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ABSTRACT

By using currently accepted constants of geodesy, notably
several different sets of oblateness coefficients, seven models of the
geometry of the earth and its gravitational field, including the cur-
rently valid NASA Standard Model, are numerically derived and compared
with each other and with a newly developed geoid based on recent meas-
urements of the secular and periodic perturbations of artificial
satellite orbits.
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DEFINITION OF SYMBOLS

Symbol Definition

A, coefficients in the series expansion for the geoid radius

Az 2 coefficient of the sectorial harmonic in the geoid
expansion

Bo coefficient in the series expansion of the geoid radius

Cn,m numerical coefficients in the geopotential function

f flattening or oblateness

fe ellipticity (or flattening) of the equator

ge gravity at the equator

ge mean equatorial gravity

GMEB gravitational parameter of the earth (= p)

Ja coefficients of zonal harmonics in geopotential

Jn,m coefficients of tesseral harmonics in geopotential

Jn,n coefficients of sectorial harmonics in geopotential

g }' oblateness coefficients (older notation)

D

m centrifugal factor at the equator

also: index in series notation

P:(sin o)) associated Legendre polynomials of degree n and order m

Pn(sin D Legendre polynomials of nth degree

R, equatorial radius of the earth
ﬁe mean equatorial radius of the earth
RD polar radius of the earth



DEFINITION OF SYMBOLS (Continued)
Definition

north polar radius of the earth

south polar radius of the earth

longest equatorial radius of the earth

shortest equatorial radius of the earth

radial distance from the center of the earth
potential function

geographic longitude, positive east of Greenwich

longitude of the longest equatorial radius (semi-major
axis)

gravitational parameter of the earth

factor in equatorial gravity acceleration equation
geocentric latitude

factor defined by equation (22)

angular velocity of the earth's rotation
centrifugal factor at the equator

perturbation parameter in potential function

vi.




TECHNICAL MEMORANDUM X-53677
SURVEY AND COMPARATIVE ANALYSIS OF CURRENT GEOPHYSICAIL MODELS

SUMMARY

By using currently accepted constants of geodesy, especially several
different sets of oblateness coefficients, seven models of the geometry of
the earth and its gravitational field are numerically derived and compared
with each other and with a newly developed geopotential based on recent
measurements of the secular and periodic perturbations of artificial
satellite orbits,

Conclusions are drawn which show, among other things, that the cur-
rently used NASA Standard Model deviates significantly from the '"best"
geoid, and that there are better analytical, as well as numerical,
models by which improved approximation can be achieved.

Also, it is shown that improvements in the numerical values of the
used oblateness coefficients, rather than in their number, appear to
have little influence on the values of the gravity, but that they affect
the geometries significantly. Increasing the number of zonal harmonics
coefficients, . however, can lead to considerable improvements in the
gravity model, at least in the range studied (up to and including Ji4).

I. INTRODUCTION

In the past a number of theories of varying complexity have been
developed to describe the figure and the gravitation field of the earth
for use in geodetic, astrodynamic, and astronomical calculations.

In scrutinizing these theories, a number of discrepancies are mani-
fest which appear to be caused by two factors; i.e., (1) inherent incon-
sistencies in the development of some of the theories, and (2) differences
in gravitational and geometrical parameters used by their authors.

With regard to the first consideration, while the earth's gravita-
tional potential (i.e., the potential energy of the earth in relation to
the position relative to the earth) is commonly expressed by the poten-
tial function as a series of spherical harmonics, as adopted by the
International Astronomical Union (IAU)1*, the shape of the earth

*
Superscripts in .text indicate references at end of report.



introduced in the geopotential at the earth's surface with the simul-
taneous assumption that the potential along the surface of the geoid

is constant, is that of an ellipsoid which approximates the actual
geoid. The flattening of the ellipsoid is usually determined approxi-
matively by the astrogeodetic methods of geometrical geodesy (sometimes
also by the less accurate techniques of gravimetry), using variants of
Clairaut's theorem. However, even if higher-order extensions of the
latter are used, they remain only approximations, which become increas-
ingly inaccurate for increasing deviation of the geopotential from that
of a regular ellipsoid.

The second consideration refers to the fact that, with our increas-
ing knowledge of our globe and its gravity anomalies, the descriptive
geographical parameters are subject to change, particularly the number
and values of the oblateness coefficients, but also -- to a lesser
degree -- the gravitational parameter GMg, and the geometrical param-
eters flattening f, and mean equatorial radius Re' Urgently needed
standardization of the principal parameters was accomplished by NASA
in 1963, but new and additional data have been determined continuously
ever since and are being determined from an ever-increasing population
of artificial satellites in precision-tracked (Baker-Nunn) orbits of
all inclinations.

To relate these new observations to the geoid without having to
accept the inconsistencies of the second- and third-order Clairaut
extensions, a new theory was developed recently at MSFC by H. Krause
which further increased the bulk of existing geographic parameters and
models.

13,14
b

It is the objective of the following analysis to define and to com-
pare seven different geographic models, one of which is the current
(but outdated) NASA Standard. These models are based on four different
sets of oblateness coefficients, all of which are applicable to present
practical work, and also on the fact that for each set of oblateness con-
ditions two body geometries can be defined; i.e., a spheroid composed of
superimposed spherical harmonics and a regular ellipsoid approximating
this spheroid.

In the first part of the analysis, the general background and the
nature of the problem is considered in some detail, followed by the
derivation and description of the geophysical theories. In the third
part, the models are compared with each other. A number of salient
conclusions, forming the fourth part, can then be drawn.




IT, GENERAL BACKGROUND AND DISCUSSION OF THE PROBLEM

A. The Potential Function of the Earth

In the study of geocentric motion such as that encountered on rocket
trajectories and satellite orbits, among the most important constants
necessary for describing the environment are those pertaining to the
gravity field acting on the moving body, and to the shape or figure of
the gravitating body, the earth,

Theories attempting to describe the earth's gravity field are, by
necessity, fundamentally based on Newton's Universal Law of Gravitation,
which is rigorously accurate for a central force field as produced by a
perfectly homogeneous and perfectly spherical body. The gravitational
potential of such a Newtonian force field is

- .k
U=-=2. 1)

The potential function of the earth Ug, or the geopotential, is
defined as the integral of the gravity forces over the entire field,
which are the resultant of the gravitational forces due to Newtonian
attraction and the centrifugal force due to the rotation of the earth
and its atmosphere. Thus, the geopotential is the sum of the potential
of the gravitational field and the potential of the centrifugal force.

Ug = - % Q + ) + % w?r2 cos3g. (2)

If the rotational term is omitted, equation (2) expresses the
gravitational potential which is appropriate to inertial coordinates,
as useful for exo-atmospheric (free-flight) flight phases. For geodesy,
as well as for all other applications requiring a rotating earth coordin-
ate system, the term is retained.



In equation (2), the modifier | accounts for the fact that, contrary
to the basic assumptions of the Newtonian potential, the earth's internal
mass distribution is not entirely homogeneous and its shape is not
spherical, but oblate. Also, its surface is covered with irregularities,
such as continental highlands, depressions, mountain ranges, ocean deeps,
valleys, etc., which give rise to gravitational anomalies and require an
additive perturbative term to complete the geopotential.

Since the potential function of the earth is a solution of the
Laplace equation (V2U_, = 0), it is a harmonic function and can be repre-
sented analytically as the sum of a series of two-dimensional (spherical)
harmonics in a manner similar to the one-dimensional Fourier series as
representation of a nonanalytical function on a circle, The coefficients
of the terms of this infinite (converging) series are polynomials of the
general Legendre type, while the terms themselves are the so-called sur-
face harmonics, the introduction of which is due to Legendre and Laplace.
If the spherical harmonic is a function of two variables, such as lati-
tude and longitude (rather than only one, the latitude), it involves the
so-called Associated Legendre Polynomials.

The acceleration of gravity g of the earth is defined as V U and
can therefore also be expressed in spherical harmonics.

The perturbative parameter { of the gravitational potential in

equation (2) can be expanded, as described, in an infinite series of
spherical harmonics.

IPNC

n=1 m=0

m, , .
Pn(Sln o)) {Cn,m cos mA + Sn n Sin m%}, 3)

’

where r is the distance from the center of the earth, R_is the earth's
mean equatorial radius, @ is the latitude, A is the 1ong1tude, Cn,m and
Sn,m are numerical coeff1c1ents and the Pm are the associated Legendre
polynomlals Introducting equation (3) in equation (2), one obtains
the general formula for the earth potential, as recommended by the TAU
(1962)3>1,
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B. The Spherical Harmonics

It is seen that the second (aspherical) part of equation (4) con-
sists of an infinite series of harmonics which -- in a rigorous sense --
describes the perturbative potential accurately only if an infinite
number of terms are considered. Taking the terms by families according
to the indices, it is furthermore seen that for the first existing
family, where m = 0, 1 < n < », the equation reduces to

00 -

R

=4 e

Um=0_r[1+z<r
n=1

for the purely gravitational potential,

n
> . Pn(sin D - Cn]' (5)

In this special case, Pn(sin ) are the (simple) Legendre poly-
nomials of argument sin @, usually referred to as '"zonal" harmonics.
Obviously, the potential Up=g is independent of the longitude A; hence,
it is constant along (latitude) parallels, This means that the undula-
tions of the harmonics on the sphere are zero along parallels and become
alternately positive and negative between these n parallels in a dis-
tance n. Thus, equation (5) refers to an axially symmetric earth which
is fluted along the parallels and where the symmetry axis is the rota-
tional axis through the poles.

As an alternate for Cp,p, it has been recommended by the IAUT to
use

J =-Cc_ . (6)



Thus, for the body-of-revolution case, the purely gravitational
potential becomes :

oo -

B Re V'
Up=0 = " [1 - z Jn . < ” > . Pn(sin Q)}. ()

=1

The true figure of the earth does not exactly exhibit rotational
symmetry, as assumed by setting m = 0 in equation (4). The principal
axes of inertia of the true earth do not exactly coincide with the
rotational axis system, Thus, the angular momentum of the earth is
not pointing exactly in the same direction as the angular velocity.
Consequently, products of inertia do exist, which are represented by
higher harmonics. By letting m assume integral values from 1 to n,
terms are added to the second part of equation (5), which include the
longitude A as a second variable. Consequently, the associated
Legendre polynomials PQl(sin @) are also required, as well as coef~
ficients Jn,m. These terms are referred to as tesseral harmonics, with
the exception of the two terms in equation (4) resulting from letting
m = n, so that

C P cos nA and S Pn sin nA
n,n n n,n n

appear. These two terms are called "sectorial' harmonics.

