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ABSTRACT

The results of a program to study the analysis and design of composite
materials and structures is reported. Emphasis was placed upon three
major areas: The definition of design criteria for laminates including
studies of basic failure mechanisms; the definition of unique design concepts
to enhance the beneficial characteristics of composite materials and to utilize
them in structures; and the analysis of composite materials property test

techniques.



FOREWORD

This document is the annual report on the program entitled "Study of
the Relationship of Properties of Composite Materials to Properties of
Their Constituents''. The program was performed for the National Aero-
nautics and Space Administration under Contract NASw-1377 and was
monitored by Dr. R. W. Leonard of the NASA Siructiures Research Divi-

sion.

ii



TABLE OF CONTENTS

INTRODUCTION &+ v v v & ¢ o & . .
DESIGN CRITERIA . ... ...

Laminate Strength ., . . . .

® ¢ e s o ¢ e 2 s e e 4 s e e s o+ e o

Lamina Strength . . . ., . .

® 4 & 4+ e e e o e ¢ © e o s e o o o =

Limit Analysis of Unidirectional Fibrous Composites . .

Tensile Strength. . .

The Steady State Viscoelastic Response .

Evaluation of Transverse Effectiveness Factors for Use in

Elastic Analysis of Three Dimensional Filamentary Composites

DESIGN CONCEPTS . . .. .. ..

Study of Composite Structures . . . . . . . . ..

Circular Tube Columns. . . . . .

Scalloped Tube Columns . . ¢ « ¢« v . « . . . .« s .
Plate Efficiencies . + ¢ v ¢« ¢ ¢« ¢« « o « . .« o . ..
Panel Efficiencies . . . . . .. .. . ..

Studies of Composite Materials « « v ¢ « o « « . . . e e e e

Three-Dimensionally Isotropic Materials

Three Phase Composite Compression Members . . . . .

STUDIES OF MATERIALS PROPERTIES TESTS .

e o o o 0 s e e s o o

The NOL SE].it‘Dee Tensile TeSt ® ¢ ® e 8 s e * s e e e e+ e s s

Variations of the Split-Dee Test o v v v v o & & &+ &

iii

11

33

50

62

65

65

66

71

74

77

80

80

87

93

93

96



Compression Tests of NOL Rings .

Low-Melting Alloy Casting Fixture

of Compression Tests

FlasticModuli . . . . ... .. ..

Axial Compression Test. .
Internal Pressure Test . .
Tension Test. . . .
CONCLUDING REMARKS , .. .. ...
REFERENCES .. ... ...
APPENDIX A . .. ... ...
APPENDIXB., ... ... o e v e .
TABLES . . . ¢ v v v v v o

FIGURES . . .. ... o e e e

iv

Fage

. 99
« o o 101
« e .. 102
... 110
112

. 114
e e« « 115
S S
120

131

« . . 136
144



Table No.
1

LIST OF TABLES

Page No.

Generalized Equations for Compliances having Uni-directional
Reinforcing Filaments in the 1-direction (from Ref. 1). 136

Relationships among Elastic Constants and Compliances for
Uni-directional Reinforcement for use in Evaluations of the
Various B's in Table 1 (from Ref. 1). 137

Equations for the Transvers Effectiveness Factors (B) in Terms
of the Elastic Constants for Uni-directional Reinforcement

(Equations of Table 2 Solved in Terms of B8for B., Values equal
to Unity). 138

Generalized Equations for the Compliances of Three-Dimen-
sionally Reinforced Composites having Three Orthogonal
Planes of Symmetry. 139



Figure

10

11

12

13

14

15

LIST OF FIGURES

Calculated Stress-strain Curves for E-Glass and Epoxy Com-
posite Laminates,

Yield Strength of a Symmetric Bi-axial Composite Laminate
for Failure Modes Involving Each of the Principal Lamina

Stresses.

Composite Specimen for Limit Analysis. (Fibers in Xq-
Direction).

Bounds on the Limit Load for In-plane Shear,
Bounds on the Limit I.oad for Transverse Tension.

Bounds on the Interaction Curves for In-plane Shear and
Transverse Tension for Various Fiber Volume Fractions.

The Kth Layer in a Laminate for the Limit Analysis Model.

Tensile Failure Model for a Composite Reinforced by
Continuous Fibers.

Number of Breaks as a Function of Applied Load (Ref, 4,
Series B),

Number of Breaks as a Function of Applied Load (Ref. 4,
Series C).

Expected Number of Groups of Fractures as a Function of
Applied Load (Ref. 4, Series B).

Expected Number of Groups of Fractures as a Function of
Applied Load (Ref. 4, Series C).

Observed and Predicted Multiple-Fracture Groups (Ref. 4
Series B).

’

Observed and Predicted Multiple-Fracture Groups (Ref. 4,
Series C),

Static and Dynamic Values of P /1 and P3/l as a Function of
Applied Load (Ref. 4, Series B%_

vi

Page

144

145

146
147

148

149

150

150

151

152

153

154

155

156

157



Figure
16

17

18

19

20

21

22

23

24

25

26

LIST OF FIGURES (Cont.)

Expected Number of Fracture Groups as a Function of
Applied Load (Ref. 17 Tests).

Variation of E, with Applied Stress for Various Com-
posite Lengths (Ref. 4, Series B).

Typical Variations of Transverse Effectivenesses of
Filamentary Reinforcement with Volume Fraction, as
Calculated for an E-Glass/Epoxy Composite.

Efficiencies of Round, Unreinforced Tube - Columns
of 7075-T6 Aluminum Alloy and Beryllium.

Efficiencies of Round 7075-T6 Aluminum - Alloy Tube-
Columns Reinforced at Three Circumferential Points by
Uni-directional Boron/Epoxy Stiffeners.

Efficiencies of Round Beryllium Tube-Columns Rein-
forced at Three Circumferential Points by Uni-direc-
tional Boron/Epoxy Stiffeners.

Changes in Column-Binding Characteristics of Scalloped
Thin-Walled Tubes at Constant R/t with Angle Included
by Scallop.

Efficiencies of 7075-T6 Aluminum-Alloy Scalloped

Triangle Thin-Walled Tube Columns Reinforced at Apexes

with 0° Boron/Epoxy Stiffeners, and Comparison with
Minimum-Weight Reinforced 7075-T6 Round Tubes.

Efficiencies of Beryllium Scalloped Triangle Thin-
Walled Tube Columns Reinforced at Apexes with 0°
Boron/Epoxy Stiffeners, and Comparison with Minimum-
Weight Reinforced Beryllium Round Tubes.,

Efficiencies of Solid-Sandwich Plates having 0° Reinforced

Boron/Epoxy Cores and Faces of Various Materials.

Comparative Efficiencies of Wing Box Beams having ;t450

Boron Reinforced Epoxy Compression Skins and Beryllium

Skins on 0° Reinforced Boron/Epoxy Z-Section Stiffeners.
poxy

159

160

161

162

163

164

165

166

167

168



Figure

27

28

29

30

31

32

33

34

LIST OF FIGURES (Cont.)

Calculated Compliances Al’ Ay, and A6’ Caltropic Rein-
forcement in the Directions of the Orthotropic axis 1-,
2-, 3- Respectively, for Equal and Unequal z’}sasumed
Transverse Effectiveness g. (E; =10, E_ = ,

f b 21
Vf = 0.2, yb = 0. 35).

Calculated Compressive Strengths for Three Indicated
Failure Modes for a Boron/Epoxy Composite of Nominal
Constituent Properties with Constant Total Reinforcement
Volume Fraction of 50% but Varying Proportions of the
Reinforcement Uni-directional and Randomly Dispersed in
the Binder.

Calculated Compressive Strengths for Three Indicated
Failure Modes for Glass/Epoxy Composites of Nominal
Constituent Properties with Constant Total Reinforcement
Volume Fraction of 50%, but Varying Proportions of the
Reinforcement Uni-directional and Randomly Dispersed in
the Binder.

Calculated Compressive Strengths for Glass-Boron/Epoxy
Composites of Nominal Constituent Properties with Con-
stant Uni-directional Boron Reinforcement Volume Frac-
tion V. = 0.5 and Varying Quantities of Randomly Dispersed
Glass Filaments in the Binder.

Experimental Results for Tests of Glass-Boron/Epoxy
Composites having Uni-directional Boron Filamentary
Reinforcement of Nominally 50% by Volume, and Com-
parison with Calculations for Various Glass-Filament
and Binder Strengths.

Schematic of N. O, L. Ring, ''Split-Dee'' Tensile Test,
Photoelastic Study of Stresses in the Vicinity of the
Split between the Dees in an N, O, L, Ring ''Split-

Dee" Tensile Test.

Results of Analysis of Maximum Bending Moment in the
"'Split-Dee' Test of a Glass Filament Reinforced Epoxy
N.O. L. Ring.

viii

169

170

171

172

173

174

176



Figure
35

36

37

38

39

40

41

42

43,

LIST OF FIGURES (Cont. )

"Race-Track', Filament-Wound Tensile Specimen.

Ratios of Maximum Bending Moments Induced in Race-
Track and Circular 0.15 cm. (0,06 in.) Thick Split-Dee
Specimens of Glass/Epoxy at 0.69 SN (100 ksi) Axial
Stress. mz

Schematic Representative of Mechanics of Deflection of
"Race-Track" Specimen.

Photoelastic Study of Stresses in the Straightaway of a
"Race-Track' Specimen.

Strain Measurements Near the Split in the Dee in N, O, L,
Ring Type Split-Dee Tension Test,

Proposed Compression Specimen Made From Segments
of N. O, L., Ring.

Aluminum Insert from Specimen Similar to that of
Figure 40 after Test.

N.O. L. Ring Segment Compression Test Specimen
Showing Shear Failure.

Top and End Views of Compression Specimen Cast in
Cerrobend End Fixtures,

ix

178

179

180

181

182

183

184

185



INTRODUCTION

Development of methods of analysis of the strength and stiffness of fib-
rous composites has advanced to the point where it is feasible to establish
rational initial design procedures for composite structures. These procedures
are naturally subject to revision as continuing studies enhance the understanding
f

of composite failurc mechanics. In conjunction with the theoretical develop-

e

ments, there is the unsatisfied need for definition of suitable techniques for
material property measurements. Accordingly, the program described here-
in treated the above problem areas and the present report presents the results
of investigations leading to: The definition of design criteria; the enhancement
of the understanding of failure mechanisms; the definition of unique design con-
cepts for composites; and the development of improved techniques for com-
posite property measurement.

The section on ""Design Criteria'' describes the failure criteria for lami-
nates, which have been computerized for structural efficiency analysis. Fur-
ther studies of the laminae failure mechanisms upon which this is based are also
described, including some treatment of time dependent behavior., The applica-
tion of these criteria is treated in the '""Design Concepts' section, wherein the
utilization of the high uniaxial compressive strength of fibrous composites is
emphasized. Columns, plates and panels of combined composite and metallic
construction are designed and their potential is assessed. Concepts for im-

proved material performance including three phase and isotropic three dimen-



sional materials are also defined. In the final section, '"'Studies of Materials
Properties Tests'' the results of the analysis of several current test tech-
niques are presented along with suggested new methods for uniaxial strength

measurements.



DESIGN CRITERIA

The parametric evaluations of fibrous composites for aerospace structures
(e. g. Refs. 1 and 2) have indicated the attractive potential of composite
structures which are configured to achieve high stresses. When efficient
stiffening arrangements permit the use of the high modulus composite materials'
high strength, the resulting structures are shown to be substantially lighter
than metallic structures. These studies emphasized the need for better
definition of composite strength. The prediction of laminate strength from a
knowledge of constituent properties is a complex undertaking and, in general,
strength estimates most suitable for design arc obtained experimentally.
However, an analytical estimate is required in the assessment of the potential
of candidate composites which have not yet been brought to the practical fab-
rication stage. Indeed, the concept of analytically predicting composite pro-
perties for use in a structural application analysis, is an essential part of the
search for guidelines for the development of improved composite materials.

The strengths of fibrous composites, perhaps to an even greater degree
than their stiffnesses, are complex functions of the anisotropies associated
with the uni-directional character of filaments. For filaments in one (the
loaded) direction only, strength in tension (Ref, 3), compression (e. g. Ref. 4)
and shear (e. g. Refs. 5, 6) have been related to the properties of the consti-
tuents. Further study of these problems is described subsequently., Exten-
sions to reinforcements in other direccticns have now been incorporated into

the computer programs for structural properties of anisotropic composite



elements (SPACE). The aim is to provide a strength assessment for prelimi-
nary design studies.

Numerous strength theories have been proposed; the validity of which can
only be justified by experiments which are themselves complex and formidable.
A comprehensive tabulation of strength theories has been presented in
Reference 7. Among the theories proposed is the strength theory in References
8, 9. In this theory, the strength of a fiber-reinforced composite, considered
as quasi-homogeneous and anisotropic, is governed by a continuous failure
surface of Hill (Ref. 10). Once the failure surface is determined, the strength
of the composite body under any type of surface loading can be determined in
a straight-forward manner. This appears to be a reasonable approach for
composites with elastic perfectly-plastic fibers and matrix.

For most composites there is a vast difference between the strength of
the filaments and the strength of the binder, and failures in the binder may
be encountered as the maximum stress direction varies from the filament
direction. In the simplest case, for example, of a unidirectionally reinforced
composite in tension, if the angle between the tensile load and the reinforce-
ment direction is increased gradually from zero to ninety degrees, three
primary failure modes can be expected to be encountered: first, at small
angles, tensile failure of the filaments; second, at intermediate angles,
shear failure in the binder; third, as the filaments become oriented mostly
transverse to the load, tensile failure in the binder. These failure modes are

essentially independent of one another. Particularly for the change from




tensile failure in the filaments to shear in the binder, there appears to be
little reason to expect a gradual transition of the type that leads to a smooth,
"yield surface'' for homogeneous materials.

When the various failure modes are independent of each other for a com-
posite having an oriented structure, the applicability of a continuous function,
like Hill's anisotropic yield condition for a homogeneous material (Ref. 10),
to represent a yield or strength criterion appears open to question. Accordingly,
the approach utilized herein to determine strength criteria for composite
laminates has been to determine separately the strengths for all possible
failure modes. Thus, to a degree, a family of failure surfaces representative
of the material will be generated, and the lowest of them for any loading
condition will be the governing one.

This approach is described in the following sub-section. This is followed
by a presentation of the recent studies of the strength properties of a uniaxial
laminate. Note that these latter quantities are required both for the dis-
continuous and the continuous failure surface models., The analysis is developed
first for composites where both fiber and matrix are elastic-plastic and a
continuous failure surface is defined. These results are then specialized for
rigid brittle fibers to generate strength values which can be used in a maximum
stress failure theory.

Laminate Strength

The strength analysis of a laminate of layers of uniaxial fibrous compo-
sites utilizes the elastic analysis, under given surface loadings, of the state
of stress in each laminate layer considered as quasi-homogeneous, i. e.

5



locally heterogeneous, but grossly homogeneous. If the surface loadings
increase monotonically and proportionally, there will be a stage at which

the stress in one (or more) layers of the laminate is at a failure point and

the layer, being assumed to fail, is replaced by a new degraded layer having
an assumed mode of degradation. As successive failure of constituting
layers proceeds, a redistribution of stress among the laminae occurs and

the slope of the load-deflection curve is discontinuous. The ultimate strength
of the laminate is reached when all the constituting layers have failed.

In each layer, the stresses referred to the principal axes of anistropy
are computed. If the shear or transverse stress is cqual to its corresponding
yield stress, the lamina is considered to hold that stress level for those com-
ponents and to have additional stiffness only in the fiber dircction. As
successive failure ot constituting layers occurs, the cntirc load-dcflection
history can be traced until a failure inthe fiber dircction occurs or until x11
layers yield, at which point the associated applied load is defined as the failure
load. An illustration of the application of this approach is prescented in Fig,

l where calculated stress-strain curves for two simple laminates of E-glass
in epoxy are shown. For more general laminate configurations there will be a
greater number of straight line sections in the stress-strain curve.

For those applications where only the limiting stress levels - and not the
entire stress-strain curve - are required, a simpler approach to the defini-
tion of failure criteria appears reasonable. This approach is based upon the

concept that the first departure from elastic behavior is a most significant



point on a composite material stress-strain curve. It is desired to keep
actual stress levels below this point in a fashion analagous to the use of the
yield stress for metal construction. Similarly, at the ultimate stress level,
the transverse properties of the individual layers have generally deteriorated.
Thus this level can be approximated by using a ''netting' analysis with the
uniaxial strength properties of the individual layers. The application of these
principles in the definition of failure criteria is described below. These
methods have been incorporated as a subroutine of the SPACE computer
program,

The basic stress strain relations for the laminate are given by:

N —a b €

d K

Where N, and M, are the laminate stress and moment resuitants, € . are
i i oi

the middle surface strain components, Ki are the curvatures, and 2. b..,

J 1
and dij are the laminate elastic constants obtained by suitable integration of
the laminae elastic constants. For definition of laminate strength we desire

to treat the stresses arising from a set of applied stress resultants when the

curvatures are prevented. Thus we can consider above equation rewritten as:

|
—
=




-1 . . )
where a is the inverse of the matrix a.

For zero curvatures we have

S IR {n}

and
T S
g. = C.. .
i ij 0j
- (k) . th
where O are the stress components in the k  layer referred to the

laminate axes.

— {k ) .
Cij( ) are the elastic moduli of the same layer referred to the same axes.

(k)

From these equations we may find the stresses, 0, ', referred to the lamina
i

principal axes from:

cr_(k) = T.. (Bk) C-I,(k) no sum on k
i ij j

where T is the transformation matrix for rotation of coordinate axes.
B is the angle from laminate principal axes to lamina principal axes.

k
To evaluate laminate strength, the stress components 0  are evaluated for a
laminate having its laminae thicknesses and the total load normalized. Thus,
the total thickness is unity and the load vector for axial load, for example, is

(I, 0, 0). With the stress components known, and the maximum strengths,

O'ilﬁk) defined for each of the stress components, (as in Refs. 3, 4, and 5)
ratina
the ratios 7 (k)
iu
(k)
0.
iu




are formed. The lowest ratio of this set of 3n quantities (for an n layer

laminate) is the material yield stress, o

The same analysis is now repeated for the case where the moduli E‘2 ,

GlZ’ and VZl are set equal to zero for all layers. Thus only E_, the modulus

l,
in the fiber direction is non-zero and we have (for E1 = VfEf) a ''netting"
analysis. Here there are only n stress ratios and the lowest one is taken as

the material ultimate stress, Gu .
As an application, the yield stress of a symmetric biaxial laminate sub-

jected to an axial tensile load was treated. The results for these laminates

are presented in Fig., 2, Each curve represents the results generated for one

of the three stress components and the lower envelope curve is the design
yield stress curve.

