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TRANSIENT SOLIDIFICATION OF A FLOWING LIQUID ON A COLD PLATE
INCLUDING HEAT CAPACITIES OF FROZEN LAYER AND PLATE™
by Robert Siegel and Joseph M. Savino

Lewis Research Center

SUMMARY

An analysis is made of solidification within a flowing medium where a convective
boundary condition is imposed on the moving interface of the solidifying layer. The con-
figuration is one in which a frozen layer forms in a warm liquid as it is chilled while
flowing over a plane wall that is convectively cooled on the opposite side. The analysis
includes the heat capacities of both the wall and frozen layer. The solution for frozen
layer thickness variation with time is given as a closed-form algebraic equation and in
graphical form so that results can be readily evaluated for use in practical applica-

tions. Some illustrative examples are given for flowing water in contact with Inconel
plates of various thicknesses to demonstrate the effect of the heat capacities and the lig-

uid and coolant temperatures on the growth of the ice layer and the temperature distribu-
tions in the ice and wall.

INTRODUCTION

This report is concerned with the analysis of solidification when a convective heat
transfer condition is imposed at a moving interface of a frozen layer. This type of
boundary condition is encountered in important applications such as the solidifying of
metal castings in molds, freezing of rivers, and solidification within liquid flow heat ex-
changers that use a cryogen as the coolant. As discussed in references 1 and 2, rela-
tively little analytical work and even less experimental work has been done for conditions
where solidification is occurring within a flowing liquid phase.

The specific configuration considered here is the solidification of a warm liquid as
it flows over one side of a plane wall that is convectively cooled on the opposite side.
Initially there is no coolant flowing, and the wall and liquid are at a constant tempera-
ture that is above the fusion temperature of the liquid. Then a coolant is introduced
whose temperature is below the freezing temperature of the liquid. As the wall cools

*This material was presented at the ASME Winter Annual Meeting in Pittsburg, Pa.
Nov. 17, 1967 as Paper No. 67-WA/HT-34.



below the fusion temperature, the flowing liquid in contact with the plate begins to solid-
ify.

During the transient growth period, the heat supplied to the liquid - frozen layer in-
terface is made up of the convection from the warm liquid and the latent heat of fusion
generated by the freezing process. At steady state only the convective heat flux is sup-
plied to the interface. The thickness of the steady-state layer is determined by the heat
balance that this convective flux is exacily equal to the heat conducted through the frozen
layer and wall and convected to the coolant.

In references 1 and 2, we investigated the transient solidification of a warm liquid
on a thin wall, The heat capacity of the frozen layer was accounted for, but the wall heat
capacity was considered to be negligible, The analytical solution was adequate for ap-
plications where a thick frozen layer forms on a thin wall. For thick walls, however,
the wall heat capacity may be large compared with that of the frozen layer and may sig-
nificantly retard the frozen layer growth., It is the purpose herein to develop a method
that can be easily used to predict frozen layer growth when both the heat capacities of
the frozen layer and the wall are accounted for.,

To obtain the frozen layer growth, the transient heat conduction equation was inte-
grated within the frozen layer and within the wall. This yielded coupled integral equa-
tions for the temperature distributions in the two media, and an integral equation for the
frozen layer growth; this set of equations was solved iteratively. The frozen layer
growth with time was obtained as a closed-form analytical equation that is easily evalu-
ated for practical applications. Part of the growth relation is presented in graphical
form so that hand calculations can be readily made. .

To illustrate the influence of the wall and frozen layer heat capacities on the solidi-
fication rate, several examples are given for freezing of water. The examples illustrate
the effect of varying the wall thickness, the coolant temperature, and the water tempera-
ture. The transient temperature distributions in the ice layer and wall are also shown
for a few example cases.

SYMBOLS

a  thickness of cooled wall
a' dimensionless wall thickness, a./XS
¢ specific heat
frozen layer capacity term in growth equation, see eq. (26)

F

G integral terms defined by eq. (17b)
h  convective heat-transfer coefficient
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integral terms defined by eq. (16c)
integral terms defined by eq. (16d)
integral terms defined by eq. (16e)
integral terms defined by eq. (16f)
thermal conductivity of solidified material
thermal conductivity of wall material
latent heat of fusion

heat flux in x direction

dimensionless parameter, (Xs/k)/ [(l/hc) + (a/kw)]
dimensionless parameter, cp(Tf - T.)/L
temperature

dimensionless temperature, (T - Ty)/(T, - Ty)

