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ABSTRACT 

More than 70 cases have been observed of energetic solar flare 

x-ray bursts by large ionization chambers on the OGO satellites in space. 

The ionization chambers have an energy range between 10 and 50 Kev 

for x-rays and are also sensitive to solar protons and electrons. 

A study has been made of the x-ray microwave relationship and it 

is found that the total energy released in the fona of x-rays between 

10 and 50 Key is approximately proportional to the peak or total energy 

simultaneously released in the form of microwave emission. For a given 

burst the rise time, decay time and total duration are similar for the 

10-50 Kev x-rays and the 3 or 10 an radio emission. Roughly exponential 

decay phases are observed for both emissions with time constants between 

1 and 10 minutes. All 3 or 10 cm radio bursts with peak intensity greater 

than 80 solar flux units-are accaspanied by an x-ray burst greater 

x 10- 7 - 2 - I than 3 ergs aM sec peak intensity. The probability of 

detecting such x-ray events is low unless the radio spectria extends 

into the centimetric range of wavelengths. The best correlation between 

cm-X and energetic- x-rays is observed for the first event in a flare. 

Subsequent structure and second bursts may not correspond even when the 

radio emission is- rich in the microwave component. A very good 

correlation exists between the occurrence of large SID events (importance- 3) 

and energetic x-rays. The overall correlation for importance 1, 2 and 3 

is 55%. Ahnost 90% of the x-ray bursts were acccapanied by known SID 

events. The mechanism for the energetic x-rays is shown to be 

bremsstrahlung probably of fast electrons on a cooler plasma. The mechanism 

for the radio emission is basically uncertain. However, if it is 

assuned to be synchrotron radiation then a relationship is developed 
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between density and magnetic field which meets the observed quantitative 
- 2 

results. One finds, on the average, that 5 x 10- 5 4 joules m (CPS) - I 

of microwave energy at earth are required per electron at the sun to 

provide the radio emission for the various events. 

A strong correlation between interplanetary solar flare electrons 

observed by satellite and x-ray bursts are shown to exist. This 

correlation is weak for solar proton events. One may infer a strong 

propagation asymmetry for solar flare electrons along the spiral 

interplanetary magnetic field. 
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I. INTRODUCTION 

Since September 1964 ionization chambers flown in space have 

detected numerous solar flare x-ray bursts in the energy range frcm 

10 to 50 Kev originating in solar flare disturbances. In the 

present paper we shall present the rrost recent summary of these observed 

events and discuss their relationship with the microwave solar radio 

bursts and with-the observations of energetic electrons and protons 

ejected into space by- the same flares. The central object of such 

a study is to reach a better understanding of the solar flare processes 

and the nature of the instability which generates flares but, 

in particular, to understand the processes which gave rise to suprathermal 

particles so frequently observed from flares. 

The x-rays are detected by ionization chambers carried for long 

periods of time outside the magnetosphere by the OGO-I and OC5-III 

satellites. Details of the instrumentation and previous work on this 

program have been suamarized in several publications (Kane et al, 1966; 

Arnoldy et al, 1967a; Arnoldy et al, 1967b). The range of energies 

covered by the present experiments is similar to, but in geberal 

scmewhat less than, the x-ray events detected previously by balloons 

flown near the top-of the atmosphere (Peterson and Winckler, 1959; 

Winckler et al, 1961; Vette and Casal, 1961; Anderson and Winckler, 1962; 

Hofmann and Winckler, 1963). Several summsaries of this very energetic 

bremsstrahlung emission from flares and their relationship to the radio 

and optical features are available, based on the older results (Winckler, 1963; 

Friedman, 1964; Kindu, 1965). In a general sense the energetic flare 

x-rays of energy above 10 Kev appear as bursts of duration between 

1 and 20 minutes in very good time simultaneity with the "explosive" 

phase of flares (Moreton, 1964). Previously, the observations of these 
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energetic x-rays were made by chance on high altitude balloons carrying 

ion chambers or scintillation counters. These early experiments detected 

only the most energetic quanta fran the flare due to the atmospheric 

absorption above the balloons. These rather exceptional events have 

given rise to considerable speculation about. processes which could 

produce energetic quanta such as the inverse Ccmpton process (Acton, 1964; 

Shklovsky, 1964; Schklovskii, 1965; Zheleznyakov, 1965), the synchrotron 

process (Stein and Ney, 1963), or nuclear processes giving ganma rays. 

