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INVISCID HYPERSONIC FLOW OVER A BLUNT BODY WITH 

HIGH RATES OF MASS AND HEAT =SFEX3 

By E.  D a l e  Martin 

Ames Research Center 

SUMMARY 

A study of steady hypersonic flow over a blunt  body with a very high rate 
of continuous mass t ransfer  f romthe  body Surface, with heat conduction, is  
presented. An approximate analysis  i s  made of the  inviscid flow over a sphere 
with la rge  mass f lux .  L igh th i l l ' s  well-known constant-density inviscid blunt- 
body flow solution w a s  previously extended by Vinokur and Sanders and by 
Cresci and Libby t o  include inviscid flow a t  a high rate out of the  body sur- 
face.  The present analysis  fur ther  extends Cresci and Libby's solution t o  
include the  e f f ec t s  of the  boundary shock wave, a t h i n  viscous region domi- 
nated by viscous-compressive s t r e s ses  ( ra ther  than viscous shear) and the  
associated heat conduction i n  the  gas adjacent t o  the  body surface. These 
e f f e c t s  a r e  important t o  consider when there i s  a s igni f icant  source of trans- 
l a t i o n a l  nonequilibrium at  the  body surface (such as absorption of  intense 
rad ia t ion  and the  accompanying la rge  heat conduction). 

INTRODUCTION 

Hypersonic flow over a blunt  body with a high rate of mass t ransfer  has 
been studied by a number of invest igators .  For example, i n  an ea r ly  invest i -  
gation, Hoshizaki ( r e f .  1) made numerical calculat ions from the  incompressible 
Navier-Stokes equations t o  determine the e f f ec t s  of mass t r ans fe r  on the  heat- 
t r ans fe r  r a t e  t o  blunt bodies. Vinokur and Sanders ( r e f .  2 )  extended the 
constant-density inviscid solution of L igh th i l l  ( r e f .  3) t o  include mass 
inject ion f romthe  body. The calculat ions of reference 2 w e r e  made fo r  t he  
very spec ia l  case wherein the  inject ion i s  vectored s o  tha t  t he  flow f romthe  
body i s  i r ro t a t iona l .  Libby ( ref .  4), Cresci and Libby ( ref .  5 ) ,  and Fox and 
Libby ( r e f .  6 )  a l so  studied blunt-body flows w i t h  l a rge  mass-injection r a t e s .  
O f  par t icu lar  i n t e re s t  here i s  the  appendix of reference 5 ,  which contains a 
solut ion t o  the  inviscid,  incompressible-flow equations t h a t  i s  equivalent 
(except f o r  the  vectored in jec t ion)  t o  t h a t  given i n  reference 2.  
c id  solutions of Vinokur and Sanders and of Cresci and Libby are fur ther  
discussed i n  references 7 and 8. 

The invis- 

The magnitude of the mass f l u x  f romthe  body determines the  nature of t he  
in te rac t ion  with the  outer flow and the  nature of t h e  e f f ec t s  on the  body 
motion and heating. When t h e  mass f lux  i s  small enough, t he  outer flow is  
not affected appreciably, and boundary-layer theory i s  applicable i f  the  
Reynolds number p2V2do/p2 i s  la rge .  (Notation i s  defined i n  appendix A. ) 
It w i l l  be shown i n  a la ter  sect ion t h a t  t he  bulk of t he  flow i n  the  inner 



region is  e s sen t i a l ly  inviscid i f  t he  mass f lux  (or ,  more appropriately,  R%) 
i s  large; t h a t  a th i ck  viscous region e x i s t s  only f o r  moderate values of mass 
flux; and t h a t  a boundary layer  exists only fo r  small mass f l u x  (small Reb). 

A t h i q  region of flow dominated by viscous-compressive s t resses  ( T r r )  and 
heat conduction i s  expected t o  occur, i n  general, at a boundary surface from 
which a gas flows a t  a rapid r a t e  with s ign i f icant  heat conduction a t  the  sur- 
face (e  .g . , because of absorption of intense radiat ion the re ) ,  as discussed 
i n  references 9 and 10. Thus, even though the  bulk of t he  flow from the  body 
is  inviscid,  a t h i n  layer  immediately adjacent t o  the  body general ly  can have 
s igni f icant  viscous e f f ec t s  which a re  qui te  d i f f e ren t  from the  viscous- 
shearing e f f ec t s  (e.g., s ign i f icant  Tr(p)  t h a t  characterize a boundary layer .  
In  t h i s  region, designated as a boundary shock wave, t he  density,  temperature, 
pressure, and ve loc i ty  may vary rapidly.  In t h e  inviscid l i m i t ,  the  boundary 
shock wave i s  of vanishing thickness, and the  flow variables  change discon- 
t inuously across it ( i n  the same sense as across a shock wave). 
heat t ransfer  a t  t h e  w a l l  and la rge  R% a r e  necessary and suf f ic ien t  condi- 
t i ons  f o r  t he  presence of t he  boundary shock wave ( ref .  10) whether the  
e f f lux  i s  supersonic or  subsonic. If the heat t r ans fe r  i s  small, the  e f fec ts  
of t he  boundary shock wave are negl igible .  If the e f f lux  i s  supersonic re la-  
t i v e  t o  the  surface (& > l), t he  l imi t ing  case of t he  boundary shock wave as 
the  heat conduction approaches zero is  a simple detached shock wave near the 
surface.  

Significant 

. The e f f ec t s  of the  boundary shock wave did not appear i n  the  analyses of 
references 1, 2, 4, 3 ,  and 6 .  
the  incompressible form of the  Navier-Stokes equations used i n  reference 1, 
t h e  boundary-shock e f f ec t s  would not appear i n  a purely constant-density 
analysis  unless d iscont inui t ies  were allowed i n  order t o  account for  rapid 
var ia t ions i n  density,  normal velocity,  e t c .  Similarly,  t he  inviscid-flow 
analyses of reference 2 and the  appendix of reference 5 contained nei ther  
viscous-compressive e f f ec t s  ( e f f ec t s  of 
t o  account fo r  possible viscous e f f ec t s  a t  the  body. Those analyses a l so  
would not apply t o  supersonic e f f lux  because, with no heat conduction a t  the  
w a l l ,  there  would have t o  be a detached shock wave somewhere between the body 
surface and the  stagnation point.  Boundary-shock e f f ec t s  did not appear i n  
the  boundary-layer analyses of references 4 and 6 because the  terms i n  the  
Navier-Stokes equations tha t  can be important very near the  surface when the  
mass flow normal t o  the  surface i s  la rge  (terms containing T r r )  a r e  omitted 
i n  the  boundary-layer equations used i n  those analyses. Since the  boundary- 
shock e f f ec t s  a r e  not important i n  some cases, t he  r e su l t s  of the  previous 
investigations are va l id  and accurate (under appropriate conditions) even 
though account w a s  not taken of a possible boundary shock wave. 

Although t h e  viscous terms were included i n  

T r r )  nor discontinuous flow variables  

It i s  hoped t h a t  t he  present study w i l l  shed some l i g h t  on the  nature of 
t he  divis ion of the  flow in to  inviscid and th in  viscous regions. After j u s t i -  
f i ca t ion  of the  approach used, t he  flow i s  analyzed by t r ea t ing  constant- 
density inviscid regions with l i n e s  of discont inui ty  t o  represent t h in  viscous 
regions. 
t he  scope of t h i s  report ,  but rigorous der ivat ion of the  boundary conditions 
f o r  the  inviscid regions, based on recognition of t he  presence of t h in  viscous 
regions, i s  contained i n  an appendix.) The analysis  includes the  e f fec ts  of 

(Treating the  in t e rna l  s t ruc ture  of  the  viscous regions i s  beyond 
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the  boundary shock wave, which makes the  flow calculat ion correct  i n  the  
extension t o  flows with more severe conditions than can be t rea ted  cor rec t ly  
by t h e  previous analyses. The inviscid-flow solut ion i s  the  same as t h a t  i n  
the  appendix of reference 5 except i n  the  appl icat ion of boundary conditions 
a t  the  body surface.  That is, t h e  inviscid solution i s  the  same as Cresci 
and Libby's i f  t h e i r  boundary parameters a r e  the  s a m e  as values outside a 
boundary shock i n  the  present analysis .  Thus, one main purpose of t h i s  report  
i s  t o  r e l a t e  t he  inviscid solut ion t o  appropriate boundary parameters under 
the  conditions where the  boundary shock wave is  expected t o  occur according t o  
t h e  theory of references 9 and 10. 
be considered t o  be an extension of t he  analyses i n  reference 2 and the  
appendix of reference 5 t o  cases with s ignif icant  heat conduction a t  the  
boundary surface due t o  a source of t r ans l a t iona l  nonequilibrium, such as 
intense radiat ion being absorbed there .  

