, measure- 

defined plateau predicted by the  normal s ignal  current theory. 

observed behavior provides qua l i ta t ive  confirmation f o r  t he  mpersaturation 

Thus, the 

hypothesis advanced i n  Section 2.2. 
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To make a quant i ta t ive comparison with theory, we proceed as follows, 

M r s t  w e  i n s e r t  i n  Figure 2 the  two curves A and B corresponding t o  the  best  

f i t  of the  asymptotic equations (9) and (10) t o  the  experimental data. 

two cwws represent the 'normal' s ignal  current. 

easy t o  fit i n  t h i s  case a s  the  measurements made during sequential operation 

c lear ly  es tabl ish the saturat ion plateau, 

The form of t h i s  curve i s  given by the asymptotic equation '(13) which represents 

the  f i r s t  component of  the supersaturation current,  The posit ion o f  C i s  

adSusted u n t i l  the sum of B and C, shown by a dotted l ine ,  gives the best  

f i t  t o  the experimental points. 

These 

Curve B i s  par t icu lar ly  

We now add curve C t o  t he  Figure. 

It can be seen tha t ,  although there i s  only 

one degree of  freedom i n  matching the theoret ical  curve t o  the experimental 

data,  an excellent f i t  i s  obtained over a range o f  one order of magnitude 

i n  J. We s h a l l  see l a t e r  t h a t  similar agreement i s  found with t ransfer  

curves from other SEC camera tubes. 

data provides fur ther  support fo r  the general va l id i ty  of the theory, 

3.2 STUlATXS OF E i i  DIMETER 

The excellent f i t  t o  the experimental 

A comparison of equation (9) and equation (13) shows that ,  f o r  a 

given value of  s ignal  current, ?rimary current dens i t i e s  on curves A and C 

a r e  re la ted by a factor ,  N/(n - 1). 

i n  Figure 2, N = 320 and the  value of  N/(n - 1) giving the bes t  fit is 80, 

Since, f o r  t he  t ransfer  curve shown 

€3-21 

d UNCLASSIFIED 



UNCLASSIFIED 

Y 
we may deduce t h a t  n - 1 = 4 or  t h a t  the beam covers 3 scanning l ines .  

deter iorat ion i n  resolubion i s  observed a t  J = lo* A / a 2  which may be 

par t ly  ascribed to the e f f ec t  of the superaaturation current flowing i n  a 

beam of this diarueter. However, other causes of poor resolut ion when the 

A 

t a r g e t  is i n  saturat ion (such a s  beam-bending) should not be ignored. 

This ins ight  i n to  t h e  r e l a t ion  of the beam diameter and the  l i n e  

apucing now enables us t o  explain the  s t r ik ing  dissimilarities between 

Figures l a n d  2 noted i n  the Introduction. The camera tube whose t ransfer  

curve i s  presented i n  Figure l d o e s  not show any of the charac te r i s t ics  of 

the supersaturation current even when operated with simultaneous read and 

write (nomid scanning). It is  a magnetically focused tube (unlike the 

tube whose charac te r i s t ic  is shown i n  Figure 2 . 
s t a t i c a l l y  focused.) 

This  tube i s  electro- 

It was operated wi th  a much la rger  r a s t e r  area 
2 2 (6.2 cm compared t o  1.2 cm ) and the scan is  525 l i n e  interlaced with a 

frame period of 1/30 second, 

Since the tube of Figure l h a s  a r a s t e r  area f i v e  times that of 

the  tube i n  Figure ;5 a beam of the same diameter will cover only % 
lines (allowing f o r  the difference i n  the number of l ines) .  In  fact, 

measuremerits indicate  that the beam actual ly  covers less than 2 l ines ,  

probably becauee of the  superior i ty  of magnetic focuaing, Such abeam 

9 

Measurements of  the  width of the  unblanked v e r t i c a l  re t race  l i nes  have 
been made with the  reading gun of this tube set t o  discharge the t a rge t  
a t  peak signal levels.  Assuming t h a t  t he  beam diameter is  equal t o  the 
width of the r e t r ace  l ines ,  good agreement has been found with the deduction 
quoted above; t h a t  t he  beam covers five scanribg l inea.  
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, 

s i z e  i n  a non-interlaced scan would give a long plateau with curves A and 

C spaced by a factor  of approximately 500; that is 525/(2-1). However, 

because the t r ans fe r  curve i n  Figure 1 was measured with an inter laced scan, 

where the beam moves 2 l i n e  widths after each l i n e  scan, t he re  is  no overlap 

with previously scanned areas,  and no supersaturation current  is observed. 

We see t h a t  the  e s sen t i a l  differences between the  two camera tubes of 

Figures 1 and 2 contributing t o  the  presence or  absence of supersaturation 

current  a r e  as follows; differences i n  r a s t e r  area,  nature of beam focus 

and type of scan ( in t e r l ace  or  non-interlace) . 
It should be noted i n  passing t h a t  if  tho beam diameter i s  greater  

than 1 but l e s s  than 2 l i n e s  wide i n  an inter laced scan, curve B should 

be calculated from equation (10) by using an in tegra t ion  period, T, in te r -  

mediate between the frame period and the f i e l d  period. 

Figures G and 7 show measured t ransfer  curves fo r  camera tubes of 

the  type i l l u s t r a t e d  i n  Figure 2 .  

with a t a rge t  voltage of 40 V, a supvessor  mesh po ten t i a l  of 30 V, and a 

In  Ngures 6and  7 the tubes were operated 

photocathode po ten t i a l  of 8 kV. The photocathode s e n s i t i v i t y  of both tubes 

was 100 uA/lumen. 

Results f o r  two frame r a t e s  are shown, 10 frames/second (320 l i nes )  
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Transfer F'unction of an Electrostatically Focused SEC 
Camera Tube with a 16inm Diameter Target - Tube 3 
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and 0.625 frames/second (1280 l ines ) .  One r a t e  i s  16 times the  other. 

Though $he number of l i n e s  d i f fe rs ,  4 t  t r i l l  be seen that f o r  a constant 

,r&$r:size and beam diameter, IJ/(n - 1) i s  the  same f o r  both curves, 

Coxyideration of equations (9), (10) and (13) shows t h a t  t h e  theore t ica l  

curves A and C a r e  the smne for both frame r a t e s  and curve I3 i s  displaced 

by a fac tor  of 16.. 

Examinl;eg the  experimental data w e  observe t h a t  t he  B curves f i t  

w e l l  with the thcore t ica l  spacing of 16. 

the  B curves mid a s ingle  C curve predicts  most successfully the  super- 

saturat ion current  a t  both frame ra tes .  ( the sum of i3 and C a r e  shown by 

dotted lines), In  both Figure 6 and Figure 7 the  spacing of the A and C 

C1.Ii'Vt:S gives a beam diameter o f  equal t o  5 l rne widths with the 320 l i n e  

scaii (as  i n  Figure 2 I , 

Furthermore, t h e  combination o f  I 

It  i s  in t e re s t ing  t o  note t h a t  the  0.625 frame/second curve i n  

F igu re7  i s  beginning t o  show "saturat ion" of the supersaturation current, 

as t h e  photocathode i l lumination approaches one foot-candle. 

i n t e r e s t  is  the general r e l a t ion  of the  curves f o r  the  two frame ra t e s ,  
I 

It can be shown t h a t  t he  signal current  components JS and 1s 

wri t ten  with grea tes t  general i ty  i n  the  form 

Also of 

can be 
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(see, f o r  example, equation ( 8 )  1 
Thus, every point on a t r ans fe r  curve measwed with a frame period 

Tx can be reproduced on another t ransfer  curve measured with a frame period 

T2 by scalXng Is and J by a fac to r  T1/T2. 

By scal ing 1s and J by a factor  of 16 it w i l l  be found that the experimental 

points on one curve accurately match t he  points on the  other curve. 

In  Figures 5 and 6,T1/T2 = 16. 
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4 * COI~CLUSION 

The absence of a we13 defined plateau i n  the t r ans fe r  curves of 

ce r t a in  SlX caniera tubes can be explained a8 the  consequence of charging 

of t-he tmyqt during the l i n e  period. Since t h i s  e f f e c t  occws  a t  primary 

current  dens i t i e s  greater  than those required t o  sa tura te  the t a rge t  during 

t h  frame period, it has l i t t l e  p rac t i ca l  significance. 

f o r  an explanation has led t o  fu r the r  understanding o f  the  t ransfer  character- 

i s t i c s  of SEC camera tubes, and has provided new information about the 

diameter of the reading  beam, 

However, the  search 
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LUNAR CAlAErECA TUBE 

ACTION 
YES NO 
0 Ixl 

AEROSPACE DIVISION Fi<iXd: ELECTRONIC TUBE DlVlSlON 
BALTIMORE,MD. EMNO: aa 
ATTENTION: C. P. Hoffman DATE: 9-1 6-66 

cc: A .  J .  Haley, D. E. i4o;enart G.O. NO: 
SUBJECT: Humidity Test 

I n  accordance w i t h  Paragraph 3.4.5.13 of  P.D.S. 2134 (Revision C) Humidity 
Tests, we have prepared two tubes and i n i t i a t e d  the spec i f i ed  tes t .  
problems have ar isen which i nd i ca te  t h a t  the t e s t  i s  d i f f i c u l t  a t  best and probably 
not  meaningful. 

