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THE STABILITY OF ECCENTRICALLY
STIFFENED CIRCULAR CYLINDERS

VOLUME VI

INTERACTION BEHAVIOR

By

G. W. Smith, E. E. Spier,
S. N. Dharmarajan, and L. S. Fossum
General Dynamics Convair Division

San Diego, California

ABSTRACT

This is the last of six volumes, each bearing the same report number,
but dealing with separate problem areas concerning the stability of eccen-
trically stiffened circular cylinders. The complete set of documents was
prepared under NASA Contract NAS8-~11181. This particular volume includes a
digital computer program which determines critical combinations of axial
load (tension or compression) and radial pressure (bursting or crushing).
The theoretical basis for this program is a solution developed by the NASA
Langley Research Center. No consideration is given to the influences of pre-
buckling distortions from the true cylindrical shape. Under the sponsorship
of the NASA Marshall Space Flight Center, the General Dynamics Convair
Division has extended the foregoing theoretical solution to incorporate the
influences of external running shear acting either alone or in combination
with axial load and/or radial pressure. The extended solution is also
presented here. In addition, some discussion is given of the case where
eccentrically stiffened cylinders are subjected to overall bending acting

either alone or in combination with axial load.
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DEFINITION OF SYMBOLS

Symbol Definition

A - Amplitude of buckling displécement component
[see equations (2-12)].

A Cross~sectional area of single ring (no
cylindrical skin included).

A Cross-sectional area of single stringer

{no eylindrical skin included).

A11’A12'A13’

Aoa1 8231453 Parameters defined by equations (2-11).

a Overall length of cylinder.

a Amplitude of buckling displacement component
[see equations (2-18)1].

Bm Amplitude of buckling displacement component
[see equations (2-12)].

bn Amplitude of buckling displacement component
[ see equations (2-18)7.

Cm Amplitude of buckling displacement component
[ see equations (2-12)7.

cn Amplitude of buckling displacement component
[see equations (2-18)7.

Dm Amplitude of buckling displacement component

[see equations (2-12)7.

Preceding page blank ix
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D ,D
x'y

Xy
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DEFINITION OF SYMBOLS
(Continued)

Definition

Bending stiffnesses of basic cylindrical skin in

longitudinal and circumferential directions,
respectively. (For isotropic skins,

D, =D = Et3/12).

Twisting stiffness of basic cylindrical skin
(For isotropic skins, D = 6t3/6).

Stringer spacing.

Young's modulus,

Amplitude of buckling displacement component
[see equations (2-12)7.

Young's modulus for ring.

Young's modulus for stringer.

Extensional stiffnesses of basic cylindrical skin

"in longitudinal and circumferential directions,
respectively. (For isotropic skins, E = Ey =
Amplitude of buckling displacement component

[ see equations (2-12)7.

Modulus of elasticity in shear.

Parameter defined by equation (2-15).

Ring modulus of elasticity in shear.

Stringer modulus of elasticity in shezar.

In-surface shear stiffness of basic cylindrical

skin (For isotropic skins, ny = Gt).
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Symbol

I
o
r

Lol

sl

M ,M M
x'y' xy

N ,N,N
x' 'y’ xy
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DEFINITION OF SYMBOLS
(Continued)
Definition
Moment of inertia of single ring (no cylindrical
skin included) taken about middle surface of bésic
cylindrical skin.
Moment of inertia of single stringer (no cylindrical
skin included) taken about middle surface of basic
cylindrical skin.
Centroidal moment of inertia of single ring (no
cylindrical skin included)
Centroidal moment of inertia of single stringer
(no cjlindrical skin included).
Torsional constant of single ring (no cylindrical
skin included).
Torsional constant of single stringer (no cylindrical
skin included).
Ring spacing.
Bending and twisting stress resultants of basic
cylindrical skin.
Number of axial half-waves in buckle pattern;
summation index.
Normal and in-surface shear stress resultants of

basic cylindrical skin.

xi
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NZI
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DEFINITION OF SYMBOLS
(Continued)
| Definition

Uniformly distributed applied longitudinal
running load acting at the centroid of skin-
stringer combination (positive for compression;
negative for tension).
Peak value of non-uniformly distributed component
of applied longitudinal running load acting at the
centroid of skin-stringer combination [ see equation
(2-17)]; (positive for compression; negative for
tension).
Value of uniformly distributed component of applied
longitudinal running load acting at the centroid of
skin-stringer combination [ see equation (2-17)1;
(positive for compression; negative for tension).

See equation (2-17).

Critical value of uniformly distributed longitudinal
running load ﬁx when acting alone.

Uniform running shear load due to applied overall
external torque acting about axis of revolution.
Uniformly distributed applied circumferential running
load acting at the centroid of the skin-ring com-

bination (positive for compression; negative for tension).

xii
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DEFINITION OF SYMBOLS

(Continued)
Symbol Definition
Ey Critical value of uniformly distributed circum-
° ferential running load ﬁy when acting alone.

n Number of circumferential full-waves in buckle
pattern; summation index.

R Radius to middle surface of basic cylindrical skin.

R Ratio of applied axial loading (ﬁx) to the critical
value of axial loading when acting alone (ﬁ# )

Ry Ratio of applied circumferential loading (ﬁy? to the

| critical value of circumferential loading when acting
alone (N_ ).
Yo

R1 or R2 Ratio of an applied load (or stress) to the critical
value for that type of load (or stress) when acting
alone.

t Thickness of basic cylindrical skin.

Uy VoW Displacements in the x, y, and z directions,
respectively, of a point in middle surface of basic
cylindrical skin.

;, ;, w Amplitudes of buckling displacements [ see equations
(2-9)].

Xy¥12Z Longitudinaiﬂcircumferential,and radial directions,
respectively.

;r Distance from centroid of ring (no basic cylindrical skin

included) to middle surface of basic cylindrical skin

(positive for external rings; negative for internal rings).

xiii

GENERAL DYNAMICS CONVAIR DIVISION



Symbol

L

Axial

Bend
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DEFINITION OF SYMBOLS
(Continued)

Definition
Distance from centroid of stringer (no basic
cylindrical skin included) to middle surface of
basic cylindrical skin (positive for external
stringers; negative for internal stringérs).
Knock~down factor for circular cylinder subjected
to pure axial load (see Volume V).
Knock-down factor for circular cylinder subjected
to pure bending (see Volume V),
Quantity defined by eguations (2-21).
Quantity defined by equations (2-18).

Strains at middle surface of basic cvlindrical skin.

Longitudinal strain of stringer.
Circumferential strain of ring.

Poisson's ratio (For isotropic material).

Poisson's ratios for bending of orthotropic skin in
longitudinal and circumferential directions,
respectively (For isotropic skins,

4 ’ )
By =By =W =B =)l

Poisson's ratios for extension of orthotropic skin

"in longitudinal and circumferential directions,

respectively. (For isotropic skins,

By = By v o= uy’ =u ).

Total change (due to buckling displacements) in
potential energy of loaded stiffened cylinder (iAlso
used as conventional notatinn for the constant
3.14 --=).

Change (due to buckling displacements) in strain

energy of basic cylindriéal skin,

xiv
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DEFINITION OF SYMBOLS

(Continued)
Symbol . Definition
Ty Change (due to buckling displacements) in
potential energy of external loading.
T Change (due to buckling displacements) in

strain energy of rings.
n Change (due to buckling displacements) in strain
energy of stringers.,

Or Critical buckling stress

NOTE: A subscript preceded by a comma denotes partial differentiation

with respect to the subscript variable. For example,

w _ azw
‘xy Bxay '

Xv
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SECTION 1
INTRODUCTION

For isotropic cylinders that are subjected to combined external
loads, it is customary to represent the eritical loading combinations
by means of so-called interaction curves. Figure 1 shows the graphical

format usually employed for this purpose.

1.0"

|

R1 1.0

Figure 1 - Sample Interaction Curve
for Isotropic Cylinders

The quantity R1 is the ratio of an applied load or stress to the critical
value for that type of loading when acting alone. The quantity R2 is
similarly defined for a second type of loading. Curves of this type give

a very clear picture as to the structural integrity of particular configura-
tions. All computed points which fall within the area bounded by the inter-
action curve and the coordinate axes correspond to stable structures. All
points lying outside this region indicate that buckling will occur. Further-
more, a measure of the margin of safety is given by the ratio of distances
from the calculated point to the curve and the origin. In view of the

history of satisfactory experience with this type of curve in the design

1-1
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and analysis of isotropic cylinders, it is quite natural to consider the
application of this concept to eccentrically stiffened cylinders that

are subjected to combined loads. However, whereas the behavior of isotropic
cylinders can be adequately covered by a single curve for each two-~load
combination, the findings reported in this volume show that a multipljcity
of curves is required for each two-load combination applied to eccentrically
stiffened circular cylinders. This complexity arises out of the greater
number of independent variables required to describe the-physical features
of the latter configurations. To keep the number of such curves within
reasonable bounds, one must resort to simplifications which result, of
course, in a loss of rigor. However, sufficient accuracy can be retained

to make such curves useful for initial sizing, rough checking, and the study
of trends. For the purposes of a final design, more refined values would

be required. In general, these can only be obtained as single-point solutions

from digital computer programs.