The approach presented here may therefore  

DIVISION OF FLOW INTO INVISCID AND THIN VISCOUS REGIONS 

The f l o w  of air  and of gas emanating from the  body i s  assumed t o  be 
governed by the Navier-Stokes equations. They may be expressed symbolically 
as 

(1) 1 convective terms = - 
R e  

(viscous terms) 

The convective terms and the  viscous terms are  made dimensionless with respect 
t o  the  appropriate flow quant i t ies  i n  each region of i n t e re s t  so t h a t  the  
Reynolds number f o r  t he  general  case is  

where the  reference quant i t ies  i n  a given region are constant values 
representing ac tua l  s ign i f icant  flow quant i t ies  i n  t h a t  region. 

It i s  well known tha t ,  i f  the Reynolds number i s  la rge ,  t he  r igh t  s ide  of 
equation (1) i s  negl igible ,  and the  flow i s  sa id  t o  be inviscid,  except i n  
very t h i n  regions where t h e  viscous terms, which contain higher order deriva- 
t i v e s  of ve loc i t ies  than the convective terms, are la rge .  In the  l i m i t  as 
R e  --f m, it i s  only i n  regions f o r  which t h e  thickness is  of t he  order of some 
power of (Re)- '  t h a t  these viscous terms a r e  important. In  the  inviscid 
l i m i t  t he  t h i n  regions are represented as d iscont inui t ies  i n  the  flow vari-  
ables  t h a t  are changing rap id ly  there  ( the  d iscont inui t ies  being e i the r  a t  a 
boundary or a t  an in t e rna l  locat ion,  where e i t h e r  a boundary condition or  
in te rna l  continuity of t he  solut ion cannot be s a t i s f i e d  because t h e  order of 
t h e  d i f f e r e n t i a l  equation, or system of equations, i s  reduced). The s t ruc ture  
of the flow inside these "quick-transition regions" ( c f .  r e f s .  11-13) could 
be analyzed by making boundary-layer-type transformations on t h e  equations and 
making a uniformly va l id  approximate calculat ion by dropping out t he  terms of 
higher order i n  the  small parameter (Re)-l. 
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Consider first t h e  case of no mass t r ans fe r  (vb = 0 )  and refer t o  
f igure  l ( a ) ,  which represents schematically t h e  flow in the  forward region of 
a blunt body t h a t  i s  a x i a l l y  symmetric with respect  t o  t h e  free-stream direc- 
t ion .  A s ign i f icant  parameter determining both t h e  thickness of t he  shock 
wave, ~ S W ,  and the  boundary-layer thickness,  $ 2 ,  i n  comparison t o  the  
thickness of t he  shock layer ,  do, i s  

where subscript  2 indicates  conditions on t h e  axis immediately behind the  
shock wave and where p, p, and V are, respect ively,  t h e  density,  viscosi ty ,  
and ve loc i ty  there .  A s  i s  w e l l  known, 

as Re2 + 03 (4) 

i n  general .  Thus, when vb = 0 and Re, i s  la rge ,  t he  flow of a i r  i n  f ront  
of the  body ( f i g .  l ( a ) )  i s  inviscid except f o r  t h e  t h i n  quick-transition 
regions of t he  shock wave and the  boundary layer  (shaded areas) .  

Now consider t h e  cases where mass t r ans fe r  from the  body exists (vb # 0) ,  
and i n  par t icu lar  t he  regimes of flow f o r  which Re2 >>1 and f o r  which 

i s  very small, of order unity, or v e r y l a r g e  (see f i g .  l(b), ( c ) ,  ( d ) ) .  The 
case of s m a l l  mass t r ans fe r  (q,vb small) i s  denoted by Reb << 1. The 
"intermediate regime" i s  Reb = O ( 1 ) ;  and the  case of la rge  mass t ransfer  is  
denoted by R% >> 1. 

From the  above discussion we see t h a t  R% 

(Note appendix B.) 

i s  the  determining fac tor  as 
t o  whether or  not t h e  bulk of t he  flow from the  body ( i .e . ,  t he  inner gas 
layer )  i s  f r e e  of viscous e f f ec t s .  
t ransfer  (Reb << 1) t he  inner gas layer  i s  e n t i r e l y  viscous and i s  simply 
par t  of the boundary layer  ( f i g .  l(b) ) . 
order of magnitude of t he  boundary-layer thickness if 
mass f l u x  increases,  say t o  where 
th ick  viscous layer  ( f i g .  l ( c ) ) .  
a r y  layer  because it is  not vanishingly t h i n  as Re2 -f w and the  requirements 
f o r  the v a l i d i t y  of boundary-layer theory are violated,  although the  viscous 
par t  of the  a i r  i n  the  outer layer  does become vanishingly t h i n  as Re2 -, w. 
A s  the  mass flux increases s t i l l  fur ther ,  so  t h a t  Reb >> 1, the  inner gas 
layer  must become es sen t i a l ly  inviscid ( f ig .  l ( d ) ) ,  leaving viscous e f f ec t s  
confined t o  the  interface layer  and the  boundary shock wave a t  the  body 

For very small mass 

The mass t r ans fe r  does not change the  

R% = 0(1), t he  inner layer  becomes a 
Reb < O ( G ) .  A s  t he  

Mathematically speaking, it i s  not a bound- 
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surface. 
t h a t  has car r ied  with it the  viscous-shearing e f f ec t s  ( e f f ec t s  of 
characterized t h e  boundary layer  ( f i g .  l ( b ) ) .  
(e f fec ts  of -rrr) t h a t  became of t he  same order as the  viscous shearing 
e f f ec t s  i n  the  th ick  viscous layer  ( f i g .  l ( c ) )  are l e f t  confined t o  the  
boundary shock wave ( f i g .  l ( d ) )  . Note t h a t  no pa r t  of t he  flow i n  t h e  bound- 
a r y  shock wave need be supersonic if there  i s  heat t r ans fe r  i n  the  gas a t  the  
boundary ( r e f .  9 ) .  
manner with varying Ret, as does a shock wave with varying Re2 (see ref. 9 ) .  
Its thickness f o r  la rge  R% i s  of order ib/pbvb; t h a t  is ,  

The interface layer  is  e s sen t i a l ly  a "blown-off" boundary layer  
T ~ , , )  t ha t  

The viscous-compressive e f f ec t s  

Furthermore, t he  boundary shock wave behaves in the same 

- 
where t h e  v iscos i ty  coeff ic ient  p is  of t he  same order as the shear- 
v i scos i ty  coeff ic ient  p. The v iscos i ty  coeff ic ients  are r e l a t ed  by 

- 4  1 
p = 3 C L + 3 K  

where K is  the  bulk v iscos i ty  coef f ic ien t  (see r e f .  14, p.  337). One would 
expect t he  order of magnitude of t he  r e l a t ive  thickness of the  interface 
l aye r ,  €1, t o  be given by 

as R e 2  -, 00 and Reb * 

i f  it can be t r ea t ed  l i k e  a boundary Layer. 
be assumed a p r i o r i  without a carefu l  analysis .  
gen t i a l  veloci ty  a t  t h e  interface is discontinuous i n  the  inviscid solut ion.  