Several 

The t e s t  requires t h a t  the f r o n t  end o f  the tube and the  leads as they emerge 

5% r e l a t i v e  humidity. 
from the  gun be pot ted and t h a t  t he  .cube be exposed t o  (10) 24-hour cycles o f  
95 
center reso lu t i on  under these condi t ions.  

The tube must be operated and tested f o r  corner and 

Tube #432 was pot ted and placed i n  the chamber w i t h  leads extended io our  
t e s t  set. The r e s u l t i n g  presentat ion was poor due t o  excessive lead length. 
Under t e s t  condi t ions the re  i s  a continuous f i l m  o f  water over the whole tube and 
associated c i r c u i t r y  making operat ion w i t h  spec i f i ed  voltages a t  the tube d i f f i c u l t .  

Nevertheless, the tube was operated and p i c tu res  taken w i t h  the t e s t  setup 
before and a f t e r  exposure t o h u m i d i t y  condi t ions.  
the faceplate,  c rea t i ng  water droplets  tha t  d i s t o r t  a pro jected image and which 
succeeded i n  d i s o l v i n g  the emulsion from the t e s t  pa t te rn  placed on the faceplate. 
Subsequent t o  the 10 day exposure the tube was removed from the chamber, and it 
was discovered t h a t  the c o i l  form mater ia l  had absorbed so much moisture t h a t  the 
yoke has expanded, making it impossible t o  remove the  tube t o  t e s t  i t  i n  the t e s t  
set  and t o  use the yoke f o r  t he  second tube (#411), which a l so  i s  t o  be tested i n  
the humidi ty chamber. 

This  water f i l m  i s  a l so  across 

I n  view o f  the above d i f f i c u l t i e s  we have i n i t i a t e d  the fo l l ow ing  steps: 

1 .  

2. 

P ic tures were taken w i t h  #432 s t i l l  i n  t he  t e s t  chamber t o  
compare w i t h  i n i t i a l  setup. 

#432 was removed from the chamber, p o t t i n g  was removed, and 
t h e  tube checked v i s u a l l y  f o r  mechanical f a i l u r e  (none ap- 
parent). It was a l so  unchanged e l e c t r i c a l l y  (photocathode, 
f i ls . ,Lnts ,  no opens o r  shorts). It cannot be operated i n  
the  t e s t  set  u n t i l  the yoke can be removed. 6 69 3 D-VA- 24 
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3 .  Because of the press of time, Tube #411 was potted without 
the yoke (still on #432) and is now undergoing the humidity 
exposure without periodic checks o f  resolution, but will be 
tested in tlie test set at the conclusion of specified time. 

Ebg i neer i ng D i rector 
Lunar Camera Tube Project 
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1 .  INTRODUCT ION 

A la rge  s igna l - to -no ise  r a t i o  i s  requ i red  a t  the ou tpu t  o f  

any camera tube t o  permi t  the presenta t ion  o f  h igh  r e s o l u t i o n  images 

o f  pleas ing  qual i t y .  

used, h igh  s igna l - to -no ise  r a t i o s  are obta ined when the s igna l  cur ren t  

I n  SEC camera tubesl?,dhere d i  r e c t  beam readout i s  

i s  l a rge  compared t o  the equiva lent  RMS no ise cu r ren t  o f  the p reamp l i f i e r .  

The maximum s ignal  cur ren t  a v a i l a b l e  from an SEC camera tube w i t h  aone 

inch diameter ta rge t  r e s u l t s  i n  a s ignal - to-noise r a t i o  t h a t  i s  adequate 

f o r  many app l ica t ions .  However, the s igna l  cu r ren t  t h a t  can be generated 

w i t h  an SEC t a rge t  o f  a given storage capacity/area i s  p ropor t iona l  t o  

the frame r a t e  and the  r a s t e r  area. Thus i n  tubes w i t h  a small t a rge t  

operated a t  l o w  frame ra tes  i t  i s  d i f f i c u l t  t o  o b t a i n  a s a t i s f a c t o r y  

maximum s igna l - to -no ise  r a t i o  and hence an adequate dynamic range ( the  

r a t i o  of the weakest and the s t rongest  i l l u m i n a t i o n  t h a t  can be presented 

i n  the same image w i thout  changing the opera t ing  papmeters o f  the tube). 

During the  i n i t i a l  development o f  the SEC camera tube, 1 inch 

diameter ta rge ts  were used t o  p rov ide  standard r e s o l u t i o n  performance 

(600 TV 1 i nes /p ic tu re  he igh t )  a t  30 frames/second, bu t  recen t l y  there  

has been a growing i n t e r e s t  i n  a wider range o f  opera t ing  cond i t ions .  

A t t e n t i o n  has been focused on (a) increased r e s o l u t i o n  w i t h  the  1 inch 

ta rge ts  a t  30 frames/second and (b) the development o f  camera tubes w i t h  
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0.625 inch diameter ta rge ts  opera t ing  a t  ra tes  as low as 0.625 frames/ 

second. Both these trends requ i red  increased s igna l  cur ren t  i n  order  

t o  mainta in  o r  increase the maximum s ignal - to-noise rat io , .  

This repo r t  describes how f a r  the des i red  increase i n  s igna l  

cur ren t  has been achieved by us ing  an SEC ta rge t  w i t h  a l a rge  storage 

capacity/area. Before present ing the  experimental resu l t s ,  we w i l l  
% 

discuss c e r t a i n  aspects o f  SEC ta rge t  opera t ion  t o  e s t a b l i s h  i n  d e t a i l  

the r e l a t i o n  between increased storage capaci ty  and improved s igna l  

cur ren t .  
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2. THEORETICAL DISCUSS ION 

Let  us consider a t y p i c a l  p l o t  o f  small s ignal  SEC gain, G, 

such as tha t  shown i n  Figure 2.1. 

If 

vT * as a func t ion  o f  ta rge t  vol tage, 

A t  the ta rge t  vo l tage V 

now a c e r t a i n  ta rge t  area i s  bombarded w i t h  e lec t rons  as sketched out  

i n  Figure 2.2, the vo l tage excursion V a t  the ta rge t  surface w i l l  

increase ( s t a r t i n g  from zero), and the vo l tage across the ta rge t  ( V  - 
VE) w i l l  decrease i n  the bombarded area. 

T - 'E vol tage i n  the bombarded area i s  V 

i n t e g r a t i o n  t ime the opera t ing  po in t  on the gain curve i n  F igure 2.1 

- VTo: G = Go) t o  the p o i n t  ( V  - 
T - 'TO - i s  moving f rom the p o i n t  (V - 

V E f ;  G = G f )  where V 

end o f  i n teg ra t i on  time (usua l l y  equal t o  the frame time) and G i s  the 

f i n a l  value o f  the gain a t  the end o f  i n teg ra t i on  t ime. I t can be seen 

tha t  the average ga in  5 dur ing i n teg ra t i on  t ime w i l l  be smaller than G 

I f  the average gain s p l o t t e d  f o r  d i f f e r e n t  values o f  primary cur ren t  

densi ty  j 
P 

the curve shown i n  F gure 2.3 i s  obtained. The average ga in  dur ing  the 

i n teg ra t i on  per iod  i s  a func t i on  o f  j 

the po in t  E (j 

operat ing range ind ica ted  i n  Figure 2.1. By increas ing the  pr imary 

= VTo the ta rge t  has the SEC ga in G = Go. 
T 

E 

T 

Hence the e f f e c t i v e  ta rge t  

. This means tha t  dur ing 

i s  the f i n a l  value o f  vo l tage excursion a t  the Ef 

f 

0' 

(which i s  p ropor t iona l  t o  the photocatkode i l l u m i n a t i o n ) ,  

VTo and i n t e g r a t i o n  t ime T. Let  
P'  . 

) i n  F igure 2.1 and 2.3 be the average ga in  f o r  the P1 
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T a f g e t  Vol toga ,  VT Primary Current  Density , j p  

FIGURE 2 . 1 :  SMALL SIGNAL SEC GAIN AS A FIGURE 2.3:  AVERAGE G A I N  DURING INTEGRATION 
FUNCTION OF TARGET VOLTAGE T I M E  AS A FUNCTION O F  PRIMARY 

CURRENT DENS I TY 

Suppressor 
, Mesh 
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c 

t 

ght Input  

VM VT 

FIGURE 2 . 2 :  SKETCH OF WRIT ING SECTION 
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cu r ren t  dens i ty  and there fore  increas ing V the p o i n t  ( j  ) s l i d e s  

down the curve i n  F igure 2.3. 