1-2
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SECTION 2

IKQUATIONS
2,1 COMBINIED AXIAL LUAD AND RADIAL PRESSURE

The theoretical solution by Block, Card, and Mikulas (1] provides
a suitable means for the stability analysis of eccentricaily stiffened
circular cylinders that are subjected to combined axial load (tension or
compression) and radial pressure (bursting or crushing). This solution
has been verified through the rederivation of reference 2. In general, the
development by Block, et al., [17 was accomplished by the application of
variational techniques to establish bifurcation points (see Volume I [3})
along an initially linear equilibrium path. This was achieved by first
'formulating expressions for the changes in strain energy due to the buckling

displacements. For the basic cylindrical skin this increment was expressed

as follows:

2nR a
1
. = 2.1 j- (Nxex + nyny + Nyey - wa,xx
0 0 (2.1)
+ 2M w - Mw ) dx dy
XY XYy Y oYY

where

= Stress resultants of basic cylindrical skin.

[y]

[y]
-
=<

#

Strains at middle surface of basic c¢ylindrical
skin.

7 = Change (due to buckling displacements) in
strain energy of basic cylindrical skin.

= Longitudinal direction.

Circumferential direction.

= Cylinder radius.

»p T4 X
i

= Overall length of cylinder.

Numbers in brackets [ 1] in the text denote referenceslisted in SECTION 6.
2-~1
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The manner in which Block, et al Cl] formulate the stress resultants
facilitates analysis where the basic cylindrical skins themselves have
orthotropic properties. Proceding then to the longitudinal stiffeners,

their change in strain energy was expressed as follows:

27R a E sz
1 S Xg Gst 2
g =5f f f s dA_ + =3 ¥ oy dxdy (2-2
0 0 A
s
where
7 = Change (due to buckling displacements) in strain
s . . .
energy of longitudinal stiffeners.
AS = Cross-sectional area of longitudinal stiffener (no
cylindrical skin included).
c = Longitudinal strain of longitudinal stiffener.
s
d = Stringer spacing.
GS = Shear modulus of longitudinal stiffener,
Js = Torsional constant of longitudinal stiffener,
w = Radial displacement.

The change in strain energy of the circumferential stiffeners was found

from
2 v
E
N 2rR a rcyr GrJr 5
“r='2'f f f T dA, + —pw | axdy (2-3)
0 0 A
r
where
£ = Ring spacing
r = Subscript denoting ring (circumferential stiffener

not including any cylindrical skin).

2-2
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The change in the potential energy of the external loading was taken as

a
Nw, “ +2N w, w, + Nw, dx dy (2-4)
X X Xy X 'y Yy v

0

where '
Change (due to buckling displacements) in potential
energy of external loading.

e

ﬁx = Applied running axial load.

¥ = Applied running hoop load,

Y

ny = Applied running in-surface shear load.

ilthough this expression includes the applied running shear load ﬁxy’
,Block, et al. [11 later set this term equal to zero so that their final
equation applies only to the case of applied axial load and/or applied
radial pressure.

By making use of equations (2-1) through (2-4), the total potential

energy of the system was expressed as follows:

(2-5)

The next step was to employ the principle of stationary potential energy
(see Volume I [3])to arrive at the following set of equilibrium equations

in terms of the buckling displacements u, v, and w:

Ex ESA _
u’ + (u, - 2 W,

1 - ! XX d XX 8 XXX |

ux y

¥ e w,x
b o—X v, + ~== 14+ G u, + vV, = 0 A . (2-8)

1ap tp ! xy R xy\ 'yy xy
XYy

2-3
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E W{X, ErAr zlx -
T\ YR T T Ty TR T Ay

p 'E
x = -
T BBy Txy ny'(u’xy ' v'xX) =0 (2-7)
Tt T Mo (T ¢ By T e
E I
D r o E
Y r v ' .
’ + v
1- uxuy " w’yyyy R(1 - p,x'uy|) (ux usy V,y + R)

+N W, + 2N_ w, + N W, =0 (2-8)
x XX Xy 'xy Yy 'yy
Block, et al. {17 then obtained a solution to these equations by assuming
boundary conditions of classical simple support and the following set of

buckling displacement functions:

- mnx n
U = U ¢cos —= cos y
a R
(2-9)
- . mnx n
v = v sin —= sin LA
a R

W = W sin =——

g

¥
5
1]

=2

where
m = Number of longitudinai half-waves in buckle pattern.
n = Number of circumferential full-waves in the buckle

pattern,

2-4
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By substituting equations (2-9) into the equilibrium equations, it can
be observed that the existence of non~trivial buckling displacements
requires that a certain determinant vanish. This condition reduces to

the stability equation

2] -
o \2 = n\2 = Aofaz=d3%00
mE) § (2 N = A + A
a x R y 33 A A a4 2 13
117227 %12
(2-10)
. A12M374 % N
L a4 4 2 1923
211%227 %12

where the Aij's are functions of the material properties, the geometry
of the cylinder, and the shape of the buckle pattern. In particular,these

quantities can be expressed as follows:

E E A 2 2
A - x , 88 (El) N (%)
11~ w8 d a Xy
-, ny
' E
[Py Tx m 2)
Al?‘ - 1 - 1y o * ny (a )(R (2-11)
Pty
| B " nJ
\ 1 ux hx me | LsAs 7 (mm 3
13 "Ry, _ et a d s\a
Hy By
- 2=5
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mn 2 Ey EI‘AI‘ n °
A2 = Gy ('5') T Y ('ﬁ)
1 - ux v.y )
(2-11)
p 3 - Zont'd
E E A E A
A = 1 Y + r Ry rr(n
23 1 - et £ R L r\R
By 'y
D "sTo\ /. \* [ 2uD GJ_ GJ 2 2
A33 = 1 - + d (—;) -i-——u— + 2D + 3 + ; (Xﬂ)(a)
Exty Bk Xy a /\R
E 1
E A E A
. Do ro, (2)4+_1.- Ey +:r+2;r;_rﬁ
l - uxuy 1 R R2 1 - “x'“y' r RS

Note that the foregoing Aij's are not the elastic constants defined in
Volume I [37 and used elsewhere throughout this multiple~-volume report.
Equation (2-10) is the fundamental buckling criterion that emerges
from the derivation of Block, et al. [17. It should be observed that this
equation does nothing more than establish Ex and ﬁy values which are capable
of maintaining the cylinder in deformed configurations which correspond to
particular numbers of longitudinal half-waves m and circumferential full
waves n . Calling upon the bifurcation concept discussed in Volume I -31,
it follows that the critical buckling loads can be established by exploring
the possible deformed equilibrium configurations for a minimum load condition.
The digital computer program of 3ECTION 5 makes use of equation (2-10) in
precisely this manner. Through the input, the analyst prescribes the ranges
of m and n to be explored. The machine then computes the ﬁx or ﬁy values
corresponding to each included m-n combination and prints out the lowermost

load encountered. Further refinement to this program could easily be

2-6
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accomplished to eliminate the prior judgements required of the user in
selecting appropriate ranges of m and n to be screened.

dlthough the foregoing solution can be considered suitable for the
purposes of final design, it is not intended that the reader interpret
this to mean thut equation (2=10) is perfectly rigorous. At best, it re-
prescnts a state~of~the~art operational capability in a rapidly changing
technology. For one thing, it should be noted that this solution is based
on small-deflection theory., Hence, the theoretical results obtained from
equation (2-10) must be reduced by appropriate knock~down factors (see
Volume V [4])to account for the detrimental effects of initial imperfections.
Furthermore, the subject solution is based upon the complete neglect of non-
eylindrical pre-buckling distortions which can be extremely important where
- pressure differentials exist across the shell wall. End and ring restraint
to Poisson's~-ratio hoop growth further contribute to this type of pre-
buckling deformation. It should also be observed that the solution of Block,
et al.[1] is primarily based upon monocoque shell theory and its application
to discretely stiffened cylinders is achieved by the conventional smearing-
out technique. For this purpose, the stiffnesses of the discrete component
members are averaged over the entire shell surface to obtain an equivalent
monocoque analysis model. In view of this, it might sometimes be wise to
consider the introduction of modified component section properties to arrive
at true equivalence. Influences from such sources as shear lag, stiffener
attachment techniques, etc. might be reflected into the analysis by such
modifications., Finally, it should be noted that the solution of Block et al.
(1] is based upon Donnell-type simplifications which render the results
invalid for non-axisymmetric buckle patterns having a small number of cir-
cuﬁferential waves, The rule-~of-thumb guideline is offered here that this

solution be considered inapplicable for cases where O < n < 2,
2.2 COMBINED AXIAL LOAD, RADIAL PRESSURE, AND RUNNING SHEAR

To analyze this case of combined loading, the theoretical solution of
reference 2 may be used. This solution constitutes an extension to the
theory of Block, et al. tl] which is discussed in SECTION 2.1 above. To
accomplish this extension, use was made of the same equilibrium equations

as were employed by Block, et al. These expressions are given above as

2.7
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equations (2-6), (2-7), and (2-8)., Then, unlike the derivation of reference
1, the ﬁxy term was retained throughout all of the subsequent mathematical
operations. The presence of this additional term made it necessary to
introduce displacement functions which differ from those expressed as

equations (2-9). 1In particular, the following formulations were selected:

“ N
o
R\ 4 mnX ny mrXx
u = sin R Am coSs . + CcOS8 R E Em cos =
m=1,3,~~ m=2,4,---
«© o0
v = cos P.IE B sin EX | sin EX-Z F sin 2EX (2-12)
R m a R m a
m=1,3,-~- =2, 4y ==
[ ] [ ]
- ny . mmXx ny s MLX
w = sin C,m sin == + cos [ Dm sin =3
m=1’3,“'— m=2.4,_—

These equations satisfy the boundary conditions of classical simple
support. By substituting equations (2-12) into the equilibrium equations

and by applying the Galerkin method [5], one can obtain the following set
of homogeneous equations [2]:

=] @x
a - aN 2 ~mp__ - = —— -]
22 Gm) € 6 - 4N RZ 5> D =0 (p=1,3,5---) (2-13
m=1,3,-- m=2,4,-- F 0
had @
a '+ aN 4 P - - -— -
22 Glm) D5+ 4N Rz FB— C =0 (p = 2,4,6,---) (2-14
m=2,4"’- m-“-l,:’),-" p -m
2-8
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where

A
Glm) = A - 2311723 7 715712

- A13890 - A122
- N (M)z - N (5‘-)2 (2-15)
x\a y\R
and
o] =1 if p=m
pm (2-16)
Bop = O if pem

The Aij‘s of equation (2-15) are the same quantities as were previously
defined by equations (2-11).

Equations (2-13) through (2-16) furnish a theorctical basis for com-
puting the buckling loads of eccentricaliy stiffened circular cylinders
which are subjected to combined axial load and/or radial pressure and/or
running shear. It should be noted that these relatively compact equations
actually represent an infinite system of homogeneous algebraic equations
and, from a practical standpoint, one must rely upon a digital computer to
obtain numerical results. A typical application might involve the com-
putation of a critical ﬁxy in the presence of given ﬁx_and ﬁ; loadings. The
desired critical value would be the lowest eigenvalue ny for the determinant
of the coefficients for Cm and Dm' In general, the larger the selected
determinant, the better is the accuracy but the greater is the computational
effort (computer machine-time).

No digital computer program is furnished here to implement the fore-
going analysis method. It is therefore recommended that such a program be
developed in the near future. Note however that, since the above results
constitute an extension to the basic development of Block et al. [1], all
of the limitations cited in SECTION 2,1 apply here as well.

2.3 COMBINED AXIAL LOAD AND OVERALL BENDING
In order to properly understand the state-of-the-art relative to this-
combined loading condition, it is helpful to first consider the current

status for stiffened cylinders subjected only to pure bending. To begin with,

, 2-9
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it is pointed out that some disagreement exists among the recently

published documents concerning this problem. On the one hand, the
theoretical results of reference 6 indicate that the critical stresses

for orthotropic cylinders under pure bending are equal to the critical
values for pure axial compression. This is contrary to the findings of
Hedgepeth and Hall [7] for a particular corrugated cylinder having in-
ternal rings. For pure bending, these theoretical results show a buckling
streés which is approximately 1.23 times the buckling stress under uniform
axial loading. S5till another theoretical development was recently published
by Block [8) which similarly shows differences between the critical stresses
for the two subject loading conditions. The theory developed by Block L8]
is an extension to the basic approach of reference 1. The same governing
differential equations of equilibrium were employed. These expressions are
given above as equations (2-6), (2-7), and (2-8). The values ﬁxy and ﬁ& were

each set equal to zero and Nx was expressed in a form equivalent to
-— _ -~ -~ x -
(Nx> =N +N_cos % (2-17)
c+b

This permits consideration of overall bending acting either alone or in

combination with uniform axial loading ﬁ% « The quantity ﬁ; is the peak
c ' b
running compressive loading due to the overall bending moment. In the

solution of reference 8, the following expressions were used to describe

the buckling displacements u, v, and w:

=»
u = cos ?2 c, cos ERx
n=0
o
iy BEX . ny
v = sin = Z b sin 3 (2-18)
n=0
x
C i BEX ny
w = sin = g a_ cos 3
n=
2-10
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By substituting these functions into the equilibrium equations and

applying the Galerkin method [5], Block obtained the following final
expressions: B

®*n (Fn - Nxc> =2 |\! *bin - bOn) S an+1] =0 (2-18)
where
a |2 Ayodyz = Ayy455 Ayohos = Apshs,
F = = A + A - B IO i — ; (2-20)
n mn 33 23 A A - A 2 13 A A - A 2
11722 12 11722 12
and
n= 0,1,2,3,.-.
6, =1 if (j = n)
J (2-21)
6jn=0 if (j # n)

The Aij's of equation (2-20) are the same quantities as were-previously
defined by equations (2-11).

Just as in the combined loading analysis cited in SECTION 2,2 above, the
relatively compact equations (2-19) through (2-21) actually represent an
infinite system of homogeneous algebraic equations. Here again, from a
practical standpoint, one must rely upon a digital computer to establish
numerical values for the critical loadings. As before, the size of the
selected system of equations will determine the accuracy obtained and the
computational effort (computer machine-time) required.

The basic nature of.the numerical techniques involved in the application
of equations (2-13) through (2-16) is the same as that associated with
equations (2-19) through (2-21). To understand the fundamental approach,
the latter set of equations will be further discussed. In this connection,
it should be recalled that a set of homogeneous algebraic equations can
have a nontrivial solution if, and only if, the determinant of the coefficients

equals zero. Hence, in the case of equations (2-19) fhrough (2-21), one

2-11
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might first assemble the determinant of the coefficients for the ai's.
This determinant could then be expanded and set equal to zero to obtain
a polynomial equation in which, for given m and n values, either ﬁ;

or ﬁ; is the only unknown. For any single m-n combination, the ¢

b
lowermost root of this equation could then be computed. Such computations

might be repeated for all possible m-n combinations. The critical loading
would be the lowermost value encountered in this screening type of operation.
Although this procedure is relatively simple in concept, it is often quite
difficult to actually determine the lowermost roots of the polynomial
equations, particularly when the size of the selected determinant is large.
Therefore, mathematicians have devised a number of numerical schemes to
extract these roots (eigenvalues) from the determinantal equation. Most
computer laboratories have on-the-shelf sub-routines to perform such
operations and they will not be discussed any further here.

Following his derivation of equations (2-19) through (2-21), Block [8]
then computed some sample results for three contemporary types of eccentrically
stiffened circular cylinders: ring~-stiffened corrugated cylinders, ring-and-
stringer-stiffened cylinders, and longitudinally (stringer) stiffened
cylinders. Like the results given in reference 7, Block [87 obtained
different critical stresses for the separate cases of pure axial load and
pure bending moment. The ratios of

Pure Bending ¢
cr

Pure Compression acr

ranged from 1.013 up to 1.397.

To place the contents of this particular section in a proper perspective,
it might be noted here that the historical development of isotropic
cylinder theory likewise involved some controversy as to the relative
theoretical strengths for the separate cases of pure axial load and pure

bending moment. An analysis presented in references 9 and 10 indicated that,
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for an assumed buckle waveform, the critical stress for isotropic cylinders
under pure bending was 1.3 times the critical stress for pure compression.
This calculation was cited by Timoshenko fll] without a qualifying statement
as to the assumed buckle wavelength. Because test data seeﬁed to substantiate
the existence of such an increase, the 1.3 factor was used for decades as

a generally applicable value. However, the small-deflection analysis of
reference 12 recently revealed that the ratio of critical bending and
compression stresses can vary widely with longitudinal wavelengths and

that properly minimized results show that the correct ratioc is essentially
equal to unity. The apparent increase of bending strength over compressive
strength indicated by isotropic test data can only be explained by a
consideration of the sensitivity to initial imperfections. For axially

" compressed isotropic cylinders these defects result in a severe reduction

of actual strengths below classical theoretical values. Since, under pure
bending, only a small portion of the cylinder's circumference experiences
the peak stresses which initiate buckling, there is a statistical influence
from the probability for defects to exist within this restricted region of
the overall shell wall. As a result, it is reasonable to expect that, under
pure bending, actual reductions below c¢lassical theoretical values will not
be as severe as those for pure axial compression.

In view of all the factors cited in this section concerning the inter-
action behavior of stiffened cylinders and isotropic cylinders, it appears
that, to facilitate the practical design and analysis of stiffened con-
figurations, one might choose between the following two alternatives for
cases of overall bending acting either alone or in combination with axial
load: |

(a) Assume that the theoretical critical stresses are the same
for the separate cases of pure bending and pure axial
compression. The only differences between allowable levels
for these two cases would then result from the application

of knock-down factors (see Volume V [4]) which recognize

2-13
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differences in the probabilities for initial imperfections
to coincide with peak stress locations. The related inter-
action curve would simply be taken as the straight line
which intercepts the horizontal and vertical coordinate
axes at values of unity.