T, dimensionless temperature, (T - Tf)/ (T, - Ty

w wall capacity term in growth equation, see eq. (26)

X thickness of frozen layer

X' dimensionless thickness of frozen layer, X/XS

X thickness of frozen layer at steady state

b.4 position coordinate measured from frozen layer-wall interface
X! dimensionless coordinate, x/XS

o thermal diffusivity, k/pcp

B dimensionless coordinate, x/a

% dimensionless parameter, 1 + kw/hca

£ dimensionless coordinate, x/X

T time from start of solidification

T time during wall temperature transient preceeding solidification
T dimensionless time, Th, (T, - T;)/pLX

i) function of y defined in eq. (27)

Subscripts:

c coolant

f at freezing temperature



l liquid phase of solidifying substance

] steady state

w wall

1 wall boundary in contact with coolant

2 wall boundary in contact with solidifying material

successive iterative approximations

N
=]

ANALYSIS

The model used for this study is the one-dimensional configuration shown in figure 1.
The x coordinate has its origin at the interface of the frozen layer and wall, and the
wall extends to x = -a. A warm liquid at a fixed temperature Tl flows over one side
of the wall, and it is assumed that the convective heat-transfer coefficient hl is a con-
stant., A transient solidification process can then be initiated by introducing a flowing
coolant on the other side of the wall. It is assumed that the coolant is at a fixed tem-
perature T c and provides a constant heat-transfer coefficient hc' After introduction
of the coolant, the wall cools until the freezing temperature is reached on the surface of
the wall (x = 0) exposed to the warm liquid. At this instant (7 = 0, X(7) = 0) solidifica-
tion is assumed to begin. The liquid - frozen layer interface is assumed to always be at
the equilibrium fusion temperature Tf.

During the solidification process latent heat of fusion is being released at the inter-
face of the solidified layer and the flowing warm liquid. The latent heat, along with the
convective heat being transferred from the warm liquid boundary layer to the interface,
is conducted through the frozen layer and wall and is then transferred to the coolant,

The coolant also removes the additional amount of heat necessary to subcool the frozen
layer and the wall as their temperatures decrease. The solid layer continues to grow
until it achieves a steady-state thickness Xs‘ Constant properties are assumed through-
out the analysis.

Steady-State Thickness of Frozen Layer

In many solidification problems the frozen layer never approaches a steady-state
thickness; rather, it continues to grow indefinitely with time. This occurs in a lake or
river, for example, when the entire body of liquid is already at the freezing temperature
and is exposed to a heat sink, the cold atmosphere in this instance. The only heat
source in such a case is latent heat of fusion which is continually extracted so long as

4



the heat sink is present, thereby causing the frozen layer to grow continuously.

When, however, the liquid flowing over the frozen layer is at a temperature above
the freezing point, the warm liguid continually supplies heat to the frozen layer - liquid
interface by convection. Under this condition the frozen layer eventually achieves a
steady-state thickness. This thickness, which will be used as a reference length in the
later analysis of growing layers, is derived here.

It is assumed that the liquid-solid interface at the boundary of the frozen layer is
always at the freezing temperature Ts. If the heat flow is taken as positive in the posi-
tive x direction, the convected flux from the liquid to the liquid - frozen layer interface
is at all times

-q= hl (Tl - Tf) = constant

At steady state a heat balance at the liquid - frozen layer interface gives the relation

Tf - Tc
q.=h, (T, - Ty = —
s 1\l f
Xs a 1
P T S E
k kw hc
This is solved for the steady-state thickness
T, -T
xs=_k_ £ __c._k<i+L> (1)

For X =0, equation (1) gives the relation between variables required to just avoid

freezing. For example, solving for T, gives

l

T, -T
::"]'_‘f+______.___f ¢ (2)

X =0
s h, <1+L>
K g

To prevent freezing, the liquid temperature T, must be equal to or greater than the
value given by equation (2).

