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The suitability of the Boltzmann equation for calculating transport coefficients
of partially ionized gases 1s discussed. Analytical and experimental investigations
are cited to show that it can be used as a starting point to calculate the total
thermal conductivity. The Chapman-Enskog solution of the Boltzmann equation is used
to derive an expression for the total thermal conductivity, composed of three parts -
the translational, reactive, and thermal diffusive components. The reactive and és’
thermal diffusive components are explicitly expressed in terms of the multicomponent
and thermal diffusion coefficients. Effects of higher order Sonine expansion terms
are examined for the various transport coefficients. The first three orders of the
Sonine expansion terms are required for the accurate calculation of the translational
thermal conductivity, whereas only the first two orders are sufficient for the cal-
culation of the multicomponent and thermal diffusion coefficients. These diffusion
coefficients are then used to calculate the reactive and thermal diffusive components
of the total thermal conductivity of hydrogen, nitrogen, and argon at conditions
where the reactive component is at a maxirume. These values of the reactive conductiv-
ity are examined to determine the relative importance of multicomponent and thermal
diffusicn. The predominant mechanism for hydrogen is the binary diffusion of atoms
and ions, although the effects of thermal diffusion of electrons is also important.
Thermal diffusion becomes more dominant as the molecular weight of the atom increases.
In fact, the multicomponent diffusive effects for argon cancel, and the reactive
thermal conductivity can be attributed almost entirely to the thermal diffusion of
electrons.
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1. Introduction

An object traveling through an atmosphere has part of its kinetic energy converted into thermal
excitation of the surrounding flow field gas molecules. When the speed is sufficiently high, the gas
decomposes into a complex mixture of molecules, atoms, ions, and electrons. The total thermal conductiv-
ity of this gas must be known in order to determine the heat flux into the surface of the object. In the
calculation of the thermal conductivity of this ionized gas, one would ask the following questions.

First, does the presence of charged particles introduce phenomena which affect the thermal conductivity?
Second, is the theory which is used for neutral gases sufficiently general to account for these phenomena?
This paper will describe some of the analytical and experimental work done in the past few years to
resolve these two questions.

The greatest difference between an ionized gas and a neutral gas lies in the range of intermolecular
forces. TFor example, the effective range of the force between two neutral particles or a charged parti-
cle and a neutral particle is orders of magnitude smaller than the average intermolecular spacing. These
effective ranges are in accord with the basic assumption that particle collisions in the gas are binary -
a necessary condition for the validity of the Boltzmann equation governing the transport coefficients of
neutral gases. In contrast, the effective range of the intermolecular forces between two charged parti-
cles is usually greater than the average intermolecular spacing. At first appearance, this suggests
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that the Boltzmann equation is not valid for gases with an appreciable degree of ionization®. This situ-
ation. prompted Spitzer and his coworkers [1 and 2]% to derive a theory which describes transport phenom-
ena (specifically electrical and thermal conductivity) of an electron gas where the interactions are
attributed to many long-range simultaneous but independent Coulombic interactions. The collision term in
the Boltzmann equation was replaced by the Fokker-Planck expression which describes these simultaneous
interactions. Recently Gross [3], Grad [4], Koga [5], and others re-examined the mathematical implica-
tions of the Boltzmann and Fokker-Planck equations and concluded that the Boltzmann equation was valid
for ionized gases after all. Grad stated that

"« « «The critical point here is that, although the two physical pictures are entirely dif=-
ferent, their mathematical descriptions are identicall The net effect of many successive inde-
bendent small impulses is the same as many similtaneous independent small impulses, provided
only that the means and variances of the two impulse distributions are the same (actually, the
entire probability distributions were taken to be the same). Thus we conclude, without setting
pencil to paper, that the Fokker-Planck equation, which is an immediate consequence of the
similtaneous grazing impulse model, must yield results identical with those obtained from the
Boltzmann equation, provided that an appropriate grazing collisions approximation is made and
the same cut-off is used in the latter computation.”

The ew:ivalence between the Boltzmann and Fokker-Planck equation for the case of a fully ionized gas was
further demonstrated by the excellent agreement of the two sets of values of transport coefficients based
on these equations [2].

A more rigorous theory for fully ionized gases can be derilved from Bogolyubov-Born-Green-Kirkwood-
Yvon hierarchy of eguations [6] which account for simultaneous but dependent interactions (i.e. many
particle correlations). An analysis by Sundaresan and Wu [7] has shown that the thermal conductivity
from the B-B-G-K-Y approach is almost identical to that for the Fokker~Planck approach.

