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A STUDY OF THE POSSIBLE USES OF PLASMA IBl
FOR MILLIMETER WAVE GENERATION HB

by Robert E. Mclntosh I^BBI
Electronics Research-’Center f^BBi

The millimeter wave portion of the frequency spectruxn has not been utilized in ^H^H
cornmumcation systems because of a lack of practical, high-power mm wave gener- IH^HB
ators. As conventional tube design techniques have been only moderately successful IHI^H
in extending the microwave power frequency frontier, a number of novel approaches iHHBB
for obtaining mm wave sources have been suggested. Two of these methods rely on E^HBH
the use of a gaseous plasma and are described in this technical note. ^HBfl

The electron beam-plasma interaction and the plasma multiplier have been in- i^B^H
vestigated during the last decade in the hope that one or the other might have some ap- i^BHfl
plication at mm wavelengths. So far the expectations for these devices have not been I^^^BH
realized because of many unresolved engineering problems. This report describes ^HuH
the major difficulties that must be overcome before further development in this area j^^BH
can proceed, and it attempts to evaluate the potential of both devices. HB^^I



I. INTRODUCTION

High-power generation and amplification in the microwave frequency range

(100 MHz to 100 GHz) has been achieved for some time. Well-known devices such

as the traveling-wave tube, backward-wave oscillator, and magnetron have been

useful in exploiting this frequency range for communications. Furthermore, recent

advances in laser technology have led to the development of coherent sources at op-

tical frequencies. However, no high-power source has yet been developed for the

millimeter wave range between microwave and optical frequencies.

Attempts at extending microwave techniques to obtain millimeter wave sources

have been successful to a point. At present, conventional devices that are of the

periodic-circuit type dominate the microwave power/frequency frontier (ref. 1).
In addition, microwave tubes of a more specialized nature have been investigated and

promise to extend the upper frequency limit in the future (ref. 2). However, most of

these tubes have disadvantages in that the fabrication and beam-formation techniques

are impractical at millimeter wave frequencies, owing to the small sizes required.
The heat transfer problems associated with the delicate circuitry also limit the out-

put power of these devices.

^Frequency multipliers that transfer energy from microwave to millimeter wave

frequencies are being scrutinized by a large number of people at the present time.

So far, the power handling capability of these devices is low. Although the conversion

efficiency is potentially high for certain types of solid-state varactors, their output

power has been unimpressive to date. As the state of the art advances in this area,
more acceptable power levels may well be achieved. Until the inherent problems in

tube and varactor design can be solved, an impasse therefore exists in the develop-
ment of high-power millimeter wave sources.

A number of novel schemes have been proposed during recent years to circum-

vent the problems mentioned above. Some of these designs rely on the use of a gase-
ous plasma to replace the metallic, slow-wave structure of the conventional electron

beam tube, or to act as a non-linear medium in a frequency multiplier. It is the

purpose of this technical note to evaluate the potential of these devices for the gener-
ation of millimeter waves.

The devices that utilize a plasma to generate microwave or millimeter wave

signals fall into two major categories:

1. Non-linear interaction devices (e. g. harmonic multipliers)

2. Beam-plasma interaction devices (e. g. beam plasma amplifiers).
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Research is currently being carried on in each of these areas. This document
describes the progress that has so far resulted from these investigations. The ob-
stacles that have to be surmounted before these devices will find practical application
as millimeter wave sources are also emphasized. Finally, the most promising ap-
proaches to the development of useful generators are evaluated.

Harmonic multipliers that use the non-linear properties of a plasma to obtain

frequency multiplication are discussed in section IL In section III, a summay of re-
cent developments in the area of beam plasma devices is presented. In each case an
attempt has been made to describe the physical phenomena involved. In section IV
comments on some of the limitations that plasma multipliers and beam-plasma devices
have at millimeter wave frequencies are discussed. In that section, the engineer-

ing problems that have to be solved are summarized. The references present a

fairly complete list of work done in these areas.

