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THE STABILITY OF ECCENTRICALLY
STIFFENED CIRCULAR CYLINDERS

VOLUME I

GENERAL

By
G. W, Smith and E. E, Spier
General Dynamics Convair Division

San Diego, California

ABSTRACT

This is the first of six volumes, each bearing the same report number,
but dealing with separate problem areas concerning the stability of
eccentrically stiffened circular cylinders. The éomplete set of documents
was. prepared under NASA Contract NAS8-11181 and furnishes workable design
and analysis methods for the prediction of instability in such structures.
The overall multiple-volume report includes design curves, procedures,'and
digital computer programé for the most important buékling modes., The
material presented in this first volume provides an introductory background

which puts the subsequent volumes in a proper perspective.
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DEFINITION OF SYMBOLS

Elastic constants [ see equations
(3-4)7. o

Eccentricity coupling constants
see equations (3-4)].

Elastic constants [ see equations
(3-4)1. | |

Young's modulua.
Modulus of elasticity in shear.

Distance between middle surfaces of
sandwich facings.

Overall length of eylinder.

Running bending moment with respect to
middle surface of basic cylindrical skin
(acting on sections obtained by passing
planes normal to the axis of revolution).

Running bending moment with respect to
middle surface of basic cylindrical skin
(acting on sectious which lie in radial
planes).,

Running twisting moment with respect to
middle surface of basic cylindrical skin.

. Number of axial half-waves in buckle

pattern.

Loading parameter defined in equations

"(3-3), [positive for tensile loading].

= - NTHIEL ’ [positive for compressive loading].

Applied longitudinal tensile running load
acting at the centroid of the effective skin-
stringer combination.

Circumferential tensile running load acting
at the centroid of the effective skin-ring
combination.

Running shear load acting in the middle
surface of the basic cylindrical skin.

ix
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- DEFINITION OF SYMBOLS

{Continued)
Symbol Definition
n Number of circumferential full waves
in buckle pattern.
R ' ‘Radius to middle surface of basic
A cylindrical skin. ‘
t E Thickness of basic cylindrical skin.
ty ; ' Sandwich facing thickness.
Uy VyW , Reference-surface displacements (see
' Figure 5).
Xy¥s2 - Coordinates (see Figure 5).
Z : : Parameter defined by equation (3-2).
a Parameter defined in equations (3-3).
B ' Parameter defined in equations (3-3).
Y Parameter defined in equations (3-3).
Yy ‘ In-surface shear strain for middle surface
y of basic cylindrical skin.
sz,Y 2 Shear strains in planes normal to the middle
y surface of basic cylindrical skin.
cxv Longitudinal extensional strain for middle
surface of basic cylindrical skin (positive
for pure tension). '
€ Circumferential extensional strain for middle
‘y surface of basic c¢ylindrical skin (positive
for pure tension).
ﬂp Parameter defined in equations (3-3).
ﬂs Parameter defined in equations (3-3).
v Poisson's ratio.

x

GENERAL DYNAMICS CONVAIR DIVISION



GDC-~DDG-67~-006

GLOSSARY

Note: This gloasary is meant to apply to all six volumes
of the report. Separate glossaries are not included

in each of the individual'volumes.

Buckling of Isotropic Skin Panel - The initial buckling of the basic
cylindrical skin whose boundaries are formed by the longitudinal and/or
circumferential stiffeners. Buckling of the wall of unstiffened cylinders
is a special instance of this mode of instability.

Local Buckling of Longitudinal Stiffener (Stringer) - The initial buckling
of any leg or arc length of the cross-sectional shape of a 1ongitudinai

stiffener (stringer); Initial buckling of the outstanding flange of a

Z-section stringer is an example of this mode of instability.:

Crippling of Longitudinal Stiffener (Stringer) - The final ultimate com-
pressive failure of a longitudinal stiffener which has a shaped cross section
and is given sufficient support to prevent panel instability (see definition
below). The crippling stress is the ultimate average stress for such a
stringer.

