INTERIM REPORT
CAVITATION INCEPTION IN LIQUID NITROGEN
AND LIQUID HYDROGEN FLOWING IN A VENTURI
by D. K. Edmonds, J. Hord, and D. R. Millhiser

Prepared under Contract No. C-35560-A
for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Prepared by
U.S. Department of Commerce
NATIONAL BUREAU OF STANDARDS
Boulder, Laboratories
Boulder, Colorado
NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration
Office of Scientific and Technical Information
Attention: AFSS-A
Washington, D. C. 20546
CAVITATION INCEPTION IN LIQUID NITROGEN AND LIQUID HYDROGEN FLOWING IN A VENTURI

by D. K. Edmonds, J. Hord, and D. R. Millhisser

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CONTRACT No. C-35560-A
August, 1967
FOREWORD

This report was prepared by the National Bureau of Standards, Institute for Materials Research, United States Department of Commerce under Contract C-35560-A. The contract was administered by the Lewis Research Center of the National Aeronautics and Space Administration, Cleveland, Ohio. The work summarized in this report was performed during the period 15 July 1964 to 15 July 1967. The NASA project manager for the Contract was Mr. Werner R. Britsch. Mess'rs. R.S. Ruggeri, T. F. Gelder, and R. D. Moore of the Fluid Systems Components Division at NASA Lewis Research Center—under the direction of M. J. Hartmann—served as research consultants and technical advisers during the course of this program.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>ii</td>
</tr>
<tr>
<td>ILLUSTRATIONS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLES</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Apparatus</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Test Section</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Instrumentation</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Visual and Photographic Aids</td>
<td>10</td>
</tr>
<tr>
<td>3. Test Procedure</td>
<td>10</td>
</tr>
<tr>
<td>4. Data Analysis and Discussion</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Data Analysis</td>
<td>23</td>
</tr>
<tr>
<td>4.2 Discussion of Data</td>
<td>24</td>
</tr>
<tr>
<td>5. Summary</td>
<td>25</td>
</tr>
<tr>
<td>6. Acknowledgements</td>
<td>26</td>
</tr>
<tr>
<td>7. Nomenclature</td>
<td>27</td>
</tr>
<tr>
<td>8. References</td>
<td>30</td>
</tr>
<tr>
<td>9. Appendix A---Acoustic Detector</td>
<td>A-1</td>
</tr>
<tr>
<td>10. Appendix B---Method Used to Compensate the Experimental Inception Data for Temperature Deviation about the Nominal Isotherms</td>
<td>B-1</td>
</tr>
<tr>
<td>11. Appendix C---Distribution List for Interim Report NASA</td>
<td>C-1</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic of Cavitation Flow Apparatus</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Photograph of Plastic Venturi Test Section Installed in System. Note Counter--Used to Correlate Flow Data with Film Event</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Sketch of Plastic Venturi Section Showing Dimensions and Location of Pressure and Temperature Instrumentation</td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>Quarter-Round Contour of Convergent Region of Plastic Test Section</td>
<td>6</td>
</tr>
<tr>
<td>2.5</td>
<td>Pressure Distribution Through Test Section for Non-Cavitating Flow</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Cavitation Parameter for Liquid Hydrogen as Function of Test Section Inlet Velocity</td>
<td>17</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of Test Section Inlet Velocity and Liquid Temperature on Required Inlet Head for Cavitation Inception in Liquid Hydrogen</td>
<td>18</td>
</tr>
<tr>
<td>4.3</td>
<td>Cavitation Parameter for Liquid Hydrogen as a Function of Test Section Inlet Velocity and Liquid Temperature</td>
<td>19</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of Test Section Inlet Velocity and Liquid Temperature on Required Inlet Head for Cavitation Inception in Liquid Nitrogen</td>
<td>20</td>
</tr>
<tr>
<td>4.5</td>
<td>Cavitation Parameter for Liquid Nitrogen as a Function of Test Section Inlet Velocity and Liquid Temperature</td>
<td>21</td>
</tr>
<tr>
<td>4.6</td>
<td>Photograph Showing Typical Cavitation Inception in Liquid Hydrogen</td>
<td>22</td>
</tr>
<tr>
<td>4.7</td>
<td>Photograph Showing Typical Cavitation Inception in Liquid Nitrogen</td>
<td>22</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS (continued)

Figure

9.1 Acoustic Transducer for Detection of Cavitation Inception A-2
10.1 Illustration of Method Used to Construct Nominal Isotherms from Experimental Data B-2

TABLES

Table

4.1 Cavitation Inception Data for Liquid Hydrogen . . 12
4.2 Cavitation Inception Data for Liquid Nitrogen . . 13
4.4 Calculated Data Used to Construct Nominal Isotherms for Liquid Hydrogen Inception 15
4.5 Calculated Data Used to Construct Nominal Isotherms for Liquid Nitrogen Inception 16
Interim Report

CAVITATION INCEPTION IN LIQUID NITROGEN AND LIQUID HYDROGEN FLOWING IN A VENTURI

by

D. K. Edmonds, J. Hord, and D. R. Millhiser

ABSTRACT

Cavitation characteristics of liquid hydrogen and liquid nitrogen in a transparent plastic venturi have been determined. The experimental data are presented in tabular and graphical form. Conventional cavitation-parameter and head-velocity curves are given over the range of experimental temperatures (36.5 to 41°R for hydrogen and 140 to 170°R for nitrogen) and inlet velocities (70 to 185 ft/sec for hydrogen and 20 to 70 ft/sec for nitrogen). Minimum local wall pressure was calculated to be less than bulk stream vapor pressure by as much as 323 feet of hydrogen head and 63 feet of nitrogen head.
1. Introduction

Cavitation is usually defined as the formation, caused by a reduction in pressure, of a vapor phase within a flowing liquid or at the interface between a liquid and a solid. Since the formation and collapse of vapor cavities alters flow patterns, cavitation may reduce the efficiency of pumping machinery[1], and reduce the precision of flow measuring devices. Collapse of these vapor cavities can also cause serious erosion damage[2] to fluid handling equipment.

NASA has undertaken a program[1] to determine various cavitation characteristics of different fluids in an effort to develop design criteria to aid in the prediction of cavitation in pumps. The experimental study described herein was conducted in support of this program. Liquid hydrogen and liquid nitrogen were chosen as test fluids for this study for the following reasons: (1) the ultimate goal of this program is to acquire sufficient knowledge to permit intelligent design of pumps for near-boiling liquids and (2) predictive analyses[1] indicated that the physical properties of hydrogen and nitrogen make them particularly desirable test fluids.

The objective of this study was to determine the flow conditions required to induce cavitation, in liquid hydrogen and liquid nitrogen, on the walls of a transparent plastic venturi. The shape of the venturi was chosen to duplicate the test section used by NASA[3-6]. Tests were conducted with test section inlet velocities of 70 to 185 ft/sec in hydrogen and 20 to 70 ft/sec in nitrogen. Inlet temperatures were varied from 36.5 to 41°F with hydrogen and from 140 to 170°F with nitrogen in order to determine the effects of temperature upon cavitation inception. The data reported here are intended to supplement that given in several NASA technical notes[3-6] for a geometrically similar, but 1.414 times as large, test section. Comparison of NASA and NBS inception data for liquid nitrogen at about 140°F indicates no scale effects. Both incipient and
desinent cavitation data were acquired with no noticeable hysteresis; i.e., the flow conditions corresponding to vapor inception are identical whether the data point is approached from non-cavitating or fully-developed cavitating flow. In this report, incipience refers to the appearance of visible vapor cavities, whether they are due to incipient or desinent cavitation.