The results of the present study show that flares of all sizes 

fran Class 1S to Class 3B- emit such energetic x-rays and that their origin 

is probably bremsstrahlung following the suprathermal heating of electrons 

in the magnetic plasma mediun in the solar active region. Our recent 

investigation (Arnoldy et al, 1967b) has shown that the x-ray bursts 

are well-correlated with the direct observation iumediately afterward 

in space of energetic electrons greater than 40 Kev energy which may 

well came from the same source (Lin and Anderson, 1967).. In this 

paper and the previous related accounts we also have found evidence 

that the acceleration of solar flare protons which are now widely observed 

in interplanetary space or at the earth may arise fram a process disjoint 

fram that responsible for the x-ray-electron emission. 

II. DISCUSSION OF THE 00 EXPERIMENTS 

The x-rays were detected with an 18 cm diameter aluminum wall 

ionization chamber filled with argon gas at 3.5 atmospheres pressure. 

Identical instruments were provided -for the OGO-I (launched 

September, 1964) and the OO-III (launched June, 1966) satellites both 

of which continue to give data. Details of the instruientation are 

given in our previous publications (Kane et al, 1966; Arnoldy et al, 1967b). 
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The ion chamber response has a lower limit of 10 Kev, has a maximum 

response between 20 and 30 Kev and an effective upper limit between 

50 and 100 Key depending on the type of spectrum characteristic 

of the x-rays. In this paper the ion -chamber rates are given in the 

various figures in teres of a standardized -arbitrary rate designated 

as normalized pulses/sec x 103 (NPPS x 103 ). The response 

characteristics and factors for converting the chamber rate to absolute 

energy flux are given in Table 1. For the analysis in this paper, 

we have assumed a rather steep exponential type x-ray spectrum with 

= 7 	Kev. The threshold sensitivity of the chamber for x-rays is 

7 Ca- 2 - I . 

E0 

3 x 10- ergs sec The chamber responds also to protons above 

12 Mev, to electrons above 700 Kev, and frequently detects particle 

events in space closely following the x-ray bursts from the same flare. 

Recently some solar x-ray events have been detected simultaneously 

by both CGO-I and III. Figure 1 shows such an example and also 

delineates the orbital positions of the two satellites with respect 

to the magnetospheric structure. Such simultane~ous events make the 

identification of the x-ray increase copletely certain and help to 

distinguish spurious cases due to electron bursts associated with the 

magnetosphere. The example shown in Figure 1 is also interesting 

because of the sharp burst at 1712 UT and the rather amooth maximum 

at 1730. The close agreement -of the two ion chambers measuring the 

same event shows that the calibrations used were correct and that no 

drift has occurred in the 'calibration of the OGO-I instrument over 

a period of two and a half years. 
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III. CORRELATION OF X-RAY AND RADIO 'BURSTS 

We have continued the study of 0GO satellite data reported in 

the earlier papers and have approximately doubled the number of events 

by extending the analysis through December 1966. We shall now 

summarize the results of this total analysis and give examples 

to illustrate the principal findings. 

A. Both the peak intensity and the total energy released in 

the form of x-rays between 10 and 50 Key is approximately proportional 

to the peak or total energy simultaneously released in the form of 

microwave emission in either the 3 or 10 an range of frequencies. 

The correlation of the integrated x-ray and radio emission for about 

60 events is shown in Figure 2. The integral has been carried out 

over the "first" radio or x-ray burst for the flare as it seems alwayL 

true that the first x-ray burst and the first microwave emission 

correspond extremely well, but subsequent increases ("second bursts") 

may or may not correlate well. These facts will be brought out more 

clearly by the examples below. The correlation of peak intensities 

is shown in Figure 3. The reasonable linear relationship between 

both integrated and peak x-ray and microwave intensity strongly 

suggests a comon basic energy source for the two phenomena or even 

that the same electrons may be emitting both the x-rays and 

radio waves. This proportionality will permit us to draw conclusions 

about the radio process based on an assumed mechanism and on the 

known characteristics of bremsstrahlung emission (see the discussion). 