Panel Instability - This mode of instability manifests itself as a bowing

of the longitudinal stiffeners (stringers) into one or more axial half-

waves without any radial displacement of the circumferential stiffeners
(rings). Hence the axial half-wavelength cannot exceed the spacing between
rings., Figure 1 depicts the special case where there is one half-wave
between adjacent rings. Although not freguently encountered in practical
structures, this mode can involve more than one such half-wave per ring
spacing. Panel instability may or may not be preceded by buckling of the
isotropic skin panels and/or local buckling of the stringgrs. The‘identifiéa-
tion "Panel Instability" is somewhat of a misnomer since this terminology

could easily lead one to the erroneous conclusion that reference is being

Coxi
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Axial
Load

Axial
Load

Buckled Configuration

Circumferential Stringer Config~
Stiffeners (Rings) ‘ "uration Just Prior
I to Buckling

Axis of Revolution

Figure 1 - Panel Instability

made to the mode which is identified above as "Buckling of Isotropic Skin
Panel." ‘A more suitable title could be selected but in the interest of
maintaiﬁing consistency with the nomenclature usually found in the literature,

the "Panel Instability" label has been ‘retained in this study.

General Instability - This mode of instability involves the simultaneous
radial displacement of both the longitudinal and circumferential stiffeners

(stringers and rings). As shown in Figure 2, the axial half-wavelength

Stringer Configuration
Just Prior to Buckling

/"’——_\_A
— 1 Axial
: Load

Axial
Load

Buckled Configuration

Circumferential Stiffeners (Rings)

Axis of Revdiution

Figure 2 - General Instability

xii
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of the buckle pattern exceeds the spacing between rings. This phenomenon

may or may not be preceded by buckling of the isotropic skin panels and/or
local buckling of the stringers,

Stiffener Eccentricity - The distance from the reference surface to the
centroid of the appropriate skin-stringer combination. Throughout this
study, the reference surface has been taken as the middle surface of the
basic cylindrical skin. Inside versus outside positioning of the stiffeners’
is identified by means of an appropriate sign convention,

Monocogque -~ This term comes from the French word meaning "shell only" and
is used here to identify those configurations which do not incorporate any
stiffening members (integral or non—ihtegral). Note, however, that a

monocoque configuration can have orthotropic properties.

Knock~down Factor - An empirical correction factor which is used in the
reduction of classical small-deflection predictions to safe design levels.
This factor is introduced primarily to allow for the detrimental effects

from initial imperfections.

xy! "yx
obtained by integration of the infinitesimal loads over the shell wall

Stress Resultants ~ The six gquantities Nx’ Ny’ N , N, Qx’ and Qy

(including skin and stiffeners), and the four quantities Mx, M, M , and
Myx obtained by integration over the shell wall (including skin and
stiffeners) of the infinitesimal moments with respect to a selected surface.
The force stress resultants are expressed in units of force per unit length
(1bs/in for example) while the moment stress resultants are expressed in

units of moment per unit length (in-1lbs/in for example).

Shell (or Shell Wall) - Throughout the several volumes of this report,

repeated use is made of the terms "shell' and "shell wall". These terms
are used interchangeably and are not meant to refer only to the basic
cylindrical skin of the stiffened structure. They refer to the effective
skin-stiffener combination. Whenever it ié desired that reference be made
solely to the basic monocoque cylinder which the stiffeners augment, the

word "skin" will actually be included in the identification.

xiii
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Anticlastic ﬁendigg - Bending into a deflected shape for which the
prinbip&l radii of curvature have opposite signs. Bending of an initially
flat plate into a saddle shape is an example. In addition, for beams, the
Poisson-ratio effect results in anticlastic: bending as depicted 1nvFigure 3.