2. Apparatus

The facility used for this study consisted of a blow-down system with the test section located between the supply and receiver dewars; see figure 2.1. Dewars and piping were vacuum shielded to minimize heat transfer to the test fluid. Flow control was attained by regulating the supply and receiver dewar pressures. Pressure and volume capacities of the supply and receiver vessels are indicated on figure 2.1. The receiver dewar pressure control valving limited the venturi inlet velocity, \(V_o \), to about 185 ft/sec in hydrogen, while the supply dewar pressure rating limited the inlet velocity to about 70 ft/sec in nitrogen.

Valves located on each side of the test section permit flow stoppage in the event of venturi failure while testing with liquid hydrogen. A plenum chamber was installed upstream of the test section to assure uniform non-cavitating flow at the test section inlet. The supply dewar was equipped with a 5 Kw heater which was used to heat the test fluid.

2.1 Test Section

A photograph of the test section as viewed through one of the windows in the vacuum jacket is shown in figure 2.2. The transparent plastic venturi was flanged into the apparatus using high compression elastomeric "O" rings. Test section details are given in figures 2.3 and 2.4. Referring to figure 2.3, static pressure tap No. 1 was the only instrument port drilled and used in the liquid hydrogen inception tests. Some liquid nitrogen data were acquired with all of the pressure and temperature sensing
Figure 2.1 Schematic of Cavitation Flow Apparatus.
Figure 2.4 Quarter-Round Contour of Convergent Region of Plastic Test Section.
Figure 2.5 Pressure Distribution Through Test Section for Non-Cavitation Flow.
ports instrumented, figure 2.2. Since incipient cavitation involves very small cavities at or near the minimum pressure point—see figures 2.4 and 2.5—the presence or absence of the additional sensing ports has no effect on the data reported. The design and as-built venturi contours are shown on figure 2.4. The test section dimensions were checked by using the plastic venturi as a mold for a dental plaster plug. The plug was then removed and measured. Pressure distribution for non-cavitating flow across the quarter-round contour[3,7] is shown in figure 2.5. This pressure profile has been confirmed using several test fluids[3-5] and data from this study, and applies when \((Re)_{D_0} \geq 4 \times 10^5\).

2.2 Instrumentation

Location of the essential instrumentation is shown on figures 2.1 and 2.3.

Liquid level in the supply dewar was sensed with a ten-point carbon resistor rake. Test fluid temperature in the supply dewar was determined by two platinum resistance thermometers, see figure 2.1. Fluid temperatures at the flowmeter and test section inlet were also measured with platinum resistance thermometers. These platinum thermometers were calibrated to provide temperature readings accurate within ±0.04 °R. The thermometers were powered with a current source which did not vary more than 0.01 percent. Voltage drop across the thermometers was recorded on a 5 digit electronic voltmeter data acquisition system. The overall accuracy of the temperature measurement is estimated to be within ±0.09 °R.

System gage and differential pressure measurements were obtained with pressure transducers mounted in a temperature stabilized box near the test section. Differential pressure measurements were used where possible to provide maximum resolution. The pressure transducers were calibrated via laboratory test gages at frequent intervals during the test
series. Repeatability of the transducers was better than ±0.25 percent and their output was recorded on a continuous trace oscillograph with approximately one percent resolution. The overall accuracy of the pressure measurement, including calibration and read-out errors is estimated to be within ±2.0 percent. Bourdon gages were used to monitor the various tests.

Volumetric and mass flow rates were determined via a Herschel venturi flowmeter designed to ASME Standards[8]. The internal contour of this meter was verified in the same manner as the test venturi. An error analysis of this flow device and associated pressure and temperature measurements indicates an accuracy in mass flow of about one percent.

An electronic pulsing circuit provided a common time base for correlating data between oscillograph, digital voltmeter, and movie film. The data were reduced by first viewing film of the test event. A solenoid-actuated counter, installed adjacent to the test section was energized by the electronic pulser and appears on the film, figure 2.2. Thus, the data are reduced at the desired instant of time by simply matching the number of voltage pulses which have elapsed.

An acoustic cavitation detection device was developed and successfully used to determine cavitation inception. This device was found to be more sensitive than the human eye, i.e., cavitation inception could be detected with the acoustic transducer before it was visible to the unaided eye. Visible incipience is frequently used as the criterion for cavitation inception and is normally reported in the literature since the sensitivity [9-11] of various acoustic detectors can vary appreciably. Although the data presented here are based upon visible incipience, full description of the acoustic transducer is given for reference in Appendix A of this paper.
2.3 Visual and Photographic Aids

Use of a plastic test section, liquid hydrogen, and relatively high pressures precluded direct visual observation; therefore, closed-circuit television was used to observe the tests.

Movies of cavitation tests were taken at approximately 20 frames per second on 16 mm film. The variable speed camera was equipped with a 75 mm lens and synchronized with a high intensity stroboscope, providing a 3 μ-sec exposure. The stroboscope was situated directly opposite the camera lens and illuminated the test section through a plastic diffuser mask; this technique provided a shadow-graph or back-lighting effect and excellent contrast between vapor and liquid phases in the test section.

3. Test Procedure

The following procedure refers to figure 2.1. The supply dewar was filled with test liquid and then some of the liquid was extracted through valves A and B to cool the test section and piping. Approximately two hours were required to cool the plastic test section without breakage. Cooldown was monitored via a platinum resistance thermometer in the plenum chamber. Upon completion of cooldown, the contents of the supply dewar were transferred through the test section into the receiver dewar, and then back into the supply dewar again. This operation cooled the entire flow system in preparation for a test. Next, the liquid in the supply dewar was heated to the desired temperature. Because the test section and connecting piping were kept full of liquid at low pressure during preparatory and calibration periods between tests, the plastic venturi was generally colder than the test liquid. Supply and receiver dewars were then pressurized to appropriate levels and flow started by opening valve C. In the case of non-cavitating flow, inception was induced by lowering the receiver dewar
pressure and thus increasing the flow velocity until vapor appeared. To obtain desinent cavitation from fully developed cavitating flow, the receiver dewar pressure was increased until the vapor cavity was barely visible. Receiver dewar pressure was remotely controlled by means of a pneumatic transmitter, differential controller, and vent valve arrangement, figure 2.1. It was necessary to increase test section back-pressure by means of throttle valve D for some of the liquid nitrogen tests. Flow was terminated by closing valve C. The supply dewar was then vented and the test liquid transferred back into the supply dewar for another test. As previously mentioned, the entire test event was recorded on movie film which was subsequently used to determine incipient and desinent cavitation conditions.

4. Data Analysis and Discussion

All of the useable experimental inception data are given in tables 4.1 and 4.2. These same data points were mathematically temperature-compensated and presented in table 4.3. Derivation of these compensated data is described in Appendix B of this paper.