There is evidence that the newer events, corresponding to a 

later period in the increasing solar cycle show more x-ray emission 

relative to the radio event (see open points in Figures 2 and 3). 
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This is not caused by any change in apparatus calibrations (see Figure 1). 

A result similar to this has been found by Kawabata (1966) for 

the relation between sme -soft x-ray events observed by the satellite 

SR-I and cma-x emission. 

B. For a given flare burst the rise time, decay time and total 

duration are similar for the 10-50 Kev x-rays and for the 3 or 10 an 

radio emission. Such a similar time history is not characteristic 

of extremely soft x-rays -fram flares which resemble more closely 

the optical emissions; or, on the other hand, for extremely energetic 

quanta which may completely disappear after the first impulse of the 

flare. 

A large event on 30 March 1966 is illustrated in Figure 4. Another 

large event on 7 July 1966 is shown in Figure 5 where the results of 

Cline et al (1967) for x-rays.>80 Kev also measured on OGO-III are 

shown for camparison. A solar proton-event fran the same flare 

begins on the ion chamber before the x-ray decay is complete. 

C. If one plots the decay phase of the radio and 10-50 Kev 

x-ray bursts frequently this appears to be roughly exponential and 

to have similar time constants for the two emissions. These time 

constants vary between 1 and 10 minutes. Frequently, however, after 

the first impulsive maximum the radio emission has much structure 

especially for the large ccmplex type events which is only weakly 

or not at all followed-in the x-ray emission. In a qualitative 

sense similarities in fine structure are observed during the early 

part of the events and many differences develop later. 

The decay of a complex event is shown in Figure 6. This event 

illustrates the steady character of the x-ray decrease, and the 
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large fluctuations during the radio decay. 

D. Statistically, all 3 or 10 cm radio bursts with peak intensity 

greater than 80 solar flux units are accaooanied by an x-ray burst 

10- 7 - 2 - Igreater than 3 x ergs cm sec peak intensity in the range 

10-50 Key. In the inverse sense there exist a small number of x-ray 

events constituting a few percent of the total as an upper limit which 

are not accompanied by a radio burst. These conclusions apply to the 

initial impulsive part of the flare event. Second bursts or complex 

structure later in an event vary considerably in the degree of correlation. 

E. The probability of detecting an x-ray event associated with 

a radio burst under the energy and sensitivity limits of this investigation 

is low unless the radio spectrum extends into the centimetric range of 

wavelengths. This feature is characteristic both of the initial 

burst and of subsequent bursts for a given flare. This spectral 

feature is illustrated by Figures 7 and 8 for events on 5 June 1965 and 

9 December 1966. In each case the "second" radio maximum seen, for 

example, on 10 cm has a spectrum predominantly in the deca-metric 

or metric range and is not accompanied by an x-ray increase. One may 

suppose that the metric emission is not compatible in general with a 

plasma density sufficient to produce a detectable bremsstrahlung 

output. This may be due to the-greater coronal heights of emission 

during this phase. In Figure 9 (4 October 1965) is shown an event in 

which the initial burst is largely metric, and no x-rays are observed. 

In this case a solar proton event ensues. The proton acceleration 

process may thus be of a different character than that giving the 

suprathenmal "tail"of thermal electrons. 
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F. The best correlation is observed for the first event in 

a flare between cn-X and energetic x-ray emission. Even sone detailed 

structure may correspond well at the start of the outburst. 

Subsequent structure and "second" bursts may not correspond, even when 

the radio emission is rich in the microwave component. 

A striking example observed by balloon equipment on 20 July 1961 

(Hofmann and Winckler, 1963; see also Bruzek, 1964; Ellison et al, 1961) 

is shown in Figure 10. Here the 3 and 10 an emission during the "second" 

maximum at 1615 UT was very strong, but no large flux of energetic 

quanta appeared. Solar protons from the "flash" at 1550 ur had 

already reached the balloon by this time. - Two other examples of the 

inverse effect in Figure 11 (18 March 1966) and Figure 12 (31 March 1966) 

show cases of long duration - post burst type radio increases with little 

or no indication of a special correspondence to a well defined "second" 

x-ray maximum. Such cases where electrons emit microwaves but no 

bremsstrahlung, or bremsstrahlung but no microwaves may be attributed to 

variation of height, plasma density, magnetic field strength or other 

parameters which can inhibit some processes of emission while allowing 

others. 