Deflection

l’-A N Curvo'.
] N
' e e

o= e N
- L,. : NG

/K— A . N,

Deflection . ‘ Section A-A
’ Curve '

Figure 3 - Anticlastic Bending of a Beam

| xiv
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. SECTION 1

INTRODUCTION

This is the first of six volumes, each bearing the same report number,
but dealing with separate problem areas cdncerniﬁg the stability of
eccentrically stiffened circular cylinders. The areas treated by the
- complete set of documents can be identified from the following listing
of titles: :

VOLUME I -  GENERAL ’

VOLUME II -  BUCKLING OF CURVED ISOTROPIC SKIN PANELS-
AXIAL COMPRESSION

VOLUME III;- BUCKLING OF LONGITUDINALLY STIFFENED CYLINDERS;
AXIAL COMPRESSION

VOLUME IV -  GENERAL INSTABILITY OF CYLINDERS HAVING

LONGITUDINAL AND CIRCUMFERENTIAL STIFFENERS;
AXIAL COMPRESSION

VOLUME V - EFFECTS OF INITIAL IMPERFECTIONS; AXTAL
COMPRESSION AND PURE BENDING
VOLUME VI - INTERACTION BEHAVIOR

The material presented in this first volume is primarily intended to
provide an introductory background which places the significance of the

subsequent volumes in a proper perspective,

1-1
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SECTION 2

BUCKLING CRITERIA

In the solution of buckling problems; a number of different approaches
may be taken. The two most commonly used techniques are the minimum
energy method and the bifurcation concept. The former is based upon the
theorem of minimum total potential energy which may be stated as follows:

A conservative system is in a configuration of stable
equilibrium if, and only if, the value of the total

potential energy is a relative minimum.

To apply this theoreﬁ, one must formulate the total potential energy of the
system, impose the mathematical artifice known as a virtual displacement,
and examine the sign of the second-order energy changes (second variation).
The second variation must be positive definite (positive regardless of the
sign of the virtual displacement) for stability to exist. The value of the
applied load at which the second variation first ceases to be positive
definite is the critical load for the system.

The bifurcation concept originally developed by Poincaré [credited in
Ref. 1] in 1883 constitutes an equilibfium'approagh to the problem of
buckling. Any point at which a single equilibrium path branches into two
or more equilibrium paths is known as a bifurcation point. An example of
this phenomenon is shown in Figure 4. This figure depicts the equilibrium
~ paths for a perfect isotropic circular cylinder subjected to axial compression.
As a rule, the unbuckled configuration becomes unstable at a bifurcation
point and the bifuréation approach to buckling analysis simply involves the
mathematical search for these branching points. In conducting this search,
one must study the character of the equilibrium behavior. As in the

solution by Block, Card, and Mikulas [2], this study may be done with the

Numbers in brackets [ ] in the text denote references listed in SECTION 5.

2-1
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assistance of eiergy pringiples; However, such investigations should not
be misconstrued as constituting a minimum energy approach. In the minimum

energy method, a so-called second variation is examined.'_On the other hand,

/a—Bifurcation Point

Axial
Compression
Load

End Shortening

Figure 4 - Equilibrium Paths For a Perfect Isotropic

Circular Cylinder Subjected to Axial
Compression

the bifurcation method requires a study only of the so-called first
variation. That is, in this case the system is subjected to a virtual
displacement and the first-order change (first variation) in the total
potential energy is tested for compliance with the principle of station-

ary poténtial energy which may be stated as follows:

A necessary and sufficient condition for the equilibrium
of an elastic body is that the first-order change in the
" total potential energy. of the body be equal to zero for

any virtual displacement.

2-2
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Although this principle is often used in the application of bifurcation
theory, it can sometimes lead to a loss of feel for the physical signi-
ficance of the mathematical operations. Hence, many applications of the
bifurcation concept are achieved without the use of energy methods.
Instead, the basic laws of elementary mechanics are used to write the.
governing equilibrium equations for a distorted free-body element. To
accomplish this, it is only necessary to perform simple summations of
‘forces and moments in the several appropriate directions. This,-of'course,
is only the first of a series of rather complicated steps in the derivation
of a final buckling equation buf, once having embarked upon this approéch,
each of the subsequeht operations likewise retains greater physical trans-

parency than do the variational techniques.