The tesseral harmonics (0 < m < n) have zeros both along meridians
and along parallels; thus, the undulations represented by them become
zero on the reference spheroid simultaneously on a number of meridians
and parallels. They undulate in the form of a network across the spheroid
similar to a chessboard composed of fields that are alternatingly positive
and negative. Thus, for example, the spherical harmonic represented by
the function Pg (with the coefficient Jg,4*) forms a network of five

* The notation used commonly in the literature for the tesseral and
sectorial J-coefficients is Jn,. Thus, the first sectorial harmonics coef-
ficient would be J,o, the first tesseral coefficient J;,, etc. While this
practice represented an ambiguity in notation, with respect to the zonal
harmonics, no great confusion could be caused as long as the zonal har-
monics used in practical work did not exceed the tenth order. With pre-
sent analyses of the higher zonal harmonics already going to n = 21,

m = 0,% however, notation of the mentioned type would easily confuse
tesseral with zonal harmonics. Thus, the zonal J;4 could easily be inter-
preted as the tesseral n =1, m = 4, Since powers of J, are sometimes
encountered, the old practice of writing J} is also not desirable. Con-
sequently, it is suggested that tesseral and sectorial coefficients are
indexed with a dividing comma, i.e., Jn,m, while the zonal notation Jp

be retained. The notation Pg for the associated Legendre polynomials
should also remain unchanged.




meridians (four zeros in 180°) and (6 - 4) = 2 parallels (not equator)
on the sphere, cutting it into 30 (alternatingly raised and depressed)
pieces,

In the special case of the two families of sectorial harmonics, the
undulations of the function become zero on the reference spheroid for
cos § =11 (on the poles) and for cos nA = 0, i.e,, along n meridians
which are symmetrical to n planes through the rotational axis, thus
cutting the spheroid in sectors which are alternately concave and convex.,
Ja 4, for example, would represent undulations featuring four meridians
and eight sectors,

C. The Harmonics Coefficients

The coefficients of the tesseral harmonics of the earth, especially
the higher ones, are not really known. The sectorial coefficients Jp o
and J4 4 have been determined tentatively during the past 6 years and
are sometimes used in high precision orbit determination programs®, For
J2, 2, which has two zeros along a parallel (four sectors) and thus deter-
mines the ellipticity of the equator and the parallels, Kaula® gives

=(.80 £ 0,1) x 107°,

Of the tesseral harmonic perturbations of satellite orbits, only
the sectorial Jo 2 is large enough to be of practical concern 1n mos t
orbit analyses; specxflcally, for example, this harmonic affects the
supplemental energy requirements of 24-hour satellites. The sectorial
harmonic due to Jp p is depicted in figure 1.

Because of the uncertainty in and relative insignificance of the
tesseral harmonics coefficients, they are usually neglected in the
potential function which therefore assumes the commonly used form

R n
oot T o (G )

which was first suggested by Brouwer’ and adopted by the TAU in 1961,
If so desired, tesseral and sectorial terms with the appropriate assoc-
iated Legendre polynomials can be added to the second part of the equa-
tion, as required by the inclusion of the longltude A in the analysis,
as Well as the rotational potential (1/2)rZw2cos®@g to the whole equa-
tion to transform the gravitational potential in inertial coordinates
for a free body to the gravity potential for a body attached to the
earth.
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Of the (theoretically infinitely many) zonal harmonics coefficients
Jn, only a few are known with adequate accuracy. 1If an equatorial geo-
centric coordinate system is assumed as a reference system such that 1its
origin coincides with the center of mass, and if the latitude ¢ is meas-
ured relative to this center, the first term in the sum of equation (8),
which is proportional to 1/r, vanishes since the coefficient J1s
multiplied with R,, would represent the distance between coordinate
origin and center of mass; thus, J; = 0.

Of the other zonal functions, the second order harmonic is by far
the largest, since it refers to the mass distribution due to the earth
oblateness, thus defining the departure of the shape of an earth ellip-
soid from that of an ideal sphere, while J, being three orders of magni-
tude smaller than J,, and all following even J's account for deviations
in hemispherical mass distribution symmetrical about the equator plane,
i.e., for deviations of the geoid from the ellipsoid. Each even J of
increasing order, while maintaining symmetry about the equator plane,
"narrows down'" the figure into an increasingly complex shape, while the
sum of subsequent even J's describe the deviation of the geoid from the
preceding shape., The even J's, however, all represent spheroid shapes
with identical northern and southern "hemispheres."

The asymmetty of the northern and southern "hemispheres' of the
geoid, also referred to as "pear'" shape, is taken into account by the
odd surface harmonics, which contain odd powers of sin @, especially by
the principal coefficient, Jx. Higher-odd-order J's are at least one
order of magnitude smaller than this coefficient,

The first zonal harmonic is shown in figure 2*, Figures 3 and 4
depict the zonal harmonics due to Js and J,, and J5 and Jg, respectively,
Of particular interest is the ovoid form of J=, which is responsible for
the "pear'" shape of the earth,

D. The Theorem of Clairaut

In the past, higher order zonal harmonics, and especially the odd
harmonics, have been neglected in the geopotential. This was mainly
due to the methods of determining the coefficients used before the advent
of the artificial earth satellites. Also, since the amplitudes of high
harmonics -- according to the quantity 1/r® in their terms -~ decay very
rapidly with altitude above the surface, and their effect on bodies in
the earth's external gravitation field dwindles rapidly with increasing
order and/or altitude, coefficients above fourth order, as well as the
odd term Js, were usually neglected. Before the advent of the artificial
satellites, the moon was the only moving body in the earth's potential,
but at its distance only the second harmonic is still discernible in its
motion.

* The figure is actually the second term of equation (34),
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Determinations of the J-coefficients J, and J, were fundamentally
based on geodetic surveys, gravity measurements, observations of the
moon, and Clairaut's theorem. The latter deals with the form of a sur-
face which encloses all the matter of a rotating body with various dens-
ity distributions, which constitutes an equipotential surface (surface
of constant potential). Clairaut's formula (1743) is

J=f-3m, o)

where J is the second harmonics coefficient, m is the centrifugal factor
at the equator wZR/ge (with w®R = centrifugal acceleration at equator,
ge = gravitational acceleration at equator), and f is the flattening of
the ellipsoid of revolution, as assumed here.

Obviously, Clairaut's formula relates the amplitude of the second
harmonic in gravity to that of the corresponding harmonic in the radius
vector of the equipotential surface,

Clairaut's formula, because of the approximations made in deriving
it, is not accurate enough for practical use. A second order extension
of the theorem has been derived by Darwin (1899), DeSitter (1924),
Jeffreys (1954), Bullen (1946), Cook (1959), et al., resulting in equa-
tions involving higher orders of the flattening, such as the third-order
equation given by Kaulal,

Ja=%f0-30 -3 [1-%m-%f+%m 4;f2+0(f3):| (10)

With the use of Clairaut's theorem, as well as its extensions by
the mentioned authors, the earth flattening -- before the artificial
satellites -- could be derived separately in two ways: from a harmonic
analysis of observed gravity values (where the measured gravity anomalies
are used to compute the absolute deflections of the vertical and, thus,
the true undulations of the geopotential surface; also, .to derive the
detailed gravity field) and from astronomical observations of the con-
stant of precession and the theory of the moon's motion (DeSitter, 1915),
leading to J,. Higher J's could then ‘be computed from the higher-order
extensions of Clairaut's theorem, using the derived flattening, but when

13



the first artificial satellites were flown, it was found that higher-
order harmonic coefficients determined with this method did not agree
with the J's actually observed from the orbital perturbations of the
satellites. The reason for this serious discrepancy is simply the fact
that for the higher-order terms, due to the irregular density distribu-
tion within the earth, the basic assumption of an ellipsoid of revolu-
tion as the figure of the earth in the Clairaut formula and all
higher-order extensions is an increasingly bad approximation of the
geoid.

E. The Geoid

Distinction is made between the geodetic geoid, which depends on
the surface irregularities of the earth, and the geophysical geoid, which
is governed by the internal irregular mass distribution of the earth,

The geodetic geoid is the true figure of the earth. While the actual
earth surface with its irregularities is not an equipotential surface, the
geophysical geoid, however, is required to be an equipotential level,
identical with mean sea level and its continuation under the continents,
The geoid, thus, is an extremely complex shape, requiring a very large
number of higher-order harmonics for its description.

The reason for the use of the geoid in geodesy is the following:
In principle, the geometrical form of the earth's surface can be found
independent of observations of the potential and gravity, by geodetic
triangulation methods, and then, given the values of these quantities
on the surface, Laplace's equation can be solved for all the exterior
space. Because of the extreme complexity of the true boundary, this
would be an almost hopeless task. It is therefore universal practice
to refer all geodetic observations to the gravitational equipotential
surfaces and to determine the form .of-these from geodetic observations.
Because the sea-level equipotential surface is an internal surface on
land, the gravity field is not computed for the actual earth but for a
model earth which is related to the actual earth and which is bounded
by an equipotential surface. The field so computed will not agree with
that of the actual earth throughout space, but the model may be chosen
so that it agrees where observations can be made. This is the geoid.

The geodetic geoid must be computed point by point and cannot be
given. by few parameters, since it i§ not a mathematical surface but
depends on the irregular distribution of visible and invisible masses
near the earth's surface. For geodetic surveys, however, this point-by-
point calculation would be impractical. Therefore, reference spheroids
of revolution have been used instead. The reference spheroid is assumed
to be an equipotential surface of the same volume and flattening as the
geoid.