The guidance given the author in this investigation by Messrs. C. M. Veronda,
B. Kuike, and W. H. Kohl, and the technical discussions with Messrs. P. Chorney
and C. B. Swan are here acknowledged.
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II. PLASMA HARMONIC GENERATORS

It has been proposed that one non-linear medium which can dissipate the required

power for large-signal millimeter wave multipliers is the gas discharge (ref. 3). In
addition to having high continuous wave (CW) power capabilities, plasmas result in

moderate harmonic efficiencies. It is apparent from Figure 1 that conventional CW
millimeter wave sources yield less and less power as the frequency of operation is

increased. As recently as 1966, the power/frequency frontier was represented by a

-18 dB/octave asymptote. Thus, if a high-power microwave signal were allowed to
interact with a plasma medium in such a manner that the harmonic efficiency would be

greater than -18 dB/octave, the power/frequency frontier would be advanced.

Harmonic Generation in Gas Discharges

Unfortunately, the non-linear mechanism responsible for frequency multiplica-

tion at high frequencies is not fully understood at this time. Although Margenau and

Hartmann (ref. 4) treated this problem theoretically as early as 1948, a number of

more recent studies contradict this work. Each of these theoretical treatments con-

siders only a few non-linear mechanisms, such as v x B forces (ref. 5), collision fre-

quency modulation (ref. 6), or electric field inhomogeneities (ref. 7), to the exclusion

of all others. This is done after a number of simplifying assumptions about the plas-

ma have been made so that the resulting formalism is tractable from a mathematical

standpoint. This causes each calculation to have a limited range of validity. Unhap-

pily, the above calculations are hard to verify experimentally because in many instan-

ces the model assumed by the theoretician is hard to achieve in practice.

Recent experiments indicate that two non-linear effects discussed by Krentz and

Kino (ref. 8) play an important role in harmonic generation in plasmas. The first ef-

fect is caused by a static variation in charge density, while the second effect is caused

by an inhomogeneity in the electric field. Both effects occur when the plasma number

density profile is non-uniform.

Krentz has explained the first effect on a physical basis in the following way. If

a spatially uniform, time-varying electric field is applied to a homogeneous plasma,

the electrons will have motion that is sinusoidal in time. If, however, the static num-

ber density of the plasma has spatial variations, then the field-induced motion of elec-

trons from a region of high density to a region of lower density creates a net time-

varying charge density (from the equation of continuity). The product of the rf charge

density and the applied electric field amounts to a non-linear term that yields frequen-

cy multiplication.
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When the electron number density is uniform but the electric field is not, the
second effect is possible. In this case the velocity of the electron is no longer sinu-
soidal with time for one of two reasons. First, if the field variation is along the di-
rection of the electric field, each electron experiences a field of varying amplitude.
Second, if the electric field varies along a direction prependicular to the field, the
curl of the electric field will be non-zero, and an rf magnetic field will interact with
the moving electrons to give rise to v x B forces. Thus, harmonic generation results
from any non-uniformity of the electric field.

Experimental Results

The first investigator to report harmonic generation in a plasma at microwave

frequencies was Uenohara (ref. 3) in 1957. His plasma discharge was produced by
placing the tips of two cylindrical electrodes close together in a reduced pressure
glass cylinder mounted in a rectangular waveguide. An rf-generated plasma was
formed when the air in the glass vessel was ionized by the impinging microwave sig-

nal. Uenohara was able to obtain a conversion ratio of -23 dB between the fundamental
(3 GHz) and the second harmonic. He was later able to raise this efficiency to -16 dB
by increasing the input power and changing the geometry of the electrodes. Other in-

vestigators (Baird and Coleman, 1959 (ref. 9), Krentz, 1960 (ref. 10) and Treial, 1961
(ref. 11), have obtained similar results from similar devices (see Table I).

More recently, Kino and Krentz (ref. 8) have obtained large harmonic efficien-

cies by impinging an input signal at 2. 85 GHz on a spherical mercury vapor discharge.
They have demonstrated that more than 50 mW is realizable at the third through sev-
enth harmonics when less than 18 watts of input power was absorbed by the plasma.

Unfortunately, the terminal efficiency was considerably less since a large amount of

mismatch at the fundamental frequency was necessary to maintain a stable rf dis-

charge. Nevertheless, it was shown that the non-linearities of an rf discharge are

sufficient to generate harmonic power with high efficiencies.

Prior to Krentz’s work. Swan (ref. 12) had carried out several harmonic ex-

periments with an electrodeless discharge. Although his terminal efficiencies (-5 dB

at 12 watts input power) were better than those reported by Krentz, he did not gen-
erate millimeter waves since his input frequency was only 2. 9 GHz. Attempts were

made by Swan to scale down the dimensions of his generator so that a fundamental

frequency of 35 GHz could be used. Unfortunately, these experiments were unsuccess-

ful owing to the fact that air breakdown prevented the coupling of appreciable amounts
of power into the discharge region.