T,




Description of Method of Analysis for Frozen Layer

Growth and Temperature Distributions

Before proceeding with the details of the analysis, it is instructive to outline the
general features of the method. The heat flows within the frozen layer and the wall are
governed by the one-dimensional transient heat conduction equations:

2
kT pe, oT (32)
ax2 oT
for the frozen layer and
2
o°T oT
——W%ep e V¥ (3b)
wp
axz W oT

for the wall. Equations (3a) and (3b) are each integrated twice with respect to the space
coordinate x. The first integration in each medium is between one of the boundaries and
an arbitrary position x. This results in expressions for the local heat fluxes k(3T/9x)
and kw(aTw/ 0x) in terms of the heat fluxes at the boundaries which are generally un-
known. The second integration, again between one of the boundaries (not necessarily the
same boundary used in the first integration) and an arbitrary position x, yields the local
temperatures T(x,7) and Tw(x,'r) in terms of the temperature at one boundary of each
medium and the heat flux at one boundary.

In this problem the only known boundary temperature is at the liquid - frozen layer
interface. The instantaneous temperatures and heat fluxes are unknown at the bounda-
ries between the solidified layer and wall and between the wall and coolant. When the
unknown boundary heat fluxes and temperatures are eliminated by some rather lengthy
algebraic manipulations, there results two rather complicated coupled integral equa-
tions, one each for T(x,7) and Tw(x, 7).

When the equation for T(x,7) is evaluated at the liquid - frozen layer interface,
which is at the known solidification temperature, an equation is obtained for the rate of
frozen layer growth. This equation is integrated to obtain the layer growth, but the in-
tegrated form contains integrals of T and Ty The frozen layer growth equation and
the two equations for T and Tw form a set of three coupled integral equations, They
are solved by an iterative method leading to closed-form approximate analytical solu-
tions,

P



Temperature Distribution Equations

Equation (3a) is integrated from any position within the frozen layer x to the solid-
liquid interface X:

X

=pc/ Tax o0=x=X 4)
x px oT

k9T
ox

g 9T
X ox

At the liquid - frozen layer interface the heat conducted into the solidified layer is equal
to that supplied by the latent heat of fusion and the convection from the flowing liquid:

= pL ;E +hy (T, - Ty) (5)

X T

k8T
0x

Equation (5) is substituted into equation (4) to give

X

g T =+pL§+hZ(Tl-Tf)-pcp/ T gx (6)

ox dr oT

X _ X

The term on the left side is the heat flow in the negative x direction crossing any posi-
tion x at any time 7. The last term on the right is the heat removed to subcool the
portion of the solidified layer between x and X. The integration of equation (6) from
the wall x =0 to any position x results in an expression for the instantaneous temper-
ature distribution in the frozen layer:

(7

where T, = T2('r).

In a similar fashion equation (3b) is integrated to obtain the temperature distribution
in the wall, Integrating from the boundary in contact with the coolant x = -a to any x
location within the wall gives



T oT XaT
kw"w" -kw_wi = Py / Yiax -a=<x=0 (8)

ox x ox |-a wJ_g oT

At x = -a the boundary condition is
oT
w —
Ky —r| =BTy - TY) (9
-a

where T, = T,(7). Substituting equation (9) into (8) gives

XaT

oT
w
Ky ——

ox

X -a

To obtain the temperature distribution in the wall, equation (10) is integrated again from
x=-a to x(theuse of x=0 to x as an alternate choice for the integration limits re-
sults uitimately in the same final expression for T_(x,7)):

, h, Pwp,, X T,
Tw(x,'r)-le——(Tl-Tc)(x+a)+ dx jdx ~;a=x=0

-a

(11)

Equations (7) and (11) provide the temperature distributions in the frozen layer and
wall but are not yet in usable form because they contain Ty and T2 which are unknown
functions of time. These temperatures can be eliminated by applying the conditions of
continuity of temperature and heat flux that must hold at the boundary between the wall
and frozen layer. Continuity of heat flux provides the relation

i 2T
ox

x=0

and by use of equations (6) and (10) evaluated at x = 0 this becomes

_ w
-h (T -T)= pwcpw / - dx (10)
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X 0
dx oT w
— - - —_ dx = -
pL dT + by (Tl Ty) pcpz - h (Ty - T,)+ pwcpw / - dx
a

(12)
Continuity of temperature requires that at x= 0, Ty from equation (11) must equal Ty;

therefore,

p._C X
h wp oT
T, -T,;=-S(T,-T.J)a+ w W dx Jax (13)
2”11 1- Te
Ky La 0T

-a

Equation (12) yields an expression for T, and this is substituted into equation (13) to
obtain a relation for T2. The T, and T, are then substituted into equations (7) and
(11) to yield the temperature distributions

p_c 0
h a h wp oT
T(x,7) = T, + 1+ S Eé-d—x—+—£(Tl-Tf)- W/ W dx
kg, J1he dr h, he J, o
e [X n Pl O/ %1
__p/ LW OO S S S / W axJax
h, 4 or k dr k a 0T
-a
X
X
pe
-—B /il—‘dxdx (142)
k - oT
0
[ 0
P aT
TW(X,T)zTC+ .1+__?.(x+a) pL dX _l(Tl_Tf)_ W/ W dx
h,dr h oT
c c ¢ Y-a
X p_C X X
pc wp aT
-——p/ T x|+ ——¥ / W ax)dx  (14b)
he 0 or 1“w a7
-a