Ef P1 

The opera t ing  range i s  determined by the shape o f  

curve i n  F igure  1 ,  the ta rge t  vo l tage V and the vo l tage d 
To 

'To - ('To - 'Ef) = E f  

The f i n a l  voltage excursion V i s  g iven by Ef  

the ga in  

f fe rence 

- j, T 
G (VTo - VE( t ) )  d t  = G j P  

(2.2) 
" E f  = C C 

where C i s  the ta rge t  storage capaci ty /area (assumed constant ) .  I t  can 

be seen from Figure 2.1 and Equation (2.2) tha t ,  f o r  a given pr imary 

cur ren t  dens i ty ,  by increas ing C the sur face excursion V can be decreased 

and 

p o r t i o n  t o  1 / C .  For a given pr imary cu r ren t  dens i ty  the increase i n  

G y i e l d s  a h igher  s igna l  cur ren t .  The reduc t ion  i n  V f o r  a g iven 

pr imary cu r ren t  dens i ty  enables the dynamic range to  be increased. This 

Ef ' 

increased i n  such a way tha t  the r a t i o  V /6  i s  i n c r e a s d  i n  pro- 
E f  

- 
Ef  

fo l lows because V may now be returned t o  the maximum value s e t  by E f  

r eso lu t i on  considerat ions w i t h  a corresponding increase i n  the maximum 

l i g h t  l e v e l  t h a t  can be handled i n  a g iven scene. I n  order  to  see how 

the p o s s i b i l i t y  o u t l i n e d  above may be r e a l i z e d  i n  p rac t ice ,  i t  i s  

necessary to analyze Equation (2.2) i n  more d e t a i l  and prov ide f u r t h e r  

c 

in format ion about the  ta rge t  ga in. '  i n  Equation (2.2) the 

i s  g iven by the i n t e g r a l  equat ion 
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and may be obtained, f o r  example, from the ga in  curve by so l v ing  the 

d i f f e r e n t i a l  equat ion 

which i s  the d i f f e r e n t i a l  quot ien t  of  Equation (2.3). 

Since the number o f  i n i t i a l l y  created secondary e lec t rons  i s  

p ropor t iona l  t o  the energy d i s s i p a t i o n  in  the ta rge t ,  the ga in  func t i on  

has the form 

G (VTo - VE) = BpFpx f (E)  h (2 .5 )  

where pE1 = targe t  mass density,& = ta rge t  thickness, h = co l  l e c t i o n  

e f f i c i e n c y ,  B i s  the constant descr ib ing  the nature o f  the ta rge t  

mater ia l  and f ( E )  i s  a func t i on  o f  the average energy E o f  the primary 

e lect rons i n  the ta rge t .  

formula. The c io l lec t ion  e f f i c i e n c y  h i s  a f w c t i o n  o f  the e l e c t r i c  

B and f ( E )  may be ca lcu la ted  from the Bethe 

f i a l d  across the ta rge t  and 

h = h (  'To - 'E , 

- *Ax 
Hence we have 

G ( V T ~  - VE) = 

Le t  us de f i ne  the energy 

k = BpFpx f ( E )  

the ta rge t  densi ty ,  so tha t  h would be 

(2.7) 

d i s s i p a t i o n  k by 

(2 8) 
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and keep i n  mind t h a t  

1 
C a -  Ax 
To increase t,,e ta rge t  storage capac i ty  we now consider two 

approaches: 

Approach 1: We t r y  to keep p = cqnstant and decrease M 

the ta rge t  thickness by decreasing the amount of ma te r ia l  evaporated. 

Under these cond i t ions  we have t o  expect t h a t  

1 k decreases i n  p ropor t i on  t o  AX-- C 

h should be constant i f  the e l e c t r i c  f i e l d  "To - 'E i s  AX 
kept constant. VTo has t o  be decreased because the maximum ta rge t  vo l tage 

tha t  can be app l ied  to the ta rge t  i s  determined by the maximum usefu l  

e l e c t r i c  f i e l d  and the maximum usefu l  e l e c t r i c  f i e l d  i s  determined by 

the inner s t r u c t u r e  o f  the ta rge t  t ha t  i s  no t  changed when p i s  kept 

constant. Hence according t o  Equation (2.7) a f i r s t  order  decrease i n  

ga in  w i t h  A X  w 

I f  th 

cur ren t  dens i t y  

1 1 be expected . 

s i s  t r u e  the vo l tage excurs ion V a t  a g iven primary E 
c 

given by Equation (2.2) w i l l  decrease f a s t e r  than pro- 

p o r t i o n a l  to AX. This e f f e c t  w i l l  increase the  dynamic range of  the ' 

ta rge t ,  i f  the maximum usefu l  f i n a l  vo l tage excurs ion V E f  max i s  determined 

by resolutuon considerat ions and there fore  poss ib ly  be independent from 

VTo, because the maximum usefu l  s igna l  cu r ren t  

max - max AT 

Ta 
C- ' S  - 'Ef  (2.10) 
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o f  a t a r g e t  w i t h  the  r a s t e r  area A 

Ta * 

rnaxlmum use fu l  s igna l  cu r ren t  i s  equal t o  the s a t u r a t i o n  cur ren t .  

operated w i t h  an a c t i v e  frame t ime 
T '  

increases w i t h  C. I f ,  however, r e s o l u t i o n  i s  no t  important then the  

(2.11) 

The s a t u r a t i o n  cu r ren t  might no t  be increased s ince  V has t o  be 
To 

1 decreased w i t h  decreasing t a r g e t  thickness and constant mass dens i ty .  

Approach 2: We t r y  t o  increase p wh i l e  decreas ing  AX 
M 

i n  such a way t h a t  pt,px = constant. 

expect t h a t  

Under these cond i t ions  we have to  

k = constant 

h decreases w i t h  increas ing p 

h can be increased again by inc reas ing  the  e l e c t r i c  f i e l d  

H 

across the t a r g e t  s ince  ta rge ts  w i t h  h igher  dens i t y  can be operated 

a t  h igher  t a r g e t  voltages as w i l l  be seen i n  Sec t ion  3 ,  where the  

experimental r e s u l t s  a re  discussed. c 

Hence the ga in  represented i n  Equation (2.7) may be expected 

. The 1 1 t o  show less than p ropor t i ona te  decrease w i t h  AX=- - - 
PH C 

maximum use fu l  s igna l  cu r ren t  represented i n  Equation (2.10) w i  1 1  

increase to  the  same ex ten t  as the  f i r s t  approach i f  VEf  

t o  be unchanged. The s a t u r a t i o n  cur ren t ,  however, i s  increased s u b s t a n t i a l l y  

max i s  assumed 

s ince  C and V a re  increased by the  second appr,oach. To 
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We have neglected tha t  

( 1 )  f ( E )  i s  not  e n t i r e l y  independent o f  AX, and 

( i i )  the value of the i n t e g r a l  i n  Equation (2.2) does not 

necessar i l y  change i n  p ropor t ion  t o  G s ince V has t o  

obey the i n t e g r a l  Equation (2.3). 
E 

However, both o f  the fac to rs  we have neglected e f f e c t  the  two approaches 

i n  the same way. Hence i n  order t o  compare the d i f f e r e n t  approaches a 

discussion o f  f ( E )  and the i n teg ra l  Equation (2.4) i s  not  necessary. As 

a r e s u l t  o f  these considerat ions i t  i s  obvious tha t  the second approach 

i s  expected t o  y i e l d  the b e t t e r  r e s u l t .  

Another disadvantage o f  the f i r s t  approach compared t o  the 

second one i s  seen !-!hen we consider the number of f i b e r s  o f  ta rge t  

mater ia l  i n  an area represent ing a r e s o l u t i o n  element. T h i s  number 

w i l l  considerably decrease i f  the ta rge t  i s  made th inner  according t o  

the f i r s t  approach and, therefore,  the r e l a t i v e  l oca l  v a r i a t i o n  o f  the 

number o f  f i b e r s  per reso lu t i on  element on the ta rge t  w i l l  increase. 
c 

This e f f e c t  w i l l  r e s u l t  i n  an increase of image gra in .  
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3. EXPERIMENTAL RESULTS 

Although both approaches i n  Section 2 have been t r i e d  i n  the 

past ,  c h i e f l y  the r e s u l t s  obtained w i t h  ta rge ts  mod i f ied  according t o  

the second approach w i l l  be repor ted because o f  the b e t t e r  success. 

I n  order t o  demonstrate the improvements i n  ta rge t  performance 

which have been achieved, f i r s t  phys ica l  parameters such as the  storage 

capacity, e l e c t r i c  f i e l d  and charge dens i ty  i n  the ta rge t  w i l l  be discussed 

i n  Section 2.1; then the parameters of p r a c t i c a l  i n t e r e s t  discussed i n  

Section 3.2 w i l l  be seen t o  follow from the irt,provements i n  phys ica l  

. 

parameters. 