However, t h i s  should probably not 
It would be t r u e  if the  tan- 

W i t h  t he  assumption t h a t  t he  
lnterfoce Boundary en t i r e  outer flow is  governed by 

Re;? and the  inner flow by Reb, 
the l imi t ing  case f o r  which both 
Re2 and Reb * w i l l  leave two 
inviscid regions with possible dis-  
cont inui t ies  at  t h e i r  boundaries: 
t he  shock wave, t he  in te r face ,  and 
the  body. Whether o r  not discon- 
t i n u i t i e s  w i l l  ex i s t  there  i n  the  
inviscid l i m i t  w i l l  depend on satis- 
fact ion of t h e  conservation equa- 

regions, t o  be considered below. 

layer shock wave Shock wove 
(significant rrr) (significant r r+ )  (significant rrr) 

Thickness of region 
of moss-tronsfer t ions across these vanishingly t h i n  

Sketch (a) may a i d  the  under- 
center standing of flow containing a bound- 

a r y  shock wave. Thermodynamic 
pressure, p, and mass density,  p, 

( r  = 0) 

Sketch (a) 
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a r e  p lo t ted  qua l i ta t ive ly  across the  several  regions of flow on the  axial 
streamline when Re2 and Reb a r e  both la rge  and when some source of s ign i f i -  
cant t r ans l a t iona l  nonequilibrium i s  present a t  
ments of pressure, there  would be no way of physically separating the  
thermodynamic pressure, p, from the  normal viscous stress i n  the  radial direc- 
t i on ,  -rrr. 
d i rect ion,  p -+ ( - T r r ) ,  does not vary s igni f icant ly  across the  boundary shock, 
although the  density,  p, does if a strong boundary shock i s  present ( i .e . ,  
with s ign i f icant  Trr)  . 

%. Note t h a t  i n  measure- 

For small enough pVb2, t he  t o t a l  normal s t r e s s  i n  the  r a d i a l  

ASSUMPTIONS AND APPROXIMATIONS FOR FLOW CALCULATION 

For the  flow calculat ion it i s  assumed, first of a l l ,  t h a t  Re2 and Reb 
a re  la rge  enough tha t  both the  a i r  flow i n  the  outer layer  and the flow 
originat ing from the body a re  e s sen t i a l ly  inviscid.  It i s  assumed therefore 
t h a t  a l l  viscous e f f ec t s  a r e  confined t o  very t h i n  layers  a t  the  shock wave, 
t he  interface,  and a t  the  body surface, as described above. These very th in  
quick-transit ion regions a re  represented by surfaces of discont inui ty  in  the  
inviscid analysis .  The discontinuous quant i t ies  are those t h a t  vary rapidly 
inside the  t h i n  viscous regions, except t h a t  the  densi ty  a t  the  interface i s  
generally discontinuous a l so  i n  the  viscous flow, i f  diffusion i s  neglected. 
It i s  assumed tha t  e i the r  t he  interface layer  i s  s tab le  near the  ax is  of 
symmetry o r  the  e f f ec t s  of i n s t a b i l i t y  a r e  negligible (see appendix B) . 

Only t h e  sphere w i l l  be considered f o r  t he  body shape. In  order t o  
obtain a separable solution t o  the  equations, t he  shock wave and the  in te r -  
face w i l l  be assumed t o  be concentric with the  body, and the  normal ve loc i ty  
of mass flow f romthe  body ( j u s t  outside the  boundary shock wave) w i l l  vary 
as the  cosine of the  body angle cp. These assumptions a re  automatically 
included i f  w e  simply assume: (1) the  body has constant curvature, and (2)  
t he  flow solut ion i s  separable. That i s ,  the  l a t t e r  assumption i s  equivalent 
t o  specifying a l l  the  boundary conditions i n  such a way as t o  be compatible 
w i t h  a separable solution t o  the  equations. 

For simplicity,  the  densi ty  i s  taken t o  be constant i n  each of t he  invis- 

(The densi ty  var ies  rap id ly  across the  boundary shock, 
c id  regions, but it may vary across the  surfaces of discont inui ty  represent- 
ing rapid t r ans i t i ons .  
as well as across the  shock wave.) The outer inviscid solut ion w i l l  then be 
iden t i ca l  t o  L igh th i l l ' s  constant-density solution f o r  t he  sphere ( ref .  3) 
(with the  interface as the  equivalent body i n  t h a t  solut ion) ,  since the  con- 
d i t i ons  across the  shock wave are the  same. The solut ion f o r  t he  flow between 
the  interface and the  body w i l l  be d i f f e ren t  f romthose of Vinokur and 
Sanders ( r e f .  2 )  and Cresci and Libby ( r e f .  5 ,  appendix), f o r  the same bound- 
a ry  parameters, because of t he  presence of the  boundary shock wave. (For the  
same values of parameters outside the  boundary shock wave, t he  inviscid solu- 
t i o n  i s  the  same as given i n  the  appendix of reference 5 .  The relat ionship 
of t he  inviscid solution t o  the  boundary parameters, under conditions where 
the  boundary-shock-wave theory appl ies  ( r e f .  lo), i s  of most concern here . )  
The assumptions of constant densi ty  outside the  boundary shock and the  sepa- 
rable  flow solut ion simply require t h a t  t he  mass f lux f romthe  body, as well 
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as the  normal ve loc i ty  outside the  boundary shock, be specified as varying as 
the  cosine of t he  body angle cp. These conditions w i l l  be evident when the  
solut ion i s  formulated. 

Purely r a d i a l  ve loc i ty  of t he  mass flow out of t he  body surface w i l l  be 
The flow through the  boundary shock wave w i l l  then be normal t o  the  
In  t h e  solut ion of Vinokur and Sanders ( ref .  2 )  t h e  mass in jec t ion  

The vo r t i c i ty ,  or 

assumed. 
surface.  
w a s  assumed t o  be vectored t o  make the  flow i r ro t a t iona l .  
ro ta t iona l i ty ,  of t he  flow from the  body depends simply on the  d i s t r ibu t ion  
of t he  components of ve loc i ty  a t  the  surface, which can be specified indepen- 
dent ly  of t he  flow problem, s ince they depend e n t i r e l y  on the  inject ion (or 
ablat ion)  process. 

The l imi t ing  case of very small heat conduction (qcb -+ 0 )  i n  a super- 
sonic e f f lux  of gas a t  the  boundary, f o r  which the  boundary shock becomes a 
detached shock wave ( ref .  g), w i l l  not be t rea ted  here.  
qcb # o i f  > 1. 

boundary shock wave t o  occur (see r e f s .  9 and 10) .  
except t o  require 
the  l i m i t  Reb + 00. 

Thus we assume 

The mass f lux  from the  body may be e i the r  subsonic or supersonic fo r  a 
W e  do not r e s t r i c t  Ivlt, 

% # 0, since 4 = 0 would be general ly  incompatible w i t h  

A value of uni ty  i s  assumed f o r  the  longi tudinal  Prandtl  number, 
Pr = Fcp/kc, t h a t  i s ,  the  Prandtl  number based on the viscosity-coefficient 

t h a t  occurs i n  the  purely viscous-compressive s t r e s s ,  T r r  = p(dv/dr), i n  
t he  boundary shock wave. With t h a t  assumption the  simple relat ionships  
developed i n  reference 9 f o r  the  conditions across the  boundary shock wave 
can be used. Liepmann and h i s  co-workers have pointed out ( r e f .  15) t h a t  
Pr 1 f o r  most r e a l  gases. 

& 

ry 

INVISCID CONSERVATION EQUATIONS AND THE: BOUNDARY CONDITIONS 
FOR THE INVISCID REGIONS 

Inviscid Conservation Equations 

For steady inviscid flow the  equations of conservation of mass, conserva- 
t i o n  of momentum (Euler equations), and conservation of energy are:  

div(p?) = 0 (9)  

grad)? + grad p = o  

+ 
with which appropriate equations of state and a r e l a t i o n  f o r  
used. We take f o r  the  equations of s t a t e  i n  the  inviscid regions, as 
described above, 

qr m u s t  be 

7 
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I p = p- = constant,  

p = p+ = constant,  

(rb < r < Q + d i )  

(rb + d i  < r < I'b + d )  

Equations ( 9 ) ,  (lo), and (11) may be 
wr i t ten  conveniently i n  axisymmetric 
spher ica l  coordinates (r,cp) f o r  t he  
sphere (see sketch ( b ) ) .  