The accuracy of the Boltzmann equation was demonstrated in two recent experiments by Emmons [8] and
Morris [9]. The goal of their experiments was the measurement of the electrical and thermal conductivity
of partially ionized gases. Although the thermal conductivity could not be measured accurately at large
degrees of ionization because of the masking effects of thermal radiation, the electrical conductivity
was measured. In figures 1 and 2 the experimental values of the electrical conductivity are compared
with values based on the Boltzmamm equation (second-crder Chapman-Fnskog formulation). It can be seen
that the agreement is fairly good over the entire range of temperatures (degree of ionization ranging
from 1 percent at 9000%K to 100 percent at 22,OOOOK). Since the predominant cross section for the elec-
trical conductivity is the well-verified Coulombic cross section, the agreement shown in figures 1 and 2
is a good indication of the validity of the Chapman-Enskog formulation of the Boltzmann equation for all
degrees of ionization. Unfortunately, this is no guarantee that the values of the thermal conductivity
can be accurately predicted at these high degrees of ionization since the predominant cross sections
(e.g. atom-ion elastic and charge-exchange cross sections) are not known accurately, and since there are
different types of diffusional effects present in thermal conduction. This means that measurements of
thermal conductivity are still necessary.

2. Derivation of Total Thermal Conductivity

The analytical and experimental work described in the previous section indicate that the Boltzmann
equation can be used as a starting point to calculate the total thermal conductivity. The approach
described in this paper is the same as the Chapman-Enskog formulation applied to the case of neutral
monatomic gas mixtures by Hirschfelder, Curtiss, and Bird [10] and will be examined to determine its
sultability for a partially ionized gas. Besides the difference in the range of intermolecular forces a
Ppartially ionized gas differs from a neutral gas in two other respects. TFirst, a charge separation field
arises because of local differences in the ion and electron concentrations, and second, the ratio of the
mass of the heaviest particle to that of the lightest particle increases by at least three orders of mag-
nitude due to the presence of free electrons. A great amount of foresight was used in the derivation of
the complete Chapman-Enskog formulation, for there exist terms which account for these two differences.
In principle the charge separation field can be calculated since a macroscopic force term is included in
the Chapman-Enskog formulation. The much larger mass ratio in partially ionized gases is not really a
fundamental difference, but it does mean a re-evaluation of certain computetional simplifications which
were carried over from the calculation of the thermal conductivity of neutral gas mixtures. For example,
it has been customary to discard certain Sonine expansion terms in the translational thermal conductivity
end the multicomponent diffusion coefficients, and to omit effects of thermal diffusion on the total
thermal conductivity [10]. An examination of thermal diffusive effects does show that the effects are
small for neutral gas mixtures, but it also shows that the effects become increasingly important as the

2The Boltgzmann approach is presently the only one available for the calculation of transport coef-
ficient of partially ionized gases, although many competing approaches are available for fully ionized
gases.

SFigures in brackets indicate the literature references at the end of this paper.
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ratio mheavy/mlight increases. Consequently, the author [11 and 12] showed that it was necessary to
include the’'discarded Sonine expansion terms and to inelude thermal diffusive effects. The results of
these calculations will be described in the next section.

The calculation of the total thermal conductivity is based on the expression for the heat flux
vector
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where DE ig the thermal diffusion coefficient, and hi 1is the total enthalpy of a particle of
species 1. The quantity Ay 1s the thermal conductivity of a spatially homogeneous gas mixture without
concentration gradients. The diffusion velocity, Ii’ is defined as
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where Dij is the multicomponent diffusion coefficient and the "forcing potentiel” for a partially
ionized gas in the absence of pressure gradients i1s defined as
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where ¢€; 1is the charge, Zje, for a particle of species 1, and Eg 1s the electric field generated by a
difference in ion and electron concentrations. Equation (3) differs from the expression for 43i in [10]
in that ZjeEg describes an internal macroscopic force whereas the corresponding quantity in [10]
describes an external macroscopic force. However, the conceptual difference is only apparent as Eg
always stems from an external energy source (e.g. heating coils). Assume that this energy is imposed on
the system such that the average temperature is high enough to ionize the gas, but the temperature gra-
dient is small ernough to Jjustify linearization procedures. The temperature gradient induces concentration
gradients, Bxi/ag, and a charge separation field, Eg. If it is assumed that both Bxi/az and E5 are
proportional to the temperature gradient, it can be seen from eqs (2) and (3) that Vi and 4; are also
proportional to the temperature gradient. The heat flux vector can then be expressed as
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The reactive component of the thermal conductivity, A, derives its name because of the addition of the
reaction energy to the enthalpy of the individual species [13]. This mode of heat transfer can be
described in terms of a diffusion cycle. In the higher temperature region the concentration of ions and
electrons are larger than in the lower temperature region, forcing tne charged particles to diffuse
toward the lower temperature region. In this region, the ion recombines with an electron, thereby
releasing the ionization energy (i.e. transport of energy). The cycle is completed when the atom is
forced by the atomic concentration gradient to diffuse toward the higher temperature region where the
ionization process occurs. The translation component, Ay, is the conductivity of a spatially homogeneous
gas mixture without concentration gradients, and is the only component explained by simple kinetic theory
[10]. For obvious reasons, the third component of the thermal conductivity, Ag, is called the thermal
diffusive component. Unfortunately, no simple physical picture can describe this mode of heat transport.