14




The history of geodesy has seen the following principal reference
spheroids (all ellipsoids):

Germany (and several European states)..,..l1841,..,.Bessel

ENgland.....ceevvueesecssassieneanasnn....1880, .., .Clarke

U.S. S Riutunivnenneonssansnnisnsanasenssssl938,.,. Krassowski
UeSiiiiieiinseeassessasnsensisansannansass1866,,,,,Clarke

U S ittt inevenarososnnessnsnerinsneeenssesso1910,,.., Hayford
UiSuineeeeerossoessasssosonssnasannsassss1963,,.. . Kaula/Fischer

F. Determination of the Harmonics Coefficients

As has been mentioned, J, in former times was determined from the
moon's motion, For the lower amplitudes of the higher order harmonics,
however, these effects are not discernible because r becomes too large.
However, when the first artificial satellites were orbited, it was found
that the gravitational anomalies expressed by the higher-order harmonics
characterize the potential field at their altitudes. Thus, the existence
and magnitude of Js (i.e., the "pear" shape of the earth) was first dis-
covered from satellite 1958p2 (Vanguard-1), launched in March 19588,

The asphericity of the earth, represented by the spherical harmonics,
causes constant secular and periodic perturbations on a satellite orbit,
By observing the secular and periodic perturbations, the zonal harmonics
coefficients can be determined. Since the secular changes, especially
the orbital precession (i.e., the regressive rotation of the nodal line)
and the advance of the perigee (i.e., the rotation of the apsidal line),
depend primarily on the even-numbered J,, while the long-period oscil-
lations in four of the five orbital elements (eccentricity, inclination,
longitude of ascending node (right ascension), and argument of perigee)
are caused primarily by the odd harmonics®, the determination of the
even J, is usually done from secular changes, while the odd J, are com-
puted from periodic perturbations. An orbital perturbation suffered by
one particular satellite yields one linear equation between the harmonics,
For example, if B is the amplitude of the observed oscillation in eccen-
tricity, we obtain an equation for the coefficients of the odd harmonics,
Js, Jg, J7... of the form*

AsJs + Agds + Ad7 + ... = B, (11)
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where the A's are constants for a particular orbit and depend mainly on
the orbital inclination i and semi-major axis a., By using several dif-
ferent satellites, several equations of the form (11) can be obtained.
Therefore, if a large number of satellites (widely distributed over as
many inclinations as possible) is available for analysis, an equally
large number of J; can be determined.

In solving the simultaneous equations (11), the main error of the
analysis is introduced by the number of J, to be determined remaining
finite and all terms higher than the highest desired J being assumed
negligible, In fact, however, these higher coefficients are not neces-
sarily negligible, and since their effect is - by necessity - lumped
together in the computed J,, in any one analysis of a given set of
satellites there are always several different solutions to the J's,
depending on the number of J's considered in the algebraic equationms,
Thus, for example, King-Hele, et al.%, recently computed odd zonal har-
monics up to Jo; from eccentricity oscillations of 14 satellites, giving
two different sets, i.e., one with J5 to J,5, and the other with Js to

ng.

Also, the equations are sometimes solved by several different
methods to obtain more confidence in the results. For example, the
equations may be solved for three J's at a time, assuming the higher
J's to be zero, in fours and fives, and also with least-squares and
minimum-residual methods. The coefficients given by King-Hele“ in the
larger set are

10-67

Js = (-2,50 % 0.01) x

Js = (~0.26 * 0,01) x 10-°

J, = (-0.40 & 0,02) x 10-°

Js = ( 0 + 0,06) x 10-°

Jy1 = (~0.27 * 0.06) x 10°° >_ (12)
Jis = (+0.36 + 0,08) x 10-°

Jis = (-0.65 = 0,10) < 10°°

Ji7 = (+0.30 + 0.08) x 10-°

Jig = ( O * 0,11) x 10-°

Jop = (+0.58 + 0,11) x 10‘6J

The latest most complete set of zonal harmonics, both even and odd
coefficients, has been evaluated by Kozai. 1In 1963, Kozail® derived a
set of values for eight coefficients of zonal harmonics (up to and
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and including Jg) from the (then) available observations of secular
motions of the node and the perigee and the amplitudes of long-periodic
terms of artificial satellites, Later, in 1964, from precisely reduced
Baker-Nunn observations of nine high-inclination satellites (28° - 95°),
he produced'® a new set of thirteen coefficients (up to J14):

Jo =(L082.645 + 0,006)x 10-®  Js =(-2.546 + 0.020) x 10~°
Ja = (-1,649 + 0,016)x 10-6 Js =(-0.210 + 0.025)x 10-©
Je = (+0.646 % 0,030)x 10°®  J, =(-0.333 * 0,039) x 10-©
Js = (-0.270 * 0,050)x 10=®  Jg =(-0.053 * 0.060) X 10-8 ?
Jio = (-0.054 * 0,050)x 10~  J,; =(+0,302 % 0,035) x 10~©
Jiz = (~0.357 = 0,.047) x 10™° J13 =(-0.114 * 0,084) x 10~©
Jia = (40,179 + 0,063)x 106 o
(13)

The values of Kozai's even coefficients have been compared recently!'Z®
with two other sets of King-Hele/Cook and Smith, The agreement is excel-
lent for all inclinations greater than 28°, which was the smallest incli-
nation of available satellite orbits, It is therefore concluded that,
as long as there are no satellites at inclinations between 10° and 25°,
the evaluation of the even harmonics in the potential carried beyond the
present status does not seem worthwhile, For the odd harmonics, this is
not the case, since their primary effects, the long-periodic changes
(e.g., the amplitude of the oscillation in eccentricity) decrease to
zero as the inclination tends to zero. - For this reason, King-Hele felt
justified to publish the odd zonal harmonics to J-;, as given above, with
an indication that Jo3 and Js5 are small,

G, Krause's Theory of the Geoid Surface

If Kozai's value for Jo,

Jo =(1082.645 + 0.006) x 10”8,

is introduced in a relation of a third-order Clairaut theory?,

32=§-f(1--]-z'-f)--:li-m[l-%m-%f+%m2+%f2+0(f3)],

(14)
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a value of f = 1/298.254 results for the flattening of the reference
earth ellipsoid. Using this f to compute the theoretical value of J,
for the reference ellipsoid assumed to be in hydrostatic equilibrium,
one obtains -2.350 x 10-%, as compared to the observed value of

-1.649 x 10°8, This discrepancy illustrates the increasing inaccuracy
of Clairaut's (ellipsoid) theorem and its extension, if applied to
higher-order harmonics.

To find a more accurate relation between the radius vector of the
earth and its gravity field, thereby cleaning up the inconsistency in
the older théories, Krause recently developed a new theoryl3:14 which
essentially introduces the radius vector of the geoid, rather than of
an ellipsoid, consistently expressed to the same accuracy as the poten-
tial field it is related to. Since the new theory is kept general, it
can handle all higher order zonal harmonics up to Jy with the same
internal consistency, which the older theories, based on Clairaut, Darwin,
Helmert, et al., are unable to do. Using Krause's theory with Kozai's
thirteen coefficients and introducing the radius vector of the geoid
expanded in spherical harmonics up to J;, in the similarly expanded geo-
potential, a new flattening of the earth can be computed, f = 1/298.1840%,
which differs both from the old second-order value given above and from
the flattening of the Kaula/Fischer ellipsoid used currently as a world
datum, for example, in trajectory computations (1/298.30). It is
believed that the value derived with Krause's theory is more consistent
with the observed spherical harmonics coefficients.

In his theoryl®:1% Krause has made use of the fact that the
generalized (equipotential) surface of the geoid, similarly to the geo-
potential, can be represented alternatively by two series expansions,
one consisting of spherical harmonics, the other of powers of the sine
of the latitude. When introduced in the geopotential, the chosen series
must be of the same degree as the potential function used. The author
shows that the coefficients of the terms of the series (A, in the
spherical harmonics series, B, in the power series) are related to the
known oblateness coefficients Jp of the geopotential equation U and can
be computed from these. 1Insertion of the radius equation thus obtained
in the equation of the total gravity acceleration in the direction of
the normal yields the gravitational acceleration of the geoid as an
expansion of surface harmonics, based on a consistent geoid geometry.
Because of the relation between the A, (or Bp) coefficients and the
oblateness coefficients Jn, and assuming the surface to be of constant
potential, the oblateness of the northern and southern "hemispheres'" and,

“The value given in references 13 and 14 has been slightly corrected by
the present writer.
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thus, the mean meridional flattening f can be computed from the A, coef-
ficients, relating now to the true geoid and the full set of observed Jp,
rather than to a reference ellipsoid, as in Clairaut's theory,.

For the geoid radius, expanded in spherical harmonics,

?R_ = Ao - Z‘ ApPp(sin @) + 3Ap 2 cos®g cos 2(A - N, (15)
R
=1

in wh1ch the first sectorial harmonic, with the associated Legendre poly-
nomial P2(sm &) exactly givenby 3 coszﬁ, is taken into account to express
the ellipticity of the earth equator, Krause finds for the A-coeffi-
cientg3»14;

o0
»
_ 1 _qyv 1-3-5.. (2v-1) 1~ 1 9 oo~
AO 1 - v l:‘ ( 1) + 6 (.Oe + 5 B2(2 J2 (AJe Bg):]
2.4.6,.. 2v
v=1
(16)
1 1 ~ 4 9 ~
A2=§[J2+§we+732(§ Jz = u -BE)J a7
A4 —X[J4+§B2 (2 Jg' W BQ)J (18)
1
= = 19
A =53, (k £ 0,2,4) (19)
where
P’
w, = & = centrifugal factor at equator, (20)
10\ v 1-3.5...(2v + 3) 1 ~
= - + = 21
Bs XZ“) S o T2 Y% | (21)
=0 27 vy, 2.
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and

_ \ n 3.5.7,..(2n + 1) N
x=1 -Z -1 +4.6,.. 2n ‘J2n T Wt (22)

p—

n:

If the first variation of U with longitude, as represented espec-
ially by the first sectorial term, is taken into account as it was in
equation (15), where 3 cos®Y is used as an exact substitute of Pz(sin D,
the geopotential of the earth becomes in inertial coordinates

[ - R, \n R, \?
= == - —_— — 2 -
U= Ll ZJH < r > Pn(sin N + 3J;_,,;_j< - > cos=y cos 2(N - )
n=2
+ L5 cosZy (23)
2 e )