A transformation t h a t  s impl i f ies  
both the  equations and t h e i r  solut ion 
(but involves no approximation) i s  
t h e  following: 

( = log( r / rb)  (13a) 

f o r  which 

( 13b ) 
a d 

r - (  ) = - - ( )  ar  al: 

Streomline 

Sketch (b )  
In terms of dimensionless quant i t ies  
u, v,  5 ,  p ,  and k, equation (9) and 
the  components of (10) become 

With dimensionless enthalpy 6, equation (11) becomes 

In equations (14) t o  (16), t he  - subscr ipts  
t i a t i o n .  ( I n  these equations p i s  s t i l l  var iab le . )  The equations of s t a t e  
f o r  the  inviscid regions become 

cp and 5 denote p a r t i a l  differen-  

- - 
p = = p-/p+ a2 = constant f o r  o < 5 < (i 

p = p + = 1  fo r  5 i  < 5 < 5s 
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where 

It is  convenient t o  introduce a dimensionless Stokes stream function $, 
defined by 

= pue25 s i n  cp ; 5 + = -i;ve2c s i n  cp 
cp 

which automatically s a t i s f i e s  equation (14). 
by using equations (17) and by cross-different ia t ing and equating 

t o  obtain a nonlinear p a r t i a l  d i f f e r e n t i a l  equation f o r  
f o r  0 = ce < ( < si or f o r  Ci < 5 < 5 , .  Because constant density i s  
assumed f o r  t he  inviscid portions of t he  flow, the  energy equation i s  
uncoupled f romthe  equations f o r  conservation of mass and momentum and, hence, 
need not be considered f o r  the inviscid-flow calculat ion (except i n  the  con- 
d i t i ons  across the  d iscont inui t ies  t o  determine 

Equations (15) may be conibined 
t o  - 5cp J I ,  which appl ies  

cpc 

p- and p+).  

Boundary Conditions 

Since the f l o w s  on both s ides  of the shock wave and on both s ides  of the  

How- 
interface layer  a re  inviscid,  t he  inviscid-flow equations f o r  the  conservation 
pr inciples  can be used t o  determine conditions across ( c f .  appendix C ) .  
ever, the  boundary shock wave, l i k e  a boundary layer ,  has inviscid flow only 
on one s ide,  so the  conservation equations of  viscous flow must be used t o  
f ind  conditio= across the  boundary shock wave. This has been done ( r e f s .  9 
and 10) fo r  For a curved boundary 
surface and a very t h i n  boundary shock wave ( i . e . ,  t o  f i r s t  order) with flow 
normal t o  it, the  results w i l l  be the  same. However, the  f l o w  quant i t ies  w i l l  
vary along the  boundary shock wave. 

The conditions behind the  shock a re  ( c f .  appendix C): 

Pr = 1 and f o r  a plane boundary surface.  

p = ( l -  

h = - ( 1  1 
2 

where k = p,/p2 i s  determined by an 
t ab le s )  i n  combinat ion with equations 

equation of s t a t e  (or equilibrium-air 
(20) (using cp = 0 ) .  It w i l l  be 

9 



convenient t o  use (20c) i n  the  following form (making use 'also of eq. ( l3a)):  

C = C s 7  -kGq = uucp + vu5 + uv = +2k(l - k)cos cp s i n  q (21) 

The interface ( 5  = Ci)  i s  defined as t h e  surface between the  region of 
gas flow t h a t  has come through the  shock wave and the  region of gas flow 
emanating from the  body. This def in i t ion  can be represented by 

which, with the  concentric interface ( i . e . ,  si = constant, not a function of 
c p ) ,  a l so  implies 

The conditions t o  be applied a t  the  inviscid interface are ( c f .  appendix C ) :  

A t  t he  body ( i n  the  inviscid flow, outside the  boundary shock wave) it 
w i l l  be - found necessary t o  specify: 
pe = p = p-/p+ 
mined. (These quant i t ies  a r e  equivalent t o  those "at the  body" i n  the  appen- 
d i x  of r e f .  5 . )  When a boundary shock is  expected, these quant i t ies  m u s t  be 
re la ted  t o  conditions a t  the  boundary, within the  viscous boundary-shock-wave 
region. The viscous-flow equations must be used t o  determine the  conditions 
across the boundary shock, whose r e l a t i v e  thickness ( ref .  9 )  is  
For t he  calculat ion of r e su l t s ,  one would l i k e  t o  specify values a t  the  
boundary, say 4, q, and the  mass flux pbvb, then determine the  conditions 
outside the  boundary shock (pe, V e ,  +), which would be used as boundary con- 
d i t i ons  f o r  t he  inviscid solution. However, it w i l l  be found most convenient 
f o r  t he  calculat ion t o  specify values of a parameter N containing peVeo2. 
A s  w i l l  be seen, then, peo w i l l  be determined f romthe  solut ion t o  t h e  equa- 
t i ons  So t h a t  bo2 = peVeo2/7peo w i l l  be known. If % = &$,(cp) and Tb0 a r e  
a l s o  specified,  then the  complete inviscid solution, the  conditions across the  
boundary shock, and values of quant i t ies  of i n t e r e s t  a t  the  boundary, includ- 
ing the mass f l u x  a t  cp = 0, (Q,Vb),, w i l l  be determined. 
I$,, Tbo, and peVeo2 w i l l  give solutions corresponding t o  &, Q0, and some 
value of (pDvb)o. Pr  = 1, per- 
f e c t  gas i n  the  boundary shock, and 
values of 
normal t o  the  layer  ( i n  present nomenclature) are:  

p = De, v = ve, u = I+ (where - - uz = constant) i n  order t h a t  t he  inviscid solut ion be deter- 

O ( R e b * ) .  

Thus, specifying 

N 

It has been shown ( r e f s .  9 and 10) t h a t ,  f o r  
qr = constant across,  and f o r  known 

4 and Me, t he  conditions across the  boundary shock wave f o r  flow 

10 
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Pe/g, = %'/Me2 

where 

J 

and the  heat-conduction parameter f o r  conduction i n  the  gas a t  the  boundary is 

To these conditions we must add f o r  normal injection, '  

u e = y , = o  (27) 

In general, the  quant i t ies  found f r o m  the  above conditions a r e  var iable  over 
q?. The respective var ia t ions  w i l l  be specified as required t o  produce a 
separable solution f o r  t he  inviscid flow, as discussed above. For a separable 
solution it i s  necessary t h a t  ve vary as cos cp and I+ a t  most as s i n  cp: 

a t  5 = 5, = 0 : 

Veo v = ve = Veo cos cp = - 
vcu 

u = ue = ueo sin cp = 0 

Once the  r a t i o s  i n  equations (24) a re  known f o r  a l l  cp (with specifica- 
t i o n  of I$,, 'pbo, and peVeo and with pe found from the  inviscid solution), 
the following quant i t ies  can be calculated i n  order: 

. -  . ~- ~- ~ - - _ .  .~ 

'In a private  communication, Prof.  N .  Rott (Univ. of C a l i f .  a t  Los 
Angeles) has pointed out t h a t  i f  a s igni f icant  tangent ia l  ve loc i ty  component 
is present i n  the  boundary shock wave, i t s  treatment would be analogous t o  
the "shock s l ip"  condition f o r  t he  tangent ia l  ve loc i ty  component i n  an oblique 
shock wave (e .g., see r e f .  16 ) .  This condition would have t o  be considered i f  
the  mass in jec t ion  i s  "vectored" as suggested i n  reference 2 .  



2 Different values of peVeo 
i t e r a t ed  u n t i l  t h e  desired mass flux, pbvb, i s  obtained. 

could be specif ied i n i t i a l l y  and the  solut ion 

It should be noted t h a t  when the  mass transfer is  a result of ab la t ion  
of t he  body surface caused by high rad ia t ive  heating f romthe  hot layer  of 
a i r  between the  shock wave and the  interface,  t he  specif icat ion of a r b i t r a r y  
values of 
similar t o  those used i n  references 9 and 10 f o r  t he  one-dimensional 
case: a vaporization-rate equation f o r  %, Clapeyron's equation (or "modi- 
f ied Clapeyron's eq .") f o r  % = %(&), and an equation r e l a t ing  @vb t o  
t h e  rad ia t ive  heat f lux.  Then the  rad ia t ion  i s  assumed t o  be absorbed within 
an i n f i n i t e l y  t h i n  layer  just inside the  body surface; some of t h a t  heat i s  
conducted in to  the  body, so the  heat conduction in to  the  body from the  surface 
is  not t he  same as t h e  conduction i n  the  vapor j u s t  outside the  surface.  