(b) Obtain theoretical critical loadings from digital computer
solutions based on the formulation of Block [8]. As noted
earlier, this solution gives different critical stresses
fdr the separate cases of pure bending and pure axial com=-
pression. Here again, knock-down factors would be applied
using the criteria of Volume v[4]. These factors would
further accentuate the differences between pure bending and
pure compression. To be structurally sound, a given con-

figuration must be capable of supporting the loading com-

bination

Design Nx Design Nx

c . b
1
rAxial l“Bend
where

rAxial = Knock~-down factor for circular
cylinder subjected to pure axial
load (see Volume V [4]).

PBend = Knock~-down factor for circular

cylinder subjected to pure

bending (see Volume V [4]).
The recommendation of this volume is that alternative (b) be followed.
However, no digital computer program is furnished here to implement this
recommendation. Furthermore, note that, since the subject formulation of
Block fs] constitutes an extension to the basic approach of reference 1,
most of the limitations cited in SECTION 2.1 apply here as well., Only those
limitations related solely to the presence of pressure differentialg are

inapplicable to the case under discussion.
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SECTION 3
PARAMETRIC STUDIES

In order to observe some of the trends of interaction behavior for
eccentrically stiffened circular cylinders, several studies were conducted
for the case of combined axial load and radial pressure. Both of the
following combinations were considered:

(a) Axial compression plus radial crushing pressure.

(b) Axial compression plus radial bursting pressure.

These investigations were performed by using the digital computer program

of SECTION 5. As notéd earlier, this program is based on the theoretical
solution of Block, et al. [1]. It should be recalled that this solution
completely neglects the effects of non-cylindrical pre-buckling deformations
such as arise out of the presence of pressure differentials and discrete
stiffeners. Localized restraint to Poisson's ratio hoop growth likewise con-
tributes to these discontinuity-type deformations. These two influences

are likely to be quite important for all stiffened configurations except those
where the stiffeners are very closely spaced.

The configurations studied here may be described in terms of the various
input values to the digital computer program of SECTION 5. In particular,

these are as follows:

Configuration 1:

R = Cylinder Radius = 38.6 in.

a = Overall Length = 72 in.

d = Stringer Spacing = 2,48 in.

/ = Ring Spacing = 6.00 in.

Ex = 1.5x106 ibs/in. Ey = 2x106 ibs/in.
Dx = 250 &b-in. Dy = 300 lb-in.
Goy = 2x10° psi D, = 182.25 lb-in.
px‘ = 0.25 uy' = 0,35

L = 0,30 6 uy = 0,40 .

Es = 30x106 psi ~Er = 25x106 psi.
GS = 12x10° psi. Gr = 10x10° psi.
As = 0,020 sq. in. Ar = 0.040 sq. in.

3=1
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I = 0,005 in.* I = 0.010 in.*
OS r
.4 . . 4
J 4 0.004’ lno J = 0.006 ln.
5 r
zs = 0 zr = 0

Configuration 2:

Same as Configuration 1 except that

£ = Ring Spacing = 0.5 in.

Configuration 3:

Same as Configuration 1 except that

{ = Ring Spacing = 72 in.

Note that the eccentricity values for the above configurations are ail

taken equal to zero which means that the stiffener centroids are located

in the middle surface of the basic cylindrical skin. To provide some insight
into the influences from non-zero eccentricities, the following configurations

were also included in the study:

Configuration 4:

Same as Configuration 1 except that

z = 0,50 in. and z_ = 0.75 in.
s r

Configuration 5:

Same as Configuration 3 except that

Z = 0,50 in. and z_ = 0.75 in.
S r

Various critical combinations of applied axial compression (ﬁx) and
applied radial compression (Ny) were determined for each of the preceding
configurations so that interaction curves could be plotted. The results
are tabulated in Table I and are plotted in Figure 2 where the appropriate
configuration numbers are shown in parentheses. The quantity Rx is the
ratio of applied axial loading (ﬁ;) to the critical value of axial loading
when acting alone N% ) and the quantity Ry is the ratio of applied cir-

cumferential loading ° (ﬁy) to the critical.value of circumferential loading
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when acting alone (ﬁ& ). Observe that the interaction relationships
o

cannot be expressed by a single curve. Even in the absence of eccen-
tricities (configurations 1, 2, and 3), variationé in the basic geometry
led to different curves. The introduction of non~zero eccenfricities
resulted in further complication in that still a greater number of curves
then emerged. '

To study the combination of axial compression acting along with‘radial
bursting pressure, solutions were obtained for the same five configurations
as cited above, These results are tabulated in Table II and are plotted in
Figure 3 where, once again, the appropriate configuration designations are
shown in parentheses. The circumferential tensile loading due to internal
pressure is shown nondimensionally in terms of the circumferential critical
‘compressive loading N + Here too,it can be seen that variations in the

basic geometry (includiﬁg eccentricity values) lead to different interaction

curves,

3-3
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TABLE 1

Calculated Data for Interaction

Example Configurations - Axial

Compression and External Radial Pressure

N N
N —
- - N N
CONFIGU- N N m n Y, x
RATION y X °
1 0 7868 4 7 0 1
309 7452 3 7 .25 .947
567 5901 1 5 . 459 .75
619 5450 1 5 .50 .693
791 3934 1 5 .639 .50
928 2725 1 5 .75 .346
1014 1967 1 5 .820 .25
1237 0 1 5 1 0
2 O 19157 5 5 [0) 1
1761 14536 5 5 .25 .959
3521 13915 5 5 .50 .918
4983 11368 1 3 .708 .75
5282 2931 1 4 .75 .655
5699 7579 1 4 .809 .50
6371 3789 1 4 .905 .25
7042 0 1 4 1 0
3 0 4089 1 6 0. 1
62 3282 1 7 .25 .803
74 3066 1 7 .301 .75
124 2215 1 7 .50 .542
185 1148 1 7 .75 .281
193 1022 1 7 . 780 .25
219 560 1 7 .888 137
247 0 1 8 1 0
3-4
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TABLE I
(Continued)

Calculated Data for

Interaction Example Configurations -

Axial Compression and External

Radial Pressure

N N
— .
CONFIGU- N N m n N N
RATION Y x Yo %o
4 0 8347 3 7 0 1
266 7396 1 5 .25 .886
395 6260 1 5 .371 .75
533 5049 1 5 .50 .605
632 4174 1 5 .593 .50
799 2701 1 5 .75 .324
868 2086 1 5 .816 .25
1065 0 1 6 1 0
5 0 4301 1 6 0 1
62 3405 1 7 .25 .792
125 2326 1 7 .50 .541
187 1247 1 7 .75 .290
225 564 1 8 .90 .131
250 0 1 8 1 0
3-5
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Figure 2 - Stability Interaction Results for
Combined Axial Compression and
External Radial Pressure

3~-6
GENERAL DYNAMICS CONVAIR DIVISION



GDG-DDG-67~006

TABLE 11

Calculated Data for Interaction
Example Configurations -~ Axial
Compression and Internal Radial Pressure

N N
B A .
CONFIGU- N N m n N N
RATION y x Yo *o
1 1237 0 1 5 1 0
0 7868 4 7 0 1
-309 8202 4 7 -.25 1.042
-518 8535 4 7 -.50 1.085
-1237 9189 a 6 -1 1.168
-2474 10,071 5 7 -2 1.280
-1948 11,339 5 6 -4 1.441
-12369 13,809 6 5 -10 1.755
2 7042 o 1 4 1 o
0 15,157 5 5 0 1
-1761 15,665 6 5 -.25 1.034
-3521 16,006 6 5 -.50 1.062
-7042 16,958 6 5 -1 1.119
~14085 18,245 7 4 -2 1.204
-28170 19,866 7 4 -1 1.311
-70424 22,989 9 3 -10 1.517
3 247 0 1 8 1 0
0 4089 1 6 0 1
-62 4569 2 8 -.25 1.118
-124 4917 2 8 -.50 1.203
-247 5427 3 8 -1 1.327
~494 6046 3 8 -2 1.479
-988 7033 4 8 -4 1.720
-2470 8868 4 7 -10 2,196
3-7
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TABLE 11
(Continued)

Calculated Data for Interaction
Example Configurations -~ Axial.
Compression and Internal Radial Pressure

N N
—_— —_
CONFIGU- N N m n N N
RATION y x Y, x
4 1065 0 1 6 1 0
o 8347 3 7 0 1
- 266 8661 4 7 -.25 1.038
- 533 8948 4 7 -.50 1.072
-1065 9523 4 7 -1 1.141
-2131 10,2635 5 7 -2 1.230
-4262 11,303 6 6 -4 1.354
-10654 13,117 7 5 -10 1.571
5 250 0 1 8 1 0
0 4301 1 6 0 1
-~ 62 4938 2 8 -.25 1.148
- 125 5290 2. 8 ~.50 1.230
- 250 5848 3 8 -1 1.360
- 500 6474 3 8 -2 1.505
- 1000 7360 4 8 -4 1.711
- 2499 8947 5 7 -10 2.080
3-8
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SECTION 4
DESIGN CURVES

2.1  FIRST APPROXIMATIONS

From the contents of the foregoing sections, it can be readily ap-
preciated that rather complex computations are required before one can
plot accurate interaction curves for eccentrically stiffened circular
cylinders. Therefore, in the early stages of design, it might often be
helpful to make crude estimates of the true interaction behavior. For
cases of

(a) Axial compression plus radial crushing pressure

(b) Axial compression plus overall bending

{(c) Axial compression plus in-surface shear (ﬁ;y)

(d) Overall bending plus in-surface shear (ﬁ;y)

the simple straight-line plot of Figure 4 could be used for such purposes.
The parametric studies of SECTION 3 and reference 8 tend to indicate that
this crude approximation would give conservative estimates for combinations
(a) and (b), respectively. In addition, the limited test data of reference

- 13 indicate similar conservatism for combination (d).