Since the three components (in polar coordinates) of the gravity
are defined as

)
Br T Or
1 U
= — 24
EAT Y cos 4 orn (24)
1w
&, 7 Y Y

while the total gravity acceleration in the direction of the normal is

8=\/gf+g§\+g; , (25)
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the gravity, including the sectorial term, can be given by determining

the potential derivatives and expanding the sum of their squares according
to equation (25) in a series approximating the square-root of equation
(25). The result igl3,14

3 i
=%{1 -Z’(n+1) Jn-< re

n
ot Pn(sin 1))

n=2
R_\2 3
+9 J2’2< : > cos®g cos 2(A - ) - ZEe <-r > cos 2g
Re
1 R \2 : 3.2
ARG @),

e

where only the derivative of Po(sin @) with respect to @ has been
included (expressed as

dP_(sin D
PL(sin @) = _-_d¢—= 3 sin & cos @),

while the higher order derivatives have been neglected.
IIT. ANALYSIS OF MODELS

A. Model 1 (Jo-Only)

For computation of trajectories close to earth, featuring small
central range angles, the effects of the equatorial bulge and other
irregularities can usually be considered negligible, primarily because
the flight times involved are relatively short. 1In this model, it is
therefore assumed that the earth is an ellipsoid of revolution, sym-
metrical around all three axes. Except for the second harmonic, all
higher order effects of asphericity (which are three or four orders of

magnitude smaller than J2} are taken as zero.
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With these assumptions, the gravity equation (26) reduces to

a R 2 3
e . ~ Y
g = ;2- {1 - 3J2 < - > P2(Sln g) - (L)e < R > coszg

e

2

1 Re 2 N 3
+3 [332 < = > + w, <; > } sinZg cqsz,@} . (27)

e

It would be more accurate to compute the gravity directly from
the potential of the ellipsoid, rather than from the series approximation,
equation (27). The task of determining the potential of a homogeneous
ellipsoid was a very formidable one and remained unsolved till the end
of the 18th century, despite attempts at a solution by Newton, Maclaurin,
D'Alembert and Lagrange. Finally, Laplace succeeded in finding the
general solution, followed later by Gauss and others. The general form
of the potential of a homogeneous, triaxial ellipsoid for an exterior
point involves an elliptic integral of the first kind; hence, the com-
ponents of the gravity force of the ellipsoid also contain elliptic
integrals. For the present case of the ellipsoid of revolution, the
equations become considerably simpler; the elliptic integrals reduce to
logarithmic-cyclometric integrals. The investigations of the above men-
tioned authors generally refer to homogeneous bodies. Clairaut was the
first who investigated inhomogeneous bodies.

A third-order relation of Clairaut's theory is given by Kaulatl:

=2 _1 1 1, .3 _2 9 24 L eo 3
Jo=35£Q -3 D) 3m[1 sm -5 £+ 2 m® 4 os £2 4 0(£9) |, (28)
Kaula gives also

\
@1, = 3.986032 X 102° cm® sec”™?
= 398603.2 km3 sec~?
w = 0,729,211,585 x 10~% sec'l? . (29)
R, = 6378165.0 m
= . -2
8, 978.0300 cm.sec J
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Using these values, the centrifugal factor at the equator, m,
becomes

w? - Re
m = = = 0.003,467,773, 255, (30)

e

which is in agreement with reference 6,

For Model 1, the value for J, used is the first one of the set given
recently by Kozaill, equation (13):

Jo = 1082,645 x 1076, (31)

In a strict sense, this Jo-value is not completely consistent with
the above given value of g, from Kaulal. The equatorial gravity of the
oblate spheroid may be computed from

oM

=g . =2
g, =7 R
e

e ’

where the factor ¢ accounts for two effects. First, it includes a cor-
rection to Mg because the mass of the eartl's adtmosphere, included in
Mg, does not contribute to the gravitational acceleration at the sur-
face, and second, it modifies the succeeding term, valid for a sphere
only, for the oblateness effects. In the Kaula value of equation (29),
0 by necessity refers to the older J, and probably also to the older J,.
However, the inconsistency is not felt to be of practical consequence
for the present purpose, For the J> of equation (31), o would become
0.9981616959 (by solving equation (22) and computing ¢ = X(1 - A), where
A = Mgtm/Mg = 0.8594 x 10-16)14, so that the above equation results in
ge = 978.026 gal, 4 mgal lower than Kaula's value, which is presently
accepted as standard®S,

It must be kept in mind that the assumption of all higher J, being
zero introduces, in the strict sense, an error in the model which is not
taken into account by the above Jo-coefficient, since its particular
value has been determined from simultaneous algebraic equations involving
12 additional coefficients of higher order, which were different from
zero, However, it is assumed that the uncertainty caused by this fact
will be of no concern for the present purposes. This assumption is
justified by the results of this analysis,
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Introducing the Jo-value in equation (28), one obtains the oblate-
ness

f = 0.0033528465 = 1 : 298,254,

which is consistent with the assumed geopotential.

With the value for Re given in equation (29), the polar earth
radius becomes

R, = R (1 - f) (32)
R, = 6356780.0 m
R, = 6378165.0 m

and the general radius at latitude ¢

ReR
R = £ (33)

Jﬁp cos2g + R, sinZg

Since the assumption of an ellipsoid is not fully consistent with
the gravitation assumed (based on J,), a second body has been deter-
mined by using the first spherical harmonic in a truncated expression
of the type (15). By solving equations (16), (17), (20), (21) and (22),
the coefficients are determined:

A = 0.9988810301

Al= 0

Ao = 0.2236813952 x 1072
A3= 0

-0.1501014034 x 105,

>
kS
0]
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Neglecting the coefficient A,, the radius of the spheroid is then
determined from

R; = 6371028.026 - 14266.76846 - Po(sin g), (34)

where Po(sin @) is the second-degree Legendre polynomial.
The resulting spheroid is depicted in figure 5.
The total gravity (equation (27)) and the surface shape of the

ellipsoidal Model 1 (equation (33)), as well as the surface of the body
formed by the Jo-harmonic (equation (34)) are given in table 1.

B. Model 2 (NASA Standard)

For trajectories of longer duration, such as those of upper stages,
as well as for near-earth orbits, the geopotential exhibits anomalies
such that its effect deviates from that of an attracting ellipsoid of
revolution. For almost all practical purposes, however, it suffices to
add only the two next higher-order zonal harmonics to the potential and
to consider the gravity anomalies averaged over all longitudes, thus
retaining the rotational symmetry around the polar axis and rendering
tesseral and sectorial terms unnecessary.

The second model is represented by the geopotential and the astro-
geodetic world datum as adopted by the Ad Hoc NASA Standard Constants
Committeel® in 1963 for Project Apollo and other NASA programs. The
standard is based on the Kaula/Fischer Ellipsoid of 1963. 1Irene Fischer
of the U. S. Army Map Service, in 1960, published a world ellipsoid
based on an imposed flattening f = 1/298.30 (which at that time appeared
to be the best available value from early artificial satellites), by
determining the ellipsoid of revolution which best fit the geoid con-
tours derived from astrogeodetic measurementsl® Kaula laterl, in 1963,
published a new value for the equatorial radius,

R, = 6378165.0 * 25.0 m, (35)

which was a compromise between Fischer's valuel® and a 1961 value by

Kaulal?, The NASA Committee meeting at Goddard Space Flight Center in
May 1963 adopted this value, along with the following constantsS:

25




North Pole
80° 80°

70°

-80°  -80°

South Pole

—— = J2 - Spheroid
Ellipsoid

FIG. 5. HEIGHT OF J2-SPHEROID (MODEL 1) OVER REFERENCE
ELLIPSOID OF FLATTENING 1/298.222 (MODEL 3)
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TABLIE 1

Model 1
. Latitude Radius Radius Height of Sphe- Gravity
orth or South | (Ellipsoid) (Spheroid) | roid over
(deg) (m) (m) Ellipsoid (m) (gal)
90 (poles) 63567800 63567613 -18.7 983.2049
85 6356941.6 6356923.8 -17.8 983.1663
80 6357421.,7 6357406.6 -15.1 983.0516
75 6358205.8 6358194.8 - -11.0 982.8641
70 6359270,5 6359264.6 - 5.9 982,6093
65 6360583,7 6360583.5 - 0.2 982.2944
60 6362106.1 6362111.3 5.2 981.9286
55 6363791.7 6363801,7 10.0 981.5228
50 6365589.7 6365603.3 13.6 981. 0890
45 6367445.6 6367461.3 15.7 980, 6401
40 6369303.1 6369319.4 16.3 980.1897
35 6371105.7 6371121.0 15.3 979.7517
30 6372798.5 6372811.4 12.9 979.3394
25 6374329.7 6374339.2 9.5 978.9656
20 6375652.3 | 6375658.1 5.8 978. 6422
15 6376725.7 6376727.9 2.2 978.3794
10 6377517.0 6377516.1 - 0.9 978.1854
5 6378001,7 6377998.9 - 2.8 978.0664
0 (equator) 6378165.0 6378161.4 - 3.6 978.0300
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Mg = 398603.2 km sec™®
f =1.: 298,30
ge = 978.030 gal

J = 1.62345 (%0.00030) x 10-3

H = -0.575 (#0.025) x 10-5 R (36)
D = 0.7875 (+0.0875) x 10~5
R = 6356783.3 m

P
ae = 3461.4145 x 1076 gsec™?

~

where the J, H, D coefficients apply to an alternate (older) form of the
geopotential, and the value

w°R3
e

GM

[f)] =
e

is fully consistent with the assumed parameters.

In the modern notation, the oblateness coefficients become

Jo= % = 1082.30 x107°
J=2H= -2.30 x107° ). (37)
Ja=-3D = -1.80 x 10°°

It is pointed out that the above set of constants is consistent
within itself for most practical purposes. However, since the geometrical
figure assumed is still an ellipsoid of revolution (equal northern and
southern "hemispheres"), derived from J, through a third-order relation
of Clairaut's theory (equation (28))!, it is at best only an approximation
and contains theoretically an inconsistency.
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Table 2 lists the gravity of Model 2 (second column), computed
from equation (26) without the longitude-dependent term, with Jo, Jz, Ju
as given by equation (37), and in the third column the local radius of
the associated Kaula/Fischer reference ellipsoid, computed from equation
(33) with the data given in (35) and (36).