2=3.
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SECTION 3
BASIC ORTHOTROPIC CYLINDER EQUATION
The basic orthotropic cylinder equation utilized in Volumes III (3]

and IV [4] of this report was developed from bifurcation theory without

the use of energy concepts. The final equation may be written as follows:

— 2 4 4 2
(ﬁ > _[1 + 2np,/y B Y B ]- a B° (2) .
= + 3-1
THIEL/ ‘ 4aB4 | [1 . 2nsB2 . ﬁ4]
where '
' z <11 - €1 * % } %
= 1/2_2 1/2
2a, (A22 022) B 2a Ay, (Dzz(All)
c
21
- (3-2)
1/2_.4
2a (Allnzz) B

‘A detailed derivation of this relationship is given in reference 5 where

the coordinate system shown in Figure 5 was used. It might be noted however
that the final equation developed in reference 5 includes a quantity 633-
which is a measure of the shear-center offset from the basic cylindrical
skin, As written above, the fundamental equation is based on the assumption
that the Stringers and/or rings provide no resistanbe to Y. shear de-
formations so that 033 = 0., That is, it has been assumed that all of this
in-surface type of shear restraint is furnished by the basic cylindrical
skin. Furthermore, it has also been assumed that transverse shear strains
sz and Tyz are everywhere zero. This, of course, is common practice in
thin-shell theory. However, since this latter assumption is certainly

not justified for most sandwich-type cylihders, equations (3-1) and (3-2)

must be considered inapplicable to such configurations.

3-1
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Reference Surface
(Middle surface

of basic cylindrical -
skin)

Figure 5 - Coordinate System

BEquations (3-1) and (3-2) have been written in their rather compact,
instructive forms through the incorporation of the following parameters,

most of which were first proposed by Thielemann [6]:

TR /4 \Y/2
N N e S S
maIEL ) = = NpmiEnL = - 2 \D
1 22
(A' f.&) N
N o= ~22 2 - (3-3)

J Al 1A22

. (D12 + 2D33!
[
{Dnnzz _

3-2
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;- D114
Doolan
A 1/4
m nR 22
B =(;r)(-ir)(xf-) (3-3) Cont'd.
11 .
a = L2
= 2 2 D. \1/2
2Rm A22<A22>
11

The various Aij’s, Dij's, and Cij's of equations (3-2) and (3-3) are
important fundamental constants which arise out of the following relation-

ships between the stress resultants and the buckling distortions:

M D 2% D 3% c..N +¢C, N
2 2
3w 3w = -
M = -D - D -—e + C._ N + C
21 2 22 2 21 22
y 'a dy X y
2
3w
Mxy = -2D;4 dxdy (3-4)
2 2
= - 3w 0w
€ = A + AN +C —— 4 C
11 12 11 2 21 2
x x y -} dy
2 2
- - 3w 3w
‘y’Azlx"Azzy*clza2+czzay2

ny = A33 ny

The minus signs in these equations are due to the particular sign conven-
tions selected in the derivation. In addition it is pointed out that, in

the above equations, stress resultants with bars above them are centroidal

values. All other stress resultants are reference surface values. In

3-3
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addition, all of the strain and displacement values are likewise measured
in the reference surface. The E& 's and Dij's of equations (3-2) through
(3-4) are usually identified as elastlc constants while the c, ts might be

“suitably described by the terminology "eccentricity coupling constants".

It should be noted that equations (3-1) and (3-2) were derived for a
monocoque orthotropic cylinder. However, these equations will be used in
subsequent volumes [3,4] for the analysis of discretely stiffened éhells.