G. A very good correlation exists between the occurrence of 

large SID events (importance -- 3) and the 10-50 Kev range of x-rays 

measured here as can be seen from Table 2. Here all the SID events 

which occurred during the OGO observation period between September 1964 

and December 1966 are considered. Fran Table 2 it may be noted that the 

correlation increases from 50 to 80 percent with the increase in the 

importance of the SWF events fran 1 to 3. The overall correlation is 

about 55 percent. 



The inverse correlation (x-ray - SID, 3 cm or 10 c radio bursts) 

is shown in Table 3. Here -the relationship is presented for two 

periods, viz. September, 1964 - June, 1966 (period A) and July, 1966 -

December, 1966 (period B). During period A the x-ray - SID and x-ray 

radio correlations are almost 100 percent. However, during period B 

there are about 20 percent more x-ray bursts than the SID events or 

radio bursts. This may suggest a gain in the hard x-rays relative 

to either soft x-rays (SWF) or radio emission as the solar cycle progresses. 

This conclusion has limited statistical validity, however. 

IV. INTERPRETIVE REMKS ABOUT THE X-RAY RADIO RELATIONSHIP 

Because of the very close morphological relation between the x-ray 

production and the centinetric range of radio emission it is very 

plausible to search for a model or to propose a situation in which 

both types of electromagnetic emission come from a common source. 

In the paper of Peterson and Winckler (1959) the source of the x-rays 

was assumed to be bremsstrahlung fram energetic electrons in an 

energy range around 500 Kev. The radio emission was then assumed to 

be by the synchrotron process from the same electrons. This lead to the 

difficulty that about 104 times too much radio emission was expected 

compared to the observed. Takakura (private communication, 1963); (1966) 

examined the situation and proposed that the region of emission was 

different for the x-rays and the radio bursts and was able to adjust 

the radio power at the same time retaining the concept that the same 

energy region of electrons was responsible for both emissions. 

The many examples given in this paper have been presented purposely 

to show the coaplex character of the situation. Early in the flare event 

there appears to be a very close relationship between x-rays and 



microwaves and as time progresses the radio emission assmes a time 

structure frequently not closely related to the smothly disappearing 

x-ray burst. There are many variaticrs of this behavior, however, 

We are thus faced with an event-by-event description of various 

phencmena which might include surges of material to high altitude as well 

as emission at great depths. For example, observations of a flare 

event on 20 Novenber 1960 which occurred soom 230 behind the 

solar west limb produced both microwave emission and x-rays pausing a 

SWF. The analysis of Ellison et al (1961) showed that these emissions 

came from a region 60,000 kon above the photosphere. It will thus be 

difficult or impossible to form a single model applicable to all events. 

However, for the initial part of the events where the correlation. is 

very strong between x-rays and microwaves, it may be possible. 

In our previous paper (Arnoldy et-al, 1967b) we attempted to visualize 

the simplest possible situation that was consistent with the exper'innt4 

facts and did not assue special kiJds of processes not specificaly 

dictated by the results. We recall the approximate proportionality 

between the x-ray and radio -emission as shown above and the similarity 

in duration and decay rate of the two types of emission. Two possible 

cases are considered: (a) that the characteristic tire constant is 

determined entirely by the tine variation of the basic energy source 

itself with all other time constants associated with specific processes 

(for example, synchrotron emission) being shorter than this. In case 

(b) the source is impulsive but a single dominant electron decay 

process determines the time 6onstant for both the x-ray and radio 

emission. This time constant could be that required for the suprathetmal 

electrons responsible for the bremsstrahlung to disappear by collision 
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loss in the plasma. We consider that the same plasma region and probably 

the same electrons are producing both the x-ray and radio emission. 

The plasma is entrained in a magnetic field above the solar active 

center. These fields must play a major role in the acceleration of 

particles and in the emission and propagation of radio frequency energy. 

For any quantitative calculations the emission process must be made 

specific. Our model assumes that very hot energetic or suprAthermal 

electrons lose energy predominantly by collisions with a much cooler 

plasma. This point of view has also been suggested by Elwert (1961). 