Lamina Strength

It has been postulated (Refs. 8 and 9) that the strength of a unidirectional
fibrous composite, considered as quasi-homogeneous and anisotropic, can be
represented by a surface having the form of Hill's Generalized von Mises'

Yield Condition (Ref. 4), namely:

2 2 2 2
2 < -T - -7 +2LT 1
f<Tij> F{%2 33) tG <T33 711) +H<T11 22> 23 (1)
+ 2M 7'3? + 2N T 2 =1
12

where the coefficients F, G, H, L, M, N are parameters characterizing the

state of anisotropy and Tij are components of the stress tensor referred to the



principal axes of anisotropy X %, X, where the x, axis is parallel to the

1

,

fibers.* In general, the yield condition ( 1) can be represented by a surface in
a stress space. A stress point within the yield surface represents a ''safe!
stress state. Yielding can occur if the stress point is on the yield surface.
Since unidirectional fibrous composite layers in laminates are thin compared

with their lateral dimensions, only T and T _ are considered non-zero

11’ 22 12
if the Xs axis is along the thickness of the layer. Furthermore, since uni-

directional fibers are randomly located in a composite layer, it can be assumed

to be transversely isotropic. Then the yield condition (1) reduces to

T 2 /r 2 T 2 T . T

11 22 12
— + [ L£2 )+ - _llzii-: 1 (2)
X X X12 X

where X1 R X2 and X12 are the normal yield stress in the direction of the
fibers, the normal yield stress in the direction transverse to the fibers and
the yield stress in axial shear of the composite, re spectively. These are the
three basic strength characteristics of the unidirectional fibrous composites.
Once these are known, the yield condition (2) can be employed to determine
whether a combined state of (plane) stress can cause failure of the composite.

X., and

In what follows, effort is made to evaluate the quantities, X1 » X5

X12 analytically in terms of the strength and geometry of the constituents,

* Henceforth, unless otherwise specified, i, j =1, 2, 3; Summation on
repeated indices is implied,

10



Limit Analysis of Unidirectional Fibrous Composites

The composite material under consideration consists of a
relatively soft matrix material in which stiffer fibers are embedded. Initially
both materials are assumed to be elastic-perfectly plastic and satisfy the von
Mises' yield criterion. As shown in Figure 1, referred to an orthogonal
Cartesian co-ordinate system, a typical unidirectional fibrous composite is
taken to be a cylinder with rectangular cross-section. Circular fibers run-
ning from base to base of the specimen are in xl-direction. Limit analyses
of such a specimen with various arrangements of both elastic brittle and elastic

perfectly plastic fibers in an elastic-plastic matrix under various types of

surface loading will be described.

Elastic-plastic Constituents
In this study only the ''random array' geometry is considered: circular
fibers of various diameters are randomly located in the specimen. Each of
them can be surrounded entirely by a concentric cylinder of matrix material.
A cylinder consisting of a fiber of radius T and the outer matrix-shell of
radius LR is called a composite cylinder, It is assumed that a constant

r . . .
5 __f canbe chosen so that the composite cylinders are non-overlapping.

r
b . . . .
The = entire specimen can then be considered as an assemblage of composite

cylinders and the ramining matrix volume. The lateral boundary of the spe-
cimen may touch or cut through some fibers. In both cases the associated
composite cylinders are ''incomplete''. Since in practice fiber diameters are

very small compared with the transverse dimensions of the specimen, the

11



total number of fibers in the interior of the specimen is much larger than the
total number of those possibly on the lateral boundary. Hence, the total
volume of "incomplete" composite cylinders is much smaller than that of the
"complete'' cylinders.

If v, V1 and V2 denote, respectively, the total volumes of the specimen,

the composite cylinders and the remaining matrix in the specimen, the

following obvious relation holds:

V:V1+V2 (3)

In the case where the entire specimen is occupied by composite cylinders,
V2 = 0. Following Hashin and Rosen (Ref. 11) this distribution is called the
""random array''.

The von Mises' yield criterion which the fiber and matrix materials are

assumed to obey has the following form (Ref. 12):

S..S. (4)

where Sij are components of the stress deviator and k is the yield stress in
simple shear for the fiber material (denoted by kf) or for the matrix material
(denoted by kb).

Under the conditions of plane strain perpendicular to the xl-axis, von
Mises' yield criterion (4) reduces to

2 2 2
<1’22-T33> +4T23 < 4k (5)

12



where T

55 1 Ty and T,; are components of the stress tensor in the transverse

plane.

In order to evaluate the three basic strength characteristics (Refs. 8, 9)
of the composite specimen shown in Figure 3, the specimen is subjected to
axial shear stress T _, transverse tensile stress T.. and longitudinal tensile

12 22

stress T”, respectively. The upper and lower bound theorems of limit

analysis of plasticity (Refs. 13, 14) will be used to obtain bounds for the limit
L L L . .
loads le , le and ‘t‘ll which represents the lamina strengths,
Case 1. Axial shear stresses le applied on the boundary of the composite
specimen.
According to the lower bound theorem, a uniform shear stress field le

can be chosen as the statically admissible stress field. Since le can nowhere
violate the yield condition (4) for both matrix and fibers, it follows that a

lower bound for the limit load TI; is

L _
(le >L =k,

For upper bound construction, a kinematically admissible velocity field
is chosen as follows:
(a) In V2 (and thus also on the boundary of the composite cylinders) and

on the entire lateral boundary of the specimen,

\

u = Y, x (6)

where Yl is a positive number,

13



(b) In any composite cylinder, referred to a local cylindrical

polar coordinate system,

- g
ul ercos
= 9 < =<
u.r Yl xl cos for 0 =< r_rf
\ue/ \-lelsme/
2
Ylﬁ T 2
= b )
5 (1 - > r cos ¢
1-8 T
le cos B forrf<rsrb
v em o )
lel sin

* The velocity field in any ''incomplete' composite cylinder is defined by
solving similar elastic displacement boundary value problems for the
"incomplete'' composite cylinder. However, since the volume of the '"in-
complete'' composite cylinder is small, the difference between their actual
contribution to the dissipation function and that obtained by treating all
cylinders as ''complete' is negligible. This approximation is implied in

the subsequent analysis wherever a similar situation arises.

14




The velocity field (7) in a composite cylinder is the elastic displacement
solution to the boundary value problem with the boundary condition (6) pre-
scribed. The problem is the same as that which was formulated by Hashin
and Rosen (Ref. 11) with the modification that for O<r srf » the velocity field
is associated with rigid body motion,

With this velocity field constructed for the entire specimen, the dissipa-
tion density function and the rate of external work done can be obtained to

(Ref. 5).

yield an upper bound for Tl;

V \ R4/ R2

1 2m
&1?) U 1 g 4 8°
= 2N [ J R (1+ ——>+2 — cos 8d §dR (8)
(o]

The above expression is for '""random array' in which V2 = 0 and the fiber

volume fraction vf =B,

The integral in (7) is integrated numerically for different fiber-volume
L
T . .
fractions, The result is shown in Figure 4 where <12 ) v in (8) is plotted

2
as a function of vf(O< v, =1, v.=B ). Note that particularly in Figure 4,

£ £
lim <71;\) = 1,
v -0 Yo /%

! B

lim TL 4
12 ju _ —
v, ? 1l ~—r— =7

‘ At

From the above result, it is concluded that X is at most about 27% above

12

and at least the same as the yield stress in shear for the matrix.

15



Case 2. Transverse tensile stresses T22 applied on the boundary of the
composite specimen,

For lower bound construction, a uniform tensile stress T22 throughout the
specimen is chosen as a statically admissible stress field. Since the von
Mises' yield condition (4) can nowhere be violated in the specimen, the lower

bound associated with the constructed statically admissible stress field is

<T2;>L =R ¥

For upper bound construction, a kinematically admissible velocity field is
chosen as follows:
(a) In V2 (and thus also on the boundary of the composite cylinders) and

on the boundary of the specimen,

u 0

S 1
A\ v
P =) 2 x (10)
e >
U, “ Y, %y
2

where YZ 1s any positive number,

16



(b) In any composite cylinder, referred to the local coordinate system,

0 )
u 6 2 2 2 2 2
! % x |Aa+A, T2 T3 + A, e (3 $3%5) L4 rp B - xg)
R B 2 6 4 1
2 er T 2r >
forr. <r-r
u ﬁ 2 4 2 f - b
N B T + A, rf(3xz'x)+_A4 rp (xp g
2 2 6 4 (11)
L er r r J
( ° )
= %2 2
2r
ﬁ $ for O 1 rf
NI
Y2 x.B +B, X T
-— %371 >
L er
v
where
1 ( )2(
A =+ {4 (1-m)(14m) ' - 3-my(rem) & + EETD
c g f
2
A, - é{ 4 (1-m) (147) (1-5 )B}
1
A=é§(-ﬂ) ln)5+(+m]}
B
A = L 1- -2n+ (1+ 1+—)1\E$4
27T O L e e
B:é S(ln B-é(ln)8+2(1+n)
\ —z
S
1 2 2
BZ— c {8(1-‘0)5 (1- )}
- | 2
and  C = (1-1)° 8%+ a(1-m) (1+n) 8% 6 (1-m) (14m) 8%+ 4 (1-m) (14 1) + (1)
B
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The velocity field (11) in a composite cylinder is the incompressible
elastic displacement solution to the boundary value problem with the boundary
condition (10) prescribed. The problem was formulated by Hashin and Rosen
(Ref. 11) in evaluating the effective Plane strain shear modulus of elastic
fiber-reinforced composites. The constant Nin (11) considered as the displace-
ment solution to the elastic problem is the ratio of the elastic shear moduli
of the fiber and matrix materials. However, it can be considered as merely
a parameter when (11) is used as a kinematically admissible velocity,

For the case of the '"random array', an application of the upper theorem

gives an upper bound

(2o 5 1o, 1)

2 ky Ky,
where . , 2(147) , ,
_ 8(1-n) B -6 (1-n) B~ + 2 + 12(1-m) (1-B7) R~ |
I =2 fR B 1
1 dR
C
and
: _l 1 27 R
2 n/f C \/51 (n’ B, R)+@2(T], b,R) cos B do dR
B Yo
in which

2
2
¢ (n,5,R) = {4 (-myam) 8% -3 (om ey 5% 4 L L g1y 1s 163 R }

(1-m)% e { 3 [

+
4 2 2
R R [ B

) L

2
?| + 252{—2ﬂ+(1+"r1)(1+ Bé:,l }

+
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BZ

4
{Ll_:ﬂz_ﬁ - % {“;Z”L (1-m) sz|+ 26° [—2n+(1+ﬂ)(1+ ib )} }
R R™LE B

¢ (.8, R) = 2{4(1-n)(1+n) 5% -3(1-m)(14m) 8 + ‘—lﬂ+6<1—n>(1+m(1-82>R2}

2
and B = vf.

For any finite kf/k and for 1= «» , (12) becomes

b
L
T 1 27
<22 >V= 2 =, Rﬁl (8, R) + ¥, (B,R) cos 8 dbdR  (13)
2k m(l - B7)
(o]
where
64 4 .2 3 2 ﬁzﬂz r4b4+52+1 2 2j ’
(B, R) = o | (BT+E%+1) - 5 (8 +1)_2J {(_—2——)”6 R J
R R
and
2 2 42 2 2
H (B,R):zE_(B4+ BZ+1)_2(62+1)B_ (4B +B +1) 38 R }
2 g 2 2 Z

The right hand side of expression (13) was obtained in Ref. 5 for
an upper bound of the limit load (normalized with respect to kb) for transverse
shear stresses applied on composites reinforced with rigid fibers. In Figure

L
T . . . .
5, ( 22 )v is plotted as a function of Ve according to (13). It is a monotonically

2
. . . . L . L
increasing function of 5 with ilnlo <T22> U = 1 and hm_'l (TZZ ) U =w.
et A\
2
f kb f 2 kb
.. L
On the other hand, for any finite 1, (TZZ ) y can be plotted as a function of
21.
b (r, )
by evaluating numerically I1 and I2 in (12), For example, for n= 100, 22'U
2 k
b
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L
. . . li T.
is also a monotonically increasing function of Ve < 1 < 22 ) U -7 and

v. 0
2
lim T L k f kb
(22>U_ f

vl » which is shown in Figure 3, with kf =10 . It is
f Zkb kb E—-

b
observed that for fiber volume fractions smaller than about 75%, the upper

bound for the limit load TZ; is higher that for n— « but for higher fiber volume

fraction, the opposite is true. Therefore, for any fiber volume fraction between
0 and 1, the lower value of the bounds obtained from M= 100 and N~ will give a

better estimate of T, and it is shown in Figure 5 in solid line as a function of

It is interesting to note that for n= 1, (12) reduces to the following

simple form
L
T k
<_>22§ =l+v, R (14)
b %

which is commonly known as the '"rule of mixtures'. From Figure 3, it is

seen that the straight line represented by (14) will be higher than the chosen
L
curve for (TZZ 2U for O Ve <1 Therefore, it is concluded that the '"rule of

2k,

mixtures to be used in this case would overestimate the composite strength,

L
In Figure 5, (TZZ 2 L obtained from (9) is also shown. The difference
2K,
between the upper and lower bounds for Ve ~0 is due to the fact that in the

upper bound construction, a plane strain velocity field is used as a kinemati-
cally admissible velocity field,

Case 3. Longitudinal tensile stresses T applied on the boundary of the

11

composite specimen,
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The study of longitudinal strength of unidirectional fibrous composites is
extensive, Various models and failure mechanisms have been proposed in
the literature., Here, the yield strength in axial tension is obtained by the
construction of very simple velocity and stress fields, for composites having
elastic-plastic fibers of uniform strength.

For upper bound construction, in the entire region of the composite spe-

cimen, a kinematically admissible velocity field is chosen as

ul eO Xl
= eO
2

%2

An application of the upper bound theorem gives
L
(T11>— vaf+Tva (15)

or

L i
T
b b

where 7% and Tb are the yield stresses in tension for the fiber and matrix,

respectively and vy = 1 - Ve
Relation (15) is known as the ''rule of mixtures' for the predication of the
L

T . .
strength of a composite, If Tf and Tb are given, (11 > U is a linear function of
T
b

fiber-volume fraction vf .
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For lower bound construction, if the applied stress ‘1‘1 is assumed to be
uniformly distributed on the boundary of the composite specimen, then a
L . . .
lower bound (Tll > L is equal to Tb . However, if we assume that the tensile
stress ’r11 is not uniformly distributed on the boundary surface and we are
only interested in the average stress intensity on the boundary surface that

causes failure, then a higher lower bound can be obtained. In fact, a statically
admissible stress field can be chosen as follows:

In the region occupied by fibers

r.=| % O 0

ij
0 0 0 (16)
0 0 0

™ o0 0

T.. =

ij
0 0 0 (17)
0 0 0

It is obvious that the stress field expressed in (16) and (17) satisfy the re-

quirements to be statically admissible.

The average traction corresponding to this stress field is therefore

Tf Vf+Tb Vb (18)

L
T 3 T R
which can be taken as < 11 >L
L ..
According to {15) and {18), the upper and lower bounds for 7‘11 coincide,

Therefore, this strength can be determined from the 'rule of mixtures', for
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this type of composite, (i. e. elastic-plastic fibers and matrix of uniform
yield strength).

From the above results, it is observed that obunds for T

52 are far apart,

especially for high volume fractions. Further effort should be made to im-
prove the bounds in order to have a better estimate of the limit load. For lower
bound construction, uniform stress distribution used as statically admissible
stress fields can only give lower bounds which are the corresponding matrix
yield stresses. In order to obtain higher lower bounds, one has to assume
applied tractions to be non-uniformly distributed on the boundary surface
according to the properties of the fibers and matrix. Equilibrium stress fields
can then be constructed in equilibrium with the applied tractions. Then the
lower bound theorem can be applied to obtain higher lower bounds. To decide
the distribution of the applied tractions on the boundary and to construct an
equilibrium stress field in the body is not at all easy in general. The success
in the construction of such a statically admissible stress field for Case 3 is

due to the simplicity of geometry and loading conditions.

Brittle Fibers
In the previous section, the strength of unidirectional fibrous composites
has been evaluated by obtaining bounds for the basic strength characteristics.
The theory assumes the existence of a continuous failure surface. This hypo-
thesis appears reasonable for composites with elastic-perfectly plastic
fibers and matrix such as metal fibers and matrix, However, for contemporary

high strength fibers embedded in epoxy resin matrix, this ""elastic-perfectly
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plastic model" may seem inadequate. Instead, it seems more suitable to

assume elastic-brittle fibers and an elastic-perfectly plastic matrix which

obeys the von Mises' yield criterion. Upper and lower bounds have been ob-

tained for the following types of surface loadings:

l.  Tractions equivalent to a uniform shear stress le applied on the en-

tire boundary surface of the specimen.

2. Tractions equivalent to a uniform shear stress T23 applied on the
entire boundary surface under the conditions of plane strain.

3. Tractions equivalent to uniform uniaxial tension ‘l'.22 applied on the
entire boundary surface under the conditions of plane strain.

4. Tractions equivalent to biaxial uniform tension T22 and ’r33
(’7'2'2 + T33) applied on the entire boundary surface under the conditions

of plane strain.
5. Tractions equivalent to combined in-plane shear T.. and transverse

12

tension T, ('r11 = & =0 ) applied on the entire boundary surface.
Since the method of analysis is similar to what has been presented in the
preceeding pages in obtaining bounds for the basic strength characteristics, the
details of analysis will be presented in Appendix A. However, results are

summarized as follows:

L <71;>L:kb.

) 2
R4 R

S G
12 Ju _ 1 s s R‘/(”B Vi2 B oso doar
B o
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T L
for the '""random array'' geometry. The above expression for < 12 }U is the

A

same as (8) which is shown in Figure 4 as a function of Ve (0 < ¢ <1, Ve T B )

since the same velocity is used here,

L
T m
For arbitrary geometry of arrangement of fibers, ( 12 >U =1 +<2— - > vy
k
b
- (Y
which is higher than \ 12 / U given by (8).