4.2 IMPROVED APPROXIMATIONS

In order to obtain improved accuracy over that afforded by Figure 4,
one could make use of standard dimensional analysis concepts to arrive at
approximate interaction curves for eccentrically stiffened cylinders. To
understand the approach which might be taken in this connection, a discussion
is given here for the particular case of axial compression acting in com-
bination with radial crushing pressure. For this case, one can apply the
theoretical solution of Block et al. [1]. The major difficulty encountered
in attempting to develop related interaction curves arises oﬁt of the large
number of independent variables required for the description of particular
configurations. From equations (2-10) and (2-11), it can be seen that,
for cylinders made of a single isotropic material, the interaction behavior

is a function of the following:
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j For proportional increases in RIIE
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Figure 4 - First-Approximation Interaction Design Curve
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N (A_zd) R
x s 7
Ny (Ar/l) | a
E (IOS/d) t
G (xor/z) Z,
B (Js/d) Er
(Jr/z)

As a first step toward practical simplification of the inherent difficulties,
it is reasonable to take p = .30 for all cases. One can then employ the

relationship

¢ = 3oy (4-1)
to express G in terms of K. Furthermore, for many structures, the
torsional constants JS and Jr will not play very significant roles. There-
fore, in the interest of simplicity, one might choose to set both of these
values equal to zero. In fact, this is probably a prudent practice even
where simplification is not an objective.

As a result of the several foregoing considerations, the array of

variables involved in the interaction analysis reduces to the following:

ﬁ; (As/d) a

Ny | (Ar/z) t

o (Io /d) z,
S

R (Ior/z) z,

For added convenience, note that the ratios (Io /d) and (Io /Z) can be
s r
rewritten as

4-3

GENERAL DYNAMICS CONVAIR DIVISION



GDC-DDG~67-006

;)

I A
—r_ &, rfz
[ 2 / L ( r)

| °
o
1
4]
gy
>
AN
N

+ *S
d

(4-2)

where,
fs = Centroidal moment of inertia of single stringer (no
basic cylindrical skin included).
T} = Centroidal moment of inertia of single ring (no basic

cylindrical skin included).
Because of these relationships, the above list of relevant variables can

be revised to the following:

Nx (a_/a) a

ﬁy (A /t) t
| E (T_sa) z

R (T /) z

At this point it becomes helpful to apply the Buckingham Pi Theoren [14]
which constitutes the primary dimensional analysis concept of interest to
the present discussion. For this purpose it is first noted that the above
reduced listing includes 12 variables which only involve the two basic
dimensions of force and length (pounds and inches, for examnle). Frow the
Buckingham Pi Theorem,it therefore follows that the interaction behavior
can be expressed in terms of 10 ( = 12~2) dimensionless ratios which may be

chosen as

4-4
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()

Thus the critical value for (ﬁy/ER) can be expressed as follows:

N N A AT I z_ z
Xj_p |xXx, & s r s r R s _r (4-3)
ER/ - "1 |ER’* R ' dR ' 4R’ dR3 ' £R3 *t ' R R} -

One can then proceed by introducing the guantities Nx and N where

o o
Nx = Critical value of axial compressive loading when
o .
acting alone.
Ny = Critical value of circumferential compressive loading
0

when acting alone.

Simple algebraic operations then lead to the following result:

N A, A T I z_ =
— _fz_.x_,%,a%’z_%,g_,_ng’%’%,% (2-4)
Ny Nx dR:S LR
(Y o N
4-5
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Note that the number of relevant variables is still unwieldy for the

plotting of design curves. However, for selectedrvalues of the ratios

®)(2):(3) ()

it should be possible to select reasonable, practical magnitudes for the

remaining ratios, Approximate interaction curves could then be plotted
which would provide more realistic preliminary estimates than can be
obtained from Figure 4. Such procedures were followed in the development
of the curves given in Figure 5. These plots are furnished here only as
examples of what might be accomplished along these lines. Within the scope
of the investigation covered by this volume, it did not prove possible to
refine this approach to a sufficient degree to obtain practical curves for
direct application to actual structures. Some of the values selected in
the generation of these curves resulted in rather unrealistic situations.
Nevertheless,the plots do demonstrate an approach which ﬁight be further
developed in the future. Such development should include further study

to arrive at reasonable practical ratio values. 1In addition, additional

consideration might be given to alternative formats for the data presentation.
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R/t = 35000

Stringers Outside, Frames Inside

bt
[}
»
o
(4}
"
\l
E
4]
-
et
[
3
[« o)

100" 'l'lll»ll—lllllll—
SSas T; 7 i
3 = 7.5x10° " 1
. LR , .
LA
‘8 R v | [~ s - ?O(l,
.y
A
4 N~
=N N\
\
X N\
16 b f AN
- r -7
N — = 2,0x10 \
—_——:L— LR \
N
Yo \\
Y\
-4
.2 \
\.
AY
0 2 i .6 8 1.0
N
R =—2X
X N
X
o

Figure 5(f) - Sample Improved-Approximation
Interaction Design Curves for

Combined Axial Compression and
External Radial Pressure
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SECTION 5
DIGITAL COMPUTER PROGRAM

- This section presents the essential features of General Dynamics
Convair digital computer program numbered 3962. This program was de-
veloped to implement the theoretical solution developed by Block, et al.
[1] for the buckling of eccentrically stiffened circﬁlar-cylinders sub-
jected to axial load and/or radial pressure. The program allows for the
input of ﬁ} or ﬁ; (+ = compression, - = tension) along with the m and n
values to be screened.

i

Number of axial half-waves in buckle pattern.

n

Number of circumferential full-waves in

buckle pattern.

The ﬁx (or ﬁ&) value is computed fg? each m-n combination specified by

the user. The lowermost computed N* (or ﬁ;) is always retained throughout

the process and the final overall minimum value is printed out as the critical
loading. Judgement must be exercised by the user to insure that the actual
minimum-strength buckle pattern does not lie outside the range of m and n
values screened. The input format is shown in Figure 6. Symbols are listed
in Table III1. A detailed, card-by-card description of the ipnput follows

below. Runs may be stacked.

CARD TYPE 1: One card per run.

Enter PROBLEM IDENTIFICATION (any alphanumeric

characters) in columns 1-72,

CARD TYPE 2: One card per run.

Enter NCASES (number of cases) as right adjusted integer

in columns 1-35.

Enter PRNTOP (printout option) as right adjusted integer
in columns 6-10. If PRNTOP = O (or blank), only output
corresponding to minimum N are prihted. If PRNTOP = 1
(or+0), all outpﬁt associated with each m and n
combination screened are printed including the Aij values

used in equation (2-10).
S5=1
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Figure 6 - Input Format - Program 3962
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CARD TYPE 3: One card per case,

Enter CASENO (case number) as right adjusted alphanumeric

characters in columns 1-5,

Enter LOADIN (loading condition) in columns 6-10 with
the symbols:
COMBY

if value input on CARD TYPE 3.
COMBX if

N
- 4
Nx value input on CARD TYPE 3.

Enter MINM (minimum m value for screening) in columns
11-20 (E10.5). MINM > O,

Enter MAXM (maximum m value for screening) in
columns 21-30 (E10.5).

Enter DELTAM (Am) in columns 31-40 (E10.5).

Enter MINN (minimum n value for screening) in
columns 41-50 (E10.5). MINN > O for COMBX.
MINN =2 O for COMBY.

Enter MAXN (maximum n value for screening) in
columns 51~60 (E10.5).

Enter DELTAN (An) in columns 61-70 (E10.5),

Enter NY (N}) or NX (ﬁx) in columns 71-80 (E10.5).
W#hen NY is input, the program computes the eritical
NX value. When NX is input, the program computes the
critical NY value. (NX and NY are positive for com-

pression and negative for tension).

CARD TYPE 4: One card per case.

Enter RADIUS (R, cylinder radius measured to mid-

surface of skin, in.) in columns 1~10 (E10.5).

Enter LENGTH (a, overall length of cylinder, in)
in columns 11-20 (E10.5).

5-3
GENERAL DYNAMICS CONVAIR DIVISION



GDC~DDG~6 7-006

Enter STRSP (d, stringer spacing, in.) in columns
21-30 (E10.5).

Enter FRAMSP (4, frame spacing, in.) in columns
31"40 (Eloo 5) .

CARD TYPE 5: One card per case.
Enter EX (Ex’ ibs/in) in columns 1-10 (E10,5).
Enter EY (Ey’ 1bs/in) in columns 11-20 (E10.5).
Enter DX (Dx, 1b-in) in columns 21-30 (E10,5).
Enter DY (Dy’ 1b~in) in columns 31-40 (E10.5),
Enter GXY (ny, lbs/iﬁ) in columns 41-50 (E10,5).