The temperature distributions in equation (14) can then be placed in dimensionless
form by letting x' = x/X_, 7' = h (T, - Tpr/PLX, X' = X/X,, T' = (T - T/ (Tg - Ty),
Ty = (T - Tp/(T, - Ty), R= (Xs/k)/[(l/hc) + (a/kw)], S = cp(Tf - T.)/L and using
equation (1) in the form

(T, -TY) g
kK (T;-T) 1+R

This gives
X' x X
1 \d \
T-1-lyRXf X)) RS l/ ildxw/ / T gx g
1+R dr' 1+ R\R 0 o' b et oT!
.o RS _& ___W dx' - / / -_—dx' dx' (15a)
o 1+R\R k [gr 0T ot!
1+R-E-x' 1
Ky ' x o
Ty=1- 1+——+S/ 2o ax
1+R dr 0 ot'

+ BS o l&wa __dx' / de'dx' (15b)
1+RozW R k ~ oT! aT!

A few transformations on equations (15) are now made. The time derivatives are taken
out of the integrals by using the rule for differentiating under an integral. The double
integrals are changed into single integrals; the method for accomplishing this is
outlined in reference 1. Then the substitution (3/27') = (dX'/ d'r')[(a/ oxX' )] is made, This
yields the temperature distributions in the forms

T'(x,X') = 1 - (1 * RX)(£“£+ 1) (B aae,x), o SO0

1+ R /\ar 1+ R dr X' o, X!

10



k

1+ 2 Rx!
od. ' X
T (x,X) = 1- Sw a' ;). RS &X'|aix,X), a PTwE.X)
1+R dr 1+ R dr ox' oy ax'
(16b)
where
1 X' X' x!
Ix',X'") = -—f T dx' + X'/ T' dx' +/ xT" dx' (16c)
RY0 X! 0
0 0
I (X') = & 1 ™ dx' + XT  dx' (16d)
w k RJLa ¥V -a! w
1
X'
J(x', X") -1 / T dxt + K x / T dx' (16€)
R 0 lgv 0
J(xt,x") =1 fw OT' ao s [ T a4 O aw (16f)
W _P_{T Lar W W * X! w '

In the temperature distribution equations (egqs. (16a) and (16b)) there still remains
the unknown quantity dX'/dr'. This quantity is also needed so that it can be integrated
to obtain the frozen layer growth with time, The expression for dX'/dr' can be found
by imposing the physical boundary condition that at the liquid - frozen layer interface
T=T; at x=X. This gives in equation (16a) T' = 0 at x' = X', and equation (16a) can
then be rearranged to yield

1 *
x'_ . R(1-X) (17a)
dr? dI
1+ RX +RS<£1£+i v:r)
L]
ay dx
where
1 X|
G(X') = I(x' = X', X') = _l_f T dx' + f T dx' (17b)
R0 0

11



Equation (17a) is substituted into equations (16a) and (16b) to eliminate dX'/dr' and
to obtain the final forms of the temperature distributions:

TQr

d
1+Rx'+Rs(ﬂ+i _‘E’.)

=)
ax’ d

(18a)

oo R(L-%) X oy X R(1-X').
1+R 1+R
1+RX'+RS<—49-+-9~
' o
w
L JL
i ag NI
R< -._lf_x'> 1+£RX‘+RS<iI—+i—W>
\} 1
_ kw /o kW aX o af_ R_(,]‘—X')
w 1+R 1+R

Frozen Layer Growth

axr

1+RX'+R3<E+

a fﬂ)
oy axe

(li-3b)

Now return to equation (17a) and integrate to obtain the time variation of the frozen

layer thickness.

X'=0 at 7" =0 yields

X'
T'=/

0

A+RX 4. s
R(1 - X')

dX!