5

2 T L =
’ 23 >L b’
<EL 1 2T
3 U 2 ,\/ -
_ Y (B, Ry +Y¥_ (B,R) cos 6§ d&R
= 2.3 1 2
k T (1-8")
B Yo
where
RGN i S 227
Y (B,R) = — 2oty |+ |JEEAE 1), 35
1°° 4 2 2
R L R
2 [ 2 4
and 2 4 2 2 - (4B
¥ (8, R)=—% B 48+ 1 .g(a+1)8T (4P +232+1)+3BZR2
R L R
for the "random array'' geometry. The above expression for <T2§’> g is the
kb
same as (13) which is plotted in Figure 5 as a function of Ve with
1 T. L lim T L
rm (23 U _ 23 Ju
b b

since the velocity field chosen here can be obtained from (10) and (11) through

an orthogonal transformation together with the limiting process of N~ «
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- /. Ly
L L =2 (T
<T22>U ) <T33 )U \'23 )u
L
> (22 L _ !
K, "l+ 2
J3 o
L
and (leh-‘_ o
5 /1 2
14 g
V3

for ¢ =0.

For the case of the

L
d
an (le )U )

"random array'' geometry,

min 3
bt T o
min %13
o 1
-Z— + oW
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1 2w
L, = R Jﬂl(w,B,R)+QZ(w,B,R) cos 6+Q3(B,R) cos 2 6
m(l- B)
B o
4 2
Q (0, B, k) =4 i((B+E$+l)——(8+1)——(BZ+1-B-—J
1 4| R
2] R 8%\
+[352R2_(4B+B“ § (1-8%) (1+—2)
~ 2.4 8°
Q (w, B, R)—Zw(l-B) ;E
2 2 4
and 03(5, R)=8—Ef-‘2 [(B4+BZ+ 1) -3 (52+1) E—J[3BZR2-(4B +BZ+1):,
R 2 RZ 2

. . . i L 1L
1 calculat f d to ob ( d £
Numerical calculation is performed to obtain TZZ >U an <T12>U rom
(20) for different values of B and @. The results are summarized in Figure 6
in which 82 = 0.8 is the highest fiber volume fraction shown. The dotted line

represents (19) which gives the lower bound for(‘rzg)and <712
\

L>for any b.

It is worth mentioning that for this model of elastic -brittle fibers embedded
in elastic-perfectly plastic matrix, in the upper bound expressions, only the
matrix strength and fiber-volume fraction appear — the brittle strength of the
fibers is not involved. This is due to the fact that rigid body motion of fibers is
always incorporated into the kinematically admissible fields. Hence, regions
occupied by fibers in the composite body contribute nothing to the dissipation

function. The result is reasonable since in reality, elastic moduli and brittle

strength of fibers are much higher than the corresponding elastic moduli and
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strength of the matrix material. On the other hand, the longitudinal strength
along fiber-direction of fibrous composites under tension or compression cannot
be obtained by limit analysis of plasticity because of the presence of the high
modulus, high strength elastic-brittle fibers. Instead, a statistical failure

theory was established for tensile strength [3] and a fiber-buckling model was

postulated for compressive strength of fibrous composites [4] and [15], These failure

mechanisms are based on experimental observation. Furthermore, as men-
tioned previously, for this mathematical model of composite material, the
existence of a smooth yield surface that governs the strength of the material is

still an open question. Based on experimental investigation, the failure mech-

anisms for individual cases seem to be different and independent of one another.

Accordingly, the approach to the determination of the strength criterion for uni-

directional fiber-reinforced composites as well as fibrous composite laminates

is as described earlier. Instead of using a continuous yield surface, all possible

failure modes are considered. To determine which one is dominant for a parti-
cular type of loading condition can sometimes become a tedious task especially
for fibrous laminates under various types of design loading. However, this
approach has the advantage that the entire load-deflection history can be traced
until complete failure occurs. With modern high speed digital computers avail -
able, a systematic strength analysis can be programmed to obtain accurate
results,

For certain composites, it is possible to utilize, as an alternate approach,
the application of limit analysis methods to the laminate as a whole. This is
treated in the following section.
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Application to Llaminates

It is interesting to note that the kinematically admissible velocity fields
constructed to evaluate the upper bound for the three basic strength characteris-
tics can be used to obtain upper bounds of limit loads for in-plane loading applied
on laminates.

To demonstrate the method, consider a laminate composed of uni-

directional fibrous laminae subjected to in-plane shear stress Tio The

L
problem is to find an upper bound for the limit load 7 . A typical constituting
12
layer, the kth layer, in which fibers are all running in ;(l direction, is shown
in Figure 7. Depending on the orientation of fibers in the layer, the principal

axes }El(k) iz(k) X, can be defined by an angle O(k) measured from the lami-

nate axes X X_X_.
1 2 3

For upper bound construction, a kinematically admissible velocity field
is constructed in the following manner:

The velocity field (Lll, le, M)= (0, v, x 0) is assigned in V

3 I 2

of each layer, referred to X)X, X, axes. In the KB layer referred to its prin-

cipal axes il(k) )-cz(k) X3 the above velocity field is transformed into the
following form:

— (k

S} (k) Y. sin g k) cos g (k) x (k) _ e sin2 g (K) x (k)

51 1 1 1 2

- (k) 2 (k) (k) (k) (k) (k) (21)

= - in 6 f

_L’J.Z Yl cos X, Y1 sin cos 5 X,

— (k

Uﬂ( ) 0 /

-+ 2 ,

The right hand side of equation (21) can be decomposed into four parts
so that
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—(k) = (k) , = (k) -~ (k)  — (k)
= u +u + + (22)
, Moo L2 Ths T he
where
0
El(k) = Yy <:os2 g(k) xl(k)
0
O \
s )T 0 ()
:12 = 5— sin cos %,
y
—21— sin 9( ) cos e(k) x3(k)
Y. sin e(k) cos e(k) (k)
1 1 \
s T k) ()
&3 = —— sin cos X,
-y
—21- sin 9( cos S(k) x3(k)
and
. 2 (k) (k)
-Yl sin 6 x,
54(k) = 0
0

Except for multiplicate factors and reference coordinate system,
- ) = () = (k) Lo
Uy, u, and uy are the same as those velocity fields constructed

- -+ -+

in V2 for the three different cases of loading in the proceding section.

Furthermore,
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—Yl sin2 e(k) xz(k) 0 -Yl sinZ e(k) xz(k)
(k) 0 = {-Y sin2 G(k) x (k) + Y sin2 G(k) x (k)
0 0 0

/

where the first part of the decomposition has the same form as El(k) while the

-

second part represents a rigid body motion of VZ as a whole.

ld cheosen in V is also composed of four parts: The first

— (k
part is due to ul(

c:os2 B(k)

, which is the same as (7) with the modification that Yl

. The second part is due to u.
_’

which is the same as (11) with the

(k)

modification that V_ is now replaced by -Yl sin e(k) cos 7', The third part

2

2

. — (k . . k
is due to u3( ) which is exactly the same as 113( ) in VZ, The fourth part is due
_’

_’
— (k
to u4( ) which can be obtained in the same way as in Case 1 in the preceding sec-

-

tion. However, a moment's reflection reveals that the strain rate associated

with 2 5

2
is replaced by Yy sin e(k) since the additional rigid
_’

if cos
Yl
body motion contributes nothing to the value of the strain rate. Now, after
the kinematically admissible velocity field is constructed as described above,
the associated strain rate and dissipation density function can be calculated
without difficulty. Moreover, the rate of external work done can also be cal-
L .

culated so that an upper bound for T, can be obtained.

As an example, consider a laminate composed of two unidirectional

1) _ g anas® - T

fibrous composite layers of equal thickness with ©
In this simple geometry of lamination, the kinematically admissible
velocity field constructed above reduces to a very simple form.

For layer 1, the velocity field (21) reduces to
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1
— (1 - (1 .
53(1) 0

For layer 2, the velocity field (21) reduces to

{ _1(2) ( 'Yl ;2(2) \
52(2) = 0 in Vv, (25)
- (2) 0

Then, following the principles described above, it is easy to obtain the velocity
fields and the associated strain rate fields for both layers. After some mani-

pulation, it turns out that

(Tlg)U " T
— = R s(1 +—4—+2—2— cos 6d8 dR
b m(l- B ) B 0 J R R

for the "random array' geometry.
The above equation is exactly (8), which means that the upper bound
L. . . . . .
(TIZ)U is not higher for this type of cross-ply laminates than for the uni-
directional fibrous composite.
Similarly, it is easy to show that the three types of velocity fields con-
structed in the preceding section can be used to construct upper bounds for

limit loads for laminates subjected to any in-plane stresses.
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Tensile Strength

The high-strength, high modulus fibers which are of interest for
use in composite materials are generally brittle, having tensile strengths
that must be characterized statistically. Any theory for the tensile strength
of composites containing such fibers must take into account the dispersion in
their failure stress levels in order to have any relevance.

(16)

Parratt noted the dispersion in fiber strength and suggested that
failure of a fibrous composite subjected to tensile load occurs when the
fibers have broken up into lengths so short that any increase in applied load
cannot be transmitted to the fibers because the limit of interface or matrix
shear has been reached.

A theory has been presented (3)for the failure stress of composites
containing continuous, uniaxially-oriented, brittle fibers in a ductile matrix
loaded parallel to the fiber direction. This theory predicts that due to the
distribution of flaws or imperfections in the fibers there occurs a series of
randomly-distributed fiber fractures as the applied stress level is increased.

It is argued that a portion of the broken fiber in the vicinity of the
fracture is ineffective in resisting the applied load. Assuming that the stress
in a broken fiber is uniformly distributed among the unbroken fibers in the
cross-section and that this overstress acts over a length equal to the "in-
effective' length, it is predicted that failure occurs when a weakened cross-

section cannot sustain an increase in load. In effect, the theory pre-

33



dicts that the composite has a strength equal to that of a bundle of fibers
whose length is the "ineffective' length.

The present study considers fibers having a statistical strength dis-
tribution resulting in fractures at various stress levels as the applied load

increases. It is assumed that the stress in the broken fiber is distributed

.....

unevenly to the other

- - la 2
1

£21 -n - Vo e o - . S -1
1 tllC LL'USS-SCC‘I:J.U“ W ll\,}l

ipers in ha

as a le
the ineffective length. As a first approximation the effect of this overstress
1s presumed to affect only those fibers adjacent to a break. Failure is as-

sumed to occur due to an increasing probability of fracture in the fibers ad-

jacent to a prior break.

Description of the Model

The model consists of a two-dimensional composite of length L
consisting of a ductile matrix in which are imbedded N continuous brittle
fibers whose orientation is parallel to the applied tensile load. The fibers
are considered to be composed of layers of length 6. The total number of
layers being M = L/4. (See Figure 8.)

The quantity 8§ represents some length over which the stress is per-
turbed in the area of a fracture. It is variously referred to as the ineffec-
tive length or twice the transfer length and several formulae have been proposed
for its evaluation. Two of the definitions(3}, (17)are based on an elastic shear -

lag type of analysis. The axial stress in a broken fiber is found to be
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Of(x) = 00[1 + sinh Nx - cosh Mx)J

where
2

2 2?_13 ifi g 1

Ef l-v 1/2 T 2

f f

Ef = Young's modulus of fiber
Gb = Shear modulus of binder (matrix)
rf = Fiber radius
vf = Volume fraction of fibers
x = Distrance from end of broken fiber
OO = Extensional stress in the fiber at a large distance from the

fiber end.

It should be noted that in Reference 3 the factor of 2 in the expres-
sion for M was incorrectly omitted. The first author defines & as the value
of x for which the stress in the fiber has reached 90% of UO, the stress at a
long distance from the fiber break. On the other hand, Friedman defines the
ineffective length by means of an approximate step-function stress distri-
bution which has the same average stress as the distribution of Equation 1.
Furthermore, this author includes the ineffective portion on both sides of
the break whereas the first definition uses only one side.

The expressions for the two ineffective lengths discussed above

are, respectively
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If the shear stress between the matrix and fiber is assumed to be
constant, as in the case of plastic flow or frictional shear stress due to inter-
face failure, the fiber tensile stress becomes constant at a finite distance
from the fiber end. This distance is called the transfer length Lt by some
authors and is given by the expression

c.r
(;:Of

t 2T

where T is the (constant) plastic shear stress of the matrix, or, if there is
interface failure, the frictional force between the matrix and fiber.

The ineffective length can also be determined experimentally by a
photoelastic examination of the stress patterns in the vicinity of a fiber break.
In this investigation the experimentally determined ineffective length is used
where available.

Statistical Analysis of the Model
It is assumed that the strength of the population of fiber elements of

length 6 can be characterized by a cumulative distribution function F(o). That
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is, the probability that an arbitrary element has a failure stress level less
than, or equalto ¢ is F(o).

The expected number of elements in the composite that will fail under

fiber stress 0 is
E=MNF(o). (4)

This expression includes the possibility of further fractures of adjacent
fibers. 1If the composite does not fail, the stress in the broken fibers is dis-
tributed to the other fibers in the cross-section in a complex manner. As a
first approximation, Hedgepeth“g)used a shear lag analysis to determine the
average stresses in fibers adjacent to an arbitrary number of broken fibers.
He considers an infinite two-dimensional array of fibers subjected to
tensile load parallel to the fiber direction which is uniform at a great dis-
tance from the fracture area. The ratio of stress in the two fibers adjacent
to a run of r broken fibers to the uniform applied stress at infinity is, for a

static stress distribution

T - (2r41) (5)

Hedgepeth calls Kr a stress-concentration factor, but in this paper it will be

referred to as an overstress-factor so that it will not be confused with stress

concentration factors found by an "exact" analysis of the stress distribution.
For the case where r fibers break simultaneously the author demon-

strated that the ratio of the maximum dynamic stress to the static stress in

37



the fibers adjacent to the break increases from 1.15 for r = 1 to a limit of
1.27. The values for r =2 and r = 3 are 1.19 and 1. 20 respectively.

In the present paper it is assumed that the overstress in two fibers ad-
jacent to the broken ones exists over the entire ineffective length. Therefore,
the probability that an element adjacent to r broken elements will fail is,

approximately, the probability that its strength lies between 0 and Krg .

This probability is equal to
F(Kro) - F(o) (6)

This approximation is justified, as will be shown later, by the fact that com-
posite failure occurs for small values of ¥(0) and therefore the probability of
having adjacent fractures because both fibers have strength less than ¢, which
probability is proportional to F(O)Z, and the probability of interaction of frac-
ture groups is relatively small.

Given that a single element is broken the probability that one of the two

adjacent fibers will break is

Py = Z[F(Klo) - F(o)] -2 [F(ch) - F(G)]? (7)

The probability that both adjacent fibers will break simultaneously is

Py = [FIK©) -Flo)]° (8)

It should be noted that each of these expressions does not exciude the possi-

bility of further fractures.
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It is now assumed that only the two fibers immediately adjacent to a break
are subjected to an overstress and that all of the remaining fibers in the cross-
section have a stress level equal to the average stress 0. If one of the fibers
adjacent to a single fracture breaks the fibers adjacent to the two broken

fibers are subjected to a stress level KZG. One of these overstressed fibers

WSS et miiatar st oo o A 1
was previously exposed to a strcess level K o while the other saw only the

) h

average stress 0. The probability that one of the two fibers will break is

Pyp = [FIK,0) - F(Klo):l ; I:F(Kzo) - F(O):{

-2 [F(KZG) - F(Klo)] [F(KZU) ; F(U)] :

The probability that both fibers will break simultaneously is

Py, =[FIK,0) - F(Ko) [FK,0 - F(9)] (10)

4/2 1

If both fibers adjacent to an initial fracture break there will be three
broken fibers in a row and therefore the two fibers adjacent to this group,
which were previously at a stress level o, will be subjected to a stress KBCT .
Again it is possible for one or two of these fibers to break, and so on.

By now the process and complexity of the problem should be evident so
that the expressions for further fracture probabilities are presented without
discussion. Note that that there are two paths by which a state of three

broken fibers can be reached from a single break; A) by the simultaneous
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breaking of both fibers adjacent to the initial break, B) by the successive
breaking of two fibers.

The expression pi/jz represents the probability of having i fibers
broken given that j are already broken. The letter z represents the particular

path if there is more than one. The letters A and B refer to the paths des-

cribed above.
Py/3A = 2 [F(K3G) - F(o)] -2 I:F(KSG) - F(o)]2

P5/3a = [F(K3O) -F(o)}2 (1la-d)

Py/3B = [F(K3G) - F(KZO)] + [F(Kgc) - F(q)] -

2 [F(K3o) - F(Kzo)] [F(KBG) - F(c)]

Ps/sp = [F(K3O) - F(ch)} [F(K30) - F(O)]

Probability of Cumulative Fractures

Fach of the El fracture sites distributed throughout the composite is a
nucleus for further fiber breaks because of the overstress in adjacent fibers.

The probability that an element will break followed by the fracture of at least

one adjacent element is

P, = F(0) (p +p,, ). (12)

2/1 3/1
Therefore, for the composite as a whole the expected number of groups of

two or more broken fibers is
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M(N—Upz
E2 =T (13)

and the associated probability of having at least one such group is

L M(N-2)
P, = 1-(l->p) (14)

where the factors of 1/2 are introduced to account for the independence of or-

der of two fractures.

The probability that an element will fracture followed by the breaking of
at least two other fibers in a row is equal to the probability of at least two

fractures less the probability that two will break without further fractures

occurring. This probability is

Py =P, - F(0) (

2 Pan ) (1%

1-P357Py/n

The probability of having at least one group with three or more frac-

tures is

and the expected number of such events is

E =

, =5 PM(N-2) (17)

The analogous expressions for groups of four or more fractures is

P, =P -F(o)[p (1 )

3/1' " Ps4/34 +p2/1p3/2(1'p54/3B)j

1 M (N-3)
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1
= M(N-3
E4 T Ps ( ) (20)

Although it has not been possible to obtain the general expression for the
probability of a group containing an arbitrary number of broken elements it is
contended that this expression is only of academic interest. It is argued that
once the probability of secondary breaks (i. e. the probability of groups con-
taining two or more fractures) becomes singificant failure of the composite
can be expected. More will be said of this point later on.

Comparison with Experiments

The ultimate test of any theory is its agreement with experimental re-
sults. The present theory has been compared with the data obtained in Refer-
ences 17and 4 for glass-epoxy composites,

The tests reported in Reference 4 were run on composites consisting of a
single layer of 3 1/2 mil E-glass fibers embedded in two resin systems (B and
C). Tests were run to determine the strengths of the fibers for several gage
lengths. As in Reference 4, it is assumed that the cumulative distribution

function can be characterized sufficiently well by the Weibull distribution.