The conventional cavitation parameter, K_{iv}, for liquid hydrogen is shown on figure 4.1. Little temperature dependency is evident in this plot of experimental data and this prompted the presentation of calculated data given on figures 4.2 and 4.3. The calculated data used in the preparation of figures 4.2 and 4.3 are derived as explained in Appendix B and are presented in table 4.4. The liquid nitrogen data were handled in a similar manner and plotted on figures 4.4 and 4.5 from the calculated data of table 4.5. Photographs of cavitation inception are shown for both test fluids on figures 4.6 and 4.7.
Table 4.1 Cavitation Inception Data for Liquid Hydrogen

<table>
<thead>
<tr>
<th>Run #</th>
<th>T_0 (°R)</th>
<th>V_o (ft/sec)</th>
<th>\dot{m} (lb$_m$/sec)</th>
<th>h_o (ft, abs)</th>
<th>P_o (psia)</th>
<th>h_v (ft, abs)</th>
<th>P_v (psia)</th>
<th>K_{iv}</th>
<th>h (ft, abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R026A</td>
<td>36.47</td>
<td>73.6</td>
<td>2.623</td>
<td>614.6</td>
<td>18.87</td>
<td>478.9</td>
<td>14.70</td>
<td>1.61</td>
<td>333.8</td>
</tr>
<tr>
<td>R026B</td>
<td>36.77</td>
<td>72.4</td>
<td>2.572</td>
<td>606.1</td>
<td>18.56</td>
<td>505.0</td>
<td>15.45</td>
<td>1.24</td>
<td>334.6</td>
</tr>
<tr>
<td>R031A</td>
<td>36.63</td>
<td>132.1</td>
<td>4.713</td>
<td>1244.9</td>
<td>38.26</td>
<td>492.6</td>
<td>15.09</td>
<td>2.78</td>
<td>339.9</td>
</tr>
<tr>
<td>031C</td>
<td>36.59</td>
<td>133.1</td>
<td>4.750</td>
<td>1228.0</td>
<td>37.76</td>
<td>488.0</td>
<td>14.95</td>
<td>2.69</td>
<td>309.3</td>
</tr>
<tr>
<td>R032</td>
<td>37.22</td>
<td>167.1</td>
<td>5.945</td>
<td>1756.2</td>
<td>53.81</td>
<td>548.1</td>
<td>16.70</td>
<td>2.79</td>
<td>308.1</td>
</tr>
<tr>
<td>R034</td>
<td>36.50</td>
<td>106.2</td>
<td>3.788</td>
<td>962.0</td>
<td>29.56</td>
<td>481.8</td>
<td>14.78</td>
<td>2.74</td>
<td>377.1</td>
</tr>
<tr>
<td>035</td>
<td>37.19</td>
<td>169.7</td>
<td>6.040</td>
<td>1755.0</td>
<td>53.81</td>
<td>538.0</td>
<td>16.40</td>
<td>2.72</td>
<td>261.5</td>
</tr>
<tr>
<td>R036</td>
<td>37.67</td>
<td>108.2</td>
<td>3.819</td>
<td>1062.0</td>
<td>32.36</td>
<td>585.0</td>
<td>17.75</td>
<td>2.62</td>
<td>454.9</td>
</tr>
<tr>
<td>R037</td>
<td>37.55</td>
<td>134.7</td>
<td>4.769</td>
<td>1362.6</td>
<td>41.56</td>
<td>573.7</td>
<td>17.43</td>
<td>2.80</td>
<td>421.7</td>
</tr>
<tr>
<td>R038</td>
<td>38.21</td>
<td>170.5</td>
<td>6.010</td>
<td>1822.0</td>
<td>56.36</td>
<td>638.4</td>
<td>19.27</td>
<td>2.62</td>
<td>309.8</td>
</tr>
<tr>
<td>R039</td>
<td>36.99</td>
<td>184.9</td>
<td>6.599</td>
<td>1973.5</td>
<td>60.66</td>
<td>524.0</td>
<td>16.00</td>
<td>2.73</td>
<td>200.5</td>
</tr>
<tr>
<td>040</td>
<td>37.40</td>
<td>185.6</td>
<td>6.600</td>
<td>2042.5</td>
<td>62.56</td>
<td>560.8</td>
<td>17.06</td>
<td>2.77</td>
<td>256.1</td>
</tr>
<tr>
<td>R040</td>
<td>37.55</td>
<td>183.3</td>
<td>6.511</td>
<td>2051.5</td>
<td>62.76</td>
<td>574.1</td>
<td>17.44</td>
<td>2.83</td>
<td>309.1</td>
</tr>
<tr>
<td>043A</td>
<td>37.03</td>
<td>180.6</td>
<td>6.440</td>
<td>1906.0</td>
<td>58.56</td>
<td>524.0</td>
<td>16.00</td>
<td>2.73</td>
<td>214.5</td>
</tr>
<tr>
<td>043B</td>
<td>36.97</td>
<td>180.0</td>
<td>6.420</td>
<td>1902.0</td>
<td>58.46</td>
<td>521.0</td>
<td>15.90</td>
<td>2.74</td>
<td>221.7</td>
</tr>
<tr>
<td>049</td>
<td>36.63</td>
<td>91.0</td>
<td>3.241</td>
<td>802.7</td>
<td>24.62</td>
<td>492.3</td>
<td>15.08</td>
<td>2.41</td>
<td>373.2</td>
</tr>
<tr>
<td>051</td>
<td>36.85</td>
<td>91.2</td>
<td>3.241</td>
<td>825.3</td>
<td>25.27</td>
<td>511.2</td>
<td>15.63</td>
<td>2.43</td>
<td>394.2</td>
</tr>
<tr>
<td>052</td>
<td>38.00</td>
<td>92.6</td>
<td>3.257</td>
<td>915.1</td>
<td>27.72</td>
<td>616.5</td>
<td>18.65</td>
<td>2.24</td>
<td>470.4</td>
</tr>
<tr>
<td>054</td>
<td>40.64</td>
<td>125.0</td>
<td>4.288</td>
<td>1577.3</td>
<td>46.62</td>
<td>931.6</td>
<td>27.45</td>
<td>2.66</td>
<td>767.6</td>
</tr>
<tr>
<td>056</td>
<td>40.79</td>
<td>154.3</td>
<td>5.298</td>
<td>1989.3</td>
<td>58.82</td>
<td>951.5</td>
<td>28.00</td>
<td>2.81</td>
<td>754.1</td>
</tr>
<tr>
<td>057</td>
<td>40.91</td>
<td>174.1</td>
<td>5.975</td>
<td>2303.9</td>
<td>68.12</td>
<td>969.0</td>
<td>28.47</td>
<td>2.84</td>
<td>732.9</td>
</tr>
<tr>
<td>058</td>
<td>40.88</td>
<td>124.3</td>
<td>4.254</td>
<td>1604.8</td>
<td>47.32</td>
<td>964.3</td>
<td>28.35</td>
<td>2.67</td>
<td>804.2</td>
</tr>
<tr>
<td>059</td>
<td>40.70</td>
<td>120.2</td>
<td>4.120</td>
<td>1507.4</td>
<td>44.52</td>
<td>939.1</td>
<td>27.66</td>
<td>2.54</td>
<td>758.8</td>
</tr>
</tbody>
</table>
Table 4.2 Cavitation Inception Data for Liquid Nitrogen