Xt
1
0 1-X

X'
96 gx 4 s_‘i‘_/ 1
a 0 1 - X'

w

Separating the variables and integrating with the initial condition

Wy

(19)

Integrating the first term of equation (19) directly and the last two terms by parts gives

12
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X!
T'=[.x'-(1+R)1n(1-x')]+s__6<x'>- &) gy
R

t-x f xp
L X' L
o W) - W) | o)
ay 1-X A (1-—X')2

Equation (20) is the general expression that relates dimensionless frozen layer
thickness and time. The quantities G(X') and IW(X') contain the temperature distribu-
tions T'(x',X') and T!W(x',X') in the frozen layer and wall, respectively; these distribu-
tions are provided by equations (18a) and (18b). The method of solution for the coupled
temperature and layer growth relations will be given in the next section. The term
IW(O) in equation (20) accounts for the temperature distribution in the wall at the instant
that solidification begins. It should be noted that the influence of the wall heat capacity
appears as the additive terms

o Uy

t
aWdX

and

BJW

R
@
>

in equations (18a) and (18b), and

ol R

- - axe
oy 1-X IW(O) )2

b (1-x

in equation (20).

Approximate Solution by Analytical lterations

The temperature distributions in equation (18) depend on the instantaneous frozen
layer thickness, and the layer growth time as given by equation (20) depends on integrals

13



of the temperature distributions. An approximate solution to this coupled set of equa-
tions is obtained by an iterative technique.

The first approximations for the frozen layer and wall temperature distributions T'
and T, and the growth time 7'(X') are found by neglecting the effect of heat capacity in

both media. When cp and cp are set equal to zero, the parameters S and l/ozW
W

become zero. Then from equations (18a), (18b), and (20) the first approximations are

T} = RX' - x1) (21a) »
1+ RX . '
b
R<X' -k x')
!, = Sw (21D)
I 1+ RX
and
r=-x - 1By -x) (22)
R

Improved approximations for T', TG, and 7'(X') can now be obtained by substitut-
ing equations (21a) and (21b) into the integral quantities G, I, L, J, J, in equations
(18a), (18b), and (20). When the integrations are carried out, the final equations for the
second approximations take the form

S Uy
1+RX'E +RS|{ — + —
oxXr oy dx'
Ty, x1) = RL-X'E) R(1 - X')
1+R 1+ R dI
dGI a Wy
1+RX*"+RS| — + — —— r
X a X ‘
w X
g,’
(23a)
where
2.2
8II= RZ 1’_ Z(_'__*_X'Z N X'2£+X'3€ _ X E +X!3€3 (23b)
oxXt (1+RX')2 R\ R 2 R 2 2R 6
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dG 3
I. R (X, %2, RX (23¢)
X' (14 rx)2 \R 3
dI, 2
I_ 1 al 5w Rat? + B. Kk 43 (234)
X' q+rx)2\ K 3 ky
g=% and 0=t =<1
K 0 o wp
R -_k-a'B 1+ > Ra'8+RS —_
K, X' o, X
T, 18, %) =
’ 1+ R 1+ R
x R(1 - X') (242)
dr
dG W.
1+RX' +RS|_14+. @ _ 1
ax oy, ax
where dGI/dX' and dIWI/dX' are given by equations (23c) and (23d) and
Wy (1 RX' (2 + RX')
—_—= __+_a'B (24b)
oX' \R Kk 2 (14 Rx)2
Twy R a ¥ 2 Rk _3 a2 R k 3,3
= Z 2 -afs - —at- P2 2 arvg (24c)
T
X' (1, gx)2\R Kk 3 K, 2 6k,

and finally
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2
sJ_ Rx [x'+ 2+R]+3+3R+R1n(1_X.)+ln(1+RX')

'r'n= 'r'I -
R O T il 3 X'R ol g i=X 25)
oy k 3 Kk (1 + R)(1 + RX") (1+R)2 1+ RX'

The solutions given by equations (23), (24), and (25) were the highest order approxi-
mations that were carried out for the preseht problem. It might be possible to obtain the
third order approximations, but the results would be so complex that they would not be
useful for practical problems. A numerical approach would probably be simpler than
carrying out the third approximations. The solution equation (25), however, can be
readily evaluated and reveals the influence of the several independent parameters. In

reference 1 where cp was neglected, it was demonstrated that the second approximate

W
solutions differed by only a few percent from the third approximations. It seems rea-

sonable to assume that the same behavior holds true for the solutions presented in this
report.