(21)
where L is the length of the fibers and ¢ and B are parameters that character-
ize the distribution. Using this expression the variation of mean fiber strength

with gage length is

1
E:L = (o L) Br(m/B). (22)
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The fiber parameters are found to be
L
B=9.40, o ° =181.5 ksi.

From the photographs of the specimens under polarized light the inef-
fective lengths for series B and C were found to be 0. 031" and 0.086", res-
pectively.

Using this data the expected number of single broken elements were
calculated from Equation 4, and are represented by the dashed lines in
Figures 9 and 10, The number of fractures observed experimentally in the
various specimens in the two test series are presented for comparison. It can
be seen that for low stress levels there are generally more fractures than the
theory predicts. However, the behavior is most important at the higher stress
levels in the area of failure loads, and here agrcement is fairly good consider-
ing the statistical spread in fiber properties andthe experimental uncertainties
involved. The relatively large number of fractures at low stress levels is
possibly a result of damage to the fibers during fabrication of the specimens
since glass is notoriously sensitive to handling as far as strength is concerned.
However, since the observed fractures approach the expected number of higher
stress levels they are of little importance. If, on the other hand, failure
occurs without a significant accumulation of fractures the breaks at low stress
level may be of extreme importance. More will be said of this later on.

~— T . Poes 1.

The quantities of E., E_, E_ and {(Where E, represents the expected

1 27 73 4 i

>

number of groups of fractures having at least i broken fibers) obtained in
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Equations 4, 13, 17 and 20 are plotted for test series B and C in Figures 11 and
12, It can be seen that the expected number of multiple fracture groups (EZ’
E3 and E4) rise sharply in the observed range of composite failure. The fail-
ure predictions of Reference 3 are presented for comparison,

In order to assess the validity of the expressions for multiple fractures

the number of groups of multiple fractures were counted on films of the tests.

ot

The results are plotted in Figures 13 and 14. The dashed curves in the figures

are calculated values of EZ. It can be seen that, in general, multiple breaks
begin to appear in the stress range predicted by the theory. Furthermore,
the composites fail without the occurrence of a large number of multiple -
break groups compared to the number of isolated single fractures.

There are several factors that could account for this phenomenon. One
possibility is illustrated by Figure 15 This graph shows the relative behavior
of the sum pz/1 + p3/1 for static and dynamic overstress factors. It will be
recalled that this sum represents the probability of the fracturing of at least
one element adjacent to a single broken fiber. In the observed failure range
the dynamic curve is markedly higher than the static curve indicating that
there is a definite possibility of a failure crack being caused by the dynamic
effects of fiber fracture rather than by cumulative static probability of
failure. It should also be noted that the use of overstress-factors is just an
approximation and that the actual stress concentrations caused by multiple
breaks may be, and probably are, much more severe than those of single

fractures. (As an analogy, the stress concentration factor for an ellipse
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increases with the aspect ratio) Whatever the mechanism, experimental ob-
servations seem to indicate that multiple breaks tend to occur shortly before

composite failure.

The present theory was also compared with two tests on continuous
: . : (17)
glass fibers in epoxy run by Friedman . The Weibull parameters for the

strength distribution of fibers used are

L
B=4.0 , a P -137.1.

Since B is an inverse measure of dispersion, these fibers had a much wider
spread in failure stress levels than did those of Reference 4. This large disper-
sion is reflected in the wide spread of the curves of El’ EZ’ E3 and E4 pre-
sented in Figure 164 However, failure in both specimens occurred quite
near the stress level for which the first multiple fracture is predicted.

On the basis of the experimental evidence cited it is proposed that the
failure stress of a continuous fibrous composite loaded in tension parallel
to the fibers can be reasonably well predicted by that load for which the first

multiple fracture is expected to occur. That is,

 M(N-1

EZ = —2— ) = 1. (23)

F(o) (0, ,1Ps ),

Analysis of Non-Cumulative Fracture Mode
Although a large number of isolated, fractures are observed in glass-
epoxy composites, this is not the case for other fiber-resin systems such as

boron-epoxy and boron aluminum. For these composites failure usually
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occurs catastrophically, without an accumulation of isolated fractures. How-
ever, Lenoe(lg has demonstrated scattered fractures in a boron-aluminum
composite containing 5% volume fraction of fibers, which is quite small.
The absence of a significant number of isolated fractures seems to indi-
cate that the entire composite is failing at the load at which the weakest
fiber breaks. This would mean that the matrix is actually detrimental since
the strength of a bundle of fibers, without a matrix, would be stronger. It
was, therefore, decided to determine the theoretical value at which a first
fiber fracture is expected and comparethe results with experimental evidence.
Consider a population of fibers of length L whose strength is character-
ized by the probability density g(g). For a sample of N fibers from this group
the distribution function for the strength of the weakest fiber has the following

form

N-1
p_(0) = Ng(9)[1-G(0) ] (24)

Assumi_ng a Weibull distribution for G(o) the expected value (mode) for

the first fiber fracture is found to be

1
:< B-1 >B . (25)
NLa B

17
Friedman( lan two tests on boron-epoxy specimens 2 inches long which

contained about 90 fibers. The Weibull parameters for the fibers were found

to be
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L
B =7.0, a B = 368,
The fiber stress levels at failure for the test specimens were 193 and 215 ksi
The expected value for the first fracture computed from Equation 26 is 171.5
ksi which is about 16% lower than the average failure stress of the two speci-
mens. On the other hand, the first multiple fracture is predicted (’E2 = 1) to

occur at 300 ksi while the theory of Reference 3 predicts a failure stress of

428 ksi. In the last two cases Friedman's definition of ineffective length was

used.

.. (20)
Gr1n1us( also ran tests on boron fibers in an epoxy matrix. These

specimens were 2.5 inches long and contained 25 fibers. The Weibull para-

meters for the fibers were found to be

£
8 =111, a P

= 433,

Unfortunately only one undamaged specimen was tested. This specimen
failed at 304 ksi fiber stress. The expected value of stress for the first frac-
ture is 296 ksi while the first multiple fracture is predicted at 330 ksi and the
failure stress predicted by the theory of Reference 3is 340 ksi. It should be

noted that to obtain the last two values, the definition of the ineffective length

presented in Reference 3 was used.

From the experimental observation of the absence of cumulative fractures

and the good correlation between the observed failure stress levels and
those predicted for the first fiber break a good case can be made for the

hypothesis that composites exhibiting this type of failure are only as strong
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in tension as their weakest fiber. If this is also the case for the three dimen-

sional composites, the matrix must be designed so that it will prevent this type

of failure from occurring. This can possibly be accomplished by using a ductile

matrix or by allowing the matrix to partially debond from a broken fiber.
Conclusions

A statistical model including the effects of stress concentrations for planar
arrays of fibers in a matrix has been presented which provides a good descrip-
tion of composite behavior up to the failure load. The stress le vel for which the
first multiple fracture is expected to occur has been proposed as a predicted fail-
ure stress,

The model predicts that the composite itself is a ""brittle'" material in that
its strength decreases as the length or width of the specimen increases. This is
illustrated in Figure 17 where the variation of EZ with length is presented for the
composite system used in test series B of Reference 4. This is in contrast with
the theory in that paper which predicts a composite strength that is independent
of length for large values of M,

Finally, it has been shown that the failure stress level in tests of three com-
posites that did not exhibit cumulative damage occurred at about the expected value
of stress at which the first fracture was predicted. This failure stress is lower
than that for a bundle of fibers of the same length and number indicating that the
matrix may have a detrimental effect in composites exhibiting this type of failure.

The present study demonstrates that the understanding of composite be-

havior is a continually evolving process and that even in the case of such a simple
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loading condition as pure tension the failure mechanisms are not completely
understood. More work must be done, for example, to explain the apparent
difference in failure modes observed in glass and boron fibers, and to extend

the analysis of stress concentration effects to three-dimensional composites,
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The Steady-State Viscoelastic Response

A systematic study of viscoelastic behavior of fiber-reinforced compo-
sites was initiated by Hashin (Ref. 21). Such analyses are motivated by both
theoretical and practical points of view. Fibrous composites consisting of
linear viscoelastic phases are a natural extension of the linear elastic model
in which phase materials are assumed to be Hookean Solids. On the other hand,
phase materials in composites do exhibit very strong time dependent properties
especially in a high temperature environment. A basic understanding of the
viscoelastic behavior of composites is important before such materials are
utilized in practical applications.

Hashin (Ref. 21) related the effective viscoelastic properties of a compo-
site which is composed of linear viscoelastic phases to those of its constituents
by a correspondence principle. This same model used by Hashin is used to
study the steady state response to some simple types of sinusoidal surface
tractions or surface displacements. It should be noted that in Hasin's approach
to viscoelastic theory of composites, inertia forces are neglected so that only
quasi-static motion is treated. The present study is based on Hashin's work
(Ref. 21) and the same assumption is implicit so that wave propagation phenome-
na will not be considered here.

Following Reference 21, the general macroscopic viscoelastic behavior of
a composite can be described by the following constitutive equations:

b de () (1)

5__ t) = -
1J() J Gijk& (t-T) d};&

(o}
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or

) dar
€5 = J T &) —qr (2)

where aij(t) and Eij(t) are, respectively, the average stress and average strain

in the composite at time t; Gijk&(t) and Jijk&(t) are the effective relaxation

moduli and effective creep compliances, respectively.

By the symmetry of the average stress and average strain tensors, the

following symmetry relations hold:

Al

Giir 8= Gyt = G
fort= 0 (3)

1.
<

Tijied® = I

[}

J ot

i) (t)

In order to establish the correspondence principle between viscoelasticity

and elasticity, it is assumed in Reference 21

Gijre (B = Gigy5(®)
and for t =0 (4)

) - J_:::

Tija® 7 Ty

which are the Onsager Reciprocal Relations (Ref. 22)
The one-sided Laplace transform of (1) and (2) gives

A
st
.

A

®1>

k,L(p) (5)
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2 .

b4

2P = P I G, () (6)

where p is the transform variable and the circumflex " /- " above a function
denotes its Laplace Transform which is assumed to exist. Because of the
formal resemblance of (5) and (6) to the generalized Hooke's Law in elasticity,

A

A
G* d pJ_,
P 1Jk&(p) andp 1Jk%(p) are termed transform domain (TD) effective moduli and

compliances, respectively,

Now for unidirectional fiber-reinforced composites, transverse isotropy
will be considered (Ref. 21, 11). Consequently, only five effective relaxation moduli
(or five effective creep compliances) are independent so that (5) and (6) can be
much simplified. For example, (5) can be written down in terms of the following

five independent TD effective relaxation moduli:

SNl
P K23(p) -- the plane strain TD effective bulk modulus;
.
P G2'3(p) -- the TD effective transverse shear modulus;
P G1 (p) -- the TD effective in-plane shear modulus;
s} El (p) -- the TD effective Young's modulus;
At
p Cll(p)-— to be associated with uniaxial stress in fiber direction

with transverse deformation prevented by a rigid

enclosure,
Cn the othcr hand, the TD effective creep compliances are the reciprocals

of the corresponding TD effective relaxation moduli. For example
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Al 1
Pk, (pP) = —x ’
P K, (p)
P
Pgy, )= L
P G,5 (p)

etc. .

After the effective characteristic functions (relaxation moduli and creep
compliances) are defined, Hashin(Ref,2]) used a correspondence principle to relate
the effective viscoelastic characteristic functions to the effective elastic moduli
of a duplicate composite body with elastic phases.

On the other hand, the effective elastic moduli of unidirectional fiber-
reinforced composites have been obtained by Hashin and Rosen(Ref, 11}, Closed-form
expressions for four effective elastic moduli and bounds for the fifth are ob-
tained for the '""random array' geometry, In applying the corresponding prin-

ciple, Hashin (Ref, 2l) used these expressions and went through a replacement

scheme to obtain the Laplace Transforms of the corresponding effective visco
elastic characteristic functions. Therefore, the entire problem of finding the
quasi-static viscoelastic response reduces to Laplace Transform inversion
which is not always easy. However, for cases where inversion is formidable,
Abel-Tauber theorems can be used to draw important conclusions on the be-
havior of the effective moduli and compliances without the operation of inversion.
Refs.21 andll are referred for details.

Now, for a unidirectional fiber-reinforced composite body under special
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boundary displacement or traction conditions(Ref,21), (1) and (2) can be reduced to

t -
R Gty LT T (7)
0—
- t do (1)
e(t) = S J™(t-T) —3F dr (8)
0

where O (t) (5 (t)> is a component of the stress (strain) tensor aij (t) <Eij(t)>
whereas G*(t)(J*(t)> represents one of the five effective relaxation moduli
(effective creep compliances) of physical importance as defined previously.
Henceforth, (7) (or (8) ) will be used as the representative average stress-strain
relation that defines a particular viscoelastic characteristic function.,

In the course of obtaining the steady-state response by making use specifi-
cally of the results of Ref,2l, we shall first develop certain relationships and
investigate their validity. Then the general results will be applied specifically
to the unidirectional fiber-reinforced composite to obtain explicit expressions
which characterize the response. Since we are interested in steady-state re-
sponse to sinusoidal input, we can assume that the input has been applied on the

body for an indefinitely long time and that all initial disturbances have died out.

Under this circumstance, it is convenient to put the beginning of motion at

time -»(Ref,23). Hence (7) and (8) are modified to the following forms:
bk de (1) dr
G (1) = S G (t-T) " (9)

-
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and

t

e (t) = S 7 (t-T) %ﬂ o (10)

By changing the integration variable from Tto § where t - 7= §, (9) and

(10) become, respectively,

a(t) = S G(g) e (t-&)dat

(e}

—_
fu—
-

~—

foe]

e (t) = j 7¥(6) G " (t-£) at (12)

o

where prime denotes differentiation with respect to the argument of the function.
Using complex representation for sinusoidal oscillation, we put
1wt

E(t):eoe (13)

where € is in general a complex number and w, a real number, is the angular
frequency of the oscillation,

Substituting (13) into (11) we obtain

iwt ~%x
g (t) = iweoel t G (w)

(14)
where
GH(w) f G (8) e 90 ag (15)
(0]
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is the one-sided Fourier Transform of G'P(t) if it exists.
, where 00 is in general a complex number, then by (14),

- iwt
Let O(t) = O'Oe

ot 9% _ .
_() =-2 = iwG(w) M (16)
e (t) €5
where M™ is called the effective complex modulus associated with G:':(t).
Equation (16) can also be written as
- e 3 6
o(t) = 'M|60e1<wt+ ) (17)
where & = tan Im[M:':]
Re [M ]
which reveals the fact that 0 (t) is not in phase with € (t) .
.. e = iwt
Similarly, if 0 (t) = Goe then (12) becomes
(18)

<
e(t) = iwa e 1wt;r'(w)

where
~ © .
- ES ~1W
) = S e e (19)
o)
is the one-sided Fourier Transform of J* (t) if it exists,
Let €(t) = E‘,oew'Jt then by (18),
- € /‘:, —_ 1
et _ %o _iwrtws=s L (20)
M
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or

=0 . L i (wt - 3)
e (t) = ‘M>,<I ooe

which again shows that € (t) lags behind 0 (t) with a phase lag 0.

From both (16) and (20), it follows that

if both G {w) and J

0

(21)
>':(u.)) exist,
The physical significance of Im/[ M:l::l and Re [M*] is now discussed.

First of all, it can be shown that the rate of work done by surface traction at time t

on a body can be expressed in terms of an integral over the entire body as follows:

j T.u,dS= j'ché__dv
1 1

S v Wi

where S denotes the boundary surface and V, the volume of the body. The above

equality is valid only under the assumption of quasi-static motion.
Furthermore, under special boundary conditions on the boundary surface

S (displacement boundary condition ui(S) = eij(t) Xj or traction boundary condition

T.(S) = 0..(t) n,,(Ref. 2)), it is easy to show that:
1 ]_J J

s Gij (E’ t) eij (E: t)d V= Oij(t) eij (t) A%
v

Therefore, the total work done from time tl to time t2 is:

ot Sm——
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If t:2 - ’cl is the period of motion, then

t .
w=v % 5 ® ORE (22)

1

(ad

denotes the total work done on the system in a cycle. According to the First
Law of Thermodynamics, tor isothermal steady state deformation, W is the
total energy dissipated and transferred to the surroundings in the form of heat
in a cycle. Under the special boundary conditions by which (7) and (8) are ob-

tained, W in (22) can be reduced to the following simple form:

)

w=vF | GS(e(a (23)
)
B!

where the factor F is either 1 or 2 depending on the boundary condition.

Therefore, if € (t) = Re [ eoeiwt land O(t) = Re [M*eoeiwt] , then for
a cycle with angular frequency of motion w, after some manipulation, (23)
becomes am

w . 2
W =VF S g € dt = e Im[(M ] VF (¢ is assumed

to be real without loss of generality ) where T is any time during the motion.
This gives the amount of energy dissipated in a cycle.

Furthermore, it can be shown that a fraction of the amount of energy
2
€

FoL 3K - . . . \ , ) .
o (R, LM ]> VEF 1is twice in every cycle alternately stored and expended in
2
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the system. Therefore, Im [M*] is related to the energy dissipated while
Re [M*]is related to the energy stored.

From the above results, it is clear that in the steady state, the
responding average stress (or average strain) will vary sinusoidally with the
same angular frequency @ as that of the input average strain (or average stress)
with a phase difference ® which is a function of w . Moreover, the amplitude

.0 .
ratio _© is also a function of w only,

€
o]

According to (16) and (20), the knowledge of M hinges on the knowledge

AR

Tk - B Tk
of G (w) or J'(w). However, G'(w)andJ (w) are formally related
A /E‘
to the Laplace Transforms G"(p) and J*(p) by the following relations:

N\

G* (w) = G (iw) (24)
and
o "
J(w)=1J (i w) (25)
S 5 .

Therefore, if expressions for G (p) and J:I:(p) are known, G

(@) and T (w)

can be obtained immediately by the replacement of variable p in G*(p) and

\

s .

J’P(P) by iw, However, there still exists the problem of convergence -~

given a function of time t, the existence of its Laplace Transform does not im-
ply the existence of its Fourier Transform. Thus, given a Laplace Transform
of a viscoelastic characteristic function, it is necessary to examine the location
of its singularities in a complex plane of complex variable p. According to the
definitions of the one-sided Laplace and Fourier Transforms, it is observed

that if the singularities of the Laplace Transform are all located in a region to
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the left of imaginary axis of the complex plane, then the corresponding Fourier
Transform exists.