Neither the present measurements, nor the original measurements of 

Peterson and Winckler (1959) can provide exact energy discrimination. 

Thus a re-interpretation of the 20 March 1958 event of Peterson and 

Winckler, made by Chubb et al (1966) in terms of an exponential spectrum 

with E0 about 60 Kev is probably acceptable. However, balloon 

scintillation counter measurements by Anderson and Winckler (1962) 

showed directly the presence of photons >150 Kev energy, and 

Cline et al (1967) have shown flare bremsstrahlung spectra at 100 Kev. 

We do not consider plausible the concept that there exists a 

complete plasma at an enormously elevated temperature and that one is 

justified in using the thermal bremsstrahlung approach for computing 

the x-ray emission power for such events. The thermal bremsstrahlung 

approach with very high temperatues has been consistently proposed 

by the NRL group (for example, see Chubb et al, 1966). It is true 

that the concept of temperature is often applied to one component 

of a medium, for example electron energies are frequently given in terms 

of electron temperature if the energy distribution appears to be 

exponential. However, one might expect that using the concept of 
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temperature would imply that the medium is close to a thermodynamic 

equilibrium condition and that-one is therefore justified in applying this 

same temperature to compute many types of processes such as, for 

example, the distribution of ionization states, spectral emission, etc. 

There appears to be no evidence at all that the temperatures deduced 

from other means in flare regions reach the enormous values of 108. which 

one is forced to assume for the electronic bremsstrahlung emission seen 

as hard x-rays. Optical measurements (de Jager, 1959) frequently show 

10,000 to 20,000 degrees as typical. We therefore favor the point of view 

that the electron heating in the flare region is highly non-equilibrium 

end may be associated with such phenomena as magneto-hydrodynamic waves 

and that there exists an energy distribution characteristic of a much 

lower temperature with a large suprathermal tail. 

We now consider a quantitative estimate of the bremsstrahlung 

emission. In case (a) where the time behavior of the event is determined 

entirely by the energy source, the collision lifetime is very short. 

One can use the thick target bremsstrahlung equation given by Koch 

end Motz (1959) for non-relativistic electrons 

5 x 10- 4 Z E (1)m c
 
0 

where e is the efficiency defined as (total energy radiated)/(total beam 

energy), EK the kinetic energy, and Z the atomic number of the target. 

Considering 100 Kev electrons for a large event such as 30 March 1966 

or 7 July 1966 a beam energy of 3 x 1030 ergs is required which is 

equivalent to 2 x 1032 electrons. If we consider case (b) where 

an impulsive injection of 100 Kev electrons is assumed the collision 
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loss determines the decay of the event (fran one to ten minutes) and gives 

- 3 - 3 density estimates of 3 x 10I 0 atoms cm by 3 x 109 atoms cm for the 

lifetime range of one to ten minutes respectively. The bremsstrahlung 

power is calculated also from the results of Koch and Motz (1959) valid 

for electron energies of 10-100Kev incident on neutral hydrogen. 

Quantitatively, the relationship reduces to the following, where 
2 

P is the number of photons between 10 and 50 Kev per an per sec measured 

at the earth, end NH and Ne are respectively the densities of hydrogen 

and energetic electrons situated in the volume V. 

P = 3 x 10-43 N N V photons cm-2 sec- I (2)e 

If NH can be estimated fram observed event lifetimes, and if P is 

measured, then equation (2) mey be used to compute the total number 

of electrons, V. Again for a large x-ray event the value ofNe 

P is 1.5 x 104 and frcathe observed mean lifetime of 300 seconds N. 

9 -3 37is estimated to be 5 x 109 cm . For this density 10 electrons 

are required in the impulsive injection process, i.e. essentially 

the same number as calculated under assumption (a). 