Enter DXY (ny, 1b=in) in columns 51-60 (E10.5).

CARD TYPE 6: One card per case,
Enter PRIMMX (ux') in columns 1-10 (E10.5).
Enter PRIMMY (uy') in columns 11-20 (E10.5).
Enter MX (u_ ) in columns 21-30 (E10.5).

Enter MY (uy) in columns 31-40 (E10.5).

CARD TYPE 7: One card per case.
Enter ES (Es, psi) in columns 1-10 (E10.5).
Enter GS (Gs, psi) in columns 11-20 (E10,5).
Enter AS (As, in2) in columns 21-30 (E10.5).
Enter 108 (I_ , in?) in columns 31-40 (E10.5).
s

Enter JS (Js, in4) in columns 41-50 (E10.5).

Enter ZBARS (;s, in) in columns 51-60 (E10.5); positive

for external stringers; negative for internal stringers.

S5-4
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CARD TYPE 8: One card per case.

Enter
Enter
Enter
Enter
Enter

Enter

ER (Er, psi) in

GR (Gr, psi) in
2) in
4

AR (Ar, in

IOR (10 , in
T 4
JR (Jr, in’) in

columns 1-10 (E10.5).
columns 11-20 (E10,5).
columns 21-30 (E10.5).
in columns 31-40 (E10,5).

columns 41-50 (E10.5).

ZBARR (Er, in) in columns 51-60 (E10.5); positive

for external rings; negative for internal rings.

A sample input coding form is shown in Figure 7. A sample output listing

is given in Figure 8.

A basic flow diagram is presented in Figure 9 and

a Fortran listing of the program is shown in Table IV,

5-5
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TABLE III - Program 3962 Notation

PROGRAM REPORT

NOTATION NOTATION DESCRIPTION
AR Ar Cross-sectional area of circumferential
. . 2
stiffener,in .
AS : As Cross-sectional area of longitudinal
2
stiffener, in .
CASENO - Case number.
COMBX - Indicates ﬁx value input, solve for
N_ .
y _
COMBY - Indicates ﬁy value input, solve for
N_.
b'e
D - See STRSP,
DX Dx Bending stiffness of skin in longitudinal
direction, 1lb-in.
DY Dy Bending stiffness of skin in circum-
ferential direction, lb-in.

DXY Dy Twisting stiffness of skin, lb-in.
DELTAM Am Value by which m is incremented.
DELTAN An Value by which n is incremented.

ER Er Young's modulus for circumferential
stiffener, psi.

ES Es Young's modulus for longitudinal
stiffener, psi.

EX Ex fixtensional stiffness of skin in
longitudinal direction, 1lbs/in.

EY Ey .Extensional stiffness of skin in

circumferential direction, 1lbs/in.

5-6
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TABLE III - Program 3962 Notation

PROGRAM REPORT
NOTATION NOTATION
ERARL ' E A /L
rr
FRAMSP )
FMPIA mr/a
-y ty ?
FMXMY 1-u, ‘b
GMXMY 1-u by
GR G
r
GS G
S
GXY G
Xy
IOR 1
[¢]
r
10S 1
[
s
JR J
r
Js J
S
LENGTH a
LOADIN -
MAXM -

(Continued)

DESCRIPTION

Frame spacing, in.-

Shear modulus for circumferential

stiffener, psi.

Shear modulus for longitudinal

stiffener, psi.

In-plane shear stiffness of

skin panel, 1bs/in.

Moment of inertia of circumferentiai
stiffener cross-section about middle

. . 4
surface of skin, in .

Moment of inertia of longitudinal
stiffener cross-section about middle

. . 4
surface of skin, in .

Torsional constant for circumferential

stiffener, in4.

Torsional constant for longitudinal

stiffener, in4.
Length of stiffened cylinder, in.

Option describing input loading:
CoMBY or COMBX,

Maximum value of m used.

5-7
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PROGRAM
NOTATION

MINM
MAXN
MINN

MX
MY

NBAR
NCASES

NOP

NXORNY

PRIMMX
PRIMMY

PRNTOP

PROBID

RADIUS

GDC-DDG~67-006

TABLE III - Program 3962 Notation

REPORT

NOTATION

(Continued)

DESCRIPTION

Minimum value of m used.
Maximum value of n used.
Minimum value of n used.

Poisson's ratio for bending of skin

in longitudinal direction.

Poisson's ratio for bending of skin

in circumferential direction.

Nx or ﬁ} (+ in compression) 1bs/in.

Number of cases.

NOP = 1 used for COMBY
NOP = 2 used for COMBX

ﬁg or ﬁy input, 1bs/in.

Poisson's ratio for extension of skin

in longitudinal direction.

Poisson's ratio for extension of skin

in circumferential direction.

Printout option. If PRINTOP = O (or
blank), prints only output associated
with minimum value of N calculated. If
PRNTOP #0, prints output for all com-

binations of m and n values screened.
Problem identification.

Radius of cylindern, measured to mid-

surface of skin, in.
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TABLE III - Program 3962 Notation

(Continued)

PROGRAM REPORT :

NOTATION NOTATION DESCRIPTION

STOREM - m for minimum N .

STOREN - n for minimum N .

STRSP d Stringer spacing, in.

TEMP - Relative minimum N .

ZBARR ;r Distance from middle surface of skin to
centroid of circumferential stiffener,
in., positive if stiffener is outside.

ZBARS ;s Distance from middle surface of skin to

centroid of longitudinal stiffener in.,

positive if stiffener is outside.

5-9
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FIGURE 7 - Sample Input Data - Program 3962
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CASE NOU.

Ti~¢

1

MIN M

1. Q000E UG

CYLINDER
RADIUS

3.86D0GE 11

E SUB X
1. 5090 06

MU PRIME
SuB X

2.5000E-01

E SUB §
3.000DE 07

E Sus R
2.5000E O7

MAX ¥

2.500CGE 1

OVERALL
LENGTH

7.200CGE 01

E SUB Y

2.0000E 06

MU PRIME
suB v

3.5000E-01

G sus S

1.20C0E 07

G SUB R
1.0000€ 07

NUMBER OF

LONGITUDINAL

HALF WAVES
4.000E )

3.0000E 00
5. 0CGHE 00
4.GDRGE 09
4, Q0U00E 0O

DELTA M
1. OO0VE OO

STRINGER
SPACING

2.4800E 4D

D suB X

2. 5700E n2

MU SuB X

2.5000E-01

A SUB S

2.00DRE~G2

A SUB R

4o GORRE-O2

MIN N

_rj.

FRAME
SPACING

6. DCOOE D

D suB Y

3.05000E 02

MU suB Y

3. 5DQ0E~D]

I SuB OS5

5.0000E-03

I SuB OR

1.0000E-02

CRITICAL COMBINED LOAD VALUES

NUMBER OF

CIRCUMFERENTIAL

HALF WAVES
1.4000E 0L

1.4DOBE 01}
1.4000E ¢1
1.2GG0E 61
Le6L0CE G

AXIAL LDAD

BAR SUB
LBS PER

7.8588E

8.0546E
8.3383E
8.,1912¢F
8.3470E

X
IN

03
3
63
43
03

MAX N

2.5G03E 01

G SuB Xy

2.0000E 0S

J suB S
4CO0GE~O3

J suB R

6.DDONE-03

Figure 8 - Sample Output Listing - Program 3962

DELTA N

1.100CE 00

N BAR Y

2.0N00E 00

D sus Xy
2.0C00E 02

7 BAR
sus s

5.0000E-02

7 BAR
suU8 R

~1.00G0E-N1

HOOP LOAD
BAR SUB V
LBS PER IN

2.00090E OO

2.000CE 09
2. 000GE 00
2.0003E o0
2.0000E 00

900-49~baa-3a»



comsY

GDC-DDG-~67-006

Read Initial
data

LOOP = LOOP + 1

Read card input
for this case

COMBX

Option?

y

Calculate ﬁ; for all combi~
nations of m and n. Find
minimum ﬁx and corre-~

sponding m and n,

4

Calculate ﬁx for:
{m, n=1)
(m, n+l)
(m=1,n)

(m+1,n)

T

Calculate ﬁ; for all combi-
nations of m and n. Find
minimun ﬁy and corre-

sponding m and n.