Other efforts at scaling down plasma multipliers have been made by Froome

(refs. 13-16) and Lauks (refs. 17, 18). Froome was moderately successful in gen-
erating frequencies up to 735 GHz when he used a high-pressure arc discharge

6
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TABLE I
PLASMA MULTIPLIER EXPERIMENTS

(from reference 17)

Fundamental Conversion Efficiency in dB
Year Experimenter GHz watts 2nd 3rd 4th 5th 6th n-th

1953 Hanley & Ruhlig 0. 2 40 -6. 4 -11
1957 Uenohara 3 12 -23 -28 -43
1958 Whitmer 10 (1) -63
1959 Hill & Tetenbaum 3 300p -15 -35 -50
1959 Baird & Coleman 10 lOkWp -33 -43 -47 -53(8th)
1959 Froome 2. 5 (5) -33 d (12th)
1960 Froome 35 1 -80

1960 Kino & Krenz 3 (2) -20 -30 -40 -50

1960 Bierrum & Walsh 3 77kWp -35
1960 Uenohara 3 30 -16
1961 Baird & Coleman 10 40 -26 -30 -40
1961 Baird & Coleman 35 25 -32 -44 -60
1961 Treial a. 2. 9 17 -17 -20 -35
1961 Treial b. 2. 9 15 -10 -30

1961 Swan 2. 9 12 -5 -9 -12 -30(8th)
1962 Froome 35 5 -52 -93(18th)
1963 Froome 35 10 d (29th)
1963 Krenz a. 3 3 -19

1963 Krenz b. 3 12 -6. 7
1963 Cooke 9. 5 9 -20

1963 Tamaru 35 8 -35
1964 Knight 35 6kWp -31 -53(7th)
1965 Benson, Cooke, 9. 5 10 -20

Holmes
1965 Lauks 3 17 -7. 8

1965 Lauks 34 14. 7 -15. 2

Note: p pulsed power (peak value)
d detected amount of power
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between a tungsten wire anode and a cathode of molten platinum. Although he obtained
the highest frequency signal realized up to that time in the submillimeter wave region,
recent devices (e. g. CSF Carcinotron, CO-04) have surpassed his generator both in
frequency and power.

The plasma multiplier designed by Lauks is shown in Figure 2. The plasma was
generated in a glass cylinder by the intense rf field (34 GHz) that existed between two
aluminum electrodes. The separation of the fundamental power and the harmonic pow-
er was achieved by an iris which was resonant at the fundamental frequency. By plac-
ing this iris the appropriate distance away fron the plasma discharge, the 68-GHz har-
monic signal was kept from traveling towards the fundamental power source, and in-

stead was reflected back towards a tapered section leading to a high-frequency wave-

guide.

Micrometer Lauks observed a power output of 440

Moveable electrode-____-; ~: m^ at 68 GHz, corresponding to a conversion

^_____----"’^ efficiency of -15.2 dB. This was achieved
Coil spring only after he had tried a large number of

0-rine seal_________- electrode shapes, and after he had varied the
plasma background pressure (2-8 mm Hg)

34-GHz waveguide^^ 3^ ^g g^g ^ ^g g^gg cylinder that con-

Mica window-_ ,^ _"} tamed the discharge. He found that elec-

^^^ L- -^-3r -I trodes approximately 10 mils in diameter
Glass cylinder L-j -^ inside a 40-mil diameter glass container