Hashin (Ref.21) has obtained closed-form expressions for some effective
relaxation moduli and creep compliances for the ''random array'' model. Then,
by making use of (24) and (25), the corresponding effective complex moduli can
be obtained in a straight-forward manner. For example, for elastic fibers
embedded in a viscoelastic matrix, the effective relaxation moduli K:Zk3 (t)

characterizing the plane strain dilatation has the following form in the Laplace

Transform domain:

1 v

o
pd

P K, () =[k_(p)+3T_(p)1+v, { I

m -1
K +=G k()ir()+k()+fr<)
f 3 f T mp_3 mp mp 3mp

where k (p), I‘m(p) are matrix TD moduli; Kf and Gf are fiber elastic bulk
m

and shear moduli; vf and Vm are the fiber and matrix volume fractions, respec-

tively. All these quantities are considered known if the composite body is

given. Then according to (24), formally we have:

v \'1

1 m
I N T 4
WK, @) =lk () + 3T (iw) J+v, { K, +% Gk (i) - -;-l“m(iw) km(iw)+% L (iw) §

and the complex moduli associated with K23 (t) is, according to (16) ,

7
T,

* - w b w
Mys = WK, 5 (@)

Furthermore, it follows from Ref. 2] that for rigid fibers,
Vs

KZI3 (w) = Km(w) +Gm (w) 4 Gm(w) } W—

- +[Km(w)+§
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o~ o~
where Km(w) and Gm(w) are the one-sided Fourier Transforms of the matrix

bulk and shear relaxation moduli, respectively. On the other hand, if fibers
are rigid and the matrix is elastic in dilatation and Maxwellian in shear,
Hashin(Ref,2]l)has obtained simple expression for the effective creep compliance
k>;3(t) of which the one-sided Fourier Transform does not exist. Similarly,
other steady-state responses such as in-plane shear, etc. can be obtained in a
straight-forward manner.

It is emphasized here that the method developed here is also valid for
other models than the composite-cylinder-assemblage model used in Ref, 21; the
latter is only a case in which bounds of some of the characteristic functions in
transform domain coincide to yield closed-form expressions. If other ex-
Pressions can be obtained by other models, the corrcsponding cffe
plex moduli can be obtained by the replacement scheme defined by (24) and (25).
On the other hand, vibration experiments can be performed on composites to
determine experimentally their respective effective complex moduli from

which information on their corresponding effective viscoelastic characteristic

functions can be obtained through Fourier transformations.
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Evaluation of Transverse Effectiveness Factors for Use in Elastic Analysis

of Three Dimensional Filamentary Composites

The method of analysis developed in Reference 1 for the elastic constants

of composites having filamentary reinforcements at various angles to the three

. . ’
pPrincipal orthogonal axes of the material employed factors ﬂ.) p. ) P_. >
etc. to define the transverse effectiveness of the filaments for resisting stretching,
shearing, etc. For simplicity the assumption was made that the transverse
effectivenesses were the same for all strains due to stretching ~ regardless of
whether the strains were induced by Poisson's ratio effects, or were simply
those in the direction of an applied extension, (Different values of transverse
effectivenesses in shear from those in stretching were, however, allowed for.)
This approximation led to generally satisfactory resuits for stiffnesses, with
the possible exception of EL, that is the stiffness along the filaments, for uni-
directional reinforcement - a somewhat disturbing exception in view of the
simplicity of calculation of this stiffness by the rule of mixtures. Even more
disturbing was the fact that the values of Poisson's ratios calculated with this
simplifying assumption of equal transverse effectiveness factors were not con-
sistent with those found by other methods of calculation.

Guidelines for the extension of the analysis of Reference 1 to provide for
various values of ﬂ for direct and Poisson strains were included with the
analysis, but within the time available no evaluation could be made to determine
whether or not the extension would be justified. A brief series of calculations
has now been made to evaluate the differences among the various transverse

effectivenesses for the extended analysis. The results are shown in Figure 18,
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and the equations relating thereto are reproduced as Tables 1 to 3.
In Figure 19curves of ﬂ , ﬂ , ﬁ , and are plotted as
(A VAR Peg
derived from the upper limit values of the elastic constants of Reference 1 for
a typical glass/epoxy combination employing the assumption that

= . = = , + As can be seen, differences among p. ’
ﬂ':. [Fox [~o7 (=9 T
» and are found, of increasing relative magnitude with in-

ﬂ"i.’r‘ ﬂoc

!
creasing volume fraction of binder (the abscissa on the Figure). Also ﬁ.
L

differs from the value unity; this is the variation which is to be anticipated
from the previously noted inconsistent calculation of EL for uni-directional

reinforcement with the simplified transverse effectiveness assumption. The

differences in the various ﬂ - values shown are, of course, just those consistent

wres bl +1.
1

~da
it L1l

the clas constants ag found from Referencell. The use of the ’/_)'5 of
Tables 2 and 3 thus reproduce properly all the elastic constants

of a unidirectional reinforcement configuration, and hence provide a
self-consistent basis from which the effects of multi-angular reinforcement
may be determined via extensions to equations like those of Reference 1.

These extensions have been made and the general equations for the compliances

incorporating the various ﬂk are presented in Table 4,

As presently written, the equations of Tables 2, 3, and 4 conceal some
internal inter-relationships among the various expressions. For example, the
trigonometric expressions of Table 4 are for convenience written in terms of
the three angles ) ¢ , and JfL  which the reinforcing filaments make

with the composite orthogonal axes of symmetry (1, 2, and 3). Only two
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angles are needed, however, to define the filamentary directions; f , ¢ s

and .n, are related by the well known formula
cas‘f + cos‘f +cosifl =1 (1)

Similarly, for convenience six transverse effectivenesses have been
defined ( /3 / v tables 1, 2, and 3)
efine - see tables an
o 2 fors B2/ o)) oo 2, ,
(R A S A £ A R A
where only five ﬁ’; are needed for consistency with the five elastic constants
used in evaluating the transverse effectivenesses. Accordingly the equations

of Table 3 may be combined, as for example to yield the relation

-’ \ n /, _ \
Loy (%) =Pe (1=2%)
o, =
. -—
6 Vf
where Ve = the Poisson's ratio of the filamentary material.
Thus simplifications of the equations as given in Table 4 are undoubtedly

possible by the employment of the trigonometric expressions, and ﬂ values

which lead to the least complex algebra.
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DESIGN CONCEPTS

Study of Composite Structures

Efficient application of composite materials to aerospace structures
requires proper selection of reinforcement pattern and material as well as
overall structural arrangement. To a large degree guidelines for optimum
design of such composite structures have been lacking, nor have they been ob-
vious a priori to the designer,

Some clues about possible directions toward efficient configuration have
recently become available. Reference 24 explored effects of material and rein-
forcement pattern on the structural efficiency of boost vehicle shells. Reference
2 investigated similar effects for a number of aircraft structural elements.
While these studies revealed a number of specific factors of importance for
cificicncy of application of composites, three general conclusions also evolved
which served as a basis for the studies to be reported here. These conclusions
were:

1. For a wide range of shell type applications the isotropic (OO, i‘()Oo)

reinforcement configuration is most efficient.

2. The high (multi-directional) stiffness-to-density ratio of beryllium
makes it more efficient than most near-future composites for many
shell and plate type structures, - particularly if the load intensities
encountered are low, or if stiffness requirements are important.

3. Filamentary composites appear most attractive when used as

unidirectionally reinforced elements toc carry unidirectional loads.
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The further question that seems to arise from these conclusions is
whether some combination of the biaxial properties of beryllium (or isotropic
composite) with the uniaxial properties of one-directional filamentary rein-
forcement may possibly be the best configuration of all.
Circular Tube-Columns

To explore this possibility on an orderly basis, a simple round-tube
column was selected as a first model for study. This model was chosen for
simplicity; for an isotropic material optimization of the thin-walled tube in
compression has perhaps achieved the status of being a classic example of
balancing proportions between local buckling and column bending to achieve
minimum weight. Thus its use to explore effects of combinations of unidirectional
ics is uncemplicated by complexities of the optimiza-
tion procedure itself,

Accordingly beginning with the model of Reference 25, modifications were
assumed of increasing complexity, and the effects on efficiency evaluated. As
a first step, unidirectionally reinforced composite stiffeners were assumed added
to the tube at three equally spaced points around the circumference. These
stiffeners were assumed to contribute nothing to the local stability,-or instability,-
of the tube walls, but were assumed to add effective areas for column bending

so that the effective radius of gyration of the tube is given by the exXpression

R A l 2 L pl
& '4. c?n -2...*-.'.*, +/‘~p,3—_—
( 3
(I’ ) = — (1)
Vs v, + ‘s
(] BE—'
o




where

{rGyr Eff radius of gyration of stiffened tube
lR outside radius of tube

t thickness of tube

EB Young's modulus of unidirectional (boron) composite
EO Young's modulus of tube material

vy volume fraction of composite stiffeners

v volume fraction of tube material (VB + vy = 1)

With equation (1) incorporated into the procedure of Reference 25, the

efficiencies of the reinforced tubes were calculated from the formulas that

follow Vg -

P E‘s«é&)( f%+z?,)
o O 52 Ty
W_ e

£ '9:
S vp
£p

3
l H':ef;,“ 9. £°.Sec(4?)
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where

P axial load

L column length

W overall weight

PB density of stiffening material
p.) density of tube material

e
and the subscripts Sec and Tan refer to the secant and tangent moduli of the
tube material, respectively,

As indicated in the formulas, the reduced moduli used for plastic buckling
were the tangent modulus for column bending, and the secant modulus for local
buckling. The use of the tangent modulus for column bending is well founded.
The use of the secant modulus for local buckling is used here as slightly more
optimistic than the root mean square of the tangent and secant moduli as pro-
posed in Reference 26, Thus the efficiency curves resulting are perhaps slightly
too high in the plastic region, representing a kind of upper bound., (Most
affected are the curves for beryllium which should be accordingly somewhat
discounted at the upper end.) In any event the use of this possibly optimistic
reduced buckling modulus changes none of the conclusions drawn from the
results.,

Results of the calculations are given in Figures 19 to 24. In Figure 19 are
given basic results for unstiffened aluminum-alloy and beryllium circular-tube

columns. Here the beryllium tubing is found to vary from 25% of the weight of

the aluminum-alloy tubing in the elastic range (?‘('.4 'f'”—A‘/ [O-ZPJ/'])
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. . : A kN .
to 80% of the aluminum-alloy weight at high stresses ({2 >276 ;z [40,781] .
The addition of the boron/epoxy three-point reinforcement permits the
aluminum-alloy tubing to be made substantially lighter both at high and low

loadings (Fig. 20), In the elastic stress range there is apparently an optimum
-
o
reinforcement do not further increase the efficiency. At the high stresses,

reinforcement ratio 4 0,667) beyond which higher percentages of

however, the very great strength and stiffness of the unidirectional reinforced
composite provide increases in efficiency up to the maximum reinforcement
Ve
ratio considered ('— = 4) .
Vo

The beryllium round tubing is not improved by the boron composite rein-
forcement at low stresses; rather the efficiency is decreased as the reinforce-
ment ratio increases. This trend is just barely reversed, as might be expected,
at high loadings (see Fig. 21),

Comparisons between Figures 20 and 21 reveal that at low loadings the
unreinforced beryllium is always the lightest of the combinations considered,
being approximately one-third the weight of the best boron/epoxy-aluminum.

At the high stresses on the other hand the reinforced aluminum is better than
any beryllium tube, being about one-half the weight of the beryllium construc -
tion at the maximum loading considered. Thus it appears that the low propor -
tional limit strain of the beryllium together with the flat top to the beryllium
stress -strain curve beyond the proportional limit prevents it from acting
effectively in conjunction with high-strengih uni-directional reinforcement,

In this range a better combination of materials is an isotropic boron/epoxy
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configuration for the tube walls. This configuration should still be elastic at
the values of P/LZ covered in Figures 19 - 21, and at the maximum values of
P/LZ considered the isotropic boron/epoxy tube is calculated from eqrations
(1) and (2) to weigh very nearly one-half as much as the best reinforced

aluminum tube.
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Scalloped Tube Columns

One of the pitfalls of efficiency studies like the foregoing is the possibility
that a poor geometrical shape has been chosen, and as a rcsult misleading con-
clusions are derived about the effects of various materials of construction.
Ideally an optimum shape should be used (if need be the optimum for each
material combination) so that shape effects may be divorced from material
effects in the evaluations of the calculations.

In order to assess the shape effect, the efficiencies of scalloped tubes
were also investigated. First, a three-lobed scalloped round shape was used
(Figure 22). The objectives of the scalloped shape are enhanced local buckling
resistance due to decreased radius of curvature of the tube wall together with
Increased coluwnn bending rcsistance bhecause the scalloped tube approximates
an equilateral triangle, and the equilateral triangle has a 21% greater cross-
sectional moment of inertia for the same area than a circle. Because the
scalloped round tube does not substantially enhance the moment of inertia,
however, it was abandoned in favor of a scalloped triangular tube. The charac-
teristics of these two shapes are summarized in Figure 22,

In Figure 22 are plotted the percentage increases from a simple thin-walled
round tube section attained by scalloped-round and scalloped-triangle sections
having the same cross-sectional area and radius of curvature-to-thickness
ratios as the reference round tube. As indicated by the curves of the Figure,
the ""scalloped triangle'' has substantially greater potential for enhancing the

column strength (at a constant R/t so that in first approximation the local
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buckling strength is constant) than the ''scalloped circle." Furthermore, the
apexes of the triangular shape provide a greater radius of gyration for added
stiffening as in the form of concentrated boron/epoxy elements than the crests
of the scallops of the ''scalloped circle."

While clearly the extreme limit of 21% increase in section properties
represented by the "infinitely scalloped' triangle /g: 0) of Figure 4 surely

(2

cannot be attained, the development of a reasonable fraction of that amount may
be anticipated for ''reasonable'’ proportions. Here ""reasonable'’ is taken to
mean that the cusps between scallops are of sufficient depth to establish stable
corners not prone to local buckling at the stresses encountered by the tubes.
The assumption was made that the proportions so labelled on Figure 22 are
reasonable, and likely performance gains through their use for reinforced com-
posite columns was calculated with the results given in Figures 23 and 24. For

these calculations, equation ( 2) was replaced by

2 /¢ ﬁfﬂ_ ¢+ _foB_} 2
Vo fam yot;rﬂb _’_ (3)
o _I.A_ + 6 _‘?i :RJ'}"?Q ) Rf?

A: % £;ron b A‘ 7

£ = 0.00912 Ej‘!ﬁ—
4

IA moment of inertia of scalloped triangle section
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A

o area of triangle section (equal to area of circular
: . R
section of equivalent ~/; )

” inside radius of scallops

/7R} equivalent thickness-radius ratio of tube
£y

In Figures 23 and 24 comparisons of the efficiencies of the reinforced
scalloped triangle tubes with envelope curves representing the lightest reinforced
round tubes (the dotted curves on Figures 23 and 24, derived from Figures 20 and 21)
show the expected gains for the triangular shape. With the triangular shape
higher reinforcement ratios for the aluminum alloy tubing are effective (Fig. 23)

Vs
and a reinforcement ratio em= = 4 produces a tube column competitive with

o
beryllium even in the elastic range (see Fig. 21), Further, the boron/epoxy re-
inforcement of beryllium in the plastic range is more effective with the scalloped-
triangle shape. The general trends established in the studies of the reinforced-
round tube columns, however, are not changed by the more efficient triangle
shape. Thus the scalloped-triangle beryllium tube is the most efficient of all at
low loadings and the reinforced aluminum-alloy becomes more efficient when the
stresses would cause yielding of the beryllium.

The gains in efficiency shown on Figures 23 and 24 for the scalloped-triangle
shape appear great enough so that experiments to determine their validity appear
desirable. That is, experimental definition is needed of the stability of a
scalloped-wall tube to establish the degree of scalloping beyond which corners

of cusps will no longer remain fixed as straight lines along the tube to provide

edges as restraints against local buckling distortions.
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Plate Efficiencies

The efficiencies of composite materials for plate applications, already
investigated for a variety of material combinations in Reference 25, have
exhibited similar characteristics to those already discussed above for tube-
columns. Indeed combinations of beryllium and 0° boron/epoxy plates made
up as sandwiches with the beryllium as the faces and the 0° boron/epoxy as
the core demonstrate rather clearly the problems encountered in the develop-
ment of combination metal composite structures, as is shown in Figure 25,

In Figure are plotted the results of calculations (made as in Reference
25) of the efficiencies of sandwich plates which have 0° reinforced boron/epoxy
cores and faces of beryllium, isotropic boron/epoxy, and (at the very top end of
the curve) no faces at all. The solid curve represents the beryllium-faced
sandwiches; up to the discontinuity (at %3/4.5 gg [2., ks"] ) the plates
are totally elastic (to achieve this elasticity at such high values of Ny a com-

B

pressive pre-stress is assumed in the boron/epoxy core just sufficient to stress
the faces to the proportional limit in tension at zero external load). The rapid
increase in weight of sandwich above the discontinuity arises from the continuing
decrease in stiffness of the beryllium faces as they are stressed further and
further beyond their proportional limit. The dotted curve represents the higher
efficiency that would be attained with beryllium with a higher elastic limit (or
pre-stress). Inasmuch as neither of these improvements in the beryllium
response appear possible of attainment in practice, the solid curve is the

realistic one for the sandwich, and, as indicated, it can be surpassed in
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efficiency — as by sandwiches utilizing isotropic boron/epoxy faces at the higher
load intensities. Indeed as the loads become high enough, only the 0° boron/
epoxy retains enough stiffness to be effective, and no faces at all become most
efficient.

To a degree, the curves of Figure 25 may be considered to depict in
general the various characteristics which must be balanced in composite plate
construction for maximum efficiency, as follows:

(1) 0° reinforced material should be used as the strength element,

if possible pre-stressed to provide the maximum possible
elastic range to the material used to provide transverse
stiffness or plate buckling resistance,.

(2) The material used to provide the plate buckling resistance
(the face material in a sandwich) should be selected on the
basis of the stresses to be carried, — at low stresses beryl-
lium is most attractive, at higher stresses composite con-
figurations approaching closer and closer to the 0° config-
uration should be used.