P

Caleulate N_ for:
(m, n-1)
{m, n+1)
(m-1, n)
(m+1,. n)

Y

Figure 9 - Flow Diagram - Program 3962
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TABLE IV - Fortran Listing - Program 3962

SIBFTC MALN LIsT

100
101

305
510

350
400
500
o000
1000

SIGFT

COMMON /INPT/ CASENOrLOADIN/MINMP MAXM)) DELTAMeMTNNsMAXNYDELT AN,

1 RADIUS'LENGTH»STRSP+FRAMSPrEX»EY DX DY 1 GXYDXY s
2 PRIMMX» PRIMMY »MX o MY*ES 1 GSPASrI0S,JSrZBARSPERYGRy
3 AR? IOR?JR» ZBARRsNQP»PI1+PRNTOP, NXORNY

DIMENSION PROBID(12)

REAL MINMeMAXMeMINN MAXN)LENGTH MY MY »10S59JSs IOR, JRYNBAR» NXORNY
INTEGER COMBXsCOMpY

DATA COMBXrCOMBY /5HCOMBX»S5HCOMBY /

DATA Pl /73.1415926/

READ (5»101) PROBID

FORMAT (12A6)

wRITE (69201) PROBID

FORMAT (1H1+,20(/) 58X ¢ 16HLANGLEY SOLUTION 10(/)r30Xr1246)
READ (5e301) NCASESPRNTQP

FCRMAT (I59¢F5.0)

DO 1000 W=1»NCASLY

Catl INPUT

IF (PRNTOP.EQ.O.) GO TO 310

WRITE (6+305) CASENO

FORMAT (1H150X23HINTERMEDIATE VALUES FOR CASEpS)

NOP=(

IF (LOADIN.EQ.COMBY) NOPz1

IF (LOADINL.EQ.COMBX) NOPz2

IF (NOP.nNESO)} GO TO 400

WRITE (6¢350) CASENO ,
FORMAT (/// 8T7X+31HOPTION GIVEN INCORRECTLY» CASE A3+ gH DELETED)

S0 TO 1000

CALL EQUATN

CALL FINAL

CALL OUTPUT

CONT 1WUE

60 Tu 10u

ERD
C NBAK LIST

REAL FUNCTION NBAR(EX FMXMY,ES+AS,DrFMPIA»GXY ,FNR'PRIMMY +R1ZBARS

1 EYERARLyZBARR DX 2 IQ0S+DXY 9GS e JSeGRYyJRP LI DY FER
2 TOR?NsNOP # M» PRNTOP # NXORNY # MY » GMXMY )

REAL I05+JSeJReLr 1ORI N M, NXORNY

REAL MY

All = (Ex /7 FMXMY + ES*AS/D) * FMpIA*x2 +  GXY#FNR**D

AlZ2 = (PRIMMY#EX/FMXMY + GXY) % FMPIA # FNR ,
Al3 = (1/R)I*{PRIMMY*EX/FMXMY ) *FMPIA + LS*AS/D*ZBARS*FMPIA*%3
A22 = GXY*FMPIA*%2 + (EY/FMXMY + ERARL) ¥ FNR*x*%2

Az3 = (1</R) * (cY/FmMXMY + ERARL) * FNR + ERARL*7ZBARR#FNR%*3

A33 = (DX/GMXMY + ES*I0S/D)*FMPIAx*4 + (2+%¥MY*DX/GMXMY

+ 24%DXY + S#US/D + GRAJR/L) ¥ FMPIA**2 x FNR*xp
+ (DY/GMXMY + ER*IOR/L)*FNR&*4 + (le/R¥%2) 4« (EY/FMXMY
t ERARL) +  (2+*¥ERARL*ZBARR* (N4A*2/R**3) )

GO TO (10G002000), NOP

(O
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TABLE IV - Fortran Listi - Program 3962
zcontinnedg

C NOP=1
1000 DIV = FMPIA%*2
SUB = FNR**¥2 * NXORNY

60 TO 4000

C

C NOP=2

2000 DIV = FNR*%x2
SUB = FMPIA**2 * NXORNY

c . _

4000 NBAR = (A33 + ( ((A12%A23)=(A13%A22))7((AL1*A22)=A12%%2) )*AL3

1 + ((((A12*A15)-(A11*A23))/((All*AZZ)-Ala**z) J¥p23 ) = SUR)
2 / DIV

IF (PRNTOP.EQ.0.) RETURN
WRITE (6+16000) MriyrNBAR/ALL)A12¢A130A22,A230A33
6000 FORMAT (//7 11XeSHM  =¢1PE11.302gXs5HN =1 1PE113+28X16HN BAR=s

1 E169 // 11X9+5HA11 =,1PE17,9¢22Xe5HAL2 =»1PE17.9» 22Xy

2 SHA13 =¢1PE17.9y // 11X15HA22 =r1PEL17.9,22X5HA23 =v1PEl7 9,
3 22Xr5HA33 =v1PEL17.9)

RETURN

END

$IBFTC INPUT LIST
SUBROUTINE INPUT
COMMON ZINPT/ CASENO?LOADINeMINMe MAXMy DELTAMeMINN e MAXN¢ DELTAN
1 RADIUSYLENGTH»STRGP'FRAMSPYEXsEY »DX DY+ GXY eDXY
2 PRIMMX e PRIMMY rMX MY PESeGSrASYI0S,JSrZBARSIERYGR
3 AR* 1OR ¢ JR» ZBARR » NOPrPI+ PRNTOP y NXORNY
REAL MINMeMAXMeMINNe MAXN»LENGTHs My »MY» I0S?JSsIOR,JR?NBAR*NXORNY

C
C SUBROUTINE TO READ CARD INPUT FOR EACH CASE.
READ (5¢101) CASENO+LOADIN, MINM'MAXMvDELTAMvMINN MAXN, ;ELTAN
* » NXORNY

101 FORMAT (2A5¢7E10.5)
READ (5¢201) RADIUS!LENGTH»STRSPrpRAMSP
201 FORMAT (4E10.3)
READ (5¢301) EXeEYPDX2DY»GXYrDXY
301 FORMAT (0E10+5)
KEAD (5:201) PRIMMXepPRIMMY »MX»MY
READ (5+301) ES+GSrASe10SrJSrZBARG
READ (5+¢301) ER'GRrAR¢ IOR» JR1 ZBARR
RETURN
EnD
$IBFTC EQUATN LIST
SUBROUTINE EQUATN
CoMMON ZINPT/ CASENOs LOADINes MINMs MAXMeDELTAMeMINN e MAXNDELTAN

1 RADIUSLENGTH STRSP+FRAMSPrEXEYsDXsDY»GXY#DXY s
2 PRIMMX ' PRIMMY ¢+ MX e MY PES»GSrASe 1.0S,JSr ZRARSYER¢GR
3 AR? IOR?»JR» ZBARRYNOP*PI+PRNTOP» NXORNY

COMMON 7/ INTER/ FMXMY, ERARL » TEMP » STOREM ¢ STOREN» GMXMY
COMMON /RENAME/ A,DrL R

REAL MINMsMAXMeMINNe MAXNoLENGTH) M e MY IOS?JSe I0OR, JRPNBAR
REAL LeMsNeNBARX? NBARY + NXORNY : '

5~-14
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TABLE IV - Fartran Listi ~ Program 3962
ZContinued7

RIRADIUS
AZLENGTH
D=STRSP
L=FRAMSP
FMXMY = 1e=PRIMMXxPRIMMY
GMXMY 1e=MX£MY
ERARL ER*AR/L
ICNT=0
N=MIiN=DELTAN
100 Nz=N4+DELTAN
IF (NeGT.MAXN) GO T0 600¢
FNR = N/R
M=MINM=DELTAM
200 MzM+DELTAM
ICNT=ICNT+1
IF (M.GT.MAXM) GU TO 5000
FMPIA = M*PI/A
6¢ T (10002000}, NOP

"t

C
C NOPz=1 SOLVE FOR N BAR X
1000 NBARX = WBARUIEXrFMXMY ES»AS,DeFMPTA?GXY 1 FNRIPRIMMY »Re ZRARSIEY ¢
1 ERARL »ZuARR DX ¢ 105Dy Y 2GSy JooGRcJRoLrDY rERrIORYNINOP,
2 Mo PRNTOP » NXORNY # MY ¢ GMXMY )
IF (ICNT.NE.l) GO TO 1100
TEMP=NBARX
STOKEM=M
STOREN=N
GO TC 4000
1100 IFf (nBARXGETEMP) GO TO 4000
TEMPZRBARX
STOREMEM
STOREN=N
60 TG 4000
C
o NOPz2 SOLVE FOR N BAR Y
2000 NBARY = NBAR(EXeFMXMY ESsAS DeFMPTIAPGXY )FNRIPRIMMY #R e Z3ARSPEY
1 ERARL» ZBARRYDX» I0S»DxYrGSrJSPGRe JRILYDY P ER» IORI N NOP,
2 Me PRNTOP « NXORNY ¢ MY » GMXMY )
IF (ICNTW.NE1) 60 TO 2100
TEMPZNBARY
STOREM=M
STORLN=EN
GO TQ 4040
2100 IF (NBARYLGETEMP) GO TO 4000
TEMP=NBARY o .
STOREM=M
STOREN=N

4000 ©0 Tu 20U
5000 GO 710 100
6U00 RETURN
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TABLE IV -’Fortrén Listi - Program 3962
. ' zContinuedS,

END
$IBFTC FINAL _LIST
SUBROUTINE FINAL o |
COMMON /INPT/  CASENO»LOADINsMINMsMAXMyDELTAMsMINNsMAXN» DELTAN,

1 RADIUS*LENGTH»STRSPrFRAMSPrEX2EY DX DY »GXY o DXY s
2 PRIMMX?PRIMMY +MX e MY PESrGSeAS»T105,JS»ZBARSIERYGR
3 AR*IOR»JR?»ZBARR¢NOP+PI»PRNTOP,NXORNY

COMMON Z0UT/ X(5)sY(S5) e VALUE(D)

COMMON /INTER/ FMxMY,ERARL» TEMP»STOREM» STOREN,GMXMY
COMMON /RENAME/ A,DyLsR

DIMENSION FN(5) ‘

REAL MINMeMAXMoMINNy MAXNsLENGTH MXeMY»10S52J5,I0R,JReNRAR?MPN
1 ¢+ NXORNY

VALUE(1)=TEMP

X{(1)=STOREM

Y(1)=2.0%STOREN

FN(1)=STOREN

X(2)=X(1)=1.0

X(3)=x(1)+1.