3 . 1  Physical Parameters 

Except f o r  the storage capaci ty  most of  the i n t e r e s t i n g  

phys ica l  parameters such as the e l e c t r i c  f i e l d  a t  the ta rge t  subst rate 

and the charge dens i ty  present i n  a completely scanned ta rge t ,  cannot 

be measured d i r e c t l y .  I n  order  t o  show how these parameters may be 

der ived from measurements of the storage capacity-, we s t a r t  i n  Sect ion 

3 . 1 . 1  w i t h  a d iscuss ion o f  the storage capaci ty  and i t s  r e l a t i o n  to  the 

e l e c t r i c  f i e l d  a t  the  ta rge t  subs t ra te  and the  charge dens i ty  i n  the  ta rge t .  

It w i l l  be seen i n  Sect ion 3.1.2 t h a t  the e l e c t r i c  f i e l d  a t  the  ta rge t  

subst rate may be ca l cu la ted  d i r e c t l y  from measurements w i thout  any addi- 

t i o n a l  assumptions, w h i l e  i n  Sect ion 3 . 1 . 3  the c a l c u l a t i o n  o f  the charge 

dens i ty  must be r e s t r i c t e d  t o  a f i r s t  order  approximation. 

As f a r  as data are a v a i l a b l e  the r e s u l t s  obta ined w i t h  the 

improved h igh  capac i ty  ta rge t  w i l l  be compared w i t h  those from i o w  

capaci ty  ta rge ts .  
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3 . 1 . 1  The Storaqe Capacity Per Area 

To determine the storage capac i ty  per area 

a known area A o f  t he  

i n t e g r a t i o n  t ime o f  a 

excursion V s l i g h t l y  E 

(3 .1 )  

t a rge t  was exposed t o  primary e lec t rons  f o r  an 

few seconds i n  such a way t h a t  o n l y  a vo l tage 

exceeding t w o  v o l t s  was obtained. The ta rge t  v o l -  

tage V 

excess vo l tage V - 2 Vo l ts  was readout w i t h  a s i n g l e  scan. A second 

scan was app l ied  t o  insure completion o f  the readout process. 

t h i s  the  ta rge t  vo l  tage V was increased by two v o l t s  ( rese t  t o  i t s  

then was decreased by t w o  v o l t s  and the  s igna l  caused by the  
T 

E 
A f t e r  

T 

i n i t i a l  value) SO as t o  produce a sur face vo l tage d i f f e r e n c e  dV 

Vo l ts .  The res idua l  charge dQ was then readout w i t h  s i n g l e  frame readout. 

= 2 E 

The output  s igna l  o f  the one l i n e  d isp layed on the scope compared w i t h  a 

c a l i b r a t e d  comparator pulse, the output  s igna l  du ra t i on  and the known 

number o f  l i n e s  i n  the  area A were used to c a l c u l a t e  the output  charge 

dQ associated w i t h  a sur face vo l tage d i f f e r e n c e  dV o f  t w o  v o l t s .  E 
c 

I n  F igure 3 . l A  the  storage capaci ty /area o f  some 

h igh  capac i tv  SEC t a rge ts  i s  p l o t t e d  versus t a r g e t  vo l tage.  The increase 

of capaci ty /area t h a t  has been achieved by the  m o d i f i c a t i o n  o f  the SEC 

t a rge t  can be seen by comparing F igure 3.1.A w i t h  F igure 3.1.B where a 

se t  o f  s i m i l a r  curves obta ined w i t h  l o w  capaci ty  ta rge ts  i s  presented. 

A t  f i r s t  s i g h t  the curve No. 1 i n  F igure 3 . l . A  seems t o  i n d i c a t e  t h a t  

t h i s  ta rge t  would have the h ighes t  dynamic range. As has been po in ted  

J- 16 
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ou t  i n  Sect ion 2.1, however, not  on l y  the storage capaci ty  determines - 

the dynamic range of the ta rge t  but  also the maxlmum useable ta rge t  

vol tage does. Insorder t o  understand t h a t  the t a r g e t  vo l tage might 

be l i m i t e d  t o  lower values f o r  a ta rge t  w i t h  h i g h  capaci ty  than i t  i s  

fo r  a target  w i t h  low capaci ty we f i r s t  have to  consider the increase 

i n  storage capacity/area caused by increasing ta rge t  voltage. 

3 As has been pointed out  by A. H .  Boerlo, e t .a l  , the 

increase i n  capaci ty w i t h  increasing ta rge t  vo l tage can be explained by 

the f a c t  tha t  i n  charging the target ,  the scanning beam elect rons come 

under the in f luence o f  the i n t e r n a l  e l e c t r i c  f i e ' l d  and can the re fo re  

penetrate a s i g n i f i c a n t  f r a c t i o n  of  the ta rge t .  

should be poss ib le  t o  measure the curves shown i n  Figure 3 . l ' . A  and B 

wi thout  apply ing a primary beam t o  the ta rge t  merely by increasing the 

If t h i s  i s  t r u e  i t  

ta rge t  vo l tage i n  steps o f  2 v o l t s  and determining the charge added 

i n t o  the ta rge t  by the scanning beam f o r  each two v o l t  step. 

been done and the r e s u l t s  are shown I n  Figure 3.2. Obviously there , 

This has 

i s  good agreement w i t h i n  the l l m i t a t l o n s  o f  the measurement accuracy. 

Therefore we may now discuss the storage c a p a c i t r w i i h o u t  t ak ing  i n t o  

account the p r  i mary beam. 

~ 

When the t a r g e t  has been completely scanned w i t h  

the reading beam a t  a given ta rge t  vo l tage there e x i s t s  throughout the 

ta rge t  a negat ive charge d i s t r i b u t i o n  being described by the  charge 

d e n s i t y p  which I n  general i s  a , f u n c t i o n  o f  the three space coordir iates 

x, y, z and the ta rge t  vo l tage VT. For our f u r t h e r  discussion, however, 

J- 18 

i UNCLASSIFIED 
b 



UNCLASSIFIED 

Measurement 

x 

0 

13.8 

14.5 

As - 
Vcm' 

IO"* - A s  
Vcm2 

I x----- Measured With Primary Beam 

I 0- Measured Without Pr imary Beam 

Target  Voltage V, 

0 IO 20 30 40 50 Volts 0 0 IO 20 30 40 50 Volts 0 

FIGURE 3.2: STORAGE CAPACITY PER AREA AS A FUNCTION OF TARGET VOLTAGE 
MEASURED WITH TWO DIFFERENT METHODS 
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we may assume the ta rge t  t o  be uni form over i t s  e n t i r e  area and 

neglect  any edge e f f e c t s .  
,.a 

t 

I n  t h i s  case 

dp'(x; y; '; VT) 
= b  (3.2) - - a p  y; 2 ;  v.+ 

1.. aY a z  
and there fore  the charge densi ty  isp = p (x; VT) .  

f unc t i on  i s  q u a l i t a t i v e l y  i l l u s t r a t e d  in  F igure 3 . 3  f o r  l o w  and h igh  

This d i s t r i b u t i o n  

ta rge t  voltages. The curves shown there  cannot be measured d i r e c t l y .  

Some conclusions, however, may be drawn s ince p (x; VT) i s  determined 

t o  a c e r t a i n  extent  by the measurement shown i n  Figure 3.1 and o ther  

observations, which w i l l  be discussed now. 

The e l e c t r i c  p o t e n t i a l  9 (x, V ) I n  the  ta rge t  i s  
T 

connected w i t h  the charge densi ty  

according t o  equat ion (3.2) has the form 

(x, VT) by Poisson's equat ion which 

I 
d x  

( 3  3) 

I f  we neglect  the thermionic d i s t r i b u t i o n  o f  the 

scanning beam elect rons,  consider t,he thermionic cathode t o  be on 7 

p o t e n t i a l  and presume t h a t  the ta rge t  Is scanned completely so th; 

more e lect rons are accepted by the target ,  the law o f  conservat i  

energy then determines the p o t e n t i a l  a t  the ta rge t  sur face (sur f  

tage excursion) t o  be 
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where d i s  the ta rge t  thickness. 

Moreover the sume o f  the forces appl ied t o  an 

e lec t ron  a r r i v i n g  a t  the ta rge t  sur face must be zero; i n  order.-to 

prevent i t  from enter ing  the ta rge t  and hence the e l e c t r i c  f i e l d ' i s  

E (d, VT) = 0 ( 3  5)  

i f  we neglect  the  e l e c t r i c  f l e l d  caused by the suppressor mesh. T h i s  

assumption w i l l  be j u s t i f i e d  i n  Sect ion 3.1.3. 