The calculation of Ny 1s straightforward and is described by Hirschfelder, Curtiss, and Bird [10].
Before numerical values for A, and Ag can be calculated it is necessary to obtain values for the con=-
centration gradient of each species and the charge separation field, all in terms of the temperature
gradient. The simplest case which can be examined is that for a gas undergoing the reaction A+ T + e
(i.e. a ternary mixture of atoms, A, ions, I, and electrons, e). The solution of the problem can be
expressed in terms of four dependent variables - the concentration gradients for the atom, ion, and
electron, and. the charge separation field, all expressed in terms of the temperature gradient. However,
there are only three independent equations relating these four quantities. Two of these equations are
statements of the flux conservation of elemental particles as formulsted by Butler and Brokaw [13]. TFor
the ternary mixture the elemental particles are defined as a singly charged ion and an electron. Then
flux conservation requires that the diffusion velocities be related as follows®*:

“More explicit forms of (5) and (6), where V.

V; 1is expressed in terms of d;, was used in the
calculation of [1k4].




Xy + x¥p = 0, (5)

X, V) + x ¥, = O. (6)

The third equation can be derived from the expression for the equilibrium constant,

(Xip)ai) (7)
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where the aj's are the stoichiometric coefficients for the reaction (ay = -1, ay = 1, ag = 1). Combina-
tion of the gradient of eq (7) with explicit expressions for the charge separation force results in
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The author [12] discussed the difficulties in solving egs (5), (6), and (8) for x;/Or and Eg, but could
not offer a solution. Subsequently, Meador and Staton [15] circumvented the problem of too many vari-
ables by assuming that the concentration gradient of the ion was equal to that for the electron. They
Justified this assumpticn by combining concepts from electrostatics and plasma physics with expressions
from non-equilibrium thermodynamics, then using order of approximation arguments. The accuracy of this
approach will be discussed later. Meador and Staton used the equality of Oxy/Or and Oxe/dr in egs (5),
(6), and (8) to solve for BXA/BE and Eg. Their expression for the reactive component of the thermal
conductivity is
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which is identical to the Butler and Brokaw expression for dissociating gases [13] if it is assumed that
the multicomponent diffusion coefficient Dpy can be approximated by the binary diffusion coefficient

O 1 This equation has several implications: (1) The reactive component is completely dominated by the
binary diffusion between the ion and atom, (2) The reactive component is independent of the motion of the
electron, and (3) The reactive component is not affected by thermsl diffusive effects.

In a subsequent paper [14] the author also derived an expression for the total thermal conductivity.
In contrast to the Meador and Staton work, it was not necessary in [14] to rely on any subsidiary assump=-
tions, and the derivation was exact within the framework of the Chapman-Enskog formulation. The crux of
this approach is not to separate the forcing potential, d;, of eq (3) into Ox;j/Or and E; components,
but to solve for d;i directly by making use of the conservation of the net flux for each elemental par=-
ticle. Physically, this means that regardless of the value of the charge separation field, the concen-
tration gradients will readjust themselves so that the net flux is conserved (egs (5) and (6)).
Therefore, the combined effects of axi/ag and Egs in the form of di 1is a more logical dependent
variable than its components. The solution for the various d;'s is then obtained from eqs (5), (6), and
(8)s The determinantal expression for the various d;'s is
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where
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A combination of egs (1), (2), (10), and (11) gives the final expression for the total thermal
conductivity:
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where Ny 1s the translational thermal conductivity, the sum of all terms containing the various hji's
is the reactive thermal conductivity, and the sum of the remaining terms is the thermal conductivity due
to thermal diffusion. Note that the reactive component has two modes. The first is by multicomponent
diffusion and the second by thermal diffusion. For a fully ionized gass (i.e. no neutral particles)

eq (12) reduces to
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where u 1is the reduced mass of the electron-ion system.