<table>
<thead>
<tr>
<th>Run #</th>
<th>T_o (°R)</th>
<th>V_o (ft/sec)</th>
<th>m (lbm/sec)</th>
<th>h_o (ft, abs)</th>
<th>p_o (psia)</th>
<th>h_v (ft, abs)</th>
<th>p_v (psia)</th>
<th>K_{iv}</th>
<th>h/ν (ft, abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>005B</td>
<td>138.08</td>
<td>19.27</td>
<td>7.86</td>
<td>49.7</td>
<td>17.45</td>
<td>38.71</td>
<td>13.6</td>
<td>1.9</td>
<td>30.44</td>
</tr>
<tr>
<td>021RR</td>
<td>169.34</td>
<td>61.68</td>
<td>22.51</td>
<td>374.1</td>
<td>117.6</td>
<td>232.4</td>
<td>72.9</td>
<td>2.4</td>
<td>176.80</td>
</tr>
<tr>
<td>022RR</td>
<td>168.2</td>
<td>64.54</td>
<td>23.68</td>
<td>379.7</td>
<td>120.0</td>
<td>219.5</td>
<td>69.2</td>
<td>2.48</td>
<td>163.68</td>
</tr>
<tr>
<td>024RR</td>
<td>152.91</td>
<td>66.44</td>
<td>25.83</td>
<td>276.5</td>
<td>92.6</td>
<td>98.4</td>
<td>32.9</td>
<td>2.60</td>
<td>47.58</td>
</tr>
<tr>
<td>095</td>
<td>140.3</td>
<td>33.70</td>
<td>13.65</td>
<td>86.3</td>
<td>30.1</td>
<td>45.34</td>
<td>15.81</td>
<td>2.32</td>
<td>27.40</td>
</tr>
<tr>
<td>099</td>
<td>161.1</td>
<td>33.90</td>
<td>12.77</td>
<td>184.6</td>
<td>59.9</td>
<td>154.1</td>
<td>50.0</td>
<td>1.71</td>
<td>125.00</td>
</tr>
<tr>
<td>100</td>
<td>150.75</td>
<td>43.21</td>
<td>16.91</td>
<td>154.3</td>
<td>52.0</td>
<td>87.05</td>
<td>29.32</td>
<td>2.32</td>
<td>57.47</td>
</tr>
<tr>
<td>105</td>
<td>161.0</td>
<td>67.1</td>
<td>25.33</td>
<td>334.6</td>
<td>108.8</td>
<td>153.2</td>
<td>49.7</td>
<td>2.59</td>
<td>101.11</td>
</tr>
<tr>
<td>106A</td>
<td>166.45</td>
<td>65.45</td>
<td>24.18</td>
<td>368.6</td>
<td>117.3</td>
<td>201.8</td>
<td>64.08</td>
<td>2.51</td>
<td>164.45</td>
</tr>
<tr>
<td>106B</td>
<td>166.4</td>
<td>66.67</td>
<td>24.64</td>
<td>367.9</td>
<td>117.1</td>
<td>201.2</td>
<td>63.9</td>
<td>2.42</td>
<td>137.39</td>
</tr>
<tr>
<td>107</td>
<td>150.88</td>
<td>70.62</td>
<td>27.66</td>
<td>298.8</td>
<td>100.8</td>
<td>87.68</td>
<td>29.52</td>
<td>2.73</td>
<td>40.16</td>
</tr>
<tr>
<td>108</td>
<td>140.87</td>
<td>65.39</td>
<td>26.47</td>
<td>229.7</td>
<td>80.1</td>
<td>47.08</td>
<td>16.39</td>
<td>2.75</td>
<td>7.95</td>
</tr>
<tr>
<td>109</td>
<td>140.76</td>
<td>72.05</td>
<td>29.19</td>
<td>268.3</td>
<td>93.6</td>
<td>46.75</td>
<td>16.28</td>
<td>2.75</td>
<td>9.2</td>
</tr>
<tr>
<td>110</td>
<td>140.72</td>
<td>43.64</td>
<td>17.66</td>
<td>111.6</td>
<td>38.9</td>
<td>46.54</td>
<td>16.21</td>
<td>2.20</td>
<td>12.84</td>
</tr>
<tr>
<td>111A</td>
<td>161.15</td>
<td>49.92</td>
<td>18.81</td>
<td>240.1</td>
<td>77.9</td>
<td>154.5</td>
<td>50.15</td>
<td>2.21</td>
<td>110.86</td>
</tr>
<tr>
<td>111B</td>
<td>161.08</td>
<td>50.76</td>
<td>19.13</td>
<td>240.6</td>
<td>78.1</td>
<td>154.1</td>
<td>50.0</td>
<td>2.16</td>
<td>106.98</td>
</tr>
<tr>
<td>112</td>
<td>140.63</td>
<td>47.90</td>
<td>19.39</td>
<td>128.8</td>
<td>44.9</td>
<td>46.27</td>
<td>16.12</td>
<td>2.32</td>
<td>9.81</td>
</tr>
</tbody>
</table>
Table 4.3 Experimental Data Points Which Have Been Temperature Compensated by Means of Equation [10-3] for Hydrogen and Equation [10-4] for Nitrogen

<table>
<thead>
<tr>
<th>Run #</th>
<th>Nominal Temp</th>
<th>V_o</th>
<th>h_o</th>
<th>Run #</th>
<th>Nominal Temp</th>
<th>V_o</th>
<th>h_o</th>
<th>Run #</th>
<th>Nominal Temp</th>
<th>V_o</th>
<th>h_o</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(°R)</td>
<td>(ft/sec)</td>
<td>(ft/abs)</td>
<td></td>
<td>(°R)</td>
<td>(ft/sec)</td>
<td>(ft/abs)</td>
<td></td>
<td>(°R)</td>
<td>(ft/sec)</td>
<td>(ft/abs)</td>
</tr>
<tr>
<td>R026A</td>
<td>36.5</td>
<td>616.3</td>
<td>73.6</td>
<td>R037</td>
<td>37.5</td>
<td>1357.9</td>
<td>134.7</td>
<td>051</td>
<td>36.5</td>
<td>801.9</td>
<td>91.2</td>
</tr>
<tr>
<td>R026B</td>
<td>36.5</td>
<td>590.3</td>
<td>72.4</td>
<td>R038</td>
<td>37.5</td>
<td>1742.5</td>
<td>170.5</td>
<td>052</td>
<td>37.5</td>
<td>875.1</td>
<td>92.6</td>
</tr>
<tr>
<td>R031A</td>
<td>36.5</td>
<td>1234.2</td>
<td>132.1</td>
<td>R039</td>
<td>36.5</td>
<td>1921.5</td>
<td>184.9</td>
<td>054</td>
<td>41.0</td>
<td>1623.8</td>
<td>125.0</td>
</tr>
<tr>
<td>031C</td>
<td>36.5</td>
<td>1220.6</td>
<td>133.1</td>
<td>040</td>
<td>37.5</td>
<td>2054</td>
<td>185.6</td>
<td>056</td>
<td>41.0</td>
<td>2019.2</td>
<td>154.3</td>
</tr>
<tr>
<td>R032</td>
<td>37.5</td>
<td>1785.9</td>
<td>167.1</td>
<td>R040</td>
<td>37.5</td>
<td>2045.8</td>
<td>183.3</td>
<td>057</td>
<td>41.0</td>
<td>2317.5</td>
<td>174.1</td>
</tr>
<tr>
<td>R034</td>
<td>36.5</td>
<td>962.0</td>
<td>106.2</td>
<td>043A</td>
<td>37.5</td>
<td>1957.9</td>
<td>180.6</td>
<td>058</td>
<td>41.0</td>
<td>1620.4</td>
<td>124.3</td>
</tr>
<tr>
<td>035</td>
<td>37.5</td>
<td>1788.1</td>
<td>169.7</td>
<td>043B</td>
<td>36.5</td>
<td>1853.1</td>
<td>180.0</td>
<td>059</td>
<td>41.0</td>
<td>1545.7</td>
<td>120.2</td>
</tr>
<tr>
<td>R036</td>
<td>37.5</td>
<td>1047.6</td>
<td>108.2</td>
<td>049</td>
<td>36.5</td>
<td>794.2</td>
<td>91.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NITROGEN											
005B	140	54.84	19.27	100	150	150.73	43.21	109	140	266.06	72.05
021RR	170	380.48	61.68	105	160	327.51	67.10	110	140	109.52	43.64
022RR	170	396.79	64.54	106A	165	356.31	65.45	111A	160	231.88	49.92
024RR	150	262.13	66.44	106B	165	356.00	66.67	111B	160	232.93	50.76
095	140	85.41	33.70	107	150	294.63	70.62	112	140	126.97	47.90
099	160	176.82	33.90	108	140	227.20	65.39				
Table 4.4 Calculated Data Used to Construct Nominal Isotherms for Liquid Hydrogen Inception