%, Tb, and %vb could be replaced by three appropriate equations 

SOLUTION OF W EQUATIONS FOR THE INVISCID REGIONS 

Separation of Variables 

The p a r t i a l  d i f f e r e n t i a l  equation f o r  $ obtained from equations (l?), 
(17), and (19) with t h e  boundary conditions (20 ) ,  (el), ( 2 3 ) ,  and (28) has 
t h e  separable solut ion 
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= sin2 cp f ( 5 )  
where the  d i f f e r e n t i a l  equation f o r  f ( 5 )  i s  

where ( ) '  = d (  )/d(. The boundary conditions become: 

a t  5 = 5 ,  = log D : 

f = &/2 

f '  = P 

f"'  = (D2/k)(l - k + 2k2) 

+ 
a t  = f i  = log Di : 

f = O  

- 
a t  5 = si = l o g  D i  : 

f = O  1 

(33) 

- 
f '  = p lL0 = 0 

Equation (31) i s  a third-order l i n e a r  ordinary d i f f e r e n t i a l  equation (with 
constant coef f ic ien ts  because of the  transformation (13); i t s  solution w i l l  
have three  unknown constants of integrat ion f o r  the region and 
three  unknown constants of integrat ion f o r  t h e  region In  addi- 
t ion ,  f i  and 5 ,  (or 
constants t o  be evaluated by the  eight boundary conditions i n  equations (32) 
through (35) - 

si < 5 < t s  
0 < 5 < Ci .  

D i  and D )  are unknown, making a t o t a l  of e ight  unknown 

Equations f o r  Pressure, Velocity, and Vor t ic i ty  

The boundary conditions not yet used, (20c) and (23b), w i l l  determine the  
constant of integrat ion for t h e  pressure in each of t h e  two regions. When 
equations (19) and (30 )  are used, equations (13) become 



-kppq = ( s i n  cp cos ~ p ) e - ~ ~ [ ( f ' ) ~  - 2ff"  + 2 f f ' ]  

which may be integrated t o  obtain 

where the  conditions (20c) and (23b) now determine t h a t  

c = C+ = 1 - k 2 

Outside the boundary shock wave, conditions ( 3 5 )  i n  (37) give ( fo r  ue0 = 0 ) :  

In  terms of t he  function f ( 0 ,  the  dimensionless veloci ty  components 
are : 

s i n  cp f ' ( c )  

5 1 
~- I u =  *2i 

-2 cos cp f(5) 

pe2 5 
v =  

and the  dimensionless v o r t i c i t y  i s  
+ 

rb c u r l  v 
v, 

W E  = e-5(vcp - u - u 

(41) 



Integration of t h e  Dif fe ren t ia l  Equation 
and Calculation of Results 

and 

+ +  The constants cl, c P y  C Y ,  c i y  c;, D, and Di are evaluated by subst i -  
t u t ing  conditions (32) through (35) in to  the solution (42) .  The r e s u l t s  a r e  

where 

3(1  - k)2  + 5(4k - l ) n 2  + 2 ( l  - k ) ( l  - 6k)n5 = 0 

> Also obtained are:  - 2 2 = (Di5 + 2Di2 - 3 - 
Po P 2B 

(45) 

- 
c2 OUeo D i 2  
- = (-D - 4 + - Di2) 2~ 

3 = (-2DF + 4 + 2 - o+o Di2) - D i 2  
Po P 2B 

Po i P 

- 
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where Di is the appropriate root of 

and where 

1 

For small di/q (Di M 1), equation (47) may be expanded ( f o r  ueo = 0) as: 

and the inverse expansion, conveniently used for evaluating 
small N ,  is 

2 2 11 

di/q for given 

(54) (ueo = 0) 
de L = N - - N  + - - N 3 - + .  . . 
rb 3 9 

It is particularly useful to note that f+(()/Di2 depends only on k 

and its derivatives can be calculated versus 
(since 
5 = D(k)), so that (1/Di2)f+ 
independently of the solution for 

c1+/Di2, c2+/Di2, and C3+/Di2 are functions of k and 5 ,  and 
( 

0 < ( < (i . Similarly, f-( ()/Pa depends 
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only on the  parameter N = meo/P f o r  ueo = 0 (s ince cl-/Pa, c,-/Pa, and 
c,-/Pa a r e  functions only of D i  f o r  ue0 = 0, and D i  = D i ( N )  f o r  ue0 = O), 
and can be computed independently of the  solution f o r  f i  < f < C s .  

Another r e s u l t  of spec ia l  i n t e r e s t  here i s  t h a t ,  f o r  a given f l i g h t  con- 
d i t i o n  (given V,, p,, p,), f o r  which k and P are known, f " (5  = O)/a is  
known so  t h a t  ge (eq. (39)) depends only on meo or on N (eq. (48)) ;  
hence, Ge can be found f o r  given N regardless of t he  value of e i the r  cs or 
veo* Then the  conditions across the  boundary shock wave can be worked out i n  
the  manner outlined i n  t h e  sect ion "Boundary Conditions, 
of b+,, ?bo, and peVeo2 or N.  (See eqs. (24) through (29) .) Equivalently 
(and of ten more conveniently) one could specify d i f f e ren t  values of 
( ra ther  than N ) ,  f o r  which N i s  eas i ly ,ca lcu la ted  from equation (47). 

by specifying values 

D i  

DISCUSSION OF RESULTS 

The r a t i o  of t h e  width of the  outer inviscid region t o  the radius of t he  
interface,  shown i n  f igure  2 ( a ) ,  i s  ident ica l  t o  t h a t  given by Vinokur and 
Sanders ( r e f .  2 )  and by Cresci and Libby ( r e f .  5 ) ;  values of t h a t  r a t i o  a r e  
a l so  ident ica l  t o  the  values given by L igh th i l l ' s  solut ion ( r e f .  3) f o r  the  
r a t i o  of the  shock standoff distance t o  the  body radius f o r  the same values 
of k = p d p ,  Shown i n  f igure 2(b)  i s  the  
r a t i o  of t he  thickness of t he  inner inviscid region t o  the body radius versus 
the parameter N a v e o / P .  Note t h a t  t h i s  "inviscid blowing parameter" N 
i s  based on conditions outside the  boundary shock wave, and not on conditions 
immediately adjacent t o  the  body surface when a boundary shock i s  present.  

i n  t he  case of no mass in jec t ion .  

The dimensionless tangent ia l  veloci ty  on e i t h e r  s ide of the  interface 
(ui+ or  ui-) can be found from the  function p p lo t ted  versus k z p d p ,  i n  
f igure  3.  This function P i s  ident ica l  t o  the  dimensionless stagnation- 
point veloci ty  gradient from L igh th i l l ' s  solut ion.  

Figure 4 shows examples of the  tangential-velocity prof i le  f o r  the  
par t icu lar  cases fo r  which k = 0.06 and di /Q = 0.3.  Note tha t  the func- 
t i on  plot ted i n  f igure 4(a)  i s  continuous a t  the  interface,  but t ha t  the  
ve loc i ty  i t s e l f  i s  discontinuous if  p-/p+ i s  not uni ty  (see f i g .  4 (b) ,  i n  
which p-/p+ = 2 ) .  

The remaining calculat ions,  fo r  quant i t ies  a t  or near the body surface 
( f i g s .  5 t o  ll), w e r e  a l l  made fo r  
which k = 0.06334 and P = 0.41gO). The r a t i o  of spec i f ic  heats in  the  gas 
emanating from the  body w a s  taken t o  be 
of quant i t ies  along t h e  boundary shock wave (i .e. ,  with varying cp) i n  f ig-  
ures 5, 6, and 7, t he  pa r t i cu la r  value 0.025 w a s  a r b i t r a r i l y  chosen f o r  t he  
parameter N .  Figure 5 shows the  var ia t ion  of p,, peVe2, and Me. Note t h a t  
these var ia t ions correspond t o  the  assumed cosine d i s t r ibu t ion  fo r  the  veloc- 
i t y  outside the  boundary shock wave. 
sary t o  choose a value f o r  %. For these calculat ions,  % = l / 3  w a s  
a r b i t r a r i l y  chosen. The values for  Q0 and the molecular weight m need 
not be specified f o r  these results. 