As an illustration of the inherent inconsistency of the NASA Standard
model, it is seen that the gravity field at the North Pole is higher
by 18.4 mgal than at the South Pole, while the radial distance computed
from the model is unable to account for this '"pear" shape. '

To compare the deviation of the ellipsoid from the (here assumed)
geoid, the shape of the geoid must be computed. The new theory by
Krausel3,>1% discussed in Section II, provides a relatively simple method
for doing this. To write the geoid radius in an expansion of the second,
third and fourth surface harmonics, the coefficients Ap in equation (15)

must be determined with J5, Js, J, (equation (37)), from equations (16)
through (22),

One obtains

A, = 0.9988805375

A, =0

Ao = 0.2236440156 x 1072 s ’ 8
As = -0,2304227311 X 10-5.

A4 = -0,3313107217 x 107° |

with which the geoid surface of Model 2 can be expressed by

Ro = 6371024.88 - 14264.38 - Po(sin @) + 14.69 - Px(sin 2)

+ 21,13 * P,(sin 2)  (m) 39

where the P (sin f) are the Legendre polynomials of argument sin ¢.

Column & of table 2 lists the results of equation (39), while the
deviations of the ellipsoid from the geoid are given in column 5. It is
seen that the NASA Standard Model results in an earth radius which is 13 m
below the geoid at the North Pole, 16.4 m above the geoid at the South
Pole, and between zero and 12 m above or below it in the intermediate
latitudes.
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TABLE 2

Model 2
Latitude Gravity Radius Radius Difference
(degrees) (gal) Ellipsoid Geoid (m)
(m) (m)
90N (pole) 983.2231 6356783.3 | 6356796.3 -13.0
85 983.1839 6356944.9 | 6356957.7 -12.8
80 983.0676 6357424.9 | 6357437.1 -12,2
75 982,8776 6358208.9 | 6358220.1 -11.2
70 982.6195 6359273.4 | 6359283,2 - 9.8
65 982,3011 6360586.4 | 6360594.6 - 8,2
N 60 981,.9317 6362108.6 | 6362114.9 - 6.3
L 981,5225 6363793.9 | 6363798.3 - 4.4
50 981,0857 6365591.6 | 6365593.9 - 2.3
R 45 980. 6346 6367447.2 | 6367447.6 - 0.4
T 40 980.1829 6369304.5 | 6369303.1 1.4
35 979.7444 6371106.8 | 6371104,0 2.8
H 39 979.3325 6372799.4 | 6372795.4 4.0
25 978.9598 6374330.3 | 6374325.7 4.6
20 978.6380 6375652.7 | 6375648.0 4,7
15 978.3770 6376726.0 | 6376721.7 4.3
10 978.1850 6377517.1 | 6377513.9 3.2
5 978.0678 6378001.8 | 6378000.0 1.8
0 (equator)| 978.0300 6378165.0 | 6378165.0 0
5 978,0701 6378001.8 | 6378003.8 - 2.0
10 978.1895 6377517.1 | 6377521.1 - 4,0
15 978.3833 6376726.0 | 6376731.9 - 5.9
20 978. 6455 6375652.7 | 6375660.1 - 7.4
25 978.9679 6374330.3 | 6374338.8 - 8.5
S 30 979.3404 6372799.4 | 6372808.3 - 8.9
35 979.7514 6371106.8 | 6371115.4 - 8.6
0 40 980.1884 6369304.5 | 6369311.9 - 7.4
U 45 980.6379 6367447.2 | 6367452.8 - 5.6
50 981.0862 6365591.6 | 6365594.7 - 3.1
T 55 981.5198 6363793.9 | 6363794.0 - 0.1
H 60 981.9257 6362108.6 | 6362105.4 3.2
65 982.2919 6360586.4 | 6360579.9 © 6.5
70 982.6074 6359273.4 | 6359263.7 9.7
75 982.8629 6358208.9 | 6358196.4 12.5
80 983.,0509 6357424.9 | 6357410.3 14,6
85 983.1660 6356944.9 | 6356929.0 15.9
90S (pole) 983, 2047 6356783.3 | 6356766.9 16.4
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With

£=1 - {:Eﬂzg—ﬁﬂg} 3 (40)
e

the mean meridional oblateness becomes

£ = 0,0033525944 = 1 : 298.276, (35

differing slightly from the Standard value of 1 : 298,30,

The NASA Standard, here called Model 2, adopted by the Ad Hoc Com-
mittee in 1963, has served and is serving its purpose well, which is to
ensure accuracy and consistency between the various NASA agencies and
contractors participating in the space program. While during 1961-63
a real attempt was made to select a set of constants which might be
termed the "best available at the time"'®S, the chief qualification of
the adopted set was standardization. Since the adoption of the NASA
Standard for Apollo and other space programs, new and better determina-
tions of the geographical (and astrodynamic) constants have been made.
The Standard of 1963, still valid today, is therefore not based on more
current information; however, with the present status of the Apollo pro-
gram, it would probably be ill-advised to update the Standard at this
time,

The following models make use of the more recent determinations in
various combinations.

C. Model 3 (New Jo, Jx, Jg)

Similar to the preceding analysis, a model is assumed which takes
the "pear" shape of the earth into account as well as the second even
zonal harmonic, but not any dependence of the geopotential on longitude.
The spherical harmonics coefficients are taken from Kozaill (equation

(13)),

Jo = 1082.645 x 1076 |,
Js = =2,546 x 1076 ) , (42)
Js = =1.649 x10° 6

31



where they have actually been determined together with ten additional
coefficients, which are here assumed zero. This introduces a slight
error of no practical concern for the present purpose.

Gravity is again computed from equation (26), without the sectorial
term, with J5, Js, J, as given in (42),.

According to the new J-coefficients, the g-factor in the equation
for the equatorial gravity acceleration must now be slightly adjusted;

ge becomes now

8e = 978.029 gal

instead of the Standard value 978.030 gal,

The reference ellipsoid (of revolution) postulated for this model is
required to be consistent with the geopotential used.

Using Krause's theory, the A-coefficients (equations (16) through
(22)) in equation (15) are obtained.

A, = 0.9988804206 )
Ap= 0
Az = 0.2236788408 x 1072 ), (43)
Ax = -0.2550678850 x 10~°
A, = -0.3160571410 x 10-5
/

and the radius of the assumed geoid becomes

Rs = 6371024.14 - 14266.61 Po(sin @) + 16.268 Px(sin @) + 20.16 P,(sin )
(m). (44)

The results of this equation for the geold surface are listed in
column 4 of table 3., It can be seen that the polar radii are

6356794.0 m

RpN

RpS

6356761.4 m
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TABLE 3

Model 3
. . Radius Radius Difference ]
L?;:;;de ﬁ;;ﬂ;ty Ellipsoid | Geoid (Height of Ellipsoid)
@ | (m)
90 983,2239 6356777.7 | 6356794.0 -16.3
85 983.1848 6356939.4 | 6356955.4 -16.0
80 983, 0685 6357419.5 | 6357434.8 -15.3
75 982.8786 6358203.7 | 6358217.9 -14,2
70 982.6205 6359268.4 | 6359281.2 -12.8
65 982.3020 6360581.8 | 6360592.8 -11.0
N 60 981.9326 6362104.3 | 6362113.3 - 9.0
55 981.5234 6363790.1 | 6363796.8 - 6.7
0 5o 981.0866 6365588.3 | 6365592.6 - 4.3
R 45 980. 6354 6367444 .4 | 6367446.4 - 2.0
40 980.1835 6369302.1 | 6369302.0 0.1
T 35 979.7449 6371105.0 | 6371103.0 2.0
H 30 979.3328 6372797.9 | 6372794.5 3.4
25 978.9601 6374329.3 | 6374324.9 4.4
20 978.6382 6375652.0 | 6375647.3 4.7
15 978.3771 6376725.6 | 6376721.2 4.4
10 978.1851 6377516.9 | 6377513.5 3.4
5 978.0679 6378001.7 | 6377999.8 1.9
0 978.029 6378165.0 | 6378165.0 0
5 978.0705 6378001.7 | 6378004.0 - 2.3
10 978.1900 6377516.9 | 6377521.5 - 4.6
15 978. 3840 6376725.6 | 6376732.4 - 6.8
20 978. 6464 6375652.0 | 6375660.8 - 8.8
25 978.9689 6374329.3 | 6374339.4 -10.1
S 30 979.3416 6372797.9 | 6372808.8 -10.9
o 35 979.7527 6371105.0 | 6371115.6 -10.6
40 980.1896 6369302.1 | 6369311.8 - 9.7
U 45 980. 6389 63674444 | 63674522 - 7.8
o 50 981.0871 6365588.3 | 6365593.4 - 5.1
55 981.5205 6363790.1 | 6363792.1 - 2.0
H 60 981.9261 6362104.3 | 6362102.7 1.6
65 982.2919 6360581.8 | 6360576.5 5.3
70 982.6070 6359268.4 | 6359259.6 8.8
75 982.8623 6358203.7 | 6358191.8 11.9
80 983.0501 6357419.5 | 6357405.2 14.3
85 983.1650 6356939.4 | 6356923.6 15.8
90 983.2037 6356777.7 | 6356761.4 16.3
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so that the mean meridional flattening, equation (40), becomes
f = 0.003353206 = 1 : 298,222,

Comparison with the geoid of Model 2 shows that the new values for
Jo, J=x, Ju cause the Model 3 geoid to be smaller at most latitudes (by
2.3 m at the North Pole, 5.5 m at the South Pole, and by 1.2 m and 0.6 m
at 45N and 45S, respectively).

For the reference ellipsoid, t$he equator radius imposed is the cur-
rently accepted value due to Kaula, equation (35). With the above
flattening, the polar radius of the ellipsoid then becomes

Rp = Re(l - f) = 6356777.70 m,

and the ellipsoid shape can then be computed from equation (33)., Results
are listed in column 3 of table 3. The deviations of the ellipsoid from
the geoid are given in column 5. The largest excursions are again at the
poles, with 16.3 m height difference.