O-ring seal _J L gave the best results. Unfortunately, oper-

~~~~--f-M J] ation at this power level endangered the life-
Note: vacuum line is ^^g ^ ^g electrodes, and many electrodes
connected to a small ^yg^g actually destroyed by the heat. There-
hole in the waveguide gcale: full size fore, it might be expected that future scaling
(the glass cylinder o^ plasma multipliers for operation at higher
fits loosely) frequencies would be complicated on account

of the heat-transfer problems involved. In
Figure 2. Plasma multiplier by Lauks addition, the creation of dense plasmas will

be necessary if the generation of higher fre-
quencies is to result from future exploration

in this area. More about this contention will be covered in section IV.

At the present time, the investigation of harmonic generation in plasmas is being
conducted from an academic point of view. Asmussen and Beyer (ref. 19) at the Uni-

versity of Wisconsin have devised a plasma tripler that yields 600 mW at 9 GHz.
Mclntosh (ref. 20) has studied harmonic generation from a plasma column in an S-band
waveguide at X-band (7. 5 GHz). The operation of these devices is nowhere near the

power/frequency frontier of millimeter waves. Nevertheless, studies such as these

are continuing so that a better understanding of the non-linear mechanisms in a plas-

ma may be obtained.
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III. ELECTRON BEAM PLASMA DEVICES

In recent years, many people have speculated on the future application of the
beam plasma interaction in microwave and millimeter wave tubes. The amplifying
and oscillatory effects that are obtained from this interaction have been investigated
in an attempt to establish whether future effort in this area will yield useful results.
Already prototype beam plasma tubes have been constructed for operation in the
microwave frequency range. However, the development of millimeter wave tubes
has lagged because of a number of unsolved engineering problems (see section IV).

As early as 1925, Langmuir (ref. 21) proposed that the interaction of an electron
beam and a plasma should result in the generation of high-frequency oscillation. It
was not until 1948, however, that engineers utilized this concept to explain the spuri-
ous oscillations that were being observed in some microwave tubes (ref. 22). At that
time, Haeff (ref. 23) demonstrated that, when two coupled electron streams move at
different velocities, an amplification results. His analysis was important because
the beam plasma interaction is a particular case of the double-stream amplifier
mechanism.

In 1949, Bohm and Gross (ref. 24) calculated the electrostatic instabilities in a
beam plasma interaction. They used Maxwell’s equations and the Lorentz force
equation to determine the interaction between plasma electrons with thermal motion
and beam electrons whose motion is in one direction only. By clarifying the physical
processes of the interaction, they were able to describe the resulting energy transfer
between the beam and the plasma. They also considered the effect that finite boun-
aries have on these oscillations. More recently. Alien and Kino (ref. 25) have
analyzed the beam plasma interaction in a cylindrical system in the presence of a

finite, axial, magnetic field. By a linear analysis, they were able to obtain numeri-
cal solutions of the problem. As this approach is rather involved, a number of people
have analyzed this system by making a few simplifying assumptions (e. g. weak
coupling, quasistatic). These simplified approaches allow a direct comparison be-
tween the beam plasma interaction and the beam circuit interaction of conventional
microwave tubes.

Briggs (ref. 26) has prepared a summary of the theoretical aspects of electron
stream interaction with plasmas in a research monograph. This work describes the
effects that boundaries, temperature, and magnetic field have on the interaction.
Furthermore, Briggs has rigorously determined the nature of the instabilities of this
interaction and has categorized them as either convective (growing in space) or
absolute (growing in time). He has identified beam plasma interactions that are anal-
ogous to both the traveling-wave amplifier and the backward wave oscillator modes of
a conventional beam circuit device.
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Additional theoretical studies are being carried on at this time. For instance,

Poeschel (ref. 27) has considered the non-linear behavior of a velocity-modulated

electron beam interacting with a plasma. Rowe (ref. 28) is also investigating the non-

linear aspects of the beam plasma interaction. Otteni (ref. 29) has considered the

effect that collisions and temperatures of both the beam and the plasma have on the

interaction. These recent studies are aimed at refining existing theories to improve

the correlation with experiments.

Beam Plasma Interaction

All of the theoretical treatments of the beam plasma problem have one feature

in common: the geometrical configuration in which the interaction takes place is

assumed to be simple. This is necessary because more complicated structures are

simply not tractable from a mathematical standpoint. Apel (ref. 30) has obtained an