Since the terms in eg (12) are so complex it would be impossible to single out by inspection any one
mechanism (e.g. thermal diffusion) as being the chief contributor to Ay or Ag. This can be done only
by an inspection of the numerical values which are described in the next section. However, it can be
seen from eq (12) that there is a definite need for accurate values of the multicomponent and thermal
diffusion coefficients since Ay and Ad are determined by Dij and Dg, and since B8i (the combined

effect of the concentration gradients and the charge separation field) are also determined by Dij and DE
(egs (10) and (11)).

3. Numerical Values of Higher Order Transport Coefficients

The importance of higher order Sonine expansion terms in the expressions for A, Dij, and Dg will
be described first. The expressions for Mg, Dij, and Dy [10] are the ratio of two determinants. If the
first and second Sonine expansion terms are used (second approximation) then both determinants contain
four subdeterminants which are designated as the 00, 01, 10, and 11 subdeterminants, where the O cor-
responds to the first Sonine polynomial and the 1 corresponds to the second Sonine polynomial. In the
calculation of the thermal conductivity of neutral gases the 00, 01, and 10 subdeterminants are normally
discarded (first approximation) with very little loss in accuracy [10]. Unfortunstely, this simplifica=
tion was carried over into the calculation of the thermal conductivity of partially ionized gases. The
result of this approximation is shown in figure 3 for partially ionized argon. The second approximation
of Mg [12] is larger than the first approximation by 30 percent at 5O=percent ionization and larger by
50 percent at complete ionization. An inspection of the numerical values of the elements in the Ay sub-
determinants [12] show that the increase in Ay 1in going from the first to the second approximation can
be attributed to the inclusion of additional terms in the 00 subdeterminant arising from interactions
between unlike particles (A=~I, e-A, and e-I). Subsequent analyses by DeVoto [16 and 17] showed that
third order Sonine expansion terms for the translational thermal conductivity were also appreciable.
Figure 3 shows that the difference between the third and second approximations for Ay 1s roughly the
same as the difference between the second and first approximations. DeVoto's calculations, however, show
very little difference between the third and fourth approximations. Landshoff's [18] calculations for an
electron gas show roughly the same trends in going from the second to the fourth approximation.

SThe author [12] erronecusly identified Ay with Spitzer's [2] field free thermal conductivity.
The error was resolved by the analysis of Meador and Staton.




Multicomponent diffusion coefficients are usually approximated by retaining only the first Sonine
expansion terms (i.e. using only the 00 subdeterminant). These first-order coefficients are compared
with the second=order coefficients (i.e. both first and second Sonine expansion terms) in figure 4. The
second=-order coefficients De_A(E) and De-I(2) are larger then the corresponding first~order coefficients
by 25 percent at 50-percent ionization and by 45 percent at complete ionization. An inspection of the
numerical values of the elements in the Dij subdeterminants show that the increase in Dij in going
from the first to the second approximation can be attributed to the inclusion of terms in the 11 sub-
determinant arising from interactions between like particles (A-A, I-I, and e-e). The electron=-electron
interaction is especially important since a simple hard sphere model shows that Dij 1s dnversely pro-
portional to the product of the collision cross section and the reduced mass. In contrast, the first-
and second-order coefficients for diffusion between heavy particles (e.g. DA-I) differ by only a few
percent. DeVoto's calculations show that there 1s little difference between second- and third-order
multicomponent and thermal diffusion coefficients.

It is essential that second=-order thermal diffusion coefficients be used since these coefficients
are identically zero in the first approximation. Typical values of the second~order thermal diffusion
coefficients for the argon atom, ion, and electron from [11] are shown in figure 5. In the expression
for the total thermal conductivity (eq (12)), r% always occur in combination with the particle
mass in the denominator. Although the electron thermal diffusion coefficient, ﬁg, is at most two orders
of magnitude smaller than those for the atom and ion, the electron mass is four orders smaller. Conse-
guently, thermal diffusive effects can be attributed almost entirely to the electron term. Another
interesting conclusion can be reached by an inspection of figure 5. It can be seen that the atom and ion
thermal diffusion coefficients are within 1 percent of each other in magnitude from a few percent ioniza-
tion up to extremely high degrees of ionization (approximately 95 percent). Beyond this point
decreases in value, changes sign, then approaches the value of Dg near 100-percent ionization. "These
variations imply that the diffusive motion of both the atom and ion esre essentially independent of that
for the electron, up to large degrees of ionization. The diffusive motion of the electrons, in turn, is
dictated by the ion rather than the atom because of the greater magnitude of the Coulonmbic forces®,

These same conclusions were reached from an examination of the second-order multicomponent diffusion
coefficients.