<table>
<thead>
<tr>
<th>(V_0) (ft/sec)</th>
<th>(h_o) (ft, abs)</th>
<th>(h_v) (ft, abs)</th>
<th>(K_{iv})</th>
<th>(h_o) (ft, abs)</th>
<th>(h_v) (ft, abs)</th>
<th>(K_{iv})</th>
<th>(h_o) (ft, abs)</th>
<th>(h_v) (ft, abs)</th>
<th>(K_{iv})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Temp = 36.5°R</td>
<td>Nominal Temp = 37.5°R</td>
<td>Nominal Temp = 41.0°R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>581</td>
<td>481.77</td>
<td>1.30</td>
<td>643</td>
<td>569.25</td>
<td>0.97</td>
<td>952</td>
<td>981.82</td>
<td>--</td>
</tr>
<tr>
<td>80</td>
<td>681</td>
<td>2.00</td>
<td></td>
<td>747</td>
<td>1.79</td>
<td></td>
<td>1071</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>781</td>
<td>2.38</td>
<td></td>
<td>851</td>
<td>2.24</td>
<td></td>
<td>1189</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>885</td>
<td>2.59</td>
<td></td>
<td>959</td>
<td>2.51</td>
<td></td>
<td>1311</td>
<td>2.41</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>990</td>
<td>2.70</td>
<td></td>
<td>1068</td>
<td>2.65</td>
<td></td>
<td>1435</td>
<td>2.59</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1099</td>
<td>2.76</td>
<td></td>
<td>1181</td>
<td>2.74</td>
<td></td>
<td>1562</td>
<td>2.70</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>1209</td>
<td>2.77</td>
<td></td>
<td>1296</td>
<td>2.77</td>
<td></td>
<td>1691</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>1324</td>
<td>2.77</td>
<td></td>
<td>1415</td>
<td>2.78</td>
<td></td>
<td>1825</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1442</td>
<td>2.75</td>
<td></td>
<td>1537</td>
<td>2.77</td>
<td></td>
<td>1961</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>1564</td>
<td>2.72</td>
<td></td>
<td>1663</td>
<td>2.75</td>
<td></td>
<td>2101</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>1697</td>
<td>2.71</td>
<td></td>
<td>1800</td>
<td>2.74</td>
<td></td>
<td>2253</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>1849</td>
<td>2.72</td>
<td></td>
<td>1956</td>
<td>2.76</td>
<td></td>
<td>2423</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>1935</td>
<td>481.77</td>
<td>2.73</td>
<td>2044</td>
<td>569.25</td>
<td>2.77</td>
<td>2518</td>
<td>981.82</td>
<td>2.89</td>
</tr>
</tbody>
</table>
Table 4.5 Calculated Data Used to Construct Nominal Isotherms for Liquid Nitrogen Inception

<table>
<thead>
<tr>
<th>V_o (ft/sec)</th>
<th>h_o (ft, abs)</th>
<th>h_v (ft, abs)</th>
<th>K_{iv}</th>
<th>h_o (ft, abs)</th>
<th>h_v (ft, abs)</th>
<th>K_{iv}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Temp = 140 °R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>56.0</td>
<td>44.40</td>
<td>1.87</td>
<td>93.0</td>
<td>83.50</td>
<td>1.53</td>
</tr>
<tr>
<td>25</td>
<td>63.5</td>
<td>1.97</td>
<td></td>
<td>100.5</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>73.5</td>
<td>2.08</td>
<td></td>
<td>110.5</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>85.0</td>
<td>2.13</td>
<td></td>
<td>122.0</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>99.0</td>
<td>2.20</td>
<td></td>
<td>136.0</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>116.0</td>
<td>2.28</td>
<td></td>
<td>153.0</td>
<td>2.21</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>136.5</td>
<td>2.37</td>
<td></td>
<td>173.5</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>161.5</td>
<td>2.49</td>
<td></td>
<td>198.5</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>190.0</td>
<td>2.60</td>
<td></td>
<td>227.0</td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>221.5</td>
<td>2.70</td>
<td></td>
<td>258.5</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>254.0</td>
<td>44.40</td>
<td>2.75</td>
<td>291.0</td>
<td>83.50</td>
<td>2.73</td>
</tr>
</tbody>
</table>

| Nominal Temp = 150 °R |
150.5	145.78	0.77
158.0	1.27	
168.0	1.59	
179.5	1.78	
193.5	1.92	
210.5	2.06	
231.0	2.20	
256.0	2.35	
284.5	2.48	
316.0	2.60	
348.5	145.78	2.67

| Nominal Temp = 160 °R |
233.5	239.50	--
241.0	0.18	
251.0	0.84	
262.5	1.22	
276.5	1.50	
293.5	1.72	
314.0	1.92	
339.0	2.12	
367.5	2.29	
399.0	2.43	
431.5	239.50	2.53

| Nominal Temp = 165 °R |
188.5	187.87	0.12
196.0	0.85	
206.0	1.31	
217.5	1.56	
231.5	1.74	
248.5	1.93	
269.0	2.09	
294.0	2.26	
322.5	2.41	
354.0	2.53	
386.5	187.87	2.61
Figure 4.1 Cavitation Parameter for Liquid Hydrogen as Function of Test Section Inlet Velocity.
Figure 4.2 Effect of Test Section Inlet Velocity and Liquid Temperature on Required Inlet Head for Cavitation Inception in Liquid Hydrogen
Figure 4.3 Cavitation Parameter for Liquid Hydrogen as a function of Test Section Inlet Velocity and Liquid Temperature.
Figure 4.4 Effect of Test Section Inlet Velocity and Liquid Temperature on Required Inlet Head for Cavitation Inception in Liquid Nitrogen.
Figure 4.5 Cavitation Parameter for Liquid Nitrogen as Function of Test Section Inlet Velocity and Liquid Temperature.
Figure 4.6 Photograph Showing Typical Cavitation Inception in Liquid Hydrogen

Figure 4.7 Photograph Showing Typical Cavitation Inception in Liquid Nitrogen
4.1 Data Analysis

Computed values of K_{iv} were plotted as a function of V_o for both hydrogen and nitrogen. However, inspection of the plots showed no readily discernable temperature dependence of K_{iv} for uncompensated experimental data (see figure 4.1; nitrogen is similar and is not shown).

The temperature dependence of K_{iv} is complicated by the fact that errors in the measured variable h_o are magnified in the calculation of K_{iv} as follows:

$$K_{iv} = 2g_c \left[\frac{h_o - h_v}{V_o^2} \right]; \quad [4.1-1a]$$

differentiating [4.1-1a] at constant temperature and velocity there results,

$$dK_{iv} = \frac{2g_c}{V_o^2} dh_o. \quad [4.1-1b]$$

The fractional change in K_{iv} due to a change dh_o is obtained by dividing [4.1-1b] by [4.1-1a],

$$\frac{dK_{iv}}{K_{iv}} = \frac{dh_o}{h_o - h_v}. \quad [4.1-2]$$

The fractional change in h_o due to a change dh_o is by definition

$$\frac{dh_o}{h_o}.$$
\[
\frac{dK_{iv}}{K_{iv}} \cdot \frac{h_o}{dh_o} = \frac{h_o}{h_o - h_V} \quad [4.1-3]
\]

Therefore any scatter which may occur in measuring \(h_o \) will be amplified by the term \(\frac{h_o}{h_o - h_V} \), which has values as large as six for both hydrogen and nitrogen data given in this report.