The key to success in these appllcations lies in the means employed teo .
evaluate the elastic constants and the eccentricity coupling constants.. Frnm
equations (3-4) it can be seen that these gquantities are dependent upon the
various structural rigidities of the shell wall. Practical formulas for
computing these constants are presented in the procedures of Volumes. III (3]
and IV [4). However, at this time it is profitable to devote some attention.
to their origins and to examine the formulations which would apply in two very
special cases. In the first place, it is helpful to note that for an isotropic

~cylinder the elastic constants take on the following forms:

1
A1y =4 = EE
N
Ao = A5 = - B¢
1
433 = &t |  (3-5)
R
11 22 12(1-v2)
D =D = __lgii__
12 - 21 550-v3)
o .6t
35 = 1,
3;4.
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As already noted, the equations of this volume are generally to be considered
inapplicable to sandwich structures in view of the neglect of transverse
shear strains (sz and sz) in the derivatiéns. However, at this point it

is still informative to note that the following formulas could be used to
find the elastic constants in the very special case of a sandwich configura-

tion having a core with infinite transverse shear figidity:

1
A11 - A22 - thE
: )
A12 - A21 ""thE
1
A = e :
2t G :
33 f (3-6)
Et h2
Dyy = Doy = £ 2
2(1-v7)
vEt h2
Dyjg =Dy = £ 2
2(1-v)
Gt b2
D ~ f
33 2
where
tf = Facing thickness
h = Distance between middle~surfaces of

facings.

These equations are applicable when the facings are of the same material and
of equal thickness and this thickness is small compared to h.

From equations (3-4), (3-5), and (3-6), it should be observed that

(a) All constitutes the reciprocal of the longitudinal extensional
stiffness per unit length of circumference.
(b) A,, constitutes the reciprocal of the circumferential ex-

tensional stiffness per unit of axial length.

3-5
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11

(¢) = D, constitutes the longitudinal flexural stiffness per
unit length of c1rcumference. '

(d) D,, constitutes the circumferential flexural stiffness per

unit of axial length.

(e) Alz and A21 each constitute measures of coupling between

extensional deformatlons in the longitudlnal and cir-
cumferential directions.
(£) and D

12 21
- flexural deformations in the longitudinal and circumferential

each constitute measures of couﬁling between

directions. A . _
(g) Ags constitutes the reciprocal of the in-plane shear stiffness
‘ - of the shell wall. '

(h) - D, constitutes the twisting stiffness of the shell wall.

In addition it is pointed out that; for applications to skin-stringer~-ring
11 is simply the eccentricity (see GLOSSARY) of

the effective skln-strlnger combination. CoerSpondingiy, C2

configurations, the constant C

2 is simply the

12 and C 'values
account for P01sson-rat10 cross~linking of the eccentricity 1nf1uences.
It is helpful to note that equations (3-1) and (3-2) essentially

comprise an extension to the theory developed in reference 7 for longitudinally

eccentricity of the effective skin-ring combination. The C

stiffened circular cylinders. The extension was accomplished in order to
adapt the solution to circular cylinders having both stringers and rings;
Equations (3-1) and (3-2) can be specialized to the case of a longitudinally -
stiffened circular cylinder by taking 022 = 021 = 0, Thig gives the result

[1 + 2nﬁf?'52 ry 54] a 8t @2
. -

ﬁ& = - C(3~7)
( HIEL)c : 84 [1 R 2“552 B4]
_where |
C: ) C
11 12
, 1/2 _2 1/2
2a (A22 Dzz) B  2a Ay, (D22/A11) .

3-6
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It is noted that, except for the C,, term, equations (3-7) and (3-8) are
identical to equation (36) of reference 7 where the C,, term was evidently
discarded as a negligible quantity for the particular test specimens of
interest there. Further note that when C11 = 022 = 012 = 021 = 0, eguations
(3-1) and (3-2) reduce to the following:

N
THIE 4aB4 [1 + 2nsﬁ2 + 54]

- . [1 + 27 {;732 + 754] aB4
( L) = 2 + (3-9)
c

This expression is identical to that given by Almroth in references 8 and 9
except for an apparent typographical error involving the omission of a f;?
factor in one term of both references. In addition, it has also been
established that equation (3-9) is identical to eguation (3.2) in a report
by Appel [10]. Equation (3-9) can be further simplified by ignoring the
influences of finite cylinder 1éngth,‘in which case.one can arrive at the

small deflection equation of Thielemann [6] which may be expressed as follows:

1/2
1 + 2?pf;-52 + YB4

7 (3-10)

N ) =
( THIEL)c L+ 216% + p

Refcrence 11 gives a detailed presentation of the mathematical operations
involved in this simplification.