V, = 20.83 km/sec, a l t i t u d e  = 60 k m  ( f o r  

y = 7/5. To i l l u s t r a t e  the var ia t ion  

For f igures  6 and 7 it was a lso  neces- 
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For t h e  s a m e  f l i g h t  condition (V, = 20.83 km/sec, a l t i t u d e  = 60 km), t he  
values of various quant i t ies  of i n t e re s t  r e l a t ing  t o  the  boundary shock wave 
i n  t h e  gas on the  axis a t  o r  very near t he  body surface a r e  shown p lo t ted  
versus the  inviscid blowing parameter 
f igures  8 through ll. One need not specify e i t h e r  %, Q0, or  m i n  f ig-  
ure 8, but calculat ing t h e  r a t i o s  across the  boundary shock, conditions a t  
t h e  body surface, and ce r t a in  conditions outside t h e  boundary shock wave 
requires  t h a t  Mb be specif ied ( f i g s .  9 t o  11). It i s  per t inent  t o  note 
again (as i n  t h e  discussion of sketch (a ) )  regarding the  pressure var ia t ion  
across the  boundary shock, t h a t  a measured pressure no rm1  t o  the  r direc- 
t i o n  would be t h e  t o t a l  norm1 stress, p + ( - T r r ) ,  r a the r  than the  purely 
thermodynamic pressure p a  Note a l s o  t h a t  t h e  heat  conduction parameter chc 
( f i g .  l O ( a ) )  expresses the  heat conduction i n  the  gas a t  the  boundary; i t s  
relat ionship t o  the  heat conduction inside the  body surface depends on t h e  
mechanism of t h e  mss t r ans fe r  ( r e f e r  t o  refs. 9 and 1 0 ) .  For a l l  t he  
quant i t ies  p lo t ted  i n  these f igures ,  ne i ther  Qo nor m need be specif ied.  
Worthy of pa r t i cu la r  not ice  is the  r e s u l t  shown i n  f igure  10 (d ) ,  t h e  relat ion-  
ship between t h e  mass f l u x  (pbVbI0 and t h e  parameter N referred t o  i n  above 
discussion. 

N ( f o r  y = 7/5  i n  t he  inner region) i n  

If one makes the  approximation 

one can p lo t  the  results given i n  f igures  3 through 11 i n  more general form. 
Then, t he  solut ion f o r  appropriate dimensionless quant i t ies  would depend only 
on k, ra ther  than on the  e n t i r e  f l i g h t  condition with specified a l t i t u d e  and 
f l i g h t  veloci ty .  For example, with the  f l i g h t  condition used i n  f igure  5 ,  f o r  
which pWVw2 = 1.333X106 dynes/", 

and (56) 

so  t h a t ,  with t h e  approximation (55), t h e  values on the  three  curves on f ig-  
ure 3 a r e  equivalent, respectively,  t o  t he  two quant i t ies  on the  r i g h t  s ides  
of equations (36) and M, f o r  j u s t  k = 0.06334, N = 0.025, and 7 = 7/5 .  
Similarly (with use of t he  approximation (35 )  and with the  f l i g h t  condition 
( a l t i t ude  and ve loc i ty)  replaced by k = 0.06554), t he  r e s u l t s  of f igure  6 
apply d i r ec t ly ,  and those on f igure  7 f o r  chc/loo and Tb/Tbo apply d i rec t ly ,  

whereas the  values on the  curve labeled (q) @) (1 g;cm3) become 
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results of f igures  7 t o  11 can be worked out f o r  the  more general condition 
i n  a similar manner (with, e.g., t he  quant i t ies  
chc applying d i r e c t l y ) .  
f igure  12: t he  dimensionless heat-conduction f l u x  i n  the  gas a t  the body 
versus another "blowing parameter," based on conditions a t  the  boundary, 

4, Pe/Pb, pe/pb, 
O f  special  i n t e re s t  i s  a fur ther  r e su l t ,  p lo t ted  i n  

showing values on various l i n e s  of constant N o r  l i n e s  of constant % *  For 
given N and 4 ,  the  blowing parameter i s  calculated from 

and the  dimensionless heat  conduction is  found in  the form 

Obviously, the  var ia t ion  of t he  heat t r ans fe r  with the  blowing parameter 
depends on the  simultaneous var ia t ion of I$,. For example, i f  Q, remained 

constant as F increased (where M,, = , / a ( F / y p b o ) ) ,  then 

(V,2/RT),o) 1/2[-qCb/(l/2) p,voo"] would decrease. 
graph following eqs. ( 2 9 ) ) ,  the  complete determination depends on other con- 
d i t i ons  of t he  problem, including the  mechanism of the  mass t r ans fe r .  

A s  pointed out above (para- 

In discussing the  above r e s u l t s  it must be recognized t h a t  the boundary- 
shock-wave theory, and the  inviscid-flow solution, are only va l id  asymptoti- 
c a l l y  as Reb 3 a. Hence, f o r  su f f i c i en t ly  s m a l l  N o r  F, t he  r e s u l t s  given 
here are not va l id .  A s  N and F approach zero, t he  inner flow becomes f u l l y  
viscous and then approaches a boundary-layer-type flow, so tha t ,  i n  the  l i m i t ,  
t he  r a t i o  pe/q, 
convective heat t r ans fe r  of boundary-layer theory; t he  normal viscous s t r e s s  
becomes insignif icant  i n  comparison t o  the  thermodynamic pressure p; and the  
viscous shear, Ty(p, becomes s igni f icant .  (However, even a value of N equal 
t o  0.02 o r  0.01 can correspond t o  a subs tan t ia l ly  high value of A s  an 
example, i f  for su f f i c i en t ly  la rge  N a constant value of 4 w e r e  appro- 
p r i a t e  as var ies  (e.g., I$, F+: l/3, as estimated i n  r e f s .  9 and lo), then 
as 
as t h e  qua l i ta t ive  dashed curve sketched on f igure  9 ( a ) .  
of Chc 

must go t o  unity; t he  heat conduction becomes the  usual 

R%.)  

N 
N 3 0, the  var ia t ion  of pe/pb would be expected t o  follow a curve such 

Similarly, the  value 
i n  f igure l O ( a )  would first approach a curve of var ia t ion  appropriate 



t o  "moderately large'' values of mass f lux ,  and eventually t o  t h a t  appropriate 
t o  boundary-layer theory as N and Reb approach zero. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  California 94035, Aug. 9, 1967 
124-07-02-23-00-21 
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APPENDIX A 

PRINCIPAL NOTATION 

constant of integrat ion i n  pressure; eva-uated in equation (38) 

heat-conduction parameter, equation (26) 

spec i f ic  heats  a t  constant pressure and constant volume, 
respect ively 

constants of integration; evaluated i n  equations (43) and (46) 

d rs 1 + - = -  
rb rb 

do + d i  

thickness of t he  layer  of gas emanating from the  body 

thickness of t h e  layer  of air between the shock wave and the  
interface 

function of 5 i n  t he  stream function, equation ( 3 0 )  

spec i f ic  enthalpy 

h - h, 

PW 

p2 
shock densi ty  r a t i o ,  - 

coeff ic ient  of thermal conductivity 

v 
speed of sound Mach number, 

21 
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m molecular weight 

N 

Z p  - (Prandtl number based on L) 
kC 

N Pr 

thermodynamic pressure P 

P - P, 
',v, 2 

- 
P 

magnitude of heat flux 

heat flux vector 

gas constant, (i) times universal gas constant R r<di)o, Reynolds number Reb 

p2V2do , Reynolds number 

distance from the sphere center r 

temperature 

dimensionless tangential velocity, - X tangential velocity 1 
v, 

T 

U 

magnitude of velocity V 
3 

V velocity vector 

dimensionless radial velocity, - X radial velocity 

magnified independent variable in thin region; product of 5 and 

1 
v, 

reciprocal of some small dimension, depending on the region; see 
appendix C 

v 

Z 

Pb - (eqs. (24) and (2.5)) 
'e 

a 
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P function of k (eqs. ( 3 0 ) ) ;  equivalent to stagnation-point 
velocity gradient in Lighthill solution 

ratio of specific heats, - , in the gas from the body 

boundary-layer thickness 

CV 
Y 

thickness of the boundary shock wave 

thickness of the interface layer 

thickness of the detached shock wave in the air 

- , equations (4) %2 
d0 €b 2 

6bsw , equation (6) 
di 

€bsw 

- 6i2 , equation (8) 
d 

, equations (4) 6sw 
do 
- 

€i 

dimensionless independent variable, equation (l3a) 