The Equations (3.4) and (3.5) are the necessary 

and s u f f i c i e n t  boundary cond i t ions  t o  determine the  s o l u t i o n  o f  Poisson's 

equation. However, there i s  another cond i t i on  given by the conductive 

ta rge t  subst rate and which i equ i res  

Thfs t h i r d  cond i t i on  there fore  determines already 

t o  some extent the charge dens i ty  p (x, V ) .  As r e s u l t  o f  t h i s  we T 

area 

( 3  7) 

shed from the  d i f f e r e n t  

may der ive  an i n t e r e s t i n g  equat ion f o r  the l i i n teg r3 ted t  storage capaci ty /  

which i s  c lose ly  r e l a t e d  t o  bu t  must be d i s t i n g u  

storage capaci ty/area 
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d d 

I, p ( x ,  VT)-dx - p (x ,  VT) dx 
C =  ---c 

(3.8) 

measured and represerttkd i h  Figure  3,2,  By i n s e r t i n g  equation (3.3) i n  

~ equation (3.7) and us ing  equation (3.5) aftel. I n t e g r a t i o n  we ob ta in  

I f  we now consider the  primary beam to  be turned on 

and the ta rge t  being operated i n  such a way t h a t  dur ing  i n t e g r a t i o n  time 

the ta rge t  i s  j u s t  neu t ra l  ized ( the  ta rge t  sur face reaches the subs t ra te  

p o t e n t i a l )  we then o b t a i n  du r ing  readout the s a t u r a t i o n  s igna l  cur ren t  . 
I n  t h i s  case the e f f e c t i v e - s t o r a g e  capaci ty  would j u s t  be the  in tegra ted  

storage capaci ty  g iven i n  Equation (3.9). 

capaci ty  C i  

the dynamic range. 

range a l s o  increases w i t h  the t a r g e t  voltage. 

usable e l e c t r i c  f i e l d  a t  t he  target! subs t ra te  cannot exceed a c e r t a i n  va lue 

Emax 

JC 

Hence the in tegra ted  storage 

determines the s a t u r a t i o n  cu r ren t  o f  the. t a rge t  and the re fo re  

I n  Sect ion 2 i t  has been expla ined t h a t  the dynamic 

. If we consider t h a t  the maximum 

given by the s t r u c t u r e  of the  ta rge t  the  equat ion 3.9 sets  the  l i m i t a t i o n .  

(3.10) 

J. 

“As w i l l  be discussed i n  Sect ion 3.2 i n  more d e t a i l  the  s a t u r a t i o n  of 
the ta rge t  by the primary beam p r a t i c a l  l y  observed i s  no t  equal t o  the 
n e u t r a l i z a t i o n  mentioned here. For the conclusions 1.0 be drawn i n  t h i s  
sect ion,  however, a d i s t i n c t i o n  i s  not necessary. 
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rhis means t h a t  under any circumstances the dynamic range of  the ta rge t  

i s  l i m i t e d  by the maxlmum e l e c t r i c  f i e l d  t h a t  the  ta rge t  can w i ths tand 

w i thout  breaking down or becoming s e r i o u s l y  conductive. If, therefore, 

the maximum usable ta rge t  vo l tage Is l i m i t e d  by conduction i n  the  ta rge t  

no increase i n  dynamic range can be expected by decreasing the  ta rge t  

thickness alone. 

Besides the l i m i t a t i o n  g iven by Equation (3.10) 

another l i m i t i n g  f a c t o r  may be seen by i n t e r p r e t i n g  Equation (3.7). The 

in teg ra l  appearing i n  Equation (3.7) represents the t o t a l  charge a v a i l -  

able fo r  producing a s igna l  cu r ren t  w i t h  normal tat'get operation. T h i s  

charge i s  trapped In t rapping centers ( s tab le  energy l eve l s ) .  The 

e l e c t r i c  charge dens i ty  - p (x, V ) there fore  i s  equal to the  dens i ty  

pt o f  t rapp ing  centers m u l t i p l i e d  by the  occupation p r o b a t i l i t y  

p(x, VT) and Equation (3.7) can be w r i t t e n  as 

T 

If we consider the dens i ty  pt of t rapp ing  centers  t o  be constant through- 

ou t  the ta rge t  the Equation (3.11) becomes 
r- 

The maxitnum charge t h a t  can be s to red  in  the ta rge t  under most o p t i m i s t i c  

cond i t ions  i s  g iven when a l l  t rapp ing  centers are occupied by e lec t rons  

and there fore  p(x, VT) * 1. If a t  t h i s  p o i n t  the ta rge t  vo l tage VT would 

be f u r t h e r  increased more e lec t rons  would be accepted by the t a r g e t  b u t  
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could no t  be trapped. They would then be c o l l e c t e d  a t  the  subs t ra te  

and hence make the ta rge t  appearing conductive. 

u r a t i o n  conduction'' w i l l  be observed already be fore  the maximum charge 

g i ven  

from Equation (3.12) 

I n  p r a c t i c e  t h i s  "sat- 

by p(x, U ) = 1 i s  s to red  i n  the  ta rge t .  Therefore we o b t a i n  
T 

'This l i m i t a t i o n  describes the f a c t  t h a t  no subs tan t i a l  increase of 

dynamic range can be expected by making the t a r g e t  th inner  w i thout  

increas ing the  dens i ty  o f  t rapp ing  centers i n  order  t o  increase the 

storage capaci ty/area. 

essent ia l  reason f o r  the l i m i t e d  success o f  approach No. 1 discussed 

in Section 2. 

The 1 i m i t a t i o n  (3.13) there fore  seems to be the 

Since the e l e c t r i c  f i e l d  & ( O ,  V ) a t  t he  t a r g e t  
T 

subs t ra te  and the maximum vi j lue o f  the charge dens i ty  ~ ( x ,  VT) i n  the 

ta rge t  are the fundamental phys ica l  parameters which determine the  dynamic 

range of the  ta rge t ,  i t  i s  necessary t o  evaluate C(0 ,  V ) and p ( x ,  V ) 

as f a r  as poss ib le  from measurements done on the  h igh  capac i ty  SEC t a rge t  

T T 

- and on the l o w  capac i ty  ta rge t  i n  order  t o  exp la in  the improvement t h a t  

has been achieved. This w i l l  be done i n  the fo l l ow ing  t w o  sect ions.  

3.1.2 The E l e c t r i c  F i e l d  a t  the Target Substrate 

To evaluate the e l e c t r i c  f i e l d  a t  the ta rge t  subs t ra te  

' from Equation (3.9) we f i r s t  have t o  determine the  In tegra ted  storage 
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capaci ty /area C I  from the d i f f e r e n t i a l  storage capacity/area C which 

has been measured. From Equation (3.7) and Equation (3.8) f o l l ows  

d 

According to the experimental r e s u l t s  represented i n  F igure ( 3 . 1 )  and 

(3.2) the d i f f e r e n t i a l  storage capaci ty/area can be represented by 

C = Co + kVT 

where Co and k are constants wh 

curves, Hence the e l e c t r i c  f i e  

€ (o ,  VT) = 

(3.15) 

ch can be determined from the  capaci ty  

d a t  the ta rge t  subs t ra te  i s  

VT  + 7 1 kV: 1 (3.16) 

Using the  capaci tycurves o f  t a rge t  No. 3 i n  F igure 3.2 ( s o l i d  l i n e ) ,  of 

ta rge t  No. 7 and ta rge t  No. 8 i n  F igure 3.1.8 as examples f o r  a h igh  

capaci ty  ta rge t ,  a t h i n  low capac i ty  ta rge t  and a t h i c k  low capac i ty  

ta rge t  respec t ive ly ,  the e l e c t r i c  f i e l d  curves (e & ( O ,  V ) versus VT) , 

i n  F igure 3.4 were obtained. The h i g h  capac i ty  t a r g e t  i s  indeed 

operated w i t h  considerable h igher  e l e c t r i c  f i e l d s  a t  the subs t ra te  

than the l o w  capaci ty  ta rge t ,  when bo th  ta rge ts  are operated w i t h  the 

T 

c 

same ta rge t  voltage. The t o t a l  e f f e c t ,  however, i s  seen i f  we consider 

tha t  by experience the  low capac i ty  t a r g e t  has a maximum t a r g e t  vo l tage 

ranging between 20 t o  30 v o l t s  w h i l e  the  maximum ta rge t  vo l tage o f  the 

h igh  capac i ty  t a r g e t  ranges between 35 to 45 v o l t s .  Assuming z = 1 the 

maximum e l e c t r i c  f i e l d  i s  i n  the  order  of 20 kV/cm f o r  t he  l o w  capac i ty  

ta rge t  and 100 kV/cm for the h i g h  capac i ty  ta rge t .  
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3.1  * 3  The Charge Density, the E l e c t r i c  F ie ld ,  and 
the Po ten t i a l  i n  the Target 

The charge dens i ty  p (x, V ) ,  the  e l e c t r i c  f i e l d  
T 

c ( x ,  V,.) and the p o t m  t i a l  # (x, VT) i n  the ta rge t  cannot be measured 

d i r e c t l y  as funct ions o f  x; on l y  parameters which are in tegra ted  values 

along the x-axis o f  the  ta rge t  can be observed exper imenta l ly .  I n  order 

t o  determine parameters which are a func t i on  o f  x f r o m  i n t e g r a l  values 

which have been measured, i t  i s  necessary e i t h e r  t o  make assumptions 

which already determine t o  some ex ten t  the parameters as func t i on  o f  x 

o r  t o  r e s t r i c t  the  eva lua t ion  t o  a f i r s t  o r  second order  approximation 

which might be very crude. Since a general form o f  the charge densi ty ,  

the e l e c t r i c  f i e l d  and the p o t e n t i a l  can e a s i l y  be der ived w i thout  add i t i ona l  

assumptions, a f i r s t  order  approximation f o r  the  three parameters as func- 

t ions o f  x w i l l  be ca lcu la ted .  