(3) While the example shown (Figure 25)is for a solid sandwich,

so that the average stress is simply .& - Lvﬁ ;b- , the
f

b

same rules as (1) and (2) apply for hollowed out constructions

which raise the average stress to Ny where T is the aver-
k3
age thickness and t € t. Thus, in general, any hollowing

out (light weight core sandwich construction, etc,) which
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does not introduce new instabilities or failure modes is
like an increase in the structural index value on Figure 25,
- 1.e., it tends to make optimum constructions utilizing
higher percentages of 0° reinforcement and lower

percentages of beryllium.
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Panel Efficiencies

The plate efficiencies just discussed were considered on the basis of
initial buckling stresses only. Particularly at low stresses, as is well known,
plates of most materials can continue to carry compression load without failing
at stresses substantially above the initial buckling stress.

For plate assemblies incorporating 0° reinforced composites as stiffeners,
initial buckling of the plates may be expected to cause the major part of any
subsequent load increase to be borne by these stiffeners. This load transfer
into the 0° reinforcement is precisely the mechanism noted desirable above for
increased structural efficiency. Accordingly, for example, compression
panels incorporating 0° reinforced stiffeners should be expected to achieve
high structural efficiencies.

High structural efficiencies were indeed found for 0° boron/epoxy Z-section
stiffeners on i45o reinforced boron/epoxy skin in Reference 2. Part of this
high efficiency arose from the high shear stiffness of the skin material
(allowing the use of thin skins and hence allowing most of the material to be
incorporated in the stiffeners.)

Reviews of the properties of +45° boron/epoxy and comparisons with the
properties of beryllium suggest that replacement of the +45° boron/epoxy skin
on the panels of Reference 2 with beryllium should result in even higher effi-
ciencies than those calculated therein. For example, pertinent properties of

these two materials are compared in the following table:
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+ 45°B/ Epoxy Be

Density —I\% 2.19 1.86
m
(pei) (0.079) (0.067)
} MN
Yield Stress ;}—2— 138 400
(ksi) (20) (58)
Shear Modulus —G—% 72.5 145
e (10, 500) (21, 000)
{ksi)
Young's Modulus GN 25,5 304
2 (3700) (44, 000)
(ksi)
Yield Strain 0.0054 0.0013

Thus, except for its low yield strain, beryllium appears vastly superior to the
i450B/Epoxy. The low yield strain, however, raises uncertaintie s, and a
detailed evaluation is required to determine whether the beryllium/composite
panels are as superior as would at first appear.

Such an evaluation was made as a part of the study of Reference 27. The
results are reproduced here and extended to make possible direct comparisons
of the efficiencies of the +45° B/Epoxy and beryllium-skin Z-panel constructions.
These comparisons are presented in Figure 26,

Figure 26 plots curves of weights of box-beam compression covers (plus
supporting ribs) for optimized Z-stiffened panels. Optimization includes the

selection of rib spacing and stiffener size and spacing for minimum weight to
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oment M with a box beam of width b and depth d

Further the skin thickness is required to be adequate, in terms of the box depth,

78



to provide a specified torsional stiffness; - accordingly the beryllium and

+45° B/Epoxy are compared at '"equivalent' values of skin thickness t

such that

The curves of Figure 26 show substantial weight savings for the beryllium
skin on 0° B/Epoxy stiffeners. These weight savings are depicted by the cross-
hatching between the curves for the +45° B/Epocxy-skin panels (the dashed
curves) and the beryllium-skin panels (the solid curve s) at the equivalent tor-
sional stiffness measures (equal values of d/f‘ ).

3
Several factors accumulate to produce the weight savings shown in Figure
26 for the beryllium-skin composite construction: (1) the favorable shear stiffness
of the beryllium permits an even higher percent of stringer material-with its
high-strength, high column-bending stiffness characteristics, - than for the
+45° Boron/Epoxy skin; (2) the beryllium is of lower density than the boron/
epoxy; (3) the high strength of the 0° reinforcement (as noted in the opening dis-
cussion for this section) permits it to carry the load long after initial buckling

of the beryllium skin.
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Studies of Composite Materials

Three-Dimensionally Isotropic Materials

The form of the matrix of elastic constants relating stress to strain in a
generalized Hooke's law has been studied for various conditions of structural
symmetry. For two dimensions, it is known that a material is isotropic in a
plane for which there exists a normal axis of at least six-fold symmetry. Thus,
as a practical example, a fibrous composile plate is effectively isotropic in
its plane when one nth of the fibers are oriented every —: radians for n = 3,
(By effectively isotropic, it is meant that the average stress, average strain
relations are isotropic.), Similar conditions to obtain three dimensional iso-
tropy appear to be unavailable in the literature. Several configurations having
multiple symmetry conditions which might yield at least an approximation to
an elastically isotropic material have been studied. The first material treated
has two three-fold axes of symmetry separated by the angle for which the cosine
is -1/3. Such a material can be obtained with a fibrous composite having one
fourth of the fibers oriented in each of the four directions defined by the altitudes
of a regular tetrahedron.

The stress-strain relations for a general elastic body may be written as:

T. = cC., €, i,j:l,Z...6 (1)
where 7 are the stress components
i
€. are the strain components
J

C'j are the 2] independent elastic constants (cji = Cij)
i
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We treat a material having two axes of three-fold symmetry at an angle 8

such that

cos B = -—

3

1

As a consequence of this, there must exist two additional axes of three-fold

symmetry; the four axes being oriented along the directions of the four alti-

tudes of a regular tetrahedron.

We select the vertices of the tetrahedron at the points: ( 0.

2

This is a tetrahedron with centroid at the origin.

2/73

. 2m .
try with respect to a rotation of — about the z axis.

(This four-legged array is called a caltrop.)

This body has elastic symme-

Thus for the following

transformation of coordinates, the stress-strain relations remain unchanged:

x y z
x! cos 0 sin B 0
y' | -sin8 cos B 0
z! 0 0 1

This reduces

[ c
11

“12

13

—
("

15

the elastic constant matrix to the following form (Ref.28)

“12

“n

13

C

13

Cc

13

€33

0

‘14

~C

14

c 0
15
—c15 0
0 0
0 -c15
44 14
1
¢lg 2l

.




This array has seven independent constants,

The stress-strain relations will also be invarient for a rotation about
one of the other axes of three-fold rotational symmetry. In particular, we
consider a 120° (counter-clockwise) rotation about the axis passing through

- 2 . .
the point %5 , —!2-— s --Zl— ,l 3 followed by a 120° (clockwise) rotation about

/1 15\

the axis passing through the pointkﬂ— 0, - Z’l—';/ . The direction cosines

for this transformation are

x y z
1 2/2
' — ove
* 3 0 3
y! 0 -1 0
2/2 1
' Lve o
Z 3 0 | 3

It can be shown that the elastic constant matrix must therefore be of the

form
—
‘N 12 ‘1t%2Css3 0 /2(c)ymcq5) 0
+ - - -
‘0 “unt%27C%3 0 /2(e) -cq5) 0
Css 0 0 0
— C
c. = 3 12
i 2 - =L _ 0 - -
! 21" 2 "G5 /2(e)mcgq)
C
3 12
2 ‘u" "z %3 O
1
Z legmepp)

This material has only three independent elastic constants and is a

material with the symmetry of the cubic crystal. Indeed, a transformation

v
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i

of the principal axes of a cubic crystal given by:

X” Y” Z”
, 1 1
* 2 |VZ | o
' 1 1 7
Y /6 | /6 [d3
iy 1 1 1
/3 /3 /3

x' y' z'
X -1 0
y 1 0 0
z 0 0 1

brings the principal axes of a cubic crystal in coincidence with the x y z axes

which are the reference axes for egs. (5). This transforms the array of elas-

tic moduli of a cubic crystal to the following form:

pra—

1 1 1 1
[~ — - —(C+2D-2E 0 C-D-2E)
>-(C+D+2E) Z (C+5D-2E) 3 (C+2D-2E) W/ (
1 1 1
2 = - - -D-2E
5 (C+D+2E) 3(C+2D 2E) 0 W/ (C )
-%— (C+2D+4E) 0 0
1
3—(C-D+E) 0
1
?(C-D*I'E)
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where C, D and E are the three independent elastic moduli for the cubic
system,

The array (4) has the same form as the array (3). In fact, if we let

C =4cy) - 3eq,

D =-Cn+6clz+ 6c33

. (cll+c12) .
and - 2 €33

then (3) and (4) are identical. This shows that the material with the elastic
moduli of the form of (3) is elastically cubic.

Although this material is not isotropic, the properties for a particular
fibrous composite prove interesting, as will be shown in the following sec-
tion.

Another configuration of interest is that of Reference 1 which is construc-
ted by taking three pairs of reinforcing filaments, oriented with reference to
an orthogonal Cartesian coordinate system, xyz, as follows: one pair in
the xy plane making angles of +6 with the x axis; one pair in the yz plane
making angles of +6 with the y axis; and one pair in the zx plane making
angles of +0 with the z axis. It was shown in Reference 1l that when 6 is ap-
proximately 300, the shear modulus, Poisson's ratio, and Young's modulus

satisfy the relation:

E

G = 2w
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It can be shown that when

-1
6 =tan (2 sin 18°) = 31° 43

the twelve rays ( 6 lines) from the origin pass through the vertices of a

regular icosahedron with centroid at the origin, These six lines are there-

fore axes of five-fold symmetry. The possibility that a body having six

axes of five-fold symmetryas isotropic is suggested. This result is per-

haps of academic interest only, as it does not appear possible to construct

a continuous space lattice having five-fold axes of symmetry.
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Evaluation of Moduli of Caltrop Reinforced Materials
The equations derived for the elastic constants of three-dimensionally
reinforced composites were used to compute properties of the caltropic re-
inforcement configuration. Calculations were made using both the equations

of Reference 1 (for which B =B =B » etc.) and the equations of Table
°r Lt °g

4 herein. The following material constants were employed.

Ef (Young's modulus of filaments) 10

E (Young's modulus of binder) L x E
b 21 f

Uf (Poisson's ratio of filaments) 0.2

Vb (Poisson's ratio of binder) 0. 35

These values correspond to those for E-Glass in epoxy. Values of B were
found for these material constants by derivation of the upper bound Hashin-
Rosen (Ref. 2) elastic constants of unidirectional reinforcement at values of
volume fraction filament of 0.2, 0.4, 0.6, and 0. 8.

Results of the calculations are given in Figure 27 for the filament orien-
tation shown. Both methods of calculation yield different compliances in the
2-and 3-directions (values of A4 and A()) from that in the 1-direction. Differ-
ences between the two methods are not substantial, as was anticipated, nor

are the compliances found substantially at variance in the three directions.

For engineering purposes, the compliances in the three directions are pro-

bably so nearly equal that differences among them can be neglected.
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Three Phase Composite Compression Members

In the foregoing studies of the efficiency of combination metal/composite
structures the efficacy of 0° reinforced composite material to provide strength
to the structure while some other material or configuration provided adequate
transverse stiffness or continuity was evaluated. On the presumption that such
0° reinforcement would truly be an extremely high compressive strength material,
these evaluations were indeed favorable. Because of the relative weakness and
lack of stiffness of available resin binder systems, however, it is not obvious
that the 0° configuration necessarily has the maximum compressive strength.
Rather, as this section will demonstrate, some transverse reinforcement may
be desirable.

Reference 4 described the mechanics of stabilization of uni-directional
filaments in compression. As noted there, three failure modes may be encoun-
tered:

(1) a mode in which the shear stiffness of the binder material governs,

described by the equation

where
a‘c ultimate compressive stress in filament direction
Gb shear modulus of binder
yf volume fraction filament

(2) a mode in which the strength of the binder is critical, described by

the equation
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- = e ér o,

¢V 3(1-y)

where
g, yield stress for binder
by

Ef Young's modulus for filament

and (3) a mode in which the stiffnesses of both filaments and binder are

operative, described by the equation

%ErEb
3(1-w)

found from the foregoing equations is, of course, the

% = 2

The lowest value of a‘c
failure stress.

In all three modes of failure the binder properties are important. Accord-
ingly, increases in binder properties may be expected to be reflected in increases
in compressive strength of uni-directionally reinforced composites. One method
for increasing effective binder properties would appear to be to take some of the
uni-directional, load-carrying filaments and distribute them uniformly through-
out the binder. Thus, while for every failure model the value of O‘c would
tend to be reduced by the reduced volume fraction of load-carrying filament
(v¢ in above equations), the net effect should be expected to be an increase in

0, due to the improvement in binder stiffnesses and strengths.

(A

(4]

In order to assess the potential magnitude of compressive strength
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increase available by this approach, the assumption was made that the binder
properties attained by the utilization of some fraction Ve of the filamentary

b
material (the original volume fraction filaments Ve was assumed to be 0.5
o
throughout) for binder reinforcement would be given by simple, rule-of-mixture-

like, expressions such as
Ey = Zl"?bff "./""f,s.)fb

! fb'
Cs Z/I*v')

where
V' is the Poisson's ratio found by the rule of mixtures
for filaments and binder
and ' )
%, =5%% *(1-%,)%,
with the primes denoting the properties after binder reinforcement.

Using the foregoing equations, three possible composite combinations were
evaluated: (1) boron binder reinforcement for uni-directionally reinforced boron/
epoxy; (2) glass binder reinforcement for uni-directionally reinforced glass/
epoxy; and (3) glass binder reinforcement for uni-directionally reinforced boron/
epoxy. In the first two cases the total amount of reinforcing material in the

composite was held constant, so \L’ + Ve = 0.5. In the last case Ve was held
b

constant and the total amount of reinforcement therefore increased as vf was

b
increased.
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The results of the calculations for these three combinations are plotted
in Figures 28, 29, and 30. In Figure 28, curves for the boron-boron com-
posite are presented for the following nominal constituent properties:

E, = 414 GN (60,000 ksi)
2

m

7
4

=
o
I
w
N
(6}
Q
o
Z
o
(@]
[}
T
4]
Py

Bl\J

oz - 2.76 GN (400 ksi)
4 m2

0p - 01 GN (15 ksi)

9, = 0.2
Vb = 0. 35
In Figure 29 the glass-glass combination is considered for the same binder

properties and the following nominal glass properties

Ef = 72.45 GN (10,500 ksi)
mZ
a; = 2.76 GN (400 ksi)
J iy
vf = 0.2

The boron-glass combination of Figure 30 uses the same nominal properties
for each of the materials as those given above.
For properties like those of the boron/epoxy composites of Figure 28,

the conversion of a small percentage of the axial filaments into transverse
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filaments which effectively stiffen the binder should be advantageous, raising
the compressive strength from 2.75 GN (392 ksi) to 3.8 GN (550 ksi),

mZ mz
approximately (see Figure 28). If the properties are more like those of the
glass/epoxy composites of Figure 29, however, the same gain is not to be
expected (see Figure 29). If glass is added to boron/epoxy, on the other hand,
as in Figure 30, substantial gains are to be anticipated.

Because of the gains found in the calculations for Figure 28, a series of
uni-directional boron/epoxy compression specimens having various percentages
of chopped-glass filaments added to the binder were fabricated and tested. The
results are shown as the points in Figure 31, with the large and small circles
representing nominal glass-filament lengths of 0.16 cm. (1/16 in.) and 0. 08 cm.
(1/32 in.), respectively. Despite the large scatter, strengthening appeared to
be achieved in two cases.

Both the scatter in the test data, and the sensitivity of strength of the
boron/epoxy composites of Figure 28 to the small amounts of binder reinforce-
ment point to the critical nature of the role played by the binder in the composites
for the development of high compressive stresses. The marked difference be-
tween the curves of Figures 28 and 29 suggests that this criticality is substan-
tially greater for boron than for glass reinforcement.

To explore the sensitivity of boron composites to binder properties
somewhat further, the calculations represented by the curves of Figure 31were
also made. These curves show the effects of changes in binder strengths

(a'b ) and binder-filament-reinforcement strengths on the compressive
(4
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strength of the three-constituent composite when the '"binder strength' mode is

critical. The compressive strength is found to depend most critically on the

binder strength at the low ratios of binder reinforcement.
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STUDIES OF MATERIALS-PROPERTIES TESTS

The testing of filamentary composites to determine their mechanical
properties has proved to be more difficult than the testing of homogeneous
materials like metals. The difficulties take several forms; they may derive
from discontinuities encountered in specimens designed to provide a diminished
cross-section; as is often done to avoid failures at points of load introduc-
tion; they may be associated with the shear weakness of the binder leading
to undesired modes of failure; or they may arise because a type of test
known to be inadequate is used for economy or other reasons. In this section
some of the aspects of mechanical-property testing of composites are
examined both analytically and experimentally to help establish guidelines for
improved techniques.

The NOL Ring Split-Dee Tensile Test

The N. O. L. ring ''split-dee'' tensile test, shown schematically in

Figure 32, has the advantages that the specimen may be readily fabricated by
winding, and the test may be performed in a conventional universal testing
machine without special fixtures (other than the split dees themselves). The
test has the disadvantages, however, that (1) no test section is available at
which strain gages may be mounted to measure the stress-strain properties,
and (2) more seriously, the test introduces substantial bending moments in
the ring where the split occurs between the two dees. These bending moments
extend above and below the split, as shown in Figure 33, Because the mem-

brane stress in the ring causes it to increase in diameter as the load increases,
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the ring tends to pull away from the corners of the dee, and the maximum
bending moment is that associated with the load times the deflection to the
center of the ring cross-section near the corners of the dees. The magnitude

of the bending may be found from the following equations (developed in Appendix B).

£, I [cosh } //
5
. . 7,

(1)

where 1 may be evaluated by the trial and error solution of the equations

&1, (- 12 /e P rom /
9=m”-[ /p 6/2 A /E'
/

R+ %

(2)

and
9'= sin”! 24 _r P ()
/ °+2t 2 E;A

such that

(4)
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where

ML bending moment at center line of ring, at split in dees
E1 Young's modulus in direction of filaments
I moment of inertia of ring cross-section
RO initial inside radius of ring
t ring thickness
P load acting in each half of ring (one-half of applied load)
A ring cross-sectional area
1 unsupported semi-span between dees
6 and 6 slope at point of departure of ring from dee, measured

relative to direction of load application.

GlZ shear modulus along filaments

Evaluation of equation (1) for a typical E-glass reinforced epoxy ring
for Ro = 7.30 cm. (2.875 in.) yields the curve of maximum bending stress
vs. ring thickness given in Figure 34. Obviously these bending stresses are
of sufficient magnitude to raise questions about the engineering merit of the
tensile strength values measured as the P/A stress at the maximum load on the
ring.