K bulk viscosity coefficient 

shear viscosity coefficient !J 

mass density P 

- 
P P - 

p2 

respectively viscous-shear stress and viscous-compressive stress 
in the radial direction 

angle between a radial line through a point in the flow and the 
body-free-stream axis 

cp 

Jr 

w 

dimensionless Stokes stream function, defined by equations (19) 

dimensionless vorticity, equation (41) 
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b 

C 

e 

eo 

i 

0 

r 

S 

f 
cp 

2 

co 

Subscripts 

value just outside the  body surface 

heat conduct ion 

value just  outside the  boundary shock wave 

value outside the  boundary shock a t  cp = 0 

value a t  the  in te r face  

value a t  cp = 0 

rad ia t ive  heat t r ans fe r  (except in 

value behind the  shock wave 

p a r t i a l  der iva t ive  with respect t o  

p a r t i a l  der ivat ive with respect t o  cp (except i n  Trq )  

value behind the  shock wave a t  cp = 0 

value i n  the  f r e e  stream 

Trq and Trr> 

f 

Superscripts 

+ value i n  the  outer a i r  layer ,  between the  in te r face  and the shock wave 

- value i n  the  inner gas layer ,  between the boundary shock wave and the  
in te r face  
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APPENDIX B 

ON THE POSSIBILITY OF STANDING EDDIES OR AN UNSTABLE 

INTERFACE LAYER 

W e  may consider t he  poss ib i l i t y  of regions in t e rna l  t o  the  flow whose 
e s sen t i a l  character is  not governed by e i t h e r  
f o r  notation.)  The steady flow immediately behind the  shock wave is  ce r t a in ly  
governed by Re, and t h a t  adjacent t o  the  body i s  ce r t a in ly  governed by Reb. 
But  suppose there  i s  some fac tor  a t  t h e  interface not accounted for t h a t  would 
allow one o r  more regions (standing eddies) of dimension, say, 2*, t o  develop 
in  which typ ica l  values of p, V, and p are p*, V*, and p*. Then a Reynolds 
number 

Re, or Reb. (See appendix A 

p*v* 2* 

P* 
Re* = 

could ac tua l ly  be the  governing parameter i n  t h a t  region; and i f ,  f o r  example, 
Re* were of order unity,  then there  would be a region of viscous flow not of 
vanishing thickness as 
unlikely, and is  simply assumed not t o  occur when the  f l o w  calculat ion i s  
made i n  the  t e x t  of  t he  repor t .  

Reb and Re, +a. Such an event i s  considered t o  be 

There i s  another re la ted  poss ib i l i t y  t h a t  can be eliminated only a f t e r  
carefu l  consideration: i n s t a b i l i t y  of  t h e  in te r face  and the  formation of 
eddies. The interface between the  a i r  and the  gas flowing from the  body i s  a 
contact surface of discont inui ty .  In  the  inviscid l i m i t ,  i n  t he  general  case, 
the  tangent ia l  ve loc i ty  i s  discontinuous (shown i n  appendix C )  and the  inter-  
face layer  is  a "vortex sheet." According t o  Rouse ( r e f .  17, p. 303): "Since 
the  t i m e  of Helmholtz it has been understood that  a vortex sheet i s  inherently 
unstable and w i l l  degenerate in to  a s e r i e s  of v o r t i c i t y  concentrations i f  the 
s l igh te s t  disturbance i s  present . I t  Prandtl  ( ref .  18, pp. 50-53) discussed sev- 
eral  examples of surfaces of discont inui ty ,  a l l  of which break up in to  eddies. 
In Prandt l ' s  words: "Owing t o  f luctuat ions i n  the  flow the  surface of separa- 
t i o n  may take on a s l i g h t l y  wavy form . . . . The waves advance with a veloc- 
i t y  which i s  equal t o  the  mean of the  two ve loc i t ies  . . . . ' I  Such a surface 
of discont inui ty  then ' I .  . . breaks down in to  separate eddies" ( r e f .  18, 
pp. 50,  51). 
According t o  Prandt l ' s  descr ipt ions one might expect t he  interface ( for  both 
Re, and Reb very l a rge )  t o  look l i k e  t h e  purely hypothetical  case depicted 
in sketch ( c ) .  Perhaps some physical reasoning can be added t h a t  w i l l  help 
t o  explain the  development in to  eddies in the  other examples and w i l l  a l so  
br ing out a contrasting s i tua t ion  i n  the  present problem. In a l l  t he  examples 
discussed by Prandtl  and i n  a l l  others (a t  least i n  subsonic flow) known t o  
the  present writer, t h e  pressure i n  t h e  region where a contact surface i s  
breaking up i n t o  eddies is  always increasing with streamwise dis tance.  When 
a contact surface of discont inui ty  i s  formed i n  the  flow over a sharp edge, 
t h e  breakup ( i n s t a b i l i t y )  appears t o  begin a t  the  point where one would expect 

Prandtl  described fur ther  the  mechanism of the  i n s t a b i l i t y .  
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t h e  pressure t o  begin increasing 
(where the  streamlines begin diverg- 
i n g l ) .  Hence the  contact surface i s  
unstable i n  an "adverse pressure 

discont inui ty  i s  r e a l l y  a very t h i n  
viscous layer, l i k e  a boundary 
layer ,  between two flows a t  high 
Reynolds number. A boundary layer  
tends t o  separate from i ts  boundary 
i n  t h e  presence of an adverse pres- 
sure gradient (see discussions by 
Schlichting, ref. 19, pp. 23 and 
26-32, and Prandtl ,  ref .  18, p. 137), 
which i s  always associated with the  
formation of vor t ices  ( ref .  19, 

Shock wave 

Hypothetical gradient." The contact surface of 
unstable interface 

Body surface 

p.  2 3 ) .  Since the  " in te rna l  bound- 
a r y  layer"  a t  the  surface of "dis- 
continuity" does not have a w a l l  t o  

Sketch ( e )  .- Hypothetical unstable 
in te r face .  

separate from i n  the  presence of t he  
adverse pressure gradient,  the  v o r t i c i t y  concentrations tend t o  separate from 
each other and so t o  form eddies i n  the  s a m e  way as a separating boundary 
layer  does. Thus it i s  conjectured t h a t  t he  same phenomenon causes the  insta-  
b i l i t y  and collapse of a contact surface t h a t  causes separation of a boundary 
layer ,  which only occurs i n  the  presence of an adverse pressure gradient.  It 
is  fur ther  conjectured, then, t h a t  t he  Helmholtz i n s t a b i l i t y  and eddy forma- 
t i o n  may not occur a t  a contact surface i n  the  presence of a favorable pres- 
sure gradient.  In  the  present problem, the  streamlines a r e  known t o  be 
converging and the  pressure decreasing. Therefore the  eddy formation and 
collapse of t he  contact surface a re  not expected t o  occur i n  t h i s  problem, 
espec ia l ly  near t he  ax i s  of symmetry. 

Since it has not been proved here t h a t  t he  i n s t a b i l i t y  w i l l  not occur, 
some fur ther  remarks may be made. F i r s t ,  it i s  known tha t  the  tendency toward 
i n s t a b i l i t y  and eddy formation i s  grea te r  t he  higher the  Reynolds number. 
Hence, the  Reynolds number Reb may be la rge  enough t h a t  asymptotic solutions 
f o r  high Reb a r e  useful, but Reb may not be too la rge  t o  prevent viscous 
damping of disturbances i n  the  flow pat tern t h a t  would i n i t i a t e  t he  eddy for- 
mation ( c f .  ref.  17, p .  303) .  
th ick  enough t h a t  an unstable "discontinuity configuration" of the  flow is  not 
too closely approached. 