Graphs for Predicting Solidified Layer Growth

Equation (25) for predicting frozen layer growth can be written as

2,3
TiI=T'1+SF+SiG'_kE-Ra'2+Ra' _k_>w (262)

a k 3 lg”

w

where 'r'I, F, and W are functions of X' and R only:

r=-x -1 Ripa o x) (26b)
R
2 .
F=-J_ BX' [xur 2+R]+3+3R+R In(1 - X') + (1 + BX') (26¢)
3(1 + RX") R(1 + R) 3(1 + R)Z 3R(1 + R)2

16



W = X'R 1 g 1-x
(1+R)(1+RX) (1,2 1+RX

(26d)

When the specific heat of the wall is zero, 1/01W = 0, the contribution arising from wall
heat capacity will be zero; that is, the term containing W vanishes. Similarly, SF is
the contribution from the heat capacity of the frozen layer. The term T'I is the solution
for no heat capacity in either wall or frozen layer.

For convenience in making quick desk calculations, the quantities TP F, and W
are given in figures 2(a), (b), and (c) as functions of R for various X' values. Fora
given set of imposed conditions (Tc, Tl’ h,, b, a, etc.) the R value is first computed.
Then the dimensionless time 7' to form a particular dimensionless thickness X' can
be obtained by reading the quantities from the graphs and combining them according to
equation (26a). This gives a relation between X' and 7' from which X = X(7) can be
found in dimensional form by using the definitions for X' and 7',

DISCUSSION

As discussed in conjunction with the application of equation (26a), the three terms
on the right side of the equation represent, respectively, the dimensionless growth time
7' when all heat capacities are neglected, the contribution of the frozen layer capacity,
and the contribution of the wall heat capacity. There are several parameters involved
such as S, R, a/aw, and a'. A general parametric study of the effect of these inde-
pendent parameters does not seem worthwhile, especially since equation (26a) can be
easily evaluated for any design application.

Before giving some illustrative examples, an examination of the last term on the
right in equation (26a) (wall heat capacity term) will provide some additional information.
The parameter R can be written in an alternate form:

*s
k

Y

where

17



For large hca and low kw’ y approaches 1 as a lower limit. On the other hand, for
large k. and small h.a, y can become very large. With this range of 5 in mind, the
factor in the last term of equation (26a) can be examined:

i

~w Swifpo1, 1 a'ﬁcp(y) @7)
K 3 k, k\ 7 g2 K

As y~1, & -—31- and when y -, & -1, Hence, the & is confined within rather nar-
row limits of magnitude and is positive. Now the quantity W is examined to determine
its sign. The term (X'R)/(1 + R)(1 + RX") is positive. The argument

(1 - X')/(1 + RX") < 1; therefore, In(1 - X')/(1 + RX') < 0, and W is positive for all X'
and R. It is then evident that the contribution to 7' by the wall heat capacity is posi-
tive; that is, the growth time 7 for a given thickness X is increased because of the
extra heat extraction needed to cool the wall. Since the factor F is positive, the same
effect is true for the frozen layer capacity. This is what would be expected from intui-
tive reasoning.

To demonstrate the type of results obtained from the analysis a few illustrative ex-
amples are now given. To choose some reasonable values for the parameters, one of the
experimental tests from reference 2 is used as a starting comparison. In those tests,
warm water flowed over an Inconel plate that was cooled on the opposite side by flowing
chilled alcohol. For the data shown in figure 3 the Inconel plate was 3/16 inch
(0. 476 cm) thick and a steady-state ice layer about 0.4 inch (1 cm) thick was formed.
The data is a little above the analytical prediction, but the agreement is satisfactory for
engineering purposes. Unfortunately the data does not provide a good check on all as-
pects of the theory because the heat capacity terms are relatively small for the thick-
nesses tested. Additional data would be desirable having larger frozen layer and plate
thicknesses.

With the experimental test in figure 3 as a starting point, the predicted influence
on the ice growth of changing some of the conditions is shown in figure 4. Figure 5 il-
lustrates the corresponding temperature variations in the wall and frozen layer.