approximate dispersion relationship for the system shown in Figure 3. In this

system, the electron stream and plasma fill the entire waveguide. In equilibrium,

the plasma electrons have randomly directed velocities, whereas the beam electrons

have a velocity component along the axis only, and there is a dc magnetic field in the

axial direction.

A dispersion diagram that shows the

Cylindrical conducting boundary growth or attenuation constant of the most

---^.^ important waves in the above system ap-

^^"’"----^^^^ pears in Figure 4. Although there are

^-/T^TS. many other wave possibilities, it has been

f / / / / ^Q\ B’ axla-^ demonstrated that the interactions between

{/ / / / // ///Y~~^--~-~A. magnetic the slow space charge wave of the beam and

V / / / /7 n-~~---^ _^le^ the longitudinal wave or the cyclotron wave

~’~"’~-~--^^ \///// // Vh, velocity in the plasma yield the greatest amplifica-

^~~~~~^^<^-^ of beam tion in the beam. Figure 4 shows that the

^^ electrons gain constant (imaginary part of the wave
Plasma and beam electrons number) has two negative maxima (o)/0)p

0. 28 and oi/OJp 0. 96). The wave growth
at the lower frequency has been attributed

to the interaction between the "transverse"
Figure 3 Beam plasma interaction treated by Apel

plasma cyclotron wave and the "longitudi-

nal" beam wave. At the higher frequency,
growth results from an interaction between

the longitudinal beam and plasma waves.

This interaction is merely the two-stream instability in a system of finite geometry,
temperature, and magnetic field. At frequencies higher than the plasma frequency,

oscillations in the beam plasma system may be obtained. This effect cannot be seen
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in Figure 4, because absolute instabilities (oscillation growing in time) are properly
described by determining the complex frequency as a function of real wave number

(ref. 30, p. 28). Both the space charge wave and the slow cyclotron waves of the

beam can interact with the plasma waves to cause rf oscillations analogous to those

obtained in a backward-wave oscillator.

A difficulty in solving the problem by computer, as Apel has done, is that

most of the physical aspects of the interaction are obscure. At this time, a pre-

cise picture of the energy exchange between the beam and the plasma does not exist.

This interaction is unlike the beam circuit interaction because it is not so easy to
describe the electron bunching in the beam by a simple physical argument.

Kino (ref. 31) gives a heuristic argument in which he shows that growing waves

in the electron beam are possible if one notes that the macroscopic permittivity of the

plasma medium is negative at frequencies that are less than the electron plasma

frequency. He contends that in this case the Coulomb forces act in a direction op-

posite to their normal sense so that particles of the same species attract (within
limits) rather than repel each other. This causes an instability in the beam that
is manifested in the amplification of signals on the beam. Although this descrip-
tion is appealing because of its simplicity, it attempts to account by a macroscopic

argument for the microscopic behavior of the electrons, and one may question such

an extension.

Experimental Results

As in the case of the plasma harmonic multiplier, the experimental work in

beam plasma interactions has been done at microwave frequencies. It is hoped that

the development of devices in this frequency range will lead to the eventual develop-
ment of beam plasma millimeter wave tubes.

Microwave tube engineers are interested in the beam plasma interaction because

it seems to offer advantages over conventional beam circuit coupling. For instance,
when the amplification mechanism at plasma resonance (longitudinal beam wave-longi-
tudinal plasma wave) is utilized, certain distinct advantages result. First large
gains can be achieved over very short interaction distances. Second, this gain is

electronically tunable over wide frequency ranges because the electron number density
of the plasma can be controlled externally. Third, as the plasma replaces the slow

wave circuit of a conventional tube, a delicate metallic interaction structure is not
necessary. Therefore, the design of beam plasma tubes would be facilitated in that

the interaction circuit would not have the stringent tolerance requirements that slow-

wave circuits in millimeter wave tubes would have. In addition, the heat transfer

problems resulting from these tiny circuits would be absent.
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It has been shown that coupling of rf energy directly from the plasma wave is
possible (ref. 32). However, this method of coupling has not proven to be as efficient
as had been expected. Therefore, present beam plasma tubes have utilized standard
couplers such as helices and cavities. If efficient coupling could be achieved in
future beam plasma tubes, a very great advantage would be achieved, because the
couplers do not have to be in the immediate vicinity of the electron beam.

Longitudinal Interaction Most experiments that have been performed on beam