That is, t h e  viscous in te r face  layer  may be 

Second, even i f  R g  i s  very la rge  and i f  t he  i n s t a b i l i t y  and eddy- 
formation condition can develop i n  s p i t e  of t he  above conjectures, t he  region 
i n  which the  eddies occur may be t h i n  enough not t o  influence the  inviscid 
flow s igni f icant ly ,  but merely t o  influence the  s t ruc ture  of t he  viscous 
interface layer ,  a t  l e a s t  i n  t he  region of i n t e re s t  near t h e  ax i s  of symmetry. 

_ - -  

"From conservation of mass, one f inds diverging streamlines t o  have 
decreasing ve loc i ty  and, hence, from Bernoulli 's  equation, increasing 
pressure. 
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Third, if the fluid densities in,the two inviscid regions are the same, 
then there is no discontinuity in the inviscid velocities and hence no 
likelihood of an unstable interface. 



APPENDIX c 

DERIVATION OF INVISCID SHOCK-WAVE AND I m A C E  

BOUNDARY COND I T 1  ONS 

The main purpose of t h i s  appendix i s  t o  show a consistent and rigorous 
derivation of t h e  conditions applying across the  in te r face  layer. 
t h e  convenience of t h e  d i r ec t  analogy t o  a s imilar  der ivat ion of conditions 
across the  shock wave, t he  formal der ivat ion of conditions across the  shock 
i s  shown f i rs t .  

Because of 

To derive the  conditions across the  shock wave and t h e  interface,  con- 
sider the  shock t o  have r e l a t i v e  thickness cS and the  interface layer  t o  
have r e l a t i v e  thickness 
These t h i n  quick-transit ion regions a r e  p a r a l l e l  t o  constant 5 l ines ;  t h a t  
i s ,  t he  flow quant i t ies  vary rap id ly  over 
Z = f / ~ ~  so t h a t  AZ = O(1) across the  shock wave. Assume qr is  constant 
across the  shock wave (i .e. ,  no s igni f icant  rad ia t ion  i s  absorbed or  emitted 
within the  shock) .  
shock a re  ( c f .  eqs. (14), (13), and (16)): 

~i = ET+ + q-. (See appendix A fo r  notat ion.)  

For the  shock wave define f .  4 

Then the  Navier-Stokes equations f o r  t he  flow through the  

\ 

i 
- pvuz + O( c S )  + viscous terms = o 

- 
p w z  + GZ + O (  E ~ )  + viscous terms = o 

(c1) 

u2 + $ 9) -+ O ( c S )  + viscous terms = 
Z 

from which we see t h a t ,  i n  t he  inviscid l i m i t  ( c S  - 0 ;  viscous terms 3 0 on 
both s ides) ,  

- pv = constant’) 

across the  shock 
u = constant 

($)v + kF = constant 

-(- p h + 2 2 u2 + 6 v2) = constant 

t h a t  is, t h e  inviscid conservation equations a re  s a t i s f i e d  across the  dis-  
continuity representing the  quick t r ans i t i on  region on ly  if equations (C2) are 
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s a t i s f i e d .  
conditions behind the  shock a s  equations (20)  i n  the  t e x t  of the  repor t .  

These well-known conditions across a shock wave give the  

The in te r face  ( 5  = (i) i s  defined as the  surface between the region of 
gas flow t h a t  has come through the  shock wave and the  region of gas flow 
emanating from the body. (See eqs.  (22) i n  the t e x t . )  The conditions across 
the  in te r face  can be derived i n  a manner analogous t o  t h a t  used f o r  the  shock 
wave. Let E . +  be the  r e l a t i v e  thickness of the  a i r  pa r t  of the  in te r face  
l aye r  ( (  > ( i f  and 
NOW l e t  ( > (i and Z = (( - (i)/~i- for  ( ,< (i, 
60 t h a t  
analogy with the  boundary layer ,  i f  u var ies  rap id ly  across the  in te r face  
layer ,  then v = O( q) = E ~ W  inside the  viscous layer ,  where B 

~i = ~ i +  = O(Re2)-’I2 f o r  ( > 5 i  and where ~i = ei = O(Reb) f o r  
5 <; ci. Assuming qr i s  constant across the  in te r face  l aye r ,  we can 
represent the  Navier-Stokes equations ( c f .  again eqs. (14), (l5), and (16)) 
as: 

E.- be the  r e l a t i v e  thickness of the  pa r t  in ( < (i. 
Z = ( 5  - (i)?€i+ f o r  
nZ = O(1) across t h e  in te r face  layer .  It can be shown t h a t ,  i n  the  

- - 1/2 

(PU s i n  v ) ~  + (PW sin ~p), + O ( E i - )  + o ( E ~ + )  * o 

kgz + O ( E ~ - )  + O ( E ~ + )  + viscous terms = 0 

(C3a) 

(C3b) 

(c3c 1 

- p(uuV + WUZ) + kgY + O ( E ~ - )  + 0(ci+) + viscous terms = 0 

+ In the  inviscid l i m i t  (ci- + 0, ci + 0, viscous terms 4 0 on both s ides  of 
the  in t e r f ace ) ,  equations (C3a) and (C3d) give no information about conditions 
across the discont inui ty .  Equation (C3a) i s  automatically s a t i s f i e d ,  s ince 
mass does not cross the in t e r f ace .  Equation (C3d) simply says t h a t  
6 f (1/2)u2 
t o  both s ides  of the  in te r face .  
t h a t  the inviscid momentum equations a re  s a t i s f i e d  across the  discont inui ty  
representing the  in te r face  l aye r  only i f  

i s  constant along the  inviscid streamlines immediately adjacent 
Equations (C3c) and (C3b) show, respectively,  

I 5 = constant across the inv isc id  in te r face  discont inui ty  

- 
p(uuV +vu() + a, = 0 on each s ide of the  inviscid in te r face  discont inui ty  

Since 5 i s  continuous across,  f romthe  first equation, and v = 0 on both 
s ides  (eq. (22b)) ,  the second equation requires  

(C4b) 
- puuV = continuous across the  inviscid in te r face  

The conditions t o  be applied a t  the  inviscid in te r face  a r e  therefore  
equations ( 2 3 )  i n  the  t e x t  of t he  repor t .  
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Figure 1.- Mass-transfer flow regimes. 
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(k = 0.06554) for N = 0.025, 7 = 7 /5 .  
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Figure 6 .- Distr ibut ions along the  boundary shock wave of conditions across  
the  boundary shock on a sphere a t  60 km a l t i t u d e ;  V, = 20.83 km/sec 
(k = 0.06334) fo r  N = 0.029 and for constant % = l / 3  and y = 7/3.  
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Figure 7.- Distr ibut ions along the  boundary shock wave of conditions i n  the  
gas a t  t h e  surface of a sphere a t  60 km a l t i t ude ;  V, = 20.83 km/sec 
(k = 0.06554) for N = 0.025, 4 = l/3, 7 = 7 / 3 ,  and a r b i t r a r y  Tt-,o and m. 
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Figure 8.- Values (on the axis) of f l o w  parameters outside the boundary shock 
wave on a sphere a t  60 k m  a l t i t ude ;  V, = 20.83 km/sec (k = 0.06534) f o r  
Y = 7/50 
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(b) Density r a t i o .  

Figure 9.- Continued. 
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Figure 9.- Concluded. 
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(a) Heat-conduction parameter. 

Figure 10.- Values on the  ax i s  of flow parameters i n  t he  gas a t  the  surface 
of  a sphere a t  60 km a l t i t ude ;  V, = 20.83 km/sec (k = 0.06354) fo r  
Y = 7/3 ,  various %, and a r b i t r a r y  qo and m. 
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(b) Pressure. 

Figure 10 .- Continued. 
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Figure 10 .- Continued. 
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(d)  Mass flux ( for  given Q0 and m). 

Figure 10 .- Concluded. 
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Figure 11.- Values (on the  axis) of flow parameters outside the  boundary shock 

wave on a sphere a t  60 km a l t i t ude ;  V, = 20.83 km/sec (k = 0.06504) for 
y = 7 / 5 ,  various %, and a rb i t r a ry  and m. 
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(b )  Velocity ( f o r  given Go and m). 

Figure 11 .- Concluded. 
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Figure 12.- Heat conduction versus blowing parameter for k = 0.06334; 
Y = 7/30 
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