Figure 4(a) differs from figure 3 only by having the wall thickness increased from
3/16 to 1 inch (0. 476 to 2. 54 cm). The resulting steady-state ice layer is relatively thin.
The growth curves reveal that the ice capacity has a negligible effect while the wall ca-
pacity significantly slows the frozen layer formation. In figure 4(b) the coolant temper-
ature is decreased from -40. 5° to -400° F (232. 9° to 33.2° K) with the remaining condi-
tions kept the same as in figure 4(a). Lowering the coolant temperature causes the
steady-state ice layer to become quite thick. As shown by the growth curves, the ice
capacity now has a significant effect throughout the layer growth; the wall capacity is
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only important during the early portion of the transient (the temperature distributions of
fig. 5(b) show it is during this period that the wall undergoes most of its cooling). In fig-
ure 4(c) the conditions remain the same as for figure 4(b) except that the water tempera-
ture is increased from 53. 5° to 150° F (285. 1° to 338.7° K). This causes the ice layer
to be relatively thin and provide a minor heat capacity effect; the effect of the wall ca-
pacity is large since the wall is substantially cooled by the low temperature coolant.

The solid lines in figure 5 show the transient temperature distributions in the wall
and ice as computed from equations (23) and (24) for the conditions in figure 4. The
curves in the ice layer terminate at the various x values equal to the instantaneous ice
thicknesses at the times shown.

The dashed curves in figure 5 are solutions to the one-dimensional transient heat
conduction equation for the wall before the frozen layer begins to form. The solutions
were carried out for the case where the wall was subjected to the water flow on one side
and was initially at a uniform temperature equal to the water temperature. Then at time
T = 0 the convective cooling condition was applied to the other side of the wall, The
dashed curve for the largest 7 is the temperature distribution at the instant when the
surface of the plate in contact with the water reaches 32° F (273. 2° K), at which time
freezing is assumed to begin. At this 7 the dashed curve does not agree precisely with
the solid curve for 7 = 0 (as calculated from eq. (24)). This brings us to some com-
ments about the initial condition imposed on the freezing process.

An instant before a frozen layer forms, 7 = 07, the wall surface at x= 0 is at the
freezing temperature of the liquid and the heat flux into the surface is that supplied by
convection:

TW(X = O,T = 0_) = Tf

oT
w —
- = hy (T, - Ty)

An instant later, 7 = 0+, the frozen layer has just started to form and the heat balance at
the surface becomes

oT
1SV___W_ -k 9T =hl(Tl_Tf)+pL§

x=0 % |x=X-0 47 1x-0
=0 7=0% 7=0%

A comparison of these equations for kw(aTW/ 9x%) |x=0 at 7=0" and 7= 0" reveals
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“that the heat flux into the surface at x = 0 undergoes a step increase in heat flux by an

amount pL(dX/dr) IX=0 when freezing begins. The effect of this additional heat flux is
to retard the cooling of the wall in the vicinity of x = 0. Inthe remainder of the wall
this effect has not been felt at small 7 and the temperatures continue to decrease in the
same manner as before the freezing started. As a result, the temperature profiles
change in shape from those shown by the dashed curves to those shown by solid curves.

The present solution being approximate, since only the second approximation was
carried out, does not reveal in precise detail the transient adjustment that occurs at
small 7. As shown by equation (20) the initial wall temperature distribution enters the
successive approximations in an integrated form by means of the IW(O) term. The rea-
sonably good agreement of the dashed and solid curves when the surface at x=0
reaches the freezing temperature shows that the freezing solution given here corre-
sponds well with the following initial condition at the beginning of the entire transient
process. When T < 0 there is no coolant flowing and the wall and flowing warm liquid
are all isothermal at the temperature of the liquid that is flowing over one side of the
wall, Then at T = 0 the coolant is introduced on the other side of the wall.

CONCLUDING REMARKS

In this report a solidification analysis is presented for conditions that arise in some
important engineering applications such as casting of metals in molds, heat exchangers
using cryogenics, and freezing of ice sheets on rivers. The problem studied is the tran-
sient solidification of a flowing warm liquid in contact with a plane wall that is suddenly
cooled convectively from the opposite side. The purpose of the analysis was to derive a
method whereby the instantaneous frozen layer thickness could be predicted at any time,
and which would account for the heat capacities in both the frozen layer and wall, Al-
though this is a complex problem, a closed-form analytical solution (eq. (26)) was found
that can be easily evaluated for engineering use. Portions of the equation are presented
in graphical form to further facilitate its use. :

To demonstrate the type of results that are obtainable from this equation some ex-
amples are given for ice forming on a stainless-steel plate. The examples illustrate
that under some conditions the heat capacities of the frozen layer and wall appreciably

retard the frozen layer growth.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 18, 1967,
129-01-11-06-22.
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