(Curiously, the magnitude of the bending moment is relatively insensi-
tive to the composite properties. For example, the stress increment due to
bending in an hypothetical boron/epoxy ring with El = 414 GN/m2 (60,000, 000
= 51,75 S

1 2
m

psi) is essentially the same as that in a glass-epoxy ring with E
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(7,500, 000 psi) at the same load. The increased bending stiffness of the boron/
epoxy is compensated for by the decreased diametral expansion of the ring
under load, so that the bending stresses remain essentially constant as E
varies.)
Variations of the Split-Dee Test

The high bending stresses encountered in the split-dee test are rather
disappointing in view of the many attractive features of the test. Accordingly
the question naturally arises as to whether minor changes may be made in

specimen or fixture design which will reduce or eliminate the bending. Some

possible variations of this nature are considered below.

The "'racetrack' specimen - The provision of a straightaway section adjacent

to the split in the dees is a first logical step toward the improvement of the
N. O. L. ring split-dee tensile test. Such a specimen is shown schematically
in Figure 35,

The analysis of the bending of the critical section of the racetrack is

similar to that of the ring, and is described in the following equations:

!

cosh
7. )
/0-% | )

/-—/; / /E/_/; /sm/) ‘E/ /p
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where now 1 is evaluated from

(6)

and

- i..._’g (7)
2 £ A

again with
!
6 =6
/ /
where s = length of straightaway, and the other symbols are as before.

Results from the analysis of this racetrack specimen compared to those
from the N, O. L. ring are compared in Figure 36, Figure 36 shows that while
bending is not eliminated by the straightaway, it is substantially reduced, -
even by a relatively short straight section., For example, justa 1 cm (0.4 in.)
straightaway reduces the bending moment to less than one-half that of the

circular ring,
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The mechanics of the reduction of maximum bending moment are
suggested in the (exaggerated) sketch of Figure 37. Under load the mid-point
of the straightaway deflects inward toward the center of the track, so that
even though the curved portions pull away from the dees the eccentricity of
the tensile load at mid-span is small and hence the moment associated with
it is small, - i. e. the maximum moment is still that near the corners of
the dees, not that at mid-span. The fact that the moment in the straight
portion is small, however, is advantageous for the use of strain gages in that
region,

Experimental confirmation of a qualitative nature of the foregoing
analyses of split-dee tests were obtained by photoelastic tests (Figure 33
and 38),and by strain measurements on an enlarged, aluminum-alloy ring
(Figure 39), Even with the enlarged ring the stress gradients were so steep
around the circumterence that the gages could not be located accurately enough
to make a quantitative check of the analyses. Indeed, the strain gaging
problems pointed up the merits of some such approach as the following for

further improving the split-dee test.
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Compression Tests of N.O.L. Rings

A simple compression test for an N,O.L. ring-type specimen (analogous
to the split-dee test for tension) would be useful for the evaluation of the com-
pressive properties of filament-wound composites. Efforts to develop such a
test under this contract were not successful. The specimen tried is shown
schematically in Figure 40,consisting of two short segments cut from an N.O, L.
ring and mounted back to back as shown.

Application of tangential end loads to the segments of ring in Figure 40 and
pressure-like forces from the supporting, hour-glass-like core ideally would
reproduce the compression induced in an entire ring by external pressure.

That is, moment equilibrium at any station 9 along the segment is represented

/

by the equation

o
PR [1-cos (&-6, NE / w [Rsin (0-6,)]d6
6

where
P = 1/2 total load
R = ring radius
o = 1/2 angle included by segment
# = intensity of normal load on ring at station 9'

that is 4 & h'(e)

As might be expected, this equation is compatible with a simple pressure

load. Thus, if MW ¥ p/g
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4

PR[[sin6-6,]d6 = PR[i- casxcos@, - sinasin8,]
6

< PR[/ - cw(d-e,)]

Tests of specimens fabricated as sketched in Figure 40, however, were not

successful in maintaining the compatibility so readily expressible in equation

form. Attempts were made to replace the resin filler of Figure 40 with aluminum -

leading to a nice test of the aluminum (Fig. 41); attempts were made to test

specimens of larger radius of curvature in this fashion, and a maximum failure
MN  or 1 s . ] i ; ;

stress of 59 ——_ (86 ksi) was so achieved in a glass/epoxy composite. Despite
m2

the fact that failure in this case appeared to be by shearing at the quarter point

of the specimen with no evidence of overall column instability (Fig. 42), the

stress is less than can be achieved with well collimated, straight compression

specimens and is probably not representative of the material strength.

Some evidence of '"brooming'' of the ends of the specimens was apparent
even in this best test. A number of further tests of like specimens with ends
cast in cerrobend were made to try to avoid such end failures. Stresses in no

case were higher than the foregoing value.

Initially straight specimens appear to be required for compression testing.
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Low-Melting Alloy Casting Fixture of Compression Tests

The use of a fixture in which the specimen ends can be cast in a low-
melting point alloy has proved successful in preventing premature "brooming"
type failure in tests of straight compression bars. Such a fixture is shown in
Figure 42, The fixture incorporates end plates having holes, — of the same
shape as the specimen cross-section, - but approximately 0.6 cm. (1/4 in,)
oversize so that .3 cm. of the low-melting alloy can be cast all around between
the hole wall and the specimen.

Conventional 3 to 1 aspect ratio, uni-directionally reinforced compres-
sion specimens have been tested in this type of fixture with consistently high
stresses at failure. Consistency and modes of failure both suggest that these

high stresses are representative of the compressive properties of the material.
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Flastic Moduli

The desire to measure the elastic constants of a uniaxial fibrous com-
posite by using specimens which represent the filament winding fabrication
process has led to the use of thin-walled circumferentially wound tubes
(e.g. Ref 29), Axial load and internal or external pressure tests of such tubes
can be used to measure four of the five independent effective elastic con-
stants of the composite material. (See Ref. 11 for a discussion of independent
effective moduli of composites.) The use of these thin cylindrical tubes to
measure the elastic moduli of a composite laminate appears to be a most
suitable approach. However, it is not without problems; the first of which
is that of definition of the moduli. When a laminate is to be used as a plate
or shell structure, the desired elastic relations may be written with respect

to the principal geometric axes, denoted as the 1 and 2 directions, as:

where:

8
Ny ‘11 (8)
e 9
N22 €0 (9)
€ (10)
Nio 12
” 11
Mi "1 (11)
- 12
M22 Ko (12)
" 13
M "2 (13)

€ are the three middle surface strain components

X

are the three curvature components
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N are the three stress resultants

M are the three moment resultants.
In this form, for an arbitrary laminate, the Cij matrix is a 6 x 6 array of e-
lastic constants which must be determined experimentally. Because the lami-
nate is non-homogeneous there may be coupling between extension and bend-
ing. The existance of certain non-zero terms in the C matrix complicates
the relationships among these elastic constants and the so called engineer-
ing constants: Young's moduli and Poisson's ratios. This is best illustrated

by considering alternate forms of Equations (8) - (13). These Equations may

be written as (e.g. Ref. 2):

M, =b e +d u
1 1) ) 13 )
These Equations are represented by:
N a ! b e
_ o (15)
I -
M b . d ol
Equation (15) can be manipulated to yield
e e | f N
- = | mmmma- - (16)
1
M g ¢+ h 8

and
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= | mememee oo - (17)
" C ! D M

As an example we now consider the Young's modulus in the 1 direction

which can be defined as the ratio of average siress to strain and is therefore
given by:
N1
BT (18)
te
1

where t is the laminate thickness.

This modulus can be evaluated from Equation (17) for N2 =N, =M =20,

3 i
as
1
tA
L 11
Or it can be evaluated from Equation (16) for N2 = N3 =n =0 as:
i
E <o (20)
11

The definition of Equation (19) is consistent with the usual practice of having

all but one of the stress components vanish. However, the restrictions assoc-
iated with the definition of Equation (20) are representative of the loading con-
ditions on the shell specimen. That is, n, =0, because of symmetry. These

1

two definitions are not the same unless b_j = 0; in which event, it follows that
i
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f =g.=B =C =0and A  =e_ .
ij ij ij ij ij kj.

It is suggested that the rational approach to this problem is to de-
emphasize the calculation of Young's moduli, etc. and to utilize a six by six
matrix definition of the elastic constants of a laminate. When a particular
extensional or bending stiffness is required, the definition thereof should be
explicitly stated.

A second aspect of the modulus problem is the influence of the form of
the material anisotropy and the specimen configuration upon measured values.
The filament wound cylindrical tube under consideration is a material possess-
ing cylindrical anisotropy. In the case of a circumferential or other winding
pattern symmetric with respect to the principal geometric axes, the material
may be considered to be cylindrically orthotropic. An analysis of the stress
distributioﬁ in such a medium for various applied loads is available in Refer-
ence 30, which shows that the stress distribution even for simple applied loads
is non uniform. For example the axial stress, CTZ, in a cylindrical tube sub-
jected to an axial load is not constant unless Vrz = Vez. This condition is gen-
erally not satisfied in a filament wound shell, and for a circumferentially
wound shell, the two Poisson ratios are definitely unequal. In this case, the
modulus defined by Equation 18 is an average value and can be related to the
true value by using the expression for the axial stress, OZ. This result is
presented on page 254 of Reference 30, However, there is evidently a typo-
graphical error in Equation (40. 4) which is not diemsnionally correct as pre-

sented. The desired result was therefore rederived for the particular type
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of material symmetry represented by the circumferentially wound tube. The

extensional stresses and strains for a cylindrically orthotropic tube are

given by:
14 =
c ! rf Urz
( r E E " E /Or
T 6 z
v
e -1 Ver 1 Bz o 5
8 E E T E © (21)
T B zZ
v vV
c __zr 2z 1 o}
z E_ E E z
L z .

The shear strains and stresses are simply related by:

YZI‘ - TZI‘/GZI' (22)

Yre - TrB/GrG

These relations can be further specialized for the circumferentially
wound tube inasmuch as the material plane normal to the local fiber direction

can be assumed to be a plane of elastic isotropy. Thus

E =E
z T

Ve Yo ‘ (23)

Uez = Gre
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Equations (21) and (22) are also applicable to filament wound tubes which

are symmetric with respect to the longitudinal and circumferential direc-
tions and which have a sufficient number of laminae such that coupling between
extension and shear is negligible. To take advantage of this wider applicabili-
ty the analysis will not utilize the simplifications offered by Equation (23).
Since the applied loads are symmetric, there will he no shear stresses or
strains and the constitutive relations for this problem are those of Equation

(21). By symmetry, all variables will be functions only of the radial coordi-

nate. Thus the equilibrium equations simplify to:

+ =0 (24)

which can be satisfied by selecting a stress function,®, such that

o sl G
* P (25)
d
O %
dr
The only compatibility equation which is not satisfied automatically
is: d
eor o, a (2% (26)
dr dr dr

Substitution of Equations (21) and (25) into (26) yields a fourth order differen-
tial equation on @ given by:

3 2 II 2 1
r4cpIV + 2r cpHI -r By +rB oy =0 (27)
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1-v v
rz zr
2 Sr < E )
where B = 5 - ru (28)
8 <1'Vez ze>
E
6
For B#1 the solution is:
1- 1
o = Ar B + Br +# + Cr2+ D (29)
The stresses resulting from this are:
-(B+1 -1
o= A(l-g)r B+ Basgyr P14 2c
(30)

0, = ARg-): B L peeaP Tl ac

The cylinder is considered to be subjected to an axial shortening re-
sulting in a uniform strain, ¢ ” = e, and internal and external pressures, p,
i

and p , respectively. This train displacement relations simplify to
o

e = Qu
r dr
(31)
u
€ =
8 r
Substitution of Equation (30) into Equation (21) defines the strains €r and ee-
Equation (31) offer two methods of finding u. For a unique determination:
Ve -V
2C = e[ =2—_%2)\ = p (32)
§,-S z

\ < r

Use of the boundary conditions:
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or(r=ri) =-p;

(33)
Or(r:ro) = - P,
defines the remaining two constants in Equation (30). This yields:
28 r 7P
eGP e )
o =p (= —= |-p_ (— —
r 1(ri) Ll_czs o(ro) Ll_czs _l
(34)
) 1_(—r_>8—1 1_CBH -<r-)(8+1) 1_CB-1
2, ro 1—CZB ri _CZB
rc
i
where C =
o
28 -28
T
, (B o T . B-1 ! +(?1>
o = p.B (T) - -p BT+ 28 +
i -G o
(35)
o J1ep (@) e L gyt e
2 T 1-c?P Ty 1-c%®
o =Ee+v, O +V 0 (36)
z z 8z 8 rz T
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Axial Compression Test

It is now possible to compare the results obtained by the tube tests with

the actual elastic moduli. First, consider the tube in axial compression. The

measured modulus is given by:

T =
z (5]

Z

tube cross-sectional area)

Thus:

52 = %Ioz dA

- 1

S S d

. N o
mr -1r)

(o] 1

(37)

o is the average axial stress (total load divided by

(38)

Substituting Equations (36), (34) and (35) with P, =P = 0, into Equation (38)
o

and the result into Equation (37) yields, after much manipulation:

= 2
] ; 2

o E L Y% AE Coo28 |aectHech) iach ]
Ez (l-Verzr) (Bz-l)2 1+82 (I-CZ%(I-CZ)

(39)

For a thin shell we find by taking the limit of Equation (39) as C-1 that

Thus the thin-walled circumferentially wound tube appears to be a suitable test

technique for measuring the transverse Young's modulus. The magnitude of the
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error associated with this technique is indicated by computing the quantity ¥

in the following equation as a function of B:

= 2
E -E v, -
Z 2z ( 0z vrz) (40)
= ¥
E 1-v_ v
z rz zr

where the correction factor, ¥, is determined by comparison of Equations {39}
and (40),

The factor ¥ was evaluated for a radius ratio of C = 0.9 which is a rela-
tively thick shell for this purpose. Correction factors, ¥, for smaller radius

ratios, C, will be smaller. It was found that:
Y < 0.01 2,<B <6
Y < 0.1 2 <B8=10

It seems safe to conclude that the circumferentially wound tube in axial
compression is a valid test for the Young's modulus transverse to the fibers of

a uniaxial composite.
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Internal Pressure Test

An internal pressure test has been used (e. g. Ref. 29) to determine the
Young's modulus in the fiber direction and the Poisson's ratio. Strains are

measured on the inner and outer surface. For this loading we may examine

the equations for strain by substituting Equations (34) - (36) into Equation (21).

T . o e
L our zer

C
—
la]
uQ
[

-(B*+1) 28] v 2B
e = pi(%) <‘_lzs> 8 je H(D) |- Zgr [1 ) J (41)
i 1-¢ o rz o)

The measured surface strains will then be given by:

P. v
e (r) :—1—.53 12028 er (1- 28\& (42)
A R e
CB+1
€e(ro)= ZB ge pi I_C*ZB (43)

As in the preceding section, we choose to examine the error associated
with the use of equations developed for isotropic materials. The alternative
is to write the simultaneous equations relating all the measured strains to all
the elastic moduli and solving for the latter. However, this alternative pro-
cedure is complex and perhaps not possible as there is no apparent direct

measurement to define the transverse shear stiffness, Gzr' Thus, we con-

sider

8
0

T =

8 (44)

™
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where E is the effective circumferential thickness for
zero axial strain.

o is average circumferential stress.

For equilibrium:

Og = pi(lfc) (45)

The stiffness defined by Equation (44) can be evaluated by the use of e. g. (45)

and either Equation (42) or (43). We denote the results Eel and EOG respec-
tively, Treating the thin shell we write:
c=1-% (46)
where 0 is the shell thickness to radius ratic. The results are:
o
— 1 [ 5
= = - 47
E 5 S 1+ > :] (47)
)
2v_B
—i 1 1 Bz
= = 48
Eg=s |'"\z*a s } (48)
S rz 0

Equation (47) shows that the use of the external surface strain measurement
yields a result for the extensional stiffness which has an error measured by
half the thickness to radius ratio, e. g. 5% error for a radius to thickness
ratio of 10. On the other hand, the inner surface measurement involves many
other material moduli and is therefore unsuitable for simple use in the circum-
ferential modulus determination.

Note also that there is a significant difference between internal and ex-
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ternal strains, Thus:

eolry) - egfrg) Yor 5

= |1+ (49)
eglr ) G_,S 1-(B+1)8

Tension Test

Reference to Section 43 of Reference 30 shows that the stress distribu-
tion in a cylindrically anisotropic hollow shell for which there exists at each
point a plane of elastic symmetry normal to the axis is obtained in the same
way as in an isotropic rod. That is, Ge ” is the only non-vanishing stress

component and

The circumferentially wound circular shell satisfies these symmetry require-

ments and therefore provides an exact measure of the in-plane shear stiffness,

G

8z
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CONCLUDING REMARKS

The application of existing analyses of strength and stiffness of fibrous
composites to the analysis and design of composite structures has been treat-
ed. It has been shown that, although the present under standing of failure

mechanisms is incomplete, it is possible to construct a rational set of fail-

ure mechanisms of a uniaxial composite have been performed by using limit
analysis techniques. Also the effect of stress concentrations upon tensile
strength has been explored and initial studies were made of the complex
moduli of fibrous composites having viscoelastic matrices.

The design criteria were used in the evaluation of columns, plates and
panels in which uniaxial composites for high strength were combined with
isotropic metals or composites for high stiffness. Designs offering substantial
improvement over those made of one material only were demonstrated. Im-
pProved composite materials were achieved through the use of a third phase as
a local reinforcement of the matrix. Also approximately isotropic three-
dimensional materials were designed.

Test methods were analyzed leading to a verification of the suitability of
thin-walled tubes for modulus measurements and the unsuitability of the NOL
ring for tensile strength measurements. Improvements in methods for measure-
ment of tensile and compressive strength were demonstrated.

The studies emphasize the feasibility of using present methods for the
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mechanical analysis of composites in preliminary design studies. They also
indicate that our understanding of composite failure mechanisms is a continual-

ly evolving one requiring additional theoretical and experimental study.
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APPENDIX A - Limit Analysis For Composites With Elastic-Brittle Fibers

Five types of surface loadings are considered:

1. Tractions equivalent to a uniform shear stress le are applied on

the entire boundary surface.

Use will be made of the theorems of limit analysis which will not be

stated here. For lower bound construction. a uniform stress field

0 T 0
o
T. = T 0 0
ij o)
| 0 0 0 |

is chosen as a statically admissible stress field where T is such that Von
o

Mises'yield criterion of the matrix is not violated. Then it can easily be

shown that

L
<1'12>L = kb (1)

where kb is the yield stress of the matrix in simple shear.