Plots were also made of \(h_o \) as a function of \(V_o \) using the experimental data from this study. Both hydrogen and nitrogen data showed distinct temperature dependence; however, there was sufficient experimental variation about each desired nominal liquid temperature to cause concern in constructing the individual isotherms. A nominal temperature or nominal isotherm is defined as that temperature which is selected to represent a specific group of data points with little temperature variation.

A technique was devised to evaluate the effect of temperature on the data and is detailed in Appendix B of this report.

4.2 Discussion of Data

It was pointed out earlier that no temperature dependence could be determined from \(K_{iv} \) vs \(V_o \) plots when the uncompensated experimental data were used, figure 4.1. However, once the nominal \(h_o \) vs \(V_o \) isotherms were established by mathematical temperature compensation, the \(K_{iv} \) vs \(V_o \) nominal isotherms may be computed from the basic definition of \(K_{iv} \). Data on figures 4.2 and 4.4 represents the final "best-fit" of the experimental data points, "transferred" by means of equations \([10-3]\) and \([10-4]\) to the nominal isotherms shown. This method of presenting the \(h_o \) vs \(V_o \) data eliminates the scatter due to experimental free-stream temperature variation. Good agreement was obtained with NASA data\([7]\) for liquid nitrogen at 140°F; see figure 4.4. Since the NASA test section was 1.414 times as large as the plastic venturi described herein, negligible scale effects are indicated.
Minimum local wall pressure was calculated to be less than bulk stream vapor pressure by as much as 323 feet of hydrogen head and 63 feet of nitrogen head. These data are obtained by subtracting h from h_v in tables 4.1 and 4.2.

Figures 4.3 and 4.5 are presented as a matter of interest, but it is to be noted that these K_{iv} curves depend entirely on the shape of the h_0 vs V_0 curves, and that errors in h_0 are amplified in K_{iv} (as was shown earlier). Little variation in the shape of the h_0 vs V_0 curves is required to eliminate the inflection points in the corresponding K_{iv} vs V_0 curves. The K_{iv} curves indicate the usual trends, i.e., K_{iv} increases with increasing velocities and decreasing temperatures. Figure 4.3 shows the isotherms for hydrogen intersecting at an inlet velocity of about 140 ft/sec. While this intersection is theoretically tenable, it could also be attributed to experimental data scatter. The data on figure 4.1 indicate little temperature dependence, and the data also suggests that K_{iv} may be invariant at inlet velocities greater than 140 ft/sec. Both hydrogen and nitrogen K_{iv} curves exhibit little temperature or velocity dependence at the higher velocities.

5. Summary

Cavitation inception parameters have been experimentally measured for liquid hydrogen and liquid nitrogen flowing in a clear plastic venturi. The experimental data points are given in table 4.1 for liquid hydrogen and table 4.2 for liquid nitrogen.

Temperature compensated values of inlet head, h_0 versus inlet velocity, V_0, are presented on a background of mathematically temperature compensated isotherms; liquid hydrogen data are shown on figure 4.2 and liquid nitrogen data appear on figure 4.4. The 140°F isotherm constructed from the liquid nitrogen data is coincident with data furnished
by Ruggeri[7]. The venturi used in that experiment[4] was larger by a factor of 1.414:1; therefore, negligible scale effects are indicated. The mathematical technique used to temperature-compensate the experimental data is outlined in Appendix B of this paper.

Figure 4.1 shows experimental K_{iv} data points for liquid hydrogen; these data have not been temperature compensated and show no particular temperature trends. Temperature compensated values of the conventional cavitation parameter, K_{iv}, are also shown on figure 4.3 for liquid hydrogen and on figure 4.5 for liquid nitrogen: these curves have been derived from the smooth isotherms on the h_o vs V_o plots (figures 4.2 and 4.4). The data shows that K_{iv} increases with increasing velocities and decreases with increasing temperatures. At the higher velocities the K_{iv} curves indicate very little temperature or velocity dependence. The data used to construct figures 4.2 to 4.5 are given in tables 4.3 to 4.5.

The experiments showed that both liquid hydrogen and liquid nitrogen can sustain relatively large magnitudes of thermodynamic metastability; i.e., minimum local wall pressure was calculated to be considerably less than bulkstream vapor pressure. The magnitude of metastability for the various experiments is obtained by subtracting h from h_v in tables 4.1 and 4.2.

6. Acknowledgements

A considerable number of people have been associated with this project at various times and their individual efforts are respectfully acknowledged. Messrs. Thomas T. Nagamoto, Dale R. Nielsen, Raymond V. Smith, and W. Harry Probert assisted in the early phases of apparatus assembly and experimentation. Mr. Peter Pemberton participated in some design modifications and Ajit Rapial was very helpful in the reduction and analysis of data. The photographic instrumentation and techniques used in this study are attributed to Thomas T. Theotokatos.
7. Nomenclature

\[A_0 = \text{test section inlet flow area \([= 0.008063 \text{ ft}^2]\)} \]

\[C_p = \text{pressure coefficient \([= (h_x - h_o)/(V_o^2/2g_c)]\)} \]

\[C_{p,m} = \text{minimum pressure coefficient \([= (\bar{h} - h_o)/(V_o^2/2g_c)]\)} \]

\[C_{n,(n=1,2,...)} = \text{constants appearing in equation [10-1] which are evaluated from best fit curves through } h_o \text{ vs } V_o \text{ data points} \]

\[D_o = \text{test section inlet diameter} \]

\[g_c = \text{conversion factor in Newton's law of motion, given in engineering units as } g_c = 32.2(\text{ft})(\text{pounds mass})/(\text{sec}^2) \]

\[(\text{pounds force}) \]

\[h_o = \text{test section inlet head corresponding to absolute inlet pressure, ft} \]

\[h_{o,1} = \text{value of inlet head corresponding to a data point before it is "transferred" to a new position, ft} \]

\[h_{o,2} = \text{value of inlet head corresponding to a data point after it has been "transferred" to a new position, ft} \]

\[h_v = \text{head corresponding to saturation or vapor pressure at test section inlet temperature, ft} \]

\[h_x = \text{head corresponding to absolute pressure measured at wall of plastic venturi at distance } x \text{ downstream of the minimum pressure point, ft} \]

27
\(\dot{V} \) = head corresponding to minimum absolute pressure on quarter round of plastic venturi contour, ft, computed from expression for \(C_p \)

\(K_{iv} \) = incipient cavitation parameter \[\equiv \frac{(h_o - h_v)}{V_o'2g_c} \]

\(\dot{m} \) = mass flow rate, e.g., (pounds mass)/sec

\(P_o \) = test section absolute inlet pressure

\(P_v \) = saturation or vapor pressure at test section inlet temperature

\((Re)_D \) = Reynolds number based on test section inlet diameter

\(T_o \) = temperature in degrees Rankine, of bulk fluid entering the test section

\(T_{o,1} \) = the inlet temperature from which a data point is to be "transferred"

\(T_{o,2} \) = the inlet temperature to which a data point is being "transferred"

\(T_{o,B} \) = the nominal temperature chosen for construction of a "base" isotherm due to the availability of sufficient \(h_o \) vs \(V_o \) data at or near that temperature

\(T_o' \) = a nominal isotherm on a \(h_o \) vs \(V_o \) plot

\(T_o'' \) = a nominal isotherm, different from \(T_o' \), on a \(h_o \) vs \(V_o \) plot
V_o = velocity of test fluid at inlet to venturi test section

x = distance measured from minimum pressure point on quarter-round contour along axis of plastic venturi
8. References

7. Ruggeri, R. S., Private communication.

8. Flow Measurement, Chap. 4, Part 5 - Measurement of quantity of materials, p. 17, PTC-19.5;4-1959, the American Society of Mechanical Engineers, 29 West 39th St., New York 18, N. Y.