plasma amplifiers utilized the interaction of longitudinal beam and plasma waves at
plasma resonance. Boyd, Field and Gould (ref. 33) used this interaction in their
original experiments. They obtained significant amplification at 2. 5 to 3. 5 GHz from
a beam plasma amplifier (BPA) in a mercury discharge plasma. Since then, many
people have achieved amplification using this mode (see Table II) at other frequen-
cies and using other plasma generation schemes. In most of the recent experiments,
a magnetic field was used to confine the electron stream.

Chorney and his co-workers (ref. 34) have been active in the development of high-
power beam plasma amplifiers that operate near the plasma frequency. They have also
considered the BPA for submillimeter wave amplification. Although they have not built a
device that operates in this frequency range, the group has worked on a number of
problems that would have to be solved before effective millimeter wave amplifiers

could be made. Specifically, they are
Collector ^^^^~\ Window attempting to couple the input and output

^^^-ay-^’ signals to the plasma waves rather than to
7 -^y the electron stream. They have also stud-

^^^ >^ ied methods of generating highly ionized

,^^-~~-^ plasmas (ref. 35). These new plasmas
^i h^^ Waveguide have number densities that are large en-

Ontnut ^ ough and stable enough for interactions at
,.. -<’^, millimeter wave frequencies. An opera-

cavity -< f- ’^- Plaornn^^^^^sma tional microwave BPA designed by Chorney
trapping ^ shown in Figure 5. This amplifier ap-

Plasma ----e BL_ electrodes
pg^rg ^ be very similar to standard linear

cathode <--__ Drift beam tubes in that input and output couplers
region are placed on either side of the interaction

_-| ’__
^

region. The couplers are typical 3-GHz
Input .^ \ reentrant cavities, and they couple to thecoax
cavity / \ space charge waves of the beam. The

y FI + interaction region is merely a drift tube

<-g-mr> filled with a xenon plasma at approximately
3xl0~ torr. The plasma is beam-gener-
ated as the ionization process results from

Figure 5. Experimental beam plasma the collision of beam electrons with umon-
amplifier at S-band ^g^ g^g atoms. Chorney made some

diagnostic experiments on this plasma and
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TABLE II
BEAM PLASMA EXPERIMENTS

Year Experimenter Frequency Gain Plasma

1961 Boyd, Field & Gould 2. 5-3. 5 GHz Hg discharge
Hydrogen

1962 Curtis & Ferrari 7-11 GHz 60 dB (beam-
generated)

1962 Vlaardingerbroek & 4 GHz 30 dB Hg discharge

Weimer

1962 Alien, Kino, Spalter, 2-4 GHz 20-30 dB Cesium

and Stover (contact)

1963 Kino & Gerchberg 450 MHz 25 dB Hg discharge

1964 Eastman, Kerr, & 3 GHz 20 dB Hydrogen

Narayan discharge

Xenon
1964 Alien, Biechler, & 3. 115 GHz 25 dB (beam-

Chorney generated)

1964 Chorney & Fitzgerald 11 GHz 25 dB PIG* Xenon

1966 Apel 945 MHz PIG Hydrogen

1966 Chorney 3 GHz 55 dB Beam genera-
ted in xenon

*Penning ionization gauge ^as_-____

found that the number density profile in the axial and radial directions agrees with the

theory. Furthermore, knowledge of the local plasma frequency as a function of posi-

tion is useful in interpreting his experimental results.

Chorney obtained 55-dB gain for low output powers (less than 5 kW) from the

above BPA. The device saturated at higher power levels, and a maximum output

power of 73. 5 dBm was achieved. In obtaining these high power outputs it was neces-

sary to adjust the plasma conditions, because the rf fields on the beam play an im-

portant part in the plasma generation. Therefore, such parameters as gas pressure

and electrode trapping voltages were varied in an attempt to optimize efficiencies.

As a result of these efforts, Chorney has shown that BPA’s can handle high powers at

high efficiencies. Challenging problems have to be solved, however, before the BPA

can be operated at millimeter wave frequencies. The most important of these is the

coupling problem. Until someone learns how to couple millimeter wave power into

14
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and out of this device efficiently, it will continue to suffer from the disadvantages of
fabrication and beam. control that are inherent in conventional linear beam tubes.

Tranverse Interactions A few investigators have studied the possibility of using
transverse modes to obtain amplification from the beam plasma interaction. Kino
and Gerchberg (ref. 31) have obtained 25-dB gain from a device similar to Chomey’s
except th;it the input and output signals were coupled to the electron beam in a direc-

^ tion perpendicular to the beam’s axis. By doing this, azimuthally varying modes of
interaction were utilized in achieving gain at 450 MHz. More recently, Crawford

,’ (ref. 36) has continued work in the area of transverse wave interactions. He has at-

’" tempted to couple a bipolar field to the electron stream at the Tonks resonance.
However, this technique has not been successful as yet.

Ferrari (ref. 37) has also tried a similar modulation scheme. However, an
interaction at the cyclotron resonance was used in his device. Such an interaction
holds only limited promise for use at millimeter wave frequencies because of the