To make proper use of equations (3-1) and (3-2), one must realize that
these relationships simply establish the magnitudes of longitudinal com-
pressive loads which will maintain an orthotropic cylinder in deflected con-
figurations defined by the variables m and n . The quantity m is the
number of axial half-waves in the buckle pattern while n is the related
number of full circumferential waves. For any single combination of stiff-

ness values, an infinite number of load-wavelength combinations can be

3=7
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possible. The critical load is the lowermost load which is just sufficient
to hold the shell in a non-cylindrieai deflected shape., Therefore the
computation of a critical load must involve a mathematical minimization.
The nature of the problem is such that this minimization must be accomplished
‘with respect to two independent wave-fype parameters. The values m and n
might be selected for this purpose although other choices, such as &« and B,
would be equally satisfactory.

~ Since the analysis techniques of Volumes III [3] and IV [4] are
based upon the minimization of equations (3-1) and (3-2), these methods
only give classical small-deflection solhtions.. That is, the critical load
predictions are obtained by locating a lowermost bifurcation point along
the initially linear eqﬁilibriun path of a perfeet orthotropic cylinder.
Use of this approach raises some important questions as to the influences
from initial imperfections and their interrelationship with the shape of
the posfbuckling equilibrium path. This matter is taken up in detail in
Volume V [12]_of this report.

3-8

GENERAL DYNAMICS CONVAIR DIVISION



GDC-DDG~-67-006
SECTION 4
OVERALL ANALYSIS PROCEDURE

The methods presented in the several volumes of this report provide
practical means for the analysis of instability in axially compressed

circular cylinders having eccentric stringers and/or rings. In order to
actually apply these methods, one should proceed as follows:

(a)

(b)

‘For cylinders having both stringers and rings, first compute

the critical buckling stress for the curved isotropic skin
panels which lie between the stiffeners. This value can be
calculated by using the methods of Volume II [13]. These
methods directly provide design values that have been reduced
from classical results in order to account for the effects of
initial imperfections. Therefore, no further knock-down factors
need be applied to these particular stress values. Although
buckling of the isotropic skin panels is usually not catastrophic,ﬁ
the related critical stress values must be established in order
to compute effective skin widths for use in the investigation

of other possible modes.

Then determine the failing stresses for sections which lie
between rings. For configurations which have no stringers, the _
monocoque cylinder curves given in the appendix of Volume IV (4]
may be used for this purpose. These curves likewise provide
design values which incorporate reductions from classical theory
to account for the effects of initial imperfections. No further
knock-down factors need be applied to these particular stress
values. For configurations which include stringers, the methods
of Volume III [3] should be used to obtain the failing stresses
for sections lying between rings. It should be noted tﬁat these
methods account for the possibility that crippling might occur.
Note however that Volume III (3] only presents the results from

classical theory and that, for design purposes, these values must

4-~1.
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be reduced in accordance with the knock-down criteria of -
Volume V [12]. Whether or not the configuration includes
stringers, at this point in the investigation it is assumed
that the rings experience no radial displacement. The validity
of.this.assumption will be tested in the step which follows
below, ' '

‘By using the contents of Volume IV [4],the general instability-

(seeAGLOSSARY) stress for the overall stiffened cylinder must

then be determined. Here again, the methods of Volume IV (4]

only give classical values and, for design purposes, these values
must be reduced in accordance with the knock-down criteria of
Volume V [12].

For design purposés, it is then éssumed that cataéfrophic collapse
of the structure will occur at the lower of the two values obtained
from (b) and (c) above. That is, depending upon the particular ‘
geometric proportions, the failure can occur either by the panel
instability (see GLOSSARY) or the general instability (see
GLOSSARY) mode. | ' o
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