D. Higher-Order Bodies with Equator Symmetry

1. Model 4a (Triaxial Ellipsoid)

In the preceding three ellipsoids, the longitude dependence of
the geopotential has not been taken into account, For the present
model, it is assumed that the geoid can be better approximated by a tri-
axial ellipsoid. How well it agrees with the geoid is one of the objec-
tives of this investigation.

In a triaxial ellipsoid, the equator and all parallel sections
exhibit a certain ellipticity, expressed -- in the geopotential =-- by
the sectorial coefficient J, 5. The body is symmetrical with respect to
the equator plane; hence, the odd-order terms in the spherical harmonics
series of the geopotential (more exactly, of the radius vector of the
surface) are zero. Thus, the earth is now assumed to be no longer
symmetrical around the rotational axis.
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The general formula of a triaxial ellipsoid is

x2 2 z2
T tEtE-l, (45)
e, e, P

where Reo and Re, are the two equatorial semi-axes. By introducing polar
coordinates, Krausel* has derived a general formula for the radius vector,

R 1+5+£f2-£f cos 20\ - A) sin?¢g /a2
i? = [coszg 4 e 1e. >+ J , (46)
a-z fi)z (1 - £)2

where Re is the mean equatorial radius, determined by the astrogeodetic
and gravimetric methods of geodesy®s;18 and currently assumed to bel

ie = 6378165.0 m.

The symbol @ is the geocentric latitude of the parallel, A is the longi-
tude of the point on the surface, measured positive east of Greenwich, f
is the meridional flattening of the ellipsoid, f, is the ellipticity of
the equator (and all parallel sections), and A, is the longitude of the
apsidal line of the equatorial ellipse (i.e., the angle between the radius
vector to the reference meridian on the equator and the semi-major axis

of the equator ellipse, positive east of Greenwich), as well as the longi-
tude of the associated parallel ellipses in both "hemispheres." Kaula®
gives A, = -14,5° £ 1,5°, In reference 1, he quotes -8° to -25°; how-
ever, more recent data indicate an improved value ofl¢

)\0 = -18° + 3°, (47)

Thus, the semi-major axis of the equator ellipse is rotated by 18°
west of the Greenwich meridian. Consequently, the largest equator radius
i5 located approximately 600 st. miles north of Ascension Island in the
Mid-Atlantic, and - diametrically opposed - in the vicinity of the Solomon
Islands in the Pacific, while the shortest radii are approximately 500 st.
miles south and west of Ceylon in the Indian Ocean and about 1800 st. miles
west of Peru in the Pacific Ocean,
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By solving Krause's radius equation (equation (15)) twice for A = A,
and A = )\, * 90°, respectively, at the equator (¢ = 0) and introducing

the derived expressions for Re, and Rel in the definition of the flatten-
ing (or oblateness),

£ = —2—2% (48)

one obtains a simple expression for the ellipticity of the equator, viz.,

6
£, =0A22=5J2 2. (49)

The best current value for J- o is given by Kaula®:
bl

Jo o=1.8 0.1 x 1078, (50)

3

Using the most recent set of oblateness coefficients, equation (13),
in the equation for the factor X, equation (22), one obtains

X = 0,9981691858. (51)
With X and J> > (equation (50)), equation (49) yields
£, = 10.81980906 Xx 1078 = 1 ; 92423, (52)

From equation (48) it is then found for the difference between the
semi-major and semi-minor axis of the equator

MR = Re, = Re, = 69.0 m. (53)

With the mean equatorial radius, ﬁe, according to equation (35), the
longest radius of the equator becomes

. MRy
R, + = = 6378199.5 m
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and the shortest radius

Re - = 6378130.5 m

at the geographical locations described above.
The sectorial harmonic is depicted in figure 1.

The flattening f of the triaxial ellipsoid must be the same as for
the "best" geoid (Model 5a and 5b) treated later, since the flattening
equation, equation (58), contains only even zonal harmonics, in accord-
ance with the symmetry behavior of the latter. With the even J, of
equation (13), equation (58) yields

f = 0,003353633015 = 1 ; 298.184,
The polar radii then become
R, = (1 - f) ie = 6378775.0 m.

The surface of the triaxial ellipsoid has been computed for various
latitudes and longitudes from equation (46). Results are given in
table 4, column 2,

The gravity of the Model 4a ellipsoid can be determined from equa-
tion (26). All available even J, are used, equation (13), with the odd
zonal coefficients set equal to zero according to the assumed symmetry
with respect to the equator plane. With X as given in equation (51),
the factor o becomes 0.9981683280, and the mean gravitation at the
equator is then

= 978.0320 gal

o | 2

differing by 2 mgal from Kaula's Standard value,

Results are presented in table 4, column 5.
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TABLE &
Models 4a and 4b

Longitude Radius of Radius of Height of Gravity of
(deg)* Tri-ellipsoid | Symm. Spheroid | Spheroid Spheroid
EOG f WoG (m). (m) (m) (gal)
LATITUDES 90N/90S (POLES)
- 6356775.0 6356775.0 0 983.1815
LATITUDES 75N/75S
0 180 6358203.0 6358203.0 0 982.8385
30 150 6358200.9 6358200.9 0 982.8376
60 120 6358199.0 6358199.0 0 982.8367
90 90 6358199.3 6358199.3 0 982.,8368
120 60 6358201.4 6358201.4 0 982.8378
150 30 6358203, 2 6358203, 2 0 982.8386
LATITUDES 60N/60S
0 180 6362109, 2 6362114.2 4.9 981.9077
30 150 6362101.4 6362106.3 4.9 981,9041
60 120 6362094.5 6362099.3 4.8 981.9009
90 90 6362095.4 6362100, 2 4.8 981.9013
120 60 6362103, 2 6362108.1 4,9 981.9049
150 30 6362110.1 6362115.1 4.9 981.9081
LATITUDES 45N/458
0] 180 6367456.,9 6367461.7 4.7 980.6259
30 150 6367441 .2 6367446.0 4.7 980, 6186
60 120 6367427 .4 6367432.0 4.6 980,6122
90 90 63674292 6367433.8 4.6 980.6131
120 60 63674448 6367449.6 4.7 980.6203
150 30 6367458.7 6367463.5 4.8 980.6267
LATITUDES 30N/30S
0 180 6372818.1 6372819.3 1.1 979.3374
30 150 6372794.6 6372795.6 1.0 979.3263
60 120 6372773.7 6372774.17 1.0 979.3166
90 90 6372776.4 6372777.4 1.0 979.3179
120 60 6372800.0 6372801.0 1.0 979.3288
150 30 6372820.8 6372822.0 1.2 979.3384

* EOG = East bf Greenwich
West of Greenwich

WOG
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TABLE 4 (Continued)

Longitude Radius of Radius of Height of Gravity of
(deg) Tri-Ellipsoid | Symm. Spheroid| Spheroid Spheroid
EOG | WOG (m) (m) (m) (gal)
LATITUDES 15N/158
0 180 6376751.4 6376749.3 =2.1 978.3883
30 150 6376722.0 6376719,9 -2.1 978.3747
60 120 6376696.0 6376693.9 -2.1 978.3627
90 90 6376699.4 6376697, 2 2,2 978.3643
120 60 6376728.7 6376726,6 -2.,1 978.3778
150 30 6376754.8 6376752.7 -2.1 978.3898
EQUATOR
0 180 6378192.9 6378192.9 0 978.0448
30 150 6378161 .4 6378161.4 0 978.0303
60 120 6378133.5 6378133.5 0 978.0175
90 90 6378137.1 6378137.1 0 978.0192
120 60 6378168.6 6378168.6 0 978.0337
150 30 6378196,5 6378196.5 0 978.0465

2. Model 4b (Symmetrical Geoid)

With the oblateness coefficients up to J,, readily available,
it is of interest to investigate the deviation of the above triaxial
ellipsoid from the surface of a quasi-ellipsoid, or rather "symmetrical
geoid," derived from a series expansion of the known even zonal harmonics

equivalent to the above employed gravity expansion,

Using Krause's theory

and solving equations (16) through (22), the coefficients in equation (15)
are found to be

A, = +0
A2 = +0
A, = -0.
Ag = -0
Ag = -O.
A10= -0
A;->= -0,
A= +0.

.9988800610
.2236730329
3180618021
.6471848752
2704952265
.5409904530
3576547995
1793283168

X X X X X X X

10°2
10°°
10~6
10~6
10-7
10-©
10°6

(54)
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The surface equation, equation (15), then becomes

Ry = 6371021.84 - 14266.235 = Po(sin @) + 20.29 - P,(sin 2)
- 4.13 - Pg(sin @) + 1.73 . Pg(sin @) + 0.345 - Pio(sin 9)
+ 2,28 + Pyo(sin @) - 1.14 « Py, (sin @) + 34,51 + cos=yg

o cos 2(N + 18°) (m). (55)

Equation (55) has been computed for some values of @ and A;
results are given in column 3 of table 4., The deviation of the sym-
metrical geoid from the true triaxial ellipsoid is listed in the fourth
column of table 4. Agreement is seen to be extremely good., Height dif-
ferences are around 5 m in the higher latitudes. The largest height
difference occurs around 55° North or South latitude, with over 6 m for
all longitudes. '

E. "Best'" Geoid Bodies

1. Model 5a ("Best" Geoid with Sectorial Term)

The most realistic model of the earth dnd its potential field
must obviously make use of all available spherical harmonics coefficients,
obtained from real-world observations. Using the theory developed
recently by Krause*3»1% it is -- as shown above -- relatively simple to
express the geoid surface, assumed an equipotential level, in an expan-
sion of spherical harmonics and appropriate coefficients. This "true"
geoid is assumed as Model 5a of this investigation.

For the basic imposed constants (mean earth radius at equator,
rate of the earth's rotation with respect to inertial space, and the
gravitational parameter of the earth) the best currently available

values! are chosen:
R, =6,378,165.0 m
w = 0.729211585 x 10”* sec™?!
@ = 398603.2 *+ 3.0 km® sec~2
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and for the additional parameters

Ja,2=1.8 £0,1 x10°8

=4

A = -18° % 3°,

Consistent with the above values, the mean equatorial gravita-
tion is

ge = 978.0320 gal (see Model 4a).