X{4)=x(1)

X{%)=x{(1)

Y(2)=Y{(1)

FN(2)ZFN(1)

Y{3)=Y(1)

Fn{3)=FN(L)

Y{4)=Y(1)=2.0

FN(4G)=FN(1)=-1.0

Y{5)=Y(1)+2.0

Frnu{s)=FN(1)+1.0

DO 00 I=2+D

FMPIA-= X{I)*PI/A

FNR = FN(I)/R

N = FN(I)

Mz=X{1)

VALUE(I) = NBAR(EX'FMXMY ESeAS/DeFMPIAYGXYFNRPRIMMY »ReZBARSIEY

1 ERARL»ZBARR»DX 2 108+ DXY 1 GSrJISeGRyJRsLPDYPER+IORW N
2 NOP » Mt PRNTOP » NXORNY # MY » GMXMY)
500 CONTINUE
RETURN
EnND

$IBFTC QUTPUT LIST
SUBROUTINE OUTPUT
COMMON /INPT/ CASENO?LOADINsMINMs MAXMDELTAMs MINN»MAXN+DELTAN,

1 RADIUS'LENGTH»STRSP+FRAMSPrEX)EY »DX e DY GXY o DXY o
2 PRIMMX»PRIMMY +MX e MY rES»GS*ASe 105, JSrZBARSYERIGR
3 AR*IOR?» JR? ZBARR»NQP*PI+PRNTOP,NXORNY

COMMON Z70UT/ X(5) e Y{5)»VALUE (D)
REAL MINMsMAXMsMINNeMAXN»LENGTHo MY »MY,»10S¢JS)» IOR, JRe NBAR P NXORNY
WRITE (60100) CASENOsMINMsMAXMeDEL TAMiMINN» MAXN»DELTAN
100 FORMAT (1H1»1X¢sBHCASE NO.s9XsSHMIN Mr 16X s SHMAX M, 14X 7HDELTA M.
1 14X e SHMIN Ne15XeSHMAX NelUxe 7THDELTA N // 1X0A6y IPGE20.4 )
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TABLE IV - Fortran Listing - Program 3962
(Continued;

60 Tu (200,250) ¢ NOP
200 wRITE (60201) RADIUS)LENGTH,STRSP,FRAMSP ¢ NXORNY
201 FORMAT (/// 18X+8HCYLINDER 12X r THOVERALL»13X» @HSTRINGER » 13X

1 SHFRAME 7/ 19Xs6HRADIUS» 14X, 6HLENGTHr 14X » 7HSPACING Y 12X
2 THSPACINGr 34X s 7HN BAR Y /7 TXe1P4E20.4,1PELO )
GO TO 299

250 WRITE (6+251) RADIUS,LENGTH)STRSP,FRAMSP  NXORNY -
251 FORMAT (/// 18XroHCYLINDERs 12X THOVERALL v 13X sHSTRINGER » 13X
1 SHFRAME / 19Xs6HRADIUS 14X, 6HLENGTH, 14X s THSPACING» 12X
2 THSPACING» 34X 7THN BAR X // TXs1P4E20.4,1PEH0.4)
299 wRITE (6:300) EXPEY20XeDYPGXYDXY
300 FORMAT (/// 18Xe7HE SUB Xr13Xe7HE SUB Y»13X»7HD SUB X, 13X
1 7HD SUB Yr13X»8HG SUB XYrl2XeBHD SUB XY // 7X+1P6E20.4 )
WRITE (6¢400) PRIMMX,PRIMMY,MXeMY
400 FORMAT (/// 18Xe8HMU PRIME» 12X08HMU PRIME / 19Xs5HSUB X» 15X
1 SHSUB Yr1ldxe8HMU SUB X»12X,8HMU SUB Y // 7X+1P6E20.4 )
WRITE (60500) ESrGSeASeI0S»USrZBARS
500 FORMAT (/// 119X+SHZ BAR / 18Xs7HE SUB Sr13Xs7HG SUB Ss13X»
1 THA SUB Sr13Xe8HI SUB 0SrlpXe7HJ SUB S,14x»5HSUR S 7/
2 Txe LPOE20eu )
WRITE (6¢600) ER*GReAR? IOR» JR ¢ ZBARR
600 FORMAT (/77 119Xe5HZ BAR / 18X+ 7HE SUB Re13Xe7HG SUB Ry 13X»
1 7HiA SUB Rr13X»8HI SUB ORel2X*7HJ SUB R,14%»5HSUE R //
2 7Xr LPOE20«4 )
Wil (6.700)
700 FORMAT (6(/)r51Xe 29HCRITICAL COMBINED LOAD VALUES ///
12X» 9HNUNMBER OF» 24Xy
GHNUMBER QF »24X9 LOHAXIAL | OAD,23X?9HHOOP LOAD / 11X»
12HLONGIVUDINAL » 19X 15HCIRCUMFERENTIAL v 21X OHBAR SUB X
28X e 9HBAK SUB Y / 12X+ 10HHALF WAVES»23Xs 1OHHALF WAVES
, 23X 10HLBY PER IN223X»10HLBS PER IN // )
GO To (1000020000 ,NOP
1U00 WRITE (601001) (K(1)oY(I)»VALUE(I) NXORNY»I=1,5)
1001 FORMAT (LXe1PE2le4r1P3E33.4//(1X01PE2144+1P3E33,.4))
RE TUR
2000 wikiTE (601001) (X(I)»Y(I)rNXORNYryvALUE(I)I=1,5)
3000 KETURN
END

EON - ®

5-17
GENERAL DYNAMICS CONVAIR DIVISION



3.

7

GDC~DDG~67~006
SECTION 6

REFERENCES

Block, D. L., Card, M. F.,and Mikulas, M. M., Jdr., "Buckling

of Eccentrically Stiffened Orthotropic Cylinders," NASA TN D-

2960, August 1965,

Dharmarajan, S. N, and Wilson, P. E,, "Theoretical Verification
and Extension of Langley Buckling Equations for Circular Cylinders
Havinz Eccentric Orthotropic Stiffening," Contract NAS8-11181,
General Dynamics Convair Division Memo AS-D-1033, 28 February 1967,
Smith, G. W. and Spier, E. E,, "The Stability of Eccentrically
Stiffened Circular Cylinders, Volume I - General," Contract
NAS8-11181, General Dynamics Convair Division Report No.
GDC~-DDG-67-006, 20 June 1967,

Smith, G. W. and Spier, E. E., "The Stability of Eccentrically
Stiffened Circular Cylinders, Volume V - Effects of Initial Im-
perfections; Axial Compression and Pure Bending,” Contract NAS8-11181,
General Dynamics Convair Division Report No. GDC-DDG-67-006,

20 dJune 1967.

Duncan, W. J., "Galerkin's Method in Mechanics and Differential
Equations," Air Ministry Aeronautical Research Committee Reports
and Memoranda No. 1798, 3 August 1937.

Lakshmikantham, C., Gerard, G., and Milligan, R., "General In-
stability of Orthotropically Stiffened Cylinders, Part II, Bending
and Combined Compression and Bending," Air Force Flight Dynamics
Laboratory Technical Report AFFDL TR 65 161, Part II, August 1965.
Hedgepeth, J. M. and Hall, D. B., "Stability of Stiffened Cylinders,"
AIAA Journal, Veol. 3, No. 12, December 1965.

Block, D. L., "Buckling of Eccentrically Stiffened Orthotropic
Cylinders Under Pure Bending," NASA TN D-3351, March 1966.

6-1

GENERAL DYNAMICS CONVAIR DIVISION



10,
11.

12,

13.

14.

GDC-DDG=67-006
SECTION 6

REFERENCES
(Continued)

Flugge, W., "Die Stabilitat der Kreiszylinderschale," In-
genieur-Archiv, Vol. 3, 1932, pp. 463-506. |
Fligge, W., Stresses in Shells, Springer-Verlag, Berlin, 1962,
Timoshenko, S., Theory of Elastic Stability, McGraw-Hill Book
Company, Inc., New York, N, Y., 1932, pp 463-467.

Seide, P. and Weingarteh, V. I., "On the Buckling of Circular
Cylindrical Shells Under Pure Bending," Trans. of the ASME,
Journal of Applied Mechanics, March 1961.

Anon,, "Some Investigations of the General Instability of
Stiffened Metal Cylinders, VII - Stiffened Metal Cylinders
Subjected to Combined Bending and Torsion," NACA Technical
Note No. 911, November 1943.

Murphy, C. E., Similitude in Engineering, The Ronald Press

Company, New York, 1950.

6-2
GENERAL DYNAMICS CONVAIR DIVISION