The charge dens i ty  i n  the  ta rge t  can be represented 

by the ser ies  

The c o e f f i c i e n t s  An a re  func t ions  o f  t he  ta rge t  vo l tage V By i n teg ra t -  

ing  Poisson's equation and us ing the boundary cond i t i on  Equation (3.5) 
T' 

the  e l e c t r i c  f i e l d  i n  the  ta rge t  i s  obtained. 

00 dn + 1 n +  1 

n=o n + l  

' X  
An(vT) 

- 1  & (4 = - 

The p o t e n t i a l  may be obta ined by a second i n t e g r a t i o n  and us ing  

€quat ion (3.4) . 
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, 

n + 2  t X 
1 

n + 2  
+-  (3.19) 

To determine the c o e f f l c l e n t s  An we have from Equation (3.6) 

*n('T) dn + 2 2 - 1  VT = - 
n=o n + 2 

and from Equation (3.18) and Equation (3.16) 

From the l a s t  two equations the c o e f f i c i e n t s  A and A may he completely 

evaluated i n  the sense o f  a f i r s t  order approximation (An = 0 f o r  n 2 2). 

0 1 

3 r c 0  2 - 2 c0 - k VT 
d ' 0  = 'T 1 

6 - - d L + i k V T  2 * a  

= 7 'T 1 ' 0  d 

(3 22) 

(3.23) 

In  order to c a l c u l a t g  A. and A,, the measurement o f  c and d seems t o  be 

necessary. Ca lcu la t i ng  t h e  f i r s t  order approximation conse 

however, the 'va lue o f  d / r  i s  determined by the f a c t  tha t  
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Since i t  i s  reasonable to assume t h a t  c i s  c lose  LO one, we ob ta in  

from Figure 3.2 f o r  t a rge t  No. 3 the thickness d = 

t h i s  va lue and the experimental values o f  C 

cm. Based on 

and k the f i r s t  order  
0 

approximation o f  the charge dens i ty  

p ('* 'T) = A. (VT) -I- A1 (VT) x (3 25) 

was evaluated and p l o t t e d  in F igure 3.5 f o r  several t a rge t  voltages. 

I n  F igure 3.6 the charge densi ty  a t  the subst rate and the  charge dens i ty  

a t  the ta rge t  sur face are p l o t t e d  versus the t a r g e t  voltage. The charge 

dens i ty  a t  the subs t ra te  increases monotonously w i t h  V 

dens i ty  a t  the ta rge t  sur face has a maximum a t  V 

therea f te r .  The ex is tance o f  t h i s  maxlmum cannot be r e a l .  If the ta rge t  

wh i l e  the charge 
T' 

= 40 v o l t s  and decreases 
T 

i s  cont inuously  scanned and the ta rge t  vo l tage i s  increased slowly from 

= 0 t o  VT = 75 v o l t s ,  the charge dens i t y  should assume the values 
vT 

ind ica ted  by the curves i n  F igure 3.5 and espec ia l l y  the charge dens i ty  

a t  the ta rge t  sur face should t race  the lower curve i n  F igure 3.6. As 

long as no primary beam i s  app l ied  to the  ta rge t ,  however, there  i s  

no phys ica l  e f f e c t  by which the scanning beam may "decrease" the 

negative charge dens i ty  p (x, V ); hence no c ross ing  po in ts  i n  F igure 

3.5 are  poss ib le  and in  F igure 3.6 o n l y  curves monotonously increas ing 

w i t h  ta rge t  vo l tage can be t rue.  The c ross ing  points i n  F igure  3.5 and 

the maximum o f  the lower curve i n  F igure 3.6 there fore  show tha t  use fu l  

r e s u l t s  may be expected from the f i r s t  order  approximation, Equation 

(3.25), on ly  for the v i c i n i t y  of  the ta rge t  subst rate.  

T 

I n  F igure 3.7 the charge dens i ty  p ( 0 ,  VT) a t  the  ta rge t  

subs t ra te  f o r  a h igh  capaci ty  ta rge t  and a l ow capac i ty  ta rge t  a re  
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P l o t t e d  versus ta rge t  vo l tage V 

Sect ion 3.1.2 t h a t  the  h igh  capaci ty  ta rge t  u s u a l l y  can be operated a t  

ta rge t  voltages between 35 and 40 v o l t s  compared t o  20 to 30 v o l t s  

app l i cab le  t o  the low capaci ty  ta rge t ,  the maximum usefu l  charge dens i ty  

i n  the ta rge t  has been increased by one order  o f  magnitude. 

Considering the f a c t  mentioned i n  
T'  

The e l e c t r i c  f i e l d  i n  the ta rge t  and the  p o t e n t i a l  i n  the 

ta rge t  are p l o t t e d  i n  F igure 3.8 and i n  F igure 3.9 respec t ive ly .  Although 

the curves were obta ined by us ing  the f i r s t  order  approximation f o r  the 

charge densi ty ,  Equation (3.25), t h e i r  v a l i d i t y  along the x-ax is  i s  b e t t e r  

than Equation (3.25)  because o f  the  f a c t  tha t  the values f o r  the e l e c t r i c  

f i e l d  and the p o t e n t i a l  a t  x = o and x = d are no t  based on the f i r s t  

order approximation bu t  are g iven e i t h e r  by the boundary cond i t ions  or  

experimental r e s u l t s  as shown i n  Section 3.1.1. 

With F igure 3.8 the v a l i d i t y  of  Equation (3.5) can be j u s t i f i e d .  

This equation was introduced i n  Sect ion 3 .1 .1  by neg lec t ing  the e l e c t r i c  

f i e l d  caused by t h  suppressor mesh. Considering the mesh vo l tage,  

to  be 30 v o l t s  and the  d is tance between mesh and ta rge t  0.25 mm, the 

e l e c t r i c  f i e l d  between ta rge t  and mesh then i8s 1.2 x .10  vo l t /cm and, 

"M , 

3 

therefore,  small  compared t o  the average e l e c t r i c  f i e l d  i n  the ta rge t  

a t  any ta rge t  vo l tage o f  p r a c t i c a l  i n te res t .  Neglect ing the  induced 

charge on the ta rge t  sur face caused by the  f i n i t e  mesh vo l tage i s  equiva- 

l e n t  to neg lec t ing  the e l e c t r i c  f i e l d  between ta rge t  and mesh w i t h  respect 

t o  the e l e c t r i c  f i e l d  a t  the ta rge t  subst rate.  As can be seen from Figure 

3.8, t h i s  i s  a consequence of the  f i r s t  assumption. 
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3.2 P rac t i ca l  Target Parameters 

Target parameters of p r a c t i c a l  i n t e r e s t  a re  the small s i gna l  

gain, the l a rge  input  s igna l  storage capaci ty ,  the  dynamic range and 

the storage time. 

ta rge t  depends on the  storage cdpacity/area, the  maximum usefu l  t a rge t  

According t o  Sect ion 2, the dynamic range o f  the 

vo l tage and the small s igna l  ga in.  ConsequCntly, i n  Section 3.2.1, the 

small s igna l  ga in  and the maximum usefu l  t a rge t  vo l tage o f  some t y p i c a l  

h igh  capaci ty  ta rge ts  w i l l  be compared w i t h  the  r e s u l t s  o f  some t y p i c a l  

low capac i ty  targets ;  the l a rge  input  s igna l  storage capaci ty  and the 

dynamic range then w i l l  be presented i n  Section 3.2.2 and Sect ion 3.2.3 

respec t ive ly .  

. 

I t  w i l l  be seen i n  Sect ion 3.2.4 t h a t  the storage t ime o f  the  

h igh  capaci ty  t a r g e t  i s  not  as long as the storage t ime o f  the low 

capaci ty  ta rge t .  However, the  storage time turned au t  to be more than 

adequate f o r  continuous scanning operat ions.  I n  Sect ion 3.2.5 the 

e f f e c t  o f  the h igh  capac i ty  ta rge t  on the performance o f  the reading 

gun b r i e f l y  w i l l  be discussed. 

3.2.1 The Small Signal Gain 

determine the sens i t  

some i n d i c a t i o n  t h a t  

than the  ga in  o f  the 

compare the p r a c t i l a  

The s m a l l  s igna l  ga in  i s  one o f  the fac to rs  which 

d 

v i t y  o f  a camera tube. Since i n  Sect ion 2 we saw 

the ga in  o f  a h igh  capac i ty  ta rge t  might be lower 

low capac i ty  ta rge t ,  i t  i s  o f  specia l  i n t e r e s t  to  

r e s u l t s  obta ined w i t h  both ta rge ts .  I n  F igure 
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3.10 the ta rge t  ga in  curves o f  four  camera tubes are p lo t ted ;  the  tubes 

were equipped w i t h  l o w  and h igh  capac i ty  ta rge ts  as ind ica ted  in the  graph. 