Solving again equations (16) through (22) for all available J,,
including odd orders, equation (13), the following A,-coefficients of
equation (15) are obtained:

A, = +0.9988800610 A
Al = 0
Ao = +0.2236730329. x 1072
Az = -0.2550669802 x 10~°
Ay = -0.3180618021 x 10-°
A = -0.2103851762 x 10~S
Ag = +0.6471848752 x 10-°
A, = -0.3336107793 x 10-°©
Ag = -0.2704952265 x 10~°©
Ag = -0.5309721113 x 10-7 . (56)
Ao = -0.5409904530 x 10~7
Ay = +0.3025539200 x 10-€
A;n = -0.3576547995 x 10-©
Ayx = -0.1142090956 x 10~©
Ajsa = +0.1793283168 x 10~-°©
with
X = 0.9981691858
B, = 0.3383437858 x 1072

J
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The equation for the surface of the geoid becomes then®;

Rs = 6371021.844 - 14266,235 Po(sin g) + 16,268 Ps(sin 9)
+ 20.286 Py(sin @) + 1.34 Pg(sin @) - 4.127 Pg(sin @)
+ 2,127 Po(sin @) + 1.725 Pg(sin @) + 0.338 Po(sin 0)
+ 0,345 Pio(sin @) - 1.929 Pyi(sin @) + 2.28 Pyo(sin @)

+ 0.728 Pyx(sin @) - 1,144 Po,(sin @) + 34,505 cos®Q cos 2(A + 18°),
(m) (57)
where P (sin @) are the Legendre polynomials of argument sin Qﬁ*.
By writing the radius equation, equation (15), for the poles

(2 = £90°), one equation each results for the northern and the southern
"hemispheres," which since

ead to an expression for the mean meridional oblateness of the geoid!S3,1%

[>]
=1 v 1e3.5...(2v ="1) 1~ 9~
te x'{}z [1 -1) 2.4.6,,,2v } Jo, T3 0 ¥ B2(G J2 = Bzi}
v=l

where X and B are given in equation (56) and a% = 3461.414 x 10°° sec”?.

With Kozai's harmonics coefficients up to J,4, equation (58)
yields

f = 0.003353633015 = 1 : 298,184,

Some of the amplitudes (coefficients) of the geoid-equation in refer-
ence 14 have been found to be slightly incorrect. The values are
corrected here,

*k
See Appendix A.
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which is different from the currently accepted (Standard) value of 1960,
viz.,

£=1: 298.30,

which is consistent with the old Js (equation (37)) over a second-order
Clairaut-type expression only, as mentioned earlier.

The surface of the '"best" geoid, equation (57), and its gravity,
equation (26), have been computed and are tabulated in table 5 for various
latitudes and longitudes. It can be seen that the geoid, in accordance
with the fact that of all tesseral harmonics only the first sectorial
was included, is symmetrical around a plane defined by the major axis
(at A\, = -18°) of the equator ellipse and the axis of rotation., If
higher tesserals were taken into account, this last symmetry would also
disappear.

The sectorial harmonic at the equator is shown in figure 1. The
curve depicts (greatly exaggerated) the height of the "best'" geoid over
the rotationally symmetric geoid of Model 4b around the equator. At
latitudes 45N and 458, the amplitudes of the harmonic, for equal meridians,
are half their value at the equator,

Because of the sectorial term depicted, the longest equator radius
(also the longest radius vector to all latitudes) -is at 162°E and at 18°W
of Greenwich, with 6,378,199.5 m. The shortest radial vector is at 72°E
and 108°W of the prime meridian, with 6,378,130.5 m. The difference
amounts to 69.0 m,

At 45 degrees North and South parallel, the difference between
the semi-major and semi-minor axis, as stated above, must be one-half of
this value, It is 34.5 m.

At the poles, it is seen that the radial vector at the North Pole
is longer than at the South Pole. The difference in height is 37.8 m,
which accounts for the "pear'" shape of the earth, suspected already in
1959 by 0'Keefe®, The gravity at the North Pole is higher by 13.11 mgal
than at the South Pole, Around the equator belt, the gravity varies by
as much as 31.74 mgal (between the longitudes 72° and 162°E)., The mean
equatorial gravity must be the same as for the triaxial ellipsoid, Model 4a;
i.e.,

ée = 978.0320 gal.
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TABLE 5

Geoid
Longitude* Radiusdof Gravity of ||Longitude®* |Radius of | Gravity of
Geoi Geoid Geoid Geoid
EOG | WOG (m) (gal) E0G | WoG (m) (gal)
LATITUDE 90N (North Pole)
- 6356793,9 | 983,18807
LATITUDE 75N
0 180 6358217.6 982.84373 90 90 6358213.8 982.84200
30 150 6358215.4 | 982,.84275 120 60 |6358215.9 | 982.84298
60 120 6358213.6 982.84189 150 30 6358217.8 982.84384
LATITUDE 60N
0 180 6362118,1 981.90820 90 90 6362104,2 981.90178
30 150 6362110.3 981,90457 120 60 6362112.1 981.90540
60 120 | 6362103.3 981.90136 150 30 6362119.,0 981.90861
LATITUDE 45N
0 180 6367458.7 980.,62507 90 90 6367430,8 980.61223
30 150 6367443.0 980,61782 120 60 6367446.6 980.61948
60 120 6367429.0 980.61140 150 30 6367460.5 980.62590
LATITUDE 30N
0 180 6372812.7 979.33540 90 90 6372770.8 979.31614
30 150 6372789.0 979.32452 120 60 6372794.4 979.32701
60 120 6372768.1 979.31489 150 30 6372815.4 979.33664
LATITUDE 15N
0 180 6376743.6 978.38634 90 90 6376691.6 978.36238
30 150 63767142 978.37281 120 60 6376721.0 978,37591
60 120 6376688, 2 978.36083 150 30 6376747.0 978.38789
(table 5 continued)
%
EOG = East of Greenwich (degrees)
WOG = West of Greenwich (degrees)
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TABLE 5 (Continued)

Longitude | Radius of | Gravity of || Longitude | Radius of | Gravity of
Geoid Geoid b s Geoid Geoid
E WO ; G ,
0G | WoG (m) (gal) || FOG 1 WOG (m) (gal)
LATITUDE O (EQUATOR)

0 180 | 6378192.9 | 978 04484 90 90 | 6378137.1 | 978.01916
30 150 | 6378161.4 | 978.03034 120 60 | 6378168.6 | 978.,03366
60 120 | 6378133.5 | 978,01750 150 30 | 6378196.5 | 978.04650

LATITUDE 15S

0 180 | 6376755.0 | 978.39020 90 90 | 6376702.9 | 978.36623
30 150 | 6376725.6 | 978.37667 120 60 | 6376732.3 | 978,37976
60 120 | 6376699.6 | 978.36469 150 30 | 6376758.4 | 978.39174

LATITUDE 30S

0 180 | 6372825.9 | 979.33889 90 90 | 6372784.0 | 979.31963
30 150 | 6372802.2 | 979.32801 120 60 | 6372807.7 | 979.33050
60 120 | 6372781.3 | 979.31838 150 30 | 6372828.6 | 979,34013

LATITUDE 45S

0 180 | 6367464.7 | 980.62674 90 90 | 6367436.8 | 980.61390
30 150 | 6367448.9 | 980.61949 120 60 | 6367452.5 | 980.62115
60 120 | 6367435.0 | 980.61307 150 30 | 6367466.5 | 980,62757

LATITUDE 60S

0 180 | 6362110,2 | 981,90722 90 90 | 6362096.3 | 981.90080
30 150 | 6362102.3 | 981.90360 120 60 | 6362104.1 | 981.90443
60 120 | 6362095.4 | 981.90039 150 30 | 6362111,1 | 981.90764

LATITUDE 75S

0 180 | 6358188,5 | 982.83336 90 90 | 6358184.7 | 982.83164
30 150 | 6358186.3 | 982.83239 || 120 60 | 6358186.8 | 982.83261
60 120 | 6358184.5 | 982.83153 150 30 | 6358188.7 | 982.83347

LATITUDE 90S (South Pole)
- 6356756.1 | 983.17496
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2, Model 5b ("Best" Geoid without Sectorial Term)

For purposes of comparison with models fea%turing circular equa-
tors, it is also of interest to determine the shape of the '"best'" geoid,
with all available zonal harmonics coefficients, based on a circular
equator. Model 5b is therefore obtained by solving equation (57) with-
out the last (sectorial) term. Since the sectorial harmonic at the equa-
tor has already been determined in figure 1, the desired circular-equator
shape is obtained by subtracting it from the radius vectors of Model 5a.

Iv, COMPARISON OF MODELS

In accordance with the different assumptions used, the various geo-
graphical theories to be compared here define geometrical bodies which
differ from each other and from the geoid. Also, they lead to different
gravity values for identical locations on the body. Primary attention
is directed towards the deviations in geometries.

Figure 6 shows the radius vector as a function of latitude of Models
1, 2 and 3, referenced to the same body, i.e., the 'best" geoid without
the sectorial term (Model 5b). 1In all three cases, the bodies are not
ellipsoids, but spheroids of revolution symmetrical around the equator
plane, since they are based on superimposed spherical harmonics., It is
seen that the widest deviation from the geoid is exhibited by Model 1,
which takes into account solely the second order zonal harmonic, Js. At
the North Pole, the difference is -32,6 m; at the South Pole, +5.20 m.
Since the spheroid of Model 1, as shown on table 1, differs from the
Model 1 ellipsoid (flattening 1/298,254) by as much as -18.7 m at the
North and South Pole, the deviation of the Model 1 ellipsoid from the
reference geoid is less at the North Pole, amounting to -13.9 m, and
higher (23.9 m) at the South Pole.

The spheroids of Models 2 and 3 are based on the old and the new
set of coefficients J, Js, J4, respectively, as given by equations (39)
and (44). 1In general, they agree very well with the reference geoid,
exhibiting deviations of less than 5 m. At the poles, the deviation of
the Model 2 spheroid from the reference line as well as from the improved
Model 3 spheroid is larger, primarily due to the changes in J5 and Js.