For upper bound construction, a kinematically admissible velocity field

is chosen as follows:

(a) In the region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders.

u =0, u =y x, u, =0 (2)
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where YO is any real number,

(b) In any composite cylinder, the velocity field y is the elastic dis-
placement solution to the displacement boundary value problem with displace-
ment boundary conditions (Eq. 2) prescribed as formulated in Appendix 2 of

(Ref. 11) with the modification that the fibrous core is rigid.

An application of the upper bound theorem gives an upper bound (Tli")
U
as a function of B and v1 the latter being the volume fraction of all the composite

cylinders embedded in the composite specimen:

L
(1-12)[} = k.t li)vl (11-1) (3)

where
1 2™ ” >
Il=—-1———2——£ j R 1+EZ— +282 cos 9dBdR
- R
m(1-8 ) 875 R
In the case of "random array'" (Ref. 11) for which v, E 0 and the fiber
volume fraction of the composite specimen Ve = B , Equation (3) becomes
L
12y
k - Il (4)
b

2. Tractions equivalent to a uniform shear stress 7-23 are applied on
the surface of the specimen.
The condition of plane strain is assumed. Then, the Von Mises' yield

criterion for the matrix reduces to a simple form
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T -7 ¢ 4 2 < 4k2
(T2 ™ T33) + 4755 b (5)

For lower bound construction, a uniform stress field

[0 0 0]
T =
ij 0 0 T
O
0 T 0
L (o]

is chosen as a statically admissible stress field where To is such that Eq. (5)
is nowhere violated. Then it follows that the lower bound for the limit load
Y -
\“°/L
which is independent of fiber volume fraction.
For upper bound construction, the same principle is used here. A
kinematically admissible velocity field is chosen as follows:
(2) In the region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders,

YO Y

Lo
1 2 2 )

3’ 3 2 (6)

(b) In any composite cylinder, the velocity field u is the elastic dis-
_.
placement solution to the displacement boundary value problem with displace-

ment boundary conditions (Eq. (6) ) prescribed as formulated in Appendix 1

of Ref. 11 with an additional condition that the fibrous core is rigid and the
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binder shell is incompressible.

L
‘ An application of the upper bound theorem gives an upper bound <7'2 3>
U

‘ as a function of B and vl:

<T2L3>U =kt v (1,01) (7)
where
, 1 p2m
I, = mj L RJ@I(B, R) + ¥ (B, R) cos 8 ded R
and

2
U (8, R) = [B +8 +1, 3 (B +13 i ] l' (48 +B (4B 4B +1) + 382R2-|
1 R‘i | <] Z J

r

2

4 2
lPZ(E;.R 2B I:(B +B +1 - _(B +1) :H:_ (48 +8 +1) + 382R2:l
R

3. Tractions equivalent to uniform axial tension TZZ on the composite

specimen under the conditions of plane strain.

Using the same principle, the lower bound for the limit load is

L
() =ox,
L

For upper bound construction, a kinematically admissible velocity field
is chosen which is obtained from the one constructed for the preceeding case

through an orthogonal transformation such that
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0 0 0]

u, =d _u' withd =| 0 N
1 ij ij /2 /2
oL 1

TR /2]

where uJ! are the velocity components used in the preceeding case referred to

an x'-system. Then, after some manipulation, it turns out that

(), <),

Another kinematically admissible velocity field was constructed:

a. Inthe region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders,

Y Y
=0 u. = = x U= - 2 x
I T B B L 2 73
or in polar coordinates,
Yo Yo
u1=0, ur=—2—rb cos 28, ue=—?1‘bsin29

b. In any composite cylinder, the velocity field in polar coordinates

is assumed to have the following form:

Y
u = —Op(r) cos 26
r 2

'YO for—rf ﬁrﬁrb
ue:-—?:-Q(r) sin2 ©
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where p(r) and Q(r) are arbitrary functions and

plr) = 0(r ) =1 (8)

In addition, we assume that p(rf) = Q(rf) = 0. Becuase of the assumed

incompressibility of velocity field, p(r) and Q(r) satisfy the following equation:

dr r T =0 (9)

2 3
Furthermore, let p(r) = Al(r—rf) + A2 (r-rf) where the constants

r +2r

A =L P
S

b f

and
r +r

A:-f__b_
2 r -1’

b f

have been determined from (8) and (9).
Now the velocity field of the entire specimen is constructed and the
- . . Ly . .
upper bound theorem is applied to obtain a new ‘r22 in terms of fiber-
volume fraction for the case of 'random array'. Incidentally, this same vel-
ocity field, after an orthogonal transformation, can also be used to obtain a

L
new<‘r23> . Unfortunately, numerical calculations show that for all fiber-
U

volume fractions between 0 and 1, bOth<T2§> and <‘r ];)J obtained here are
2
U

slightly higher than their corresponding values obtained previously.
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4. Tractions equivalent to biaxial uniform tension 7'22 and 733

(722 # 733) on the composite specimen.

For definiteness assume 7._ > 7

52 33" Then following the ideas used in

Case 3, it can be shown that

(72]£>L - (r 31;2‘ = 2k,
(TZEJ)U i (%E)U ) 2<T2La>

U

The type of surface loading considered here is for 7., in the follow-
i

ing form:

- _ e
12
T, = 0
ij 2 T2 (10)
0 0 0

where the constant stress components P and s are related in the following

way:

11
12 22 (11)

with @ =2 0. This amounts to a proportional loading of combined uniform shear

stresses r and uniform tensile stresses T

12 , on the boundary surface S of

the specimen,

Since both 7'12 and 7-22 are assumed finite, it is obvious that a= 0
corresponds to the case where only uniform tensile stresses LPP are present.

On the other hand, o+ « corresponds to the case where the specimen is sub-
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jected to uniform shear stresses T
In lower bound construction, a uniform stress field of the form (2)
supplemented by (3) is chosen as a statically admissible stress field to obtain

.. L L
lower bounds for the limit loads ‘1'22 and 1-12 , respectively. It turns out that,

fr
\ZZ/L ) 1
K \1-3—1 P
and (12)
(12
12L .
k
b q% +a
for a=20.

From Equation (12) it is obvious that for the special case where a = 0

(i. e. for uniform transverse stress 7'22 acting alone),

()

kb

= /3 (13)

In the case where o+ ®, corresponding to the case where the specimen
is subjected to the uniform in-plane shear stresses T2 alone,

L
lim (le )L )

X o ) kb =1
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For upper bound construction, a kinematically admissible velocity

field u is chosen to be a linear combination of the two kinematically ad-
Y

L
missible velocity fields used to obtain(‘rlz> and(‘rZIg) , respectively:
U U
(a) In the region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders:

(1) (2)

u = u + u (14)
-+ - -
1
where u()z(O,Yx,O)
- 1 1
Y
. @ (o, 2 & 2
an 5 T\ T 2X3>
= W ].5
Yl Y, (15)

where w is any real number.

(b) In any composite cylinder, the velocity field is the elastic displace-
ment solution to the displacement boundary conditions(14 together with (15)
prescribed with an additional condition that the fibrous core is rigid and the
binder material is incompressible. In fact, the solution to this displacement
boundary value problem can be obtained from the associated solutions to the

L
individual problems connected with obtaining <T{42,2; and <722)J by the prin-

ciple of superposition.
hen an application of the upper bound theorem gives, for the case of

constant 8 throughout the specimen
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<"'2LZ)U Visw? - g (1, -\/I:u-2>

kb ) l + aw (16)
2
where
1 1 27
I?) = —-—’ R S RJQ],(UJ’ B, R)+Qz(w, B, R) cos 6+Q3(B, R)cos 28d8dR
m{i-8) 5 J o

Yl 4 2 3 /.2 ah

Q (w, 8, R)=43%[<5 +B “)'Tz (e “)lf—z:l
.2
1{3821’\2 _(454;32“)}}

2 2 / 34
+ w (1-B )(1+ 4)
R

2 248
G, (w, B R)=2w (1-8") —8—2
. R

and

2 2
4 2 3 2 4 2
03(B,R) =8 B_ {§B +B +1> - —2— (B +1) i_z] l:3 BZRZ _ (48 +B +1)]

R2 2 ]

In the case of "random array', (16) reduces to

/Ly

T.

\"22) 1

: U _ 3 (17)
1
= +a

b 3 + QW
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Since w in (15) is arbitrary, the lowest upper bound among the class
of upper bounds in (17) will be obtained by minimizing the right-hand side of

(17) with respect to w.

Thus,
. kI
< L> r{m}n b 3
T = w
22/ %mw (18)
and (-,- L> _ min kba I3
Ty T
12 U El +ow

L L
will be chosen as the upper bounds for 7'22 and TlZ , respectively.

Numerical calculation is performed to obtain <1'2L> and <1' L) from
Ty T
(18) for different values of B and a. It is interesting to note that in the num-
erical calculation, for any giver 3, w which minimizes the right hand side of
Equation (18) is a monotoni~ increasing function of @ but & # o (except when

a=0, thenw =o =0),
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APPENDIX B - Derivation of Equations for N. O, L. Ring Split-Dee Test Analysis

The assumptions are made that the N, O, L. ring exactly fits around
the two dees at zero load and that there is no friction between dees and ring, so
that the portion of the ring that remains in contact with the dees is subjected
to essentially a radial pressure which induces a hoop tensile force P in the
ring. ‘I'his hoop tension produces a circurn{erential expansion A  of the rin
equivalent to:

8= galerfRr3)
!

where
El Young's modulus in hoop direction of ring
A cross-sectional area of ring
R initial inside radius of ring
o
t ring thickness

This circumferential expansion is converted to a straight-line separation

AD between the dees, so that

2 = g4 (")(R2)

very nearly, and the problem is that of the analysis of a beam at the split in the
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dees as sketched below:

>

ol g

N

- i
£ 9

That is, the beam is tangent to the dee at some point at a distance
from the center line of the split between the Dees. At the centerline the beam

is subjected to the tensile force P and a moment M At the point of tangency

L L]
the force P is also acting and a fictitious moment MO is hypothesized of the

t

magnitude required to form the ring to its initial radius of curvature RO .

So

£ 1
R,+L
o 2

In other words the analysis considers the beam as initially straight when un-

stressed. The desired bending moment at the center line ML will thus be found

by subtraction of the fictitious moment MO from ML .

Selecting x-y coordinates as shown, we note that the moment M at any

section of the beam is

I‘Vi = -P{6=y ""JV40 (3)
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or

£, 1 ‘—" == ﬂ-y}'/-Mo (4)

Let

e_ P
=T

(6)

The solution of (6) is

}""'é" fIk)( cosh A’x (7}

Accordingly the slope e at the point of tangency of the beam to the dees is

[4
y M, X
9/”"”/‘(“70 YE I s l—‘fﬁ/;) ‘8’

The deflection 6 is similarly found as

M, /
§= —¢ /- (9)
P cosh/_‘f__);
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Combining (8) and (9)

= ={ M° P / 10
9/ Yon B/ET fm/»(/-f'-f/;)] (10)

Because the beam is tangent to the dee at x = j » the angle 9, subtended by

the arc of the dee between the split and the point of contact may be found by

;1 P I
Ql: .Slh-l 2 Z"—Z /W)(Ptb+ 2) (11)
!

f
Rot >

trigonometry as

And

9, = 9/ (12)

Finally, from (3) for y =0

M = M{ = A4o -Pé (13)

Or by substitution of (9)

M v
= (14)
£ cosh 24 )

27
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Shear deflections may be included in the analysis by re-writing equation (7) as

M

o X
! = cosh ( ) (15)
/
Gy [ /%
6eA

For a rectangular sectionn = 1.2, and (15) becomes

Mo( 1.2 P X
y = é6- —2 "-—-:4— /-mﬁ/ (16)
P G [ /z:',"%

Analysis to include the effect of the straightaway on the racetrack specimen

§ -

Y

follows the same form as above, leading directly to the equations given in the

text,
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/- Direction Filament-s
( BL¥Pr * A %,ec)

Eu(1-9s) Eg(1-v¢)
A= feagireglirntl” (*C,(p-’;v,)[ oo, %]

% &
A A //*%X/'«?vo)L R % (/w,[/—z\y)[ﬁn rJ

£, £
A.f //#::Yézv‘ /-A.G ‘?]*(/,::X,{ZV)[,G.G ‘?]

Eafl-v ) E. (/-v{) y
4y G, g o]

Ay =A9= N YA Gf[ ﬁo"?]

A, =6, [/ A ‘:_r/ * G,[ ﬂ."‘;r]

Table 1. - Generalized equations for compliances of composites having uni-
directional reinforcing filaments in the l-direction (from Ref. 1).
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/-Direction Filaments

Interrelationships among constants for
transverse 1sotropy

Y
A =E
! L[ 1= 53 =2%p
v,, £
ot &2
A=A, ~=

e " J [ =53 =@V

A= A, ~2A,

£, | / =V "zl)
V23 "€V "211’ *"33/

A4= A6 =//_
A=Ay G

Ag= Gy

Table 2. - Relationships among elastic constants and compliances for uni-direc-
tional reinforcement for use in evaluations of the various g8's in
Table 1 (from Ref., 1).
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-3 _ 1-vp
= E( Va3~ 42", u) (/ vy -2yt )( %)
— /- . .
Ef(/'.T,f?ﬁ(w
/= VeVa 1-vy )
2 ("%-Zm.)('*-’,) 'Eb(/-v,-z\a;)(’ )
Ef(] u{ 2‘)2 (f)
B, T
( Y2¥2y Eb( /“’5'2%‘/{, %)
(—J/ ny}f)
W]
‘-EZé_ -2V X/W Eb(/ vy - Zdb} f)
(’3'
Ef(/ vg- Zv,)(f)

pl= G~ G(1-%)
G ()

ve oy~ Go(1"%)
Ge ()

(*

ooy =

C.

Table 3, - Equations for the transverse effectiveness factors (8) in terms of
the elastic constants for uni-directional reinforcement (equations of
Table 2 solved in terms of g for B.-o values equal to unity),
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V&) E4/1- v‘) ( )
”'“41 2)™% ("“L{" 20)*or

| Ealrs) a0 l )
{’ "fx’ ”f,) T /h\u)// 29‘) ~

v &

&y veEy
A" fieuYiew) ﬁ'ﬂvﬁ 2y) oy, ™ Tra)-2u ™ .‘r]( )

i &y 3£
:[ﬂ*\v)('-lo,) vy " G X z»,)ﬂ-‘J/’f)

% &, %4
*[('“6)("“6) A f'*%)"-lvt)ﬂ'c](’é)

v Y’; "6)/ , r/’-,)'z(%szP.; ) cu'*cos'f)
l-v I8 &h’cos'j" ’«u’ﬁrc&fﬂ%f}“

/;_Ejéﬁ.% fot P#)'Z(%f%ﬂ.)}m g cos’s)
‘ﬁ:{(;_.lré"i e zd#w'ycu?fmm}ﬁtm’a uy)

Table 4. - Generalized equations for the compliances of three-dimensionally
reinforced composites having three orthogonal planes of symmetry.
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Figure 1. Calculated Stress-strain Curves for E-Glass and Epoxy Composite
Laminates,
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Figure 2. Yield Strength of a Symmetric Bi-axial Composite Laminate for
Failure Modes Involving Each of the Principal Lamina Stresses.
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Figure 8. Tensile Failure Model for a Composite Reinforced by
Continuous Fibers.
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Figure 18. Typical Variations of Transverse Effectivenesses of Filamentary
Reinforcement with Volume Fraction, as Calculated for an E-
Glass/Epoxy Composite.
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Figure 22. Changes in Column-Binding Characteristics of Scalloped Thin-
Walled Tubes at Constant R/t with Angle Included by Scallop.
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Celtropic  Remnforcement
/
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Figure 27. Calculated Compliances A, A4, and A6’ Caltropic Reinforcement
in the Directions of the Orthotropic axis 1-, 2-, 3- Respectively, for

Equal 1augd Unequal Assumed Transverse Effectivenesses 8. (Ef =10,
E = — V.= 0. 2’ 17 —
b 21 f b - O. 35).
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Figure 28. Calculated Compressive Strengths for Three Indicated Failure Modes
for a Boron/Epoxy Composite of Nominal Constituent Properties with
Constant Total Reinforcement Volume Fraction of 50% but Varying
Proportions of the Reinforcement Uni-directional and Randomly Dis-
persed in the Binder.
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Calculated Compressive Strengths for Three Indicated Failure Modes
for Glass/Epoxy Composites of Nominal Constituent Properties with
Constant Total Reinforcement Volume Fraction of 50%, but Varying

Proportions of the Reinforcement Uni-directional and Randomly Dis-

persed in the Binder.
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Calculated Compressive Strengths for Glass-Boron/Epoxy Com-
posites of Nominal Constituent Properties with Constant Uni-Direc-
tional Boron Reinforcement Volume Fraction V¢ = 0.5 and Varying
Quantities of Randomly Dispersed Glass Filaments in the Binder.
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Figure 31. Experimental Results for Tests of Glass-Boron/Epoxy Composites
having Uni-directional Boron Filamentary Reinforcement of Nominally
50% by Volume, and Comparison with Calculations for Various
Glass-Filament and Binder Strengths.
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Figure 32, Schematic of N, O. L. Ring, "Split-Dee'' Tensile Test
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Figure 34. Results of Analysis of Maximum Bending Moment in the ""Split -Dee"
Test of a Glass Filament Reinforced Epoxy N, O, L, Ring.
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Figure 35, '"Race-Track', Filament-Wound Tensile Specimen.
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Figure 36. Ratios of Maximum Bending Moments Induced in Race-Track
and Circular 0.15 cm. (0.06 in.) Thick Split-Dee Specimens of

G
Glass/Epoxy at 0. 69 — (100 ksi) Axial Stress.
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Figure 37. Schematic Representative of Mechanics of Deflection of "Race-
Track' Specimen.
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Figure 38. Photoelastic Study of Stresses in the Straightaway of a ""Race-
Track' Specimen.
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Figure 39, Strain Measurements Near the Split in the Dee in N, O, L. Ring
Type Split-Dee Tension Test.

181



V-Groove
Loaa’/ny Block

o

25 R.

Reswn Filler

Figure 40. Proposed Compression Specimen Made from Segments of NOL
Ring.
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Figure 43, Top and End Views of Compression Specimen Cast in Cerrobend
End Fixtures,
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