The maximum usable ta rge t  voltages shown i n  F igure  3.10 were found by 

increas ing the ta rge t  voltage,V a t  constant i l l u m i n a t i o n  and determining 

the value o f  V a t  which the o v e r a l l  appearance of the t a r g e t  s t a r t s  

T'  

T 

loos ing  i t s  p leas ing  q u a l i t y .  Th is  determinat ion o f  the maximum usable 

ta rge t  vo l tage i n f e r s  a sub jec t i ve  judgment, bu t  the values obta ined seem 

t o  be i n  f a i r  agreement w i t h  those determined by f i n d i n g  the  ta rge t  vo l tage 

a t  which the  ta rge t  shows conduction. 

I t can be seen f r o m  F igure 3.10 t h a t  a considerable increase 

o f  maximum usable ta rge t  vo l tage has been achieved and a ga in  has been 

obtained a t  t h i s  vo l tage,  which i s  comparable w i t h  the ga in  o f  a low 

capac i ty  t a r g e t .  

It i s  we l l  known t h a t  h igher  ga in  values than those represented 

i n  F igure 3.10 have been observed w i t h  l o w  capac i ty  ta rge ts ,  bu t  t h i s  

i s  a l so  t r u e  f o r  the h igh  capac i ty  t a r g e t .  Here, however, are t y p i c a l  

and p r a c t i c a l  values under discussion, obta ined from one tube type which 

was equipped over a long run w i t h  a l o w  capac i ty  ta rge t  and over another 

long run w i t h  a h igh  capaci ty  t a r g e t .  

O f  p r a c t i c a l  i n t e r e s t  i s  the value o f  primary vo l tage necessary 

t o  get the maximum SEC gain. I n  F igure  3.11 the normalized ga in  i s  

p l o t t e d  versus primary vo l tage for a h igh  capac i ty  and a low' capac i ty  

ta rge t .  The curves are  c lose  together which ind ica tes  the  energy 
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d i s s i p a t i o n  t o  be approximately the same in  both ta rge ts .  
& 

i npu t 

capac 

reca 1 

3.2.2 The Large Input Signal Storage Capacity 

i n  Sect ion 3.1.1 the I I d i f f e r e n t i a l ' I  storage capaci ty  

was de f ined by Equation (3.8) and the  ' l in tegrated ' l  storage capaci ty  by 

Equation (3.7). O f  p r a c t i c a l  i n te res t ,  however, i s  espec ia l l y  the  

- l a r g e  input  s igna l  storage capaci ty .  Only i f  the  primary cur ren t  would 

exac t ly  n e u t r a l i z e  the  ta rge t  when sa tu ra t i on  i s  reached, the  in tegra ted  

storage capacity, as de f ined by Equation (3.7) would be equal t o  the  l a rge  

s igna l  storage capaci ty .  I n  order t o  o u t l i n e  the t rend o f  the storage 

t y  w i t h  increas ing input  cur ren t  under t h i s  cond i t ion ,  we have t o  

some r e s u l t s  o f  Sect ion 3.1.1. 

As shown i n  Sect ion 3.1.1,  the d i f f e r e n t i a l  storage 

capacity/area, C, i s  given by I 

C = Co + kVT (3.26) 

and the in tegra ted  s torage capaci ty  by 

1 C i  - - Co + kVT* (3.27) 

a Since, as a l so  demonstrated i n  Sect ion 3.1.1, the low input  s igna l  

capaci ty  i s  equal t o  the d i f f e r e n t i a l  storage capacity,- the  storage 

capacity/area a t  a g iven ta rge t  V i s  expected t o  s t a r t  a t  l o w  input  
T 

s igna ls  w i t h  the  va lue g iven by Equation (3.26) and approach the  va lue 

g iven by Equation (3.27) as sa tu ra t i on  i s  reached. 

cond i t i on  o f  comp1,ete n e u t r a l i z a t i o n  a t  the s a t u r a t i o n  po in t ,  the storage 

Hence, under the 
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capaci ty  o f  the ta rge t  should decrease w i t h  increas ing input  cur ren t .  

T h i s  i s  indeed not observed. In F igure 3.12 the storage capaci ty/area 

i s  p l o t t e d  versus the vo l tage excurs ion V for the ta rge t  vo l tage V = 20 

v o l t s  ( s o l i d  l i n e )  and V = 40 v o l t s  ( s o l i d  l i n e ) ,  i n  add i t ion ,  the curve 

o f  the d i f f e r e n t i a l  storage 'capaci ty/area versus ta rge t  vo l tage (dot ted 

l i n e )  i s  repeated from Figure 3.2. According to  the r e s u l t s  represented 

E T 

T 

i n  F igure 3.2, the s o l i d  l i n e s  s t a r t  a t  V = 0 w i t h  t h e  value o f  the do t ted  

l i n e  a t  V = 20 v o l t s  and V = 40 v o l t s  respec t ive ly ,  b u t  increase w i t h  

V ( inc reas ing  pr imary cur ren t )  ra ther  than decrease. This  e f f e c t  has 

considerable p r a c t i c a l  importance s ince  the h igher  values o f  the s o l i d  

curves i n  F igure 3.12 t h a t  can be used p r a c t i c a l l y  determine the dynamic 

E 

T T 

E 

range. 

I n  order  t o  understand the increase o f  storage 

capaci ty  w i t h  increas ing input  cur ren t ,  we have t o  remember the f a c t s  

discussed i n  Sect ion 3.1.3,  espec ia l ty  those connected w i t h  F igure 3.6 

and the d iscuss ion o f  the charge dens i ty  p (x) a t  t he  ta rge t  sur face 

(x  = d) and i t s  dependence on the t a r g e t  vo l tage.  

V ) i n  F igure 3.6 cannot go below zero as long as on ly  the reading beam T 

operates. With pr imary cur ren t  app l ied  t o  the ta rge t ,  however, the 

ta rge t  sur face may w e l l  be loaded w i t h  p o s i t i v e  charge and f u l f i l l  i n  

the meantime the cond i t ions  g iven by Equations (3.4), (3.5) ,  and (3.6) 

a f t e r  hav ing been scanned ou t .  I f  t h i s  i s  the case, the amount o f  

p o s i t i v e  charge a t  the  ta rge t  sur face should increase w i t h  increas ing 

pr imary cur ren t  and the center  p o i n t  o f  the negat ive charge-grav i ty  comes 

c loser  t o  the ta rge t  subs t ra te  w i t h  increas ing pr imary cur ren t .  Since 

The curve p ( x  = d, 
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the ta rge t  ga in  must be expected t o  increase w i t h  increas ing negat ive 

charge densi ty ,  the  secondary e lec t rons  are  created more c l o s e l y  t o  the 

ta rge t  subst rate as the input  cu r ren t  i s  increased. The r e s u l t  i s  the 

p o s i t i v e  s lope o f  the s torage capaci ty  curves versus vo l tage excursion 

VE i n  F igure  3 . 1 2 .  

The dependence o f  the s torage capaci ty/area on the 

vo l tage excursion V can be handled i n  a s i m i l a r  fash ion t o  the treatment - 
E 

o f  the d i f f e r e n t i a l  storage capaci ty/area g iven i n  Sect ion 3 .  From such 

a treatment one can deduce the e l e c t r i c  f i e l d  a t  the subst rate,  the charge 

dens i ty  i n  the ta rge t ,  e tc . ,  when a pr imary beam i s  app l ied  t o  the ta rge t .  

This d iscuss ion w i l l  be presented a t  a l a t e r  date.  

3 . 2 . 3  The Dynamic Range 

The dynamlix range o f  the  ta rge t  can be determined 

from the t rans fe r  curve (s igna l  cu r ren t  versus pr imary cu r ren t  dens i ty ) .  

The improvement t h a t  has been achieved becomes espec ia l l y  ev ident  i f  

t rans fe r  c h a r a c t e r i s t i c s  a re  measured a t  l o w  frame ra tes .  I n  F igure  3 . 1 3  

the t r a n s f e r  curve o f  a h igh  capaci ty  ta rge t  i s  compared w i t h  the t rans fe r  

curve o f  a l o w  capac i ty  ta rge t  both measured a t  IO frames/second. 

the po in ts  on the curves ind ica ted  as Ilsmear points", the r e s o l u t i o n  o f  

the tubes s t a r t e d  to  decrease. The t rans fe r  curve o f  the l o w  capaci ty  

ta rge t  tends to sa tu ra te  a t  the  smear po in t ,  w h i l e  t h i s  i s  not the case 

for the h igh  capac i ty  ta rge t .  From Figure 3.13 again the good s e n s i t i v i t y  

A t  

o f  the  h igh  c a c i t y  t a r g e t  i s  seen. 
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I n  order  to compare a h igh  capac i ty  ta rge t  operated 

i n  a normal camera tube w i t h  ta rge t  No. 3 which was operated and 

ex tens ive ly  measured (Section 3.1)  i n  a demountable camera tube, the  

t rans fe r  curve of ta rge t  No. 3, measured a t  30 frames/second in  the 

demountable camera tube, i s  added t o  the t rans fe r  curve o f  the h igh  

capaci ty  ta rge t  i n  F igure  3.14. 

fo r  both measurements. 