As in the case of Model 1, it is of interest to determine.the devia-
tion of the Model 2 spheroid from its associated ellipsoid, as given in
table 2, The height of the spheroid based on the Standard values of J,
J=, J4 over the ellipsoid with consistent flattening 1/298.30 is shown
in figure 7. Also plotted is the height of the '"best'" geoid without the
Jo o-term (Model 5b), The agreement between the two Model-2 bodies is
good; the largest difference is at the South Pole, with 16.4 m. As is
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to be expected, the spheroid agrees better with the "best" geoid than the
ellipsoid, The influence of particularly the odd zonal harmonics becomes
manifest at the South Pole, where the Standard Ellipsoid, as used pre-
sently by NASA, deviates by as much as 27.2 m from the Model 5b-geoid.

A still better approximation to the "best'" geoid with circular equa-
tor can be given with the spheroid of Model 3, as depicted in figure 8,
Here, the spheroid height is referenced to the associated ellipsoid of
flattening 1/298,222, derived from the set of improved Js, J3, and Jg,.
The deviations of the spheroid from the ellipsoid are numerically very
similar to those between the Model 2 bodies, while the agreement of the
ellipsoid with the circular-equator geoid has been improved considerably,
except for the latitudes around 20N and 30S, where the gap is still almost
10 m, The agreement of the spheroid with be "best" geoid is generally
better than 5 m,

The height of the "best" geoid (Model 5a) has been computed from the
data of tables 4 and 5, and is presented in figure 9 (greatly exaggerated),
referenced to the triaxial ellipsoid of Model 4a. Both bodies are based
on expansions of spherical harmonics up to and including J;4, with the
latest available values for the coefficients. The sectional cut is along
the prime meridian. The "pear" shape of the earth is clearly discernible.
Since the mean equatorial radius is the same for both bodies (as well as
the sectorial harmonic), they share the same equator, At the poles, how-
ever, deviations of the geoid are observable, amounting to 18.87 m at the
North Pole, and to -18.87 m at the South Pole., 1In the intermediate lati-
tudes, the deviations are less, with -8.5 m at 20 N and 7.7 m at 30S, The
height differences are also plotted in figure 10, on a rectilinear grid,
for a meridional section at Greenwich longitude.

According to the different harmonics coefficients used in the poten-
tial equation, the gravity of the analyzed models differs in each case,
Using the gravitation of the "best" geoid (Model 5a) as tabulated in
table 5, as common reference, the gravities of each model were computed
for a meridional section along the prime meridian and plotted in figure 11.
As is to be expected, the gravity of the triaxial ellipsoid (Model 4a),
listed in table 4, agrees best (generally by better than #3 mgal) with
the "best" geoid. The other models, with gravity values determined from
differing values and numbers of oblateness coefficients, show generally
identical behavior, with significant deviations (up to 35 mgal) at the
poles and equator, in accordance with the recent findings of a more pro-
nounced influence of the odd zonal harmonics, particularly Js.

For Model 1, the exclusive use of J, apparently compensates somewhat
around the North Pole for the deviations in Models 2 and 3, which are
_obviously caused by the third order zonal harmonic, the only additional
additive amplitude at these latitudes besides Js. At the lower latitudes,
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Model 3 -- with the improved set of coefficients -- agrees best of all
three models with the reference, as is to be expected, However, the
improvement is only very minor (< 1 mgal), leading to the observation
that the effects of improving the oblateness coefficients (rather than
increasing their number beyond J,) are apparently revealed more signi-
ficantly in the geometries than in the gravities of the bodies used.

V. CONCLUSIONS

1. A new earth figure model, or geoid, has been developed3:14 and
computed here, consistent with the most recent oblateness coefficients
available,

2, The currently used NASA Standard ellipsoid differs from this
"best" geoid by -10.6 m at the North Pole, 9.6 m at 20°N parallel, -4.6 m
at 35°S parallel, and as much as 27.2 m at the South Pole., If a spheroid
based on a series expansion of spherical harmonics with the same oblate-
ness coefficients as in the gravity equation were used instead, as pro-
vided by Krause's theory, these deviations could be reduced to 2.4 m,

4,9 m, 4,0m, and 10.8 m, respectively. This surface formula would be
more consistent with the gravity formulation.

3. The currently used NASA Standard oblateness coefficients Jo,
Jx, J, result in gravity values, which differ from the gravity based on
recent satellite measurements by as much as 35 mgal at the North Pole,
-15.7 mgal at the equator, and 30 mgal at the South Pole (along the
Meridian), Replacing the three J-coefficients by their updated values
does not lead to significant improvements.

4, Conversely, updating the oblateness coefficients Js, J=, J4 in
the NASA Standard geometry model (and using the series expansion, as noted
above) could lead to significant improvements in height deviations (see
figure 6), amounting to about 100 percent at the North Pole, 50 percent

at the South Pole, and 30-50 percent at most of the intermediate latitudes.

5. For certain applications (e.g., guidance of short duration first-
stage boosters), use of geographical and gravitational models based only
on J, may be permissible. Because of the shape of the Jy-harmonic (fig-
ure 2), it is advisable to use the ellipsoid (flattening 1/298.254), not
the spheroid, as geometrical reference. 1Its height deviations from the
"best" geoid (circular equator) are less than 10 m in the belt between
65°N and 65°S latitudes. The gravity of this simple model differs by
maximally 30 mgal, at the South Pole (-18.5 mgal at equator, 16.8 mgal
at 90°N) from the sophisticated gravity model, The deviation is zero at
about 24°N and 30°S parallels intersecting the Prime.
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6. The latest available satellite measurements result in a "best'
geoid which is pronouncedly '"pear'" shaped, with the north polar radius
being 37.8 m longer than the south polar radius vector. The equator is
slightly elliptic, with a difference of 69.0 m between the semi-major and
semi-minor axes. The major axis of the equator ellipse is rotated West
against the Prime Meridian. The rotation angle (longitude) is currently
thought to be -18° * 3°, As shown by Krause, the '"best" geoid can be
described by a series expansion of spherical harmonics of the same degree
as in the geopotential, the (amplitude) coefficients of which are directly
related to the satellite-obtained oblateness coefficients,

7. As an approximation to the "best" geoid, an exact ellipsoid can
be defined, as is customary in geodesy. The ellipsoid is a triaxial
ellipsoid with the same equator ellipse as the geoid. The largest devia-
tions of this body from the geoid are 18,87 m at the poles. 1In a band
bounded by the parallels 63°N and 70°S, the height differences amount to
less than 10 m. If for the geopotential of the triaxial ellipsoid only
even J's are used, the gravity deviates from the geopotential of the geoid
generally by less than 7 mgal and between 70°N and 70°S by less than 5 mgal.
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APPENDIX A

Computation of Legendre Polynomials

The Legendre spherical functions P,(x) are polynomials of the type

Pn(x)=1-3-5....(r21I'.1-3)(2n-1)|_xn_n(n-l) n-2 , n(n-1) (n-2) (n-3) e ]

2(2n-1) * t 2a(en-1) (2n-3)

They are solutions of the differential equation

2
1 - x3 %;% - 2x %% +n(n+1)y=0,

For the present analyses, the Legendre functions were computed from
the recurrence relation

(n+1) Pn+1(x) - (2n+1) x Pn(x) + nPn_l(x) = 0,

wherg
x = sin ¢
and starting with
Po(sin @) =1
P,(sin @) = sing.

The most extensive tabulation of Pn(cos @), for n = 0(1)80 and
&g = 0°(1°)180°, has been published in reference 20. Since

cos @ = sin (90° % @),

the spherical functions can also be taken from this reference.
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APPENDIX B

Alternate Expression for the Gravity Acceleration

Krause, in references 13 and 14, gives a form of the gravity,

-

g

o0
= Co-}z (n + 1) C P (sin @) + 302’2c032¢ cos 2(N =) (59)
e n=1

obtained from equation (26) by several transformations!3, The coef-
ficients Cp are related to the oblateness coefficients J, and can be
determined from them by relations similar to the equations (16) through
(22) for the coefficients Ap, involving some of the latter.

Co =-§ [1 + 2(1 - Ap) - % a; + fg (332 + @)% - % Bo(18J5 + EL - 332)J
C,L=0

Cz = %( [Ja - %Aa - % ae - ‘613 (3J- + Cje)z +2—"i Bo(18J5 + ae - 332):|
Ca =‘§ [J4 - % Ag + T%g (332 + a;)z + T%g Bo(18J, + 5; - 332)]

C, =-§ LJK - KziKl] for kK # 0,2,4

Cz 2= % Jz 2

For the '"best" geoid (Model 5a) with Kozai's set of J, up to Jig4,
the C~coefficients become

Co = 1.001760646
Cl=0
Cz = -0.1172324264 x 1072
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Cs = -0,1272995717 x 10°°S
C, = +0.2636592115 x 10-8
Cs = -0,1401281566 x 10-6
Ce = +0.4619357542 x 10-8
C, = -0,2500551096 x 10~6
Ce = -0.2102749240 x 10-8
Co = -0.4245829102 x 10-7
Cio = -0.4424481398 x 10~7
Cyy = +0.2520357773 x 10-6
Cio = -0.3025300610 x 10™6
Cys = -0.9786358495 X 10-7
Cyq = +0.1553740187 x 1076,

With these coefficients, equation (59) then becomes*, using

ge = 978.0320,

g = 979753.968 + 3439.712 Po(sin @) + 4.980 Px(sin @) - 12.893 P,(sin @)
+ 0.822 P5(sin £) - 3.163 Pg(sin 2) + 1.956 P,(sin Q)

+ 1.851 Pg(sin @) + 0.415 Pg(sin @) + 0.476 P,o(sin @)

2.958 Pyi(sin @) + 3.846 Pyo(sin 2) + 1.340 Pyx(sin @)

2,279 Py4(sin @) + 15.873 cos3¢ cos 2(A\ + 18°) (mgal). (60)

With the Legendre polynomials obtained as shown in Appendix A, the
gravitation can be computed for the '"best" geoid from equation (60) as
an alternative to the gravity equation (26).

*
Some of the amplitudes (coefficients) of the gravity equation in
reference 14 have been found to be slightly incorrect. The values are
corrected here.
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