Appendix A---Acoustic Detector

A detailed drawing of the acoustic transducer is given on figure 9.1 and a schematic of the instrument hook-up is given on figure 9.2.

The transducer consists of a Barium-Titanate piezoelectric crystal sandwiched between the body of the transducer and a machine screw, figure 9.1. The mechanical coupling or initial compression level in the crystal could be varied by means of the machine screw. Thus, the sensitivity of the crystal to mechanical vibration could be adjusted somewhat. Electrical leads were attached to the adjustment screw and to the body of the transducer. Coaxial electrical wire was used to connect the transducer to a cathode-follower-amplifier, see figure 9.2. The signal was then filtered through a variable band-pass filter and displayed on an oscilloscope. The band-pass filter was set to admit signal frequencies of 3 to 200 k-Hz for most tests.

The acoustic transducer was screw-mounted in the downstream flange of the plastic venturi via pipe threads. Most of the system vibration and noise appeared to be of low frequency and was easily eliminated with the band-pass filter.

Cavitation was readily discernable on the oscilloscope and was characterized by large-amplitude, high-frequency signals.
Figure 9.1 Acoustic Transducer for Detection of Cavitation Inception.

Figure 9.2 Block Diagram of Signal Conditioning Instruments Used with Acoustic Cavitation Detection Device.
10. Appendix B---Method Used to Compensate the Experimental Inception Data for Temperature Deviation about the Nominal Isotherms

(1) It was assumed that a change in inlet temperature, dT_0, will produce a change in inlet head, dh_o, along a constant velocity path, which will be a function of the velocity and temperature only; it is also assumed that this function may be approximated by a few terms of a polynomial. Justification of these assumptions is evidenced by the good results which were obtained for both hydrogen and nitrogen (see figures 4.2 and 4.4) by using the following equation:

$$dh_o = [C_1 T_o^2 + C_2 T_o + C_3 V_o^2 + C_4 V_o + C_5] dT_o.$$ \[10-1\]

Holding V_o constant and integrating from $h_{o,1}$ to $h_{o,2}$ and from $T_{o,1}$ to $T_{o,2}$ there results:

$$\left[h_{o,2} - h_{o,1}\right] V_o = C_1 \left[(T_{o,2})^3 - (T_{o,1})^3\right] + C_2 \left[(T_{o,2})^2 - (T_{o,1})^2\right] + (T_{o,2} - T_{o,1}) (C_3 V_o^2 + C_4 V_o + C_5),$$ \[10-2\]

where the subscript "1" refers to the position of a data point before it is transferred to a new position identified by the subscript "2".

For each of the following steps (two through seven) there is a corresponding graphical illustration on Figure 10.1.

(2) h_o vs V_o experimental data were plotted, a separate graph being used for each test fluid. The data points were identified with their individual temperatures so that "best-fit" curves could be drawn through each group of data points having a common nominal temperature. A nominal temperature is defined as that temperature which is selected to
Figure 10.1 Illustration of Method Used to Construct Nominal Isotherms from Experimental Data
represent a specific group of data points having little temperature variation. These first-approximation isotherms are shown as dashed lines on step two of figure 10.1.

One of the nominal isotherms is chosen, on the basis of availability of sufficient experimental h_0 vs V_0 data at or near that temperature, as a reference or "base" isotherm for succeeding computations. This isotherm is designated T_0, in figure 10.1 while the other isotherms are designated T_0' and T_0''.

(3) The constants in equation [10-2] are evaluated by selecting pairs of values of h_0 and T_0 from the nominal isotherms at identical velocities as follows: on figure 10.1 the tail of each arrow indicates a value of $h_{o,1}$ and $T_{o,1}$ while the arrow head points to $h_{o,2}$ and $T_{o,2}$. The coordinate points from each arrow are then used in equation [10-2]. Note that each arrow provides one equation, hence five arrows are needed to evaluate the constants in [10-2]. The arrows always follow a constant velocity path and must be strategically placed in order for the five equations to be independent. The actual data points are not shown since they are not used in this step. The equation derived from this step will "transfer" data from one temperature to another within the confines of the bounding isotherms.

(4) In step four of the illustration, arrows are used to indicate the "transferral" of experimental data points to a new location near the base isotherm. $h_{o,1}$ and $T_{o,1}$ are known from the experimental data, while $T_{o,2}$ is simply the base nominal temperature, $T_{o,B}$; values of $h_{o,2}$ can then be determined, by using equation [10-2], and plotted near the base temperature, $T_{o,B}$. Note that the data transfer always follows a constant velocity path.
A new "best fit" isotherm can then be drawn through all of the "transferred" data points at $T_{o,B}$. This new curve is shown as a solid line in figure 10.1; the first approximation isotherms, drawn as dashed lines, are no longer needed and are omitted in the illustration of this step. The curve obtained from this step represents an improved reference isotherm.

The new reference isotherm and equation [10-2] may now be used to reconstruct the other nominal isotherms. $T_{o,’}$ and $T_{o,'''}$ may be reconstructed by using equation [10-2] and $h_{o,1}$ values from the new base isotherm. Note that $T_{o,B}$ now becomes $T_{o,1}$ and $T_{o,’}$ and $T_{o,'''}$ take their respective turns as $T_{o,2}$. Values of $h_{o,2}$ are then computed in order to plot the two new isotherms shown in the illustration of this step on figure 10.1.

The original experimental data points were then transferred to their nearest nominal temperature by means of equation [10-2]. Those points having a nominal temperature of $T_{o,B}$ were relocated in their final position in step four. This process brings the data points near their respective isotherms, as shown by the arrows in the illustration of step seven. Note that $h_{o,2}$ is again the only unknown in equation [10-2].

The agreement between the new nominal isotherms and the transferred experimental data points was then observed: If the fit was not satisfactory, "best-fit" curves were drawn through the "transferred" data points and the entire computational procedure---steps (3) through (7)---was repeated. Several iterations were necessary to obtain suitable mathematical expressions for liquid hydrogen and liquid nitrogen: tables 4.3, 4.4, and 4.5 as well as figures 4.2 and 4.4 were prepared by using the following equations.
Hydrogen:

\[
\left[h_{o,2} - h_{o,1} \right] V_o \approx 5.86 \left((T_{o,2})^2 - (T_{o,1})^2 \right)
\]
\[+ (T_{o,2} - T_{o,1}) (0.41 V_o - 400.35). \quad [10-3]
\]

Nitrogen:

\[
\left[h_{o,2} - h_{o,1} \right] V_o \approx 0.000835 \left((T_{o,2})^3 - (T_{o,1})^3 \right)
\]
\[-0.2729 \left((T_{o,2})^2 - (T_{o,1})^2 \right) + 30.152 (T_{o,2} - T_{o,1}). \quad [10-4]
\]