Considering the radio emission this is often attributed to 

synchrotron radiation. Although this is certainly a plausible 

mechanism the detailed measurements of polarization and other factors 

do not exclude a thermal source accompanied by propagation effects which 

produce polarization. In fact, Kundu (1965) suggests that the microwave 

burst events may frequently be a mixture of thermal and synchrotron 

emission. Considering a large event such as 30 March 1966 and 7 July 1966 

the microwave energy received at earth at 3 an was approximately 

- 2 6 x 10- 1 7 joules m (CPS)-i. Following our basic assumption that 
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- 5 4 
the sane electrons are responsible for both processes, about 5 x 10 

-joules m (CPS) of microwave energy at earth are required per 

electron at the sun on the average. This number will be approximately 

the same for all events as long as the proportionality between x-ray 

and microwave emission is valid. The large difference in size from 

event to event is thus principally due to the difference in number of 

electrons in the source. 

For the purposes of discussion we have assumed that the microwave 

energy is from the synchrotron emission of electrons of intermediate 

energy. Following the work of Takakura (1960) for electrons of 

intermediate energy and assuming 50 and 100 Kev energies one can 

calculate the total power radiated by an electron in uniform circular 

notion averaged over 47 solid angle. For a given frequency and electron 

energy the power radiated per electron depends only on the magnetic 

field B. On the other hand; for bremsstrahlung the power radiated 

per electron depends only on the density of -hydrogen. Thus, as shown 

in Figure 13 one achieves a relation between density and magnetic field 

for the two chosen -discrete energies such that the observed " 

proportionality between energetic x-ray and -3 an emission is satisfied. 

In case (b) (impulsive -injectionby source) it becomes apparent 

that the 3 cm.emission is occurring close to the 20th harmonic for. 

an acceptable magnetic -field. The emissivity at this harnnic is 

several orders of magnitude below that near the gyrofrequency and we 

consider this to be a very improbable physical situation. However, 

if one allows higher densities and very short electron lifetimes 

as in case (a) (where the duration of the event is controlled by the 

source) then the permissible magnetic field is much higher and 
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the hanronic is reduced to a plausible value. In practice one 

would, of course, wish to use a continuous spectrum of electron energies 

such as the ccmputation of Takakura (1966). But with the very short 

lifetime due to collisions and a re-generation continuously during the 

event by the source one achieves with reasonable magnetic field strengths 

the low stored flux of electrons required to agree with the observed 

radio emission. Thus the -original difficulty in the calculation of 

Peterson end Winckler -is -resolved. 

Figure-13 shows also -the density corresponding -to the plasma 

frequency for the ionized component at several temperatures end also

on the X-axias with an extended scale the magnetic field corresponding 

to the gyrofrequency. The -radio emission must occur within the rectangle 

limited by these lines. , 

The relationship shown -in Figure 13 between density and magnetic 

field strength corresponding to the discrete energies 50 Kev end 100 Kev 

may possibly define some -direct physical situation in the flare region. 

We show in Figure -14 a mean -curve for 75 Kev and a family of curves 

for different values of the -ratio, 8, of thermal energy to magnetic 

energy for a chosen tamperature of 7500 0K. One might suppose that 

during an active time -the magnetic field above the sunspot regions would 

be carrying a large plasma density and that possibly the 8-value might 

tend to be-constant in -different portions of the field. 

However, the -empirical curve for -75 Kev spans several orders of 

magnitude variation in 6 as shown in -Figure 14. If, indeed, there is 

any direct physical significance to this curve then it implies 

that the magnetic field -is more heavily loaded with plasma for high field 

strengths and very lightly loaded in the upper corona where the field 

strengths are small. 
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V. NERGETIC PARTICLE PELATIONSHIPS 

The OGO ionization -chamber can -detect solar particle events as well 

as x-ray bursts and frequently shows intensity increases following

a flare which are clearly- due -to charged particles from the sun. 

The ionization chamber is very -sensitive to protons and can detect 
-2 -i 

a flux of 0.01 protons cm sec of energy greater than 12 Nev. The 

chamber also-is-sensitive- to electrons-greater than 700 Kev but in 

principle cannot distinguish the type of particle responsible for 

a given increase. An example of a small particle event following the 

5 June 1965 x-ray.-event discussed previously (see Figure 7) is shown 

in Figure -15. The event begins at -1900 UT and reaches a maxinum at 
-2 -± 

2100 UT. Interpreted -as protons, this "iplies0.07 protons an sec 

but this increase could -also presumably be due to-electrons greater than 700 

Kev. In fact, this event produced an identified electron increase in 

both the Mariner IV and IMP I satellites (Van Allen .and Krimigis, 1965; 

Lin and Anderson; 1967) of energies greater than 40 Key. 