The scanned ta rge t  area;was the same 

The readif lg beam cur ren t  of the demountable 

system was l i m i t e d  as ind ica ted  i n  F igure 3.14. The maximum vo l tage 

excursion t h a t  could be readout i n  the demountable tube was V = 2 v o l t .  E 

Since the curves i n  F igure 3.14 are  measured a t  the 

same ta rge t  vo l tage and agree very w e l l ,  we may assume t h a t  both ta rge ts  

have approximately the  same storage capaci ty .  The sur face vo l tage excur- 

s ion  a t  the smear p o i n t  on the  t rans fe r  curve o f  the h igh  capac i ty  ta rge t  

i n  F igure 3.13 can be estimated to  be V = 15 V o l t s .  A conc lus ive 

explanat ion o f  t h i s  l i m i t a t i o n  i s  not  ye t  known; two poss ib le  explana- 

t ions ,  however, can be given. The f i r s t  one i s  the  e l e c t r i c  f i e l d  

E 

dis turbance between suppressor mesh and ta rge t  sur face caused by the  

v a r i a t i o n s  o f  the sur face vo l tage excurs ion which represents the  b r i g h t -  

ness d i s t r i b u t i o n  o f  t he  scene. The second explanat ion might be found 

i n  a poss ib le  leakage cu r ren t  caused by the  e l e c t r i c  f i e l d  p a r a l l e l  t o  

the ta rge t  sur face which represents the br igh tness  grad ien t  i n  the  scene. 

I n  F igure 3.15 the t rans fe r  curve of an SEC camera tube w i t h  h igh  capac i ty  

ta rge t  i s  shown which was measured a t  0.625 frames/second. 

known t h i s  was the f i r s t  t ime t h a t  an SEC camera tube could be operated 

As f a r  as 
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successfu l ly  a t  such low frame ra tes .  

3.2.4 The Storage Time 

A g iven charge d s t r i b u t i o n  i n  the ta rge t  does no t  

n unchanged i n d e f i n i t e l y ,  a lso  f no primary beam o r  scanning reading 

i s  app l ied  t o  the ta rge t .  This f a c t  ind icates tha t  a t  leas t  some o f  

the e lect rons trapped i n  the t a r g e t h a v e a  f i n i t e  l i f e t i m e  i n  the t rapping 

s ta tes .  This l i f e t i m e  l i m i t s  the storage t ime o f  the ta rge t ,  t h a t  i s ,  

the t ime dur ing  which an image can be s tored i n  the ta rge t  wi thout  

s i g n i f i c a n t  d e t e r i o r a t i o n .  I f  two o r  more d i f f e r e n t  processes take place 

t o  release e lect rons out  o f  the t rapping s tates,  more than one character-  

i s t i c  l i f e t i m e  should be observed. However, on ly  the shor tes t  l i f e t i m e  

t h a t  becomes e f f e c t i v e  i s  o f  p r a c t i c a l  i n t e r e s t .  

I n  order t o  measure the l i f e t i m e  o f  the e lect rons 

trapped i n  the t a r g e t ,  the pr imary beam was shut o f f  and the t a r g e t  

was scanned w i t h  the reading beam a t  a given t a r g e t  voltage,V t o  such T '  

an extent  t h a t  no f u r t h e r  charge was accepted; and the vo l tage excursion, 

- therefore,  was zero. The reading beam was then turned o f f  too. A f t e r  the 

t ime t the decrease o f  charge i n  the t a r g e t  was determined by measuring 

the vo l tage excursion V ( t ) .  The r e s u l t s  are p l o t t e d  i n  F igure 3.16 for 

VT = 40 v o l t s .  Since the  t a r g e t  was operated i n  a demountable camera 

tube, measurements cou ld  be made before a n d ' a f t e r  the t a r g e t  had been 

baked. The crosses and c i r c l e s  i n  F igure 3.16 are the measured values 

E 

o f  V (t) w h i l e  the s o l i d  l i n e s  a r e ' c a l c u l a t e d  according to 
E 
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FIGURE 3.16: VOLTAGE EXCURSION CAUSED BY DISCHARGE AS A FUNCTION O F  DISCHARGE 
T I M E  HEASURED W'ITH TARGET No. 3 1N.QEMOUNTABLE CAMERA SYSTEM 
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c 

V E ( t )  = vEf  ( 1  - e -"T) (3.28) 

w i t h  the f i n a l  vo l  tage excurs ion V = V E  ( t  = 00 ) and the 
Ef 

dVE - 1  , 

'Ef t = 0 1 i f e  t ime T = (3.29) 

ad justed to g ive  the best fir. 

l e v e l s  o f f  a t  27 v o l t s .  

iiours a t  150°C, and an add i t i ona l  ten hours bake a t  175OC, the f i n a l  

The curve obtained be fore  baking 

A f t e r  the t a rge t  had beem baked for  ten 

* va lue o f  the vo l tage excurs ion was o n l y  14 v o l t s .  The r e l a t i v e  charge 

associated w i t h  t h e  f i n a l  vo l tage excursion V 

was 0.74 and 0.42 respec t ive ly .  

(3 .29)  36 minutes before baking and 62 minutes a f t e r  baking. 

be fore  and a f t e r  baking 

The l i f e t i m e  was according to  Equation 

E f  

The s igna l  cu r ren t  which i s  caused by the  charge 

loss AQ when the ta rge t  i s  operated w i t h  an a c t i v e  frame t ime Ta and 

a t o t a l  frame t ime T i s  

C i  A 

a 
T 

A Q  'v 
cy 

- I, - - 
Ta 

(3.3 

where A i s  the scanned ta rge t  area. Since f r o m  Equation (3.28) fo  
T 

w i t h  t = T t h a t  

1 ow5 

V 
- Ef T r 

(3.32) 

the s igna l  cur ren t  becomes 

(3.33)  
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Using the values V = 27 v o l t s  and f = 36 minutes 

No. 3 and rep lac ing the in tegrated capaci ty  by the 

Ef of the unbaked ta rge t  

la rge  s igna l  capaci ty  

given in  Figure 3.12 a t  VT = VE = 40 v o l t s ,  we o b t a i n  from Equation (3.33.) 

* s- T 2 AT 4.5 x 10'l2 Amp. 
Ta cm 

(3.34) 

For p r a c t i c a l  t a rge t  areas obv ious ly  t h i s  s igna l  cu r ren t  Is small compared 

t o  the noise i n  any camera system as long as the a c t i v e  frame time Ta i s  

I n  t h e  same order of magnitude as the t o t a l  frame time T. 

3.2.5 The Crossover Voltage 

I t  has%een observed t h a t  the f i r s t  crossover vo l tage 

o f  the h i g h  capaci ty t a r g e t  appears t o  be h igher  than 15 v o l t s  and 

f l u c t u a t e s  when several  h igh  capaci ty  ta rge ts  are compared w i t h  each 

other .  Voltages o f  f i r s t  c r w s o v e r  i n  the range between 20 v o l t s  and 

40 v o l t s  have been measured. This f a c t  permits the vo l tage a t  the 

suppressor mesh to be h igher  than 15 v o l t s .  

vo l tage a t  the suppressor mesh i s  the known improvement o f  the reading 

gun going along w i t h  i t  , I n  order to show an example the square wave 

aperture response curve o f  an e l e c t r o s t a t i c  reading gun i s  presented i n  

The advantage o f  an increased 

4 

Figure 3.17 f o r  d i f f e r e n t  values o f  the mesh vo1tage. 

were made I n  the demountable camera tube mentioned before w i t h  a s u i t a b l e  

The measurements 

metal t e s t  p a t t e r n  pu t  i n  the t a r g e t  plane. The vo l tage .at the t e s t  

p a t t e r n  was 8 v o l t s  i n  order to simulate h igh- l  i g h t  condi t ions i n  a 

camera tube. From Figure 3.17 i t  i s  seen t h a t  the most s i g n i f i c a n t  

increase o f  resolut. ion i s  obtained by increas ing the  suppressor mesh 
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voltage from 20 volts to 30 volts. Since most of the high capacity 

targets have a first crossover voltage exceeding 30 volts, the resolution 

of a camera tube equipped with a low capacity target usually increases 

i f  a high capacity target i s  inserted. 
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4 

4. CONCLUSION 

The storage capac i ty  and therewi th  the  dynamic range o f  the  

SEC t a rge t  has been considerably improved. With the  h igh  capac i ty  

ta rge t  an SEC camera tube could be operated a t  frame ra tes  as low as 

0.625 frames/second, as fa r  as known, f o r  the f i r s t  t ime. The small 

s igna l  ga in  seems t o  be approximately as good as the gain o f  the low 

capaci ty  ta rge t .  A disadvantage o f  the h igh  capac i ty  ta rge t ,  however, 

i s  i t s  l i m i t e d  storage t ime which r e s t r i c t s  the h igh  capac i ty  ta rge t  

t o  app l i ca t i ons  us ing  the continuous scanning opera t ion  o n l y .  
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