It should be noted that some of the terms in equation [10-2] become negligible and consequently are not included in [10-3] and [10-4]. It is observed that equation [10-3] for hydrogen is velocity dependent, while equation [10-4] for nitrogen is not. It is not recommended that equations [10-3] and [10-4] be used outside the general area of the data points given.
11. Appendix C

DISTRIBUTION LIST FOR INTERIM REPORT NASA CR-72285

Contract C-35560A

Copies

National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Attention: Contracting Officer, MS 500-313
Liquid Rocket Technology Branch, MS 500-209
Technical Report Control Office, MS 5-5
Technology Utilization Office, MS 3-16
AFSC Liaison Office, MS 4-1
Library, MS 60-3
D. L. Nored, MS 500-209
W. E. Roberts, MS 3-17
E. W. Conrad, MS 100-1
Fluid Systems Components Division, MS 5-3

National Aeronautics and Space Administration
Washington, D. C. 20546

Attention: Code MT
RPX
RPL
SV
Jack Suddreth, RPL

Scientific and Technical Information Facility
P. O. Box 33
College Park, Maryland 20740

Attention: NASA Representative
Code CRT

National Aeronautics and Space Administration
Ames Research Center
Moffett Field, California 94035

Attention: Library
C. A. Syvertson

C-1
National Aeronautics and Space Administration
Flight Research Center
P. O. Box 273
Edwards, California 93523
Attention: Library

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771
Attention: Library

National Aeronautics and Space Administration
John F. Kennedy Space Center
Cocoa Beach, Florida 32931
Attention: Library

National Aeronautics and Space Administration
Langley Research Center
Langley Station
Hampton, Virginia 23365
Attention: Library

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas 77001
Attention: Library

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama 35812
Attention: Library
Keith Chandler, R-P & VE-PA
Loren Gross, R-P & VE-PAC
J. L. Vaniman, R-P & VE-PTP
Hugh Campbell, R-P & VE-PEC

National Aeronautics and Space Administration
Western Operations Office
150 Pico Boulevard
Santa Monica, California 90406
Attention: Library
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103
Attention: Library
Henry Burlage

1

Office of the Director of Defense Research & Engineering
Washington, D. C. 20301
Attention: Dr. H. W. Schulz, Office of Asst. Dir.
(Chem. Technology)

1

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

1

RTD(RTNP)
Bolling Air Force Base
Washington, D. C. 20332

1

Arnold Engineering Development Center
Air Force Systems Command
Tullahoma, Tennessee 37390
Attention: AEOIM

1

Advanced Research Projects Agency
Washington, D. C. 20525
Attention: D. E. Mock

1

Aeronautical Systems Division
Air Force Systems Command
Wright-Patterson Air Force Base,
Dayton, Ohio 45433
Attention: D. L. Schmidt,
Code ASRCNC-2

1

Air Force Missile Test Center
Patrick Air Force Base, Florida 32925
Attention: L. J. Ullian

1

C-3
Air Force Systems Command (SCLT/Capt. S. W. Bowen)
Andrews Air Force Base
Washington, D. C. 20332

Air Force Rocket Propulsion Laboratory (RPR)
Edwards, California 93523

Air Force Rocket Propulsion Laboratory (RPM)
Edwards, California 93523

Air Force FTC (FTAT-2)
Edwards Air Force Base, California 93523
Attention: Col. J. M. Silk

Air Force Office of Scientific Research
Washington, D. C. 20333
Attention: SREP, Dr. J. F. Masi

Office of Research Analyses (OAR)
Holloman Air Force Base, New Mexico 88330
Attention: RRRT
Maj. R. E. Brocken, Code MDGRT

U. S. Air Force
Washington, D. C. 20330
Attention: Col. C. K. Stambaugh, Code AFRST

Commanding Officer
U. S. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 27706

U. S. Army Missile Command
Redstone Scientific Information Center
Redstone Arsenal, Alabama 35808
Attention: Chief, Document Section
Dr. W. Wharton
Atlantic Research Corporation
Shirley Highway & Edsall Road
Alexandria, Virginia 22314
Attention: Security Office for Library

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201
Attention: Report Library, Room 6A

Beech Aircraft Corporation
Boulder Facility
Box 631
Boulder, Colorado 80302
Attention: Library

Bell Aerosystems, Incorporated
Box 1
Buffalo, New York 14205
Attention: Library

Bendix Systems Division
Bendix Corporation
Ann Arbor, Michigan 48106
Attention: Library

The Boeing Company
Aero Space Division
P. O. Box 3707
Seattle, Washington 98124
Attention: Ruth E. Peerenboom (1190)

Chemical Propulsion Information Agency
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland 20910

Chrysler Corporation
Space Division
New Orleans, Louisiana 70150
Attention: Librarian
Curtiss-Wright Corporation
Wright Aeronautical Division
Wood-Ridge, New Jersey 07075
Attention: G. Kelley

University of Denver
Denver Research Institute
P. O. Box 10127
Denver, Colorado 80210
Attention: Security Office

Douglas Aircraft Company, Inc.
Santa Monica Division
3000 Ocean Park Boulevard
Santa Monica, California 90405
Attention: Library

Fairchild Stratos Corporation
Aircraft Missiles Division
Hagerstown, Maryland 20740
Attention: J. S. Kerr

General Dynamics/Astronautics
P. O. Box 1128
San Diego, California 92112
Attention: Library & Information Services (128-00)

Convair Division
General Dynamics Corporation
P. O. Box 1128
San Diego, California 92112
Attention: Mr. W. Fenning
Centaur Resident Project Office

General Electric Company
Flight Propulsion Lab. Department
Cincinnati, Ohio 45215
Attention: D. Suichu
Grumman Aircraft Engineering Corporation
Bethpage, Long Island,
New York 11714
Attention: Joseph Gavin

ITT Research Institute
Technology Center
Chicago, Illinois 60616
Attention: Library

Kidde Aero-Space Division
Walter Kidde & Company, Inc.
675 Main Street
Belleville, New Jersey 07109
Attention: R. J. Hanville,
Director of Research Engineering

Lockheed Missiles & Space Company
P. O. Box 504
Sunnyvale, California 94088
Attention: Technical Information Center

Lockheed Propulsion Company
P. O. Box 111
Redlands, California 92374
Attention: Miss Belle Berlad, Librarian

Lockheed Missiles & Space Company
Propulsion Engineering Division (D. 55-11)
1111 Lockheed Way
Sunnyvale, California 94087

Marquardt Corporation
16555 Saticoy Street
Box 2013 - South Annex
Van Nuys, California 91404
Attention: Librarian

Purdue University
Lafayette, Indiana 47907
Attention: Technical Librarian

Copies
1
1
1
1
1
1
1
1
1
California Institute of Technology
Pasadena, California 91109
Attention: Dr. A. Acosta 1
Dr. A. T. Ellis 1
Prof. M. S. Plesset 1

The Pennsylvania State University
Ordnance Research Laboratory
P. O. Box 30
State College, Pennsylvania 16801
Attention: Prof. G. F. Wislicenus 1
Dr. J. W. Holl 1

Hydronautics, Incorporated
Pendell School Road
Howard County
Laurel, Maryland 20810
Attention: Dr. Philip Eisenberg 1

St. Anthony Falls Hydraulic Laboratory
Mississippi River at Third Avenue, S.E.
Minneapolis, Minnesota 55414
Attention: Prof. J. F. Ripkin 1

State University of New York-Buffalo
Mechanical Engineering Department
Buffalo, New York 14214
Attention: Dr. Virgil J. Lunardini 1

Commander
U. S. Naval Missile Center
Point Mugu, California 93041
Attention: Technical Library 1