The previous discussion of second-order values of Djj and DE leads towards the calculation of Ay
and Ag from egs (10), (11), and (12). The author recently made a series of calculations for hydrogen,
nitrogen, and argon for a pressure of one atmosphere and temperatures corresponding to 50-percent ioniza-
tion. The values of A, were compared with those based on the expressions derived by Meador and Staton
[15]. The values of N, from the two sets of calculations agreed within a few percent. However, this
is not necessarily a verification of the Meador and Staton approach, as calculations have shown that any
non-trivial assumed values of Ox/Or and Oxe¢/Or will result in the same values of Ay and Ag. The
agreement can be explained as follows. The values of A, and Ag are determined not by the separate
effects of the concentration gradients and the charge separation field, but by their combined effects.
Consequently, if erroneous values of the concentration gradients were initially assumed the constraints
of the problem (egs (5), (6), and (8)) would compensate for this error in the resulting value of the
charge separation field.

A more critical comparison could come from the determination of the predominant mechanism for the
reactive component of the thermal conductivity. The reactive component from eq (12) can be resolved into
two components: (1) the sum of the hingmjDij5j/p terms which shall be called the Djj component for

identification, and (2) the sum of the hiDE/miT terms which shall be called the D? component. The
results are summarized in the following table.

Table I. Thermal Conductivity Components for Partially Ionized Gases (p = 1 atm, 50% ionization)

A (2) A(2) Wm™t deg™ Ng(2)
Gas
Wm™t deg™t Dj j component Dz component Wm™t deg™
‘Hydrogen 1.3C 5¢77 1.78 ~0.20
Nitrogen 1.34 0.87 1.30 =0.25
Argon 1.31 -0.17 1.32 ~0.29

BAs a result, the values of DE calculated for partially ionized argon can be used for other
partially ionized gases to a good degree of accuracy.



For hydrogen the largest contribution comes from the Djj component, and the predominant term in this
component is the hin mADIASA/p term as predicted by Meador and Staton. However, the thermal diffusive
contribution is not negligible, bul comprises 25 percent of the value of Ape As the mass of the heavy
particle increases, thermal diffusive effects become relatively more important. For example, in nitrogen
the DE component of Ay 1s larger than the Dij component. In argon the Dij component is almost
zero due to the cancellation of the ion term by the atom and electron term. Consequently, the reactive
thermal conduetivity for argon can be attributed almost entirely to the r@ component, and the predomi-
nant term in this component is the heDe/meT term. This result is in direct contradiction to those
predicted by Meador and Staton and indicates that one or more of thelr initial assumptions may be
erroneous .

This paper has described the analytical work done in the past few years to clear up some of the
uncertainties in the expression for the total thermal conductivity of a partially ionized gas. The
author feels that the theoretical basis for this expression is currently on substantial ground. However,
there are several deficiencies which must be resclved before accurate values can be calculated. The
first of these is the lack of measured or calculated cross sections for collisions between an atom which
is chemically unstable at low temperatures (e.g. nitrogen or oxygen) and an electron, ion, or another
chemically unstable atom. A second deficlency is the absence of terms in the expressions for the trans-
port coefficients which account for inelastic collisions, and the lack of measured or calculated cross
sections for these inelastic collisions. A third deficiency is the absence of any experimental verifica-
tion of the total thermal conductivity, especially in the region of 50-percent ionization where Atotal
peaks because of the reactive component. A method which shows some promise is the ultrasonic absorption
technique as used by Carnevale et al. [19]. Consequently, large amounts of analytical and experimental
effort must still be expended to remedy these deficiencies before accurate values of the total thermal
conductivity of a partially lonized gas can be obtained.
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- - FIGURE LEGENDS

Figure l.- Comparison of experimental and theoretical electrical conductivity of nitrogen.

Figure 2.~ Comparison of experimental and theoretical electrical conductivity of argon.

Figure 3.- Comparison of various approximstions for calculating the translational thermal conductivity of
argon.

Figure 4.- Comparison of various approximations for calculating multicomponent diffusion coefficients of
argon.

Figure 5.- Thermal diffusion coefficients of argon.
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