A very large x-ray -event on 28 August 1966 followed by a solar 

proton event which eventually became very large is shown in Figure 16. 

In this case the x-ray increase was roll nodulated by the spinning 

spacecraft when the ion chamber was eclipsed by the body of the 

spacecraft. One notes the lack of roll-modulation for the particle event. 

The maximum in- -solar particle intensity was reached at 2100 UT with 

an ion-chamber -rate of-15000 NPPS x-10 3. One notes the lack of correlation 

between the -large radio-maximnum -at 1605 and the x-ray intensity. 

The release into space of electrons--above 40 Kev energy associated 

with solar-flares-has now-been observed-on many occasions by the IMP 

spacecraft (Lin end Anderson, 1967). It is possible to use IMP 
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data to detenine which OGO particle events did not contain electrons 

and presumably were due to solar protons; Also both the IPA electron 

events and the proton events can be correlated with the occurrence of 

energetic x-ray bursts and microwave emission. A ccaplete summary 

with tables for the period September, 1964 through June, 1966 has been 

given in our previous paper (Arnoldy et al, -1967b). These 

correlations may be summarized as follows:
 

A. Of -8 proton events observed by the ionization chamber but 

not detected as -electron-events-on-IMP satellite, 7 were not associated 

with solar flare -energetic -x-rays. An example of such an event is given 

in Figure -9.-It-appears,--Therefore, -that-theproduction of solar 

protons-is not necessarily closely correlated with the processes 

producing electrons and energetic bremsstrahlung. 

B. Eight large electron events'-detected when the 0GO and IPP 

spacecraft were simultaneously operating -in interplanetary space had 

associated x-ray bursts. The remaining 4 electron events were 

very small and were not recorded- by -CGO -as x-rays nor was there microwave 

emission. This -rather good correlation of-x-ray bursts with 

interplanetary -electron-events suggests-that the flare electrons
 

that leak out into interplanetary space might be from the same supra

thermal source -as those responsible for the energetic x-rays. 

For the-5 June 1965 event the observed number of electrons measured 

directly-in--space-above 40 Kev can be ;provided by the leakage into 

interplanetary space fran the -flare-region-of-about 0.1% of the number 

of electrons required to produce -the -corresponding x-ray -event.
 

C. The reverse correlation where one begins with known OGO 

x-ray bursts and compares IMP data for interplanetary electrons shows 
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12 events with no interplanetary electrons. It is striking that all 

12 were produced by -flares-near or east -of: central meridian. It is 

very reasonable to-assume that the absence :of electrons in these 

cases is due to a propagation.asymmetry-between the sun and the earth
 

similar-to-:that previously observed for high energy solar protons
 

caused by the spiral interplanetary magnetic field. 

D. It is generally found-that very large flares such as 

7 July"1966 or 28 August 1966 produce-all types of energetic solar 

phenomena simultaneously.' X-rays, microwave emission, interplanetary 

electrons and solar protons are all observed. 
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FIGURE CAPTIONS 

1. 	 A solar flare x-ray increase observed simultaneously by the ion 

chamber-on OGO-I and. OGO-III satellites. This x-ray burst has 

a sharp preliminary-peak--at 1712 UT and a broad maximan centered 

at 1730. *A satisfactory -10 cm radio correlation exists. 

2. 	 Correlation-of integrated- x-ray and integrated radio flux for the 

observed-events. The integral has been carried out over the first 

event in a flare occurrence. A roughly linear relation exists, 

but the-events: later in the solar-cycle between July 1966 

and December 1966 -appear relatively more rich in x-ray emission 

than the earlier events. 

3. 	 Correlation of peak x-ray and radio fluxes. The tendency for 

a solar -cycle effect-can also be traced in this figure. 

4. 	 Comparison of x-ray intensities (lower) end 3 end 10 cm radio 

emission (above)- for -a large canplex -flare event. 

