Isotopically Pure ^{24}Mg Is Prepared From ^{24}MgO

The problem:
To prepare isotopically pure ^{24}Mg, suitable for use in neutron scattering and polarization experiments. Because of the value of the pure ^{24}MgO starting material, the method used must assure a high product yield.

The solution:
An apparatus (see diagram) which permits thermal reduction of ^{24}MgO with aluminum and CaO, and subsequent vaporization of the product metal in vacuum according to the equation:

$$3\text{MgO} + \text{CaO} + 2\text{Al} \rightarrow 3\text{Mg} + \text{CaO}\cdot\text{Al}_2\text{O}_3$$

How it's done:
The apparatus used for the ^{24}MgO reduction consists of a resistance-heated furnace tube and cap assembly. The tube contains an aluminum oxide crucible for holding the feed charges, tantalum radiation shields, a vacuum chamber, and a water-cooled finger.

(continued overleaf)
shields, a tantalum liner with a vapor guide, and a water-cooled cold finger for collection of the vaporized magnesium.

The charges to the reduction furnace are in the form of pellets prepared from a stoichiometric mixture of ^{24}MgO and CaO together with aluminum in excess of the amount necessary. The pellets are outgassed at 5×10^{-4} torr at a temperature between 600° and 700°C, then heated to 1150°C and held at this temperature for 2 hours to effect ^{24}MgO reduction and product distillation.

Notes:
1. Product yields of ^{24}Mg are reported for 7 runs to be 98.3% (std. dev. $\pm 1.2\%$). Mass spectrometric analyses of product samples showed that the at% of magnesium isotopes to be: ^{24}Mg, 99.91 ± 0.01; ^{25}Mg, 0.06 ± 0.01; ^{26}Mg, 0.03 ± 0.01.
2. Additional details are contained in "Preparation of ^{24}Mg from ^{24}MgO," by N. R. Chellew, R. K. Steunenberg, and J. D. Schilb, Argonne National Laboratory, which was published in *Nuclear Instruments and Methods*, 44 (1966), p. 149–150.

3. Inquiries concerning this innovation may be directed to:
 Office of Industrial Cooperation
 Argonne National Laboratory
 9700 South Cass Avenue
 Argonne, Illinois 60439
 Reference: B68-10293
 Source: N. R. Chellew, R. K. Steunenberg, and J. D. Schilb
 Chemical Engineering Division
 (ARG-10154)

Patent status:
Inquiries about obtaining rights for commercial use of this innovation may be made to:
Mr. George H. Lee, Chief
Chicago Patent Group
U.S. Atomic Energy Commission
Chicago Operations Office
9800 South Cass Avenue
Argonne, Illinois 60439