high magnetic field required. To eliminate these stringent magnetic field require-
ments, it has been suggested that interactions at harmonics of the cyclotron reson-
ance might be used.

It is not known whether anyone has amplified an rf signal by using this technique.
Nevertheless, work is being carried out at the Sperry Rand Research Center (ref. 38)
and at the University of Michigan (ref. 39) to investigate experimentally the possibili-
ties of this and other interactions. Most of the experimental work to date has been
concerned with the amplification of signals in a beam plasma system. The apparent
philosophy of this approach is that once competitive amplifiers have been developed,
efficient oscillators could be designed using appropriate feedback schemes. Some in-
vestigators have observed spontaneous (electron) oscillations that were related to the
electron cyclotron frequency (i. e. at frequencies that depended on the magnetic field
intensity). Agdur (ref. 40) reported similar results when he injected an electron
stream into an argon plasma. He observed spontaneous oscillations that occurred
near the electron cyclotron frequency suggesting that the backward-wave interaction
was responsible. However, the nature of these oscillations is not completely under-
stood. In some experiments other effects, not included in the theory, can introduce
feedback into the system.
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IV. CONCLUSIO NS

This Technical Note has described two possible ways of generating millimeter

waves. Although a plasma is used in both cases, the operation of the proposed

devices is distinctly different. The plasma multiplier utilizes the non-linear proper-

ties of a plasma to achieve harmonic multiplication, whereas the beam plasma ampli-

fier depends on the inductive nature of a plasma. However, efficient operation at

millimeter wave frequencies has not been achieved for these devices on account

of difficulties common to both.

^
Microwave plasma multipliers and BPA’s have operated most efficiently at

frequencies that are near the electron plasma frequency. Therefore, it can be ex-

pected that at higher frequencies denser plasmas that should be relatively free of

random fluctuations and spontaneous oscillations will be required. Moreover, these

quiescent plasmas should be stable over reasonably long periods of time.

Until the coupling problem of current BPA’s has been solved, circuit scaling is

necessary in each case. Both techniques of generating millimeter waves are limited

by mechanical tolerance and heat-dissipation problems. Even if the materials and

machining problems could be solved, the solution of other engineering problems would

be necessary. For example, thermal expansion could cause serious detuning of both

kinds of generators. In the following paragraphs, the problem areas of plasma milli-

meter wave generation are described in more detail.

Plasma Harmonic Generator

Very little experimental work at millimeter wavelengths has been done using

plasma harmonic multipliers. Therefore, it is necessary to appraise the potential of

these devices at mm wavelengths on the basis of their performance at microwave

frequencies. C. B. Swan of Bell Telephone Laboratories, me. has noted that there

are three major aspects to the problem of operating these devices at high frequencies.
The problems to be solved are:

1. The generation of plasma with the desired properties

2. The scaling of circuits

3. The elimination of the inherent difficulties of maintaining a gas discharge.
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Swan has shown that if harmonic generation in a plasma is caused by field
gradients (see section II), then the efficiency of the conversion process is unaffected
by dimensional scaling so long as similar gas discharges are maintained. This means
that the electron density must increase as the square of the frequency, while the gas
pressure increases directly with frequency. Thus, it will be necessary to obtain a
highly ionized plasma if efficient mm wavelength generation is to result. At this time
it is not known if rf-generated plasmas that have the required number densities can be
achieved.

;*

The circuit scaling problems associated with high-frequency multipliers are
more severe. If the dimensions of the multiplier are linearly scaled as 1/f, the heat
dissipation per unit surface area would increase as f2. The destruction of structures
that are in intimate contact with the plasma can therefore be expected. Indeed,
Lauks has found in his generator that the electrodes and the discharge containment
vessel are excessively heated in operation. He has also observed that sputtering is
an ever-increasing problem at mm wavelengths because of the invariance of the total
sputtering rate when the generator is scaled down in size.

In nearly all efficient microwave plasma harmonic multipliers, the fundamental
power sustains the discharge. Unfortunately, the fundamental signal is not matched
to the discharge region prior to the initiation of the rf discharge. Thus, it is usually
necessary to start the discharge with an auxiliary source. Lauks has been successful