5. 	 The response of -the OGO ion chamber for 10-50 Kev x-rays and the 

> 80 Kev x-rays also-detectedon the-OG satellite (Cline et al, 

1967) compared to microwave emission. Note the -much shorter 

lifetime for the more -energetic bremsstrablung: 

6. 	 The decay of a -ccmplex event showing similar trends for x-rays 

and 3 cma-radio-emission; 

7. 	 An exanple of -a rather detailed x-ray-radio correspondence for the 

first -event in the flare beginning at-1807 but showing the lack 

of observable x-rays corresponding to the predcminantly metric 

event beginning at 1821. 
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8. 	Another event similar to Figure 7 showing the lack of correspondence
 

when the radio spectrum is predominantly metric rather than
 

centimetric.
 

9. 	A flare event with low intensity of cm-X emission but with
 

appreciable metric band energy. Note the beginning of a solar 

proton event at 1030 UT and the-absence of an x-ray burst.
 

10. 	 An example of a limb event observed by balloon equipment in which 

the first increase produces a solar x-ray event but the second 

large microwave increase has no detectable x-rays. A solar 

proton increase from this west liub flare has begun by 1612. 

(See Hofmann and Winckler, 1963).
 

11. 	 Complex event showing a sizeable second x-ray maximum with weak 

corresponding radio emission. 

12. 	 A large double x-ray event corresponding to a long duration microwave 

increase. No detectable radio event corresponds to the second
 

x-ray maxiimem at 1927 UT. 

13. The density required to give the observed bremsstrahlung power per 

electron expressed as a function of the magnetic field required 

to give the observed radio emission at 10,000 Miz by the 

synchrotron process. The relation is shown for discrete energies 

of 50 Kev and 100 Kev. Any point along the curves will satisfy 

the observed proportionality between the microwave end x-ray emission 

under the assumptions presented in the text. The densities at 

which the plasma frequency of the medium is equal to 10,000 MHz 

is indicated for various temperatures. The magnetic field strength 

which gives an electron gyrofrequency of 10,000 MHz is also shown.
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14. 	 An examination of the hypothesis- that the magnetic field-density 

curve (for man energy 75 Key) physically represents the thermal 

to magnetic energy, relationship in the plasma. 

15. 	 A small x-ray event showing the ensuing solar particle event 

observed by the ionization chamber. These particles are not 

specifically identified by the OGO ion chamber but may be 

solar protons. Solar electrons were observed by several 

experiments (see text) and-correspond to this particle increase. 

16. 	 The great event-on -28 August 1966.' Note the almost complete 

roll modulation of the x-ray -burst with the 96 second roll 

period of OGO-III. This roll modulation is not present in the 

solar particle increase-beginning at 1550-UlT. Only the initial 

features of -the complex radio burst are reflected in the x-ray 

profile. 
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Table 1 

ION CHAMBER RESPONSE 

Primary X-Ray Spectrun dN/dE - eE 
/ ° ph cm -

2 
sec 

- Kev 
 1 

0 
(Kev) 

7 

20 

50 

C H A M B E R R A T E 
-ENEGY 

(N. pulses sec x 103) 

______ 

10-16 16-106 106-150 
Kev Key ' Kev 

0.026 0.116 5.1 x 10 - 8  

0.106 1.16 1.81x l0 

0.165 2.61 0.07 

TOTAL 
TOTAL 

0.142 

1.27 

2.-85 

INCIDENT 
FLUX 

>10 Key 

-2 
ergs am sec 

1.7 x 10 - 8 

4.7 x 10' 

3.8 x 10 
- 6 

1 

CONVERSION FACTOR 
-2 -

ergs cm sec 

.-
N. pulses sec - x 103 

1.2 x 10  7 

3.7 x 10-7 

1.3-x 10  6 



41 

Table 2
 

SID - X-Ray Correlation
 

September, 1964 -December, 1966
 

SWF Importance 1 2 3 

No. of SWF occurring 
during OGO-observation 
periods 

91 26 10 

No. of correlated x-ray 
events detected by 
OO 

45 18 8 
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Table 3 

SID 
X-Ray -- 3 cm Correlation 

10 cm 

CORR EVENTS 

X-ray 3 c or SWF and 
Time Period Bursts SWF 10 cm 3 cm or 10 cm 

Sept., 1964- 27 26 27 26 
June, 1966 

July, 1966- 52 44 45 38 
Dec., 1966 

Total 82 70 72 64 
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