in starting his discharge by changing the distance between two electrodes. This
method is cumbersome, and an improved technique would alleviate this serious dis-
advantage. For this reason, rf-generated plasmas present difficulties if pulse opera-
tion is envisaged.

Another undesirable feature of recent prototype multipliers is the necessity of
controlling the gas pressure by continuous pumping, as this is the only feasible method
of avoiding unwanted -pressure variations. If one adds to the list of shortcomings that
such generators tend to be quite noisy at moderate power levels, then it is difficult to
be optimistic about the use of these devices at mm wavelengths.

Additional disadvantages of the plasma harmonic generator might be determined
if further development in this area takes place. For example, measurements of the
FM noise contributed to a system utilizing a plasma multiplier have not been made.
The lack of such important data suggests that the development of this device is in its
early stages. If one considers that plasma multipliers have been studied for more
than 10 years, he is impressed with the lack of progress in this area. Solid-state
plasmas are expected to be better suited for the harmonic generation of submillimeter
wavelengths.
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Beam Plasma Interaction Devices

Investigations of beam plasma interaction have been conducted for nearly the

same length of time as those of the plasma harmonic multiplier. During this period,

many of the original expectations have been realized, and devices using the beam

plasma interaction could find application. It has not yet been established whether

such interactions will be helpful in the amplification and generation of mm waves.

Four major problem areas exist at present where answers must be found before

progress can be made.

As for the plasma multiplier, a significant roadblock to the extension of beam

plasma interactions into the millimeter wave range lies in the generation of appropri-

ate plasmas. At these high frequencies, it will be necessary to generate a dense

plasma. It is also desirable that the percentage of ionization of this plasma be high,

since the rf signal on the beam tends to ionize neutral atoms in the plasma. This

last effect is important if pulsed operation is expected as it may limit the peak rf

power on the beam.

The PIG (Penning ionization gauge) discharge has been a widely used method

for obtaining a plasma for microwave BPA’s. This discharge is well-suited for

mm wave applications, as it can operate at low pressures and a high percentage

of ionization. Chorney has been successful in obtaining PIG discharges with a plasma

frequency of 160 GHz. Other methods of plasma generation, such as the contact

ionization of cesium and beam generation, have been used. Further studies of plasma

generation are going on at Microwave Associates, Inc. (ref. 34), the University of

Utah (ref. 41), and at the U. S. Army Electronics Command, Fort Monmouth, N. J.

(ref. 42), The problem of random fluctuations and oscillations is of critical impor-

tance in the beam plasma device. Unless the beam plasma amplifier operates at high

enough power levels, the noise contributed to the signal by the plasma will result in a

poor overall noise figure. Furthermore, a host of natural oscillations can be set up

by the interaction of the beam with the plasma. These instabilities generally occur at

low frequencies and are caused by ion motion in the plasma; they must be suppressed

when their presence affects the performance at higher frequencies.

Perhaps the most important problem that must be solved before beam plasma

interaction can be used in the millimeter wavelength range is that of coupling directly

to the plasma waves. Such coupling of energy will obviously be necessary if present

BPA’s are to be operative at these wavelengths.

Early experiments performed by Chomey (ref. 32) show that coupling directly

to the plasma can be relatively efficient. In coupling to the plasma he has obtained a

terminal gain of -8 dB from a BPA operating at 2. 8 GHz. He has noted that the plasma

density that gives maximum electronic gain is not the same as that which gives maxi-

mum terminal gain when the coupling of plasma waves is used, because the plasma
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density in the vicinity of the electron beam is responsible for large gains, whereas
the plasma density outside the electron beam is important in efficient coupling.

Chomey’s more recent experiments have been more successful (ref. 43). He
utilized two different plasma regions in one amplifier and thereby was able to adjust
one plasma region for large electronic gain and the other for efficient coupling. With
this arrangement, a net terminal gain of +18 dB was achieved at S-band. This tech-

^ nique has not been tried at millimeter wave frequencies. Rather than using a con-
I’* ventional reentrant cavity or a waveguide coupling scheme, Rowe (ref. 44) investigated

the possibility of coupling to a beam plasma system with an elliptical cavity coupler
so designed that the beam plasma interaction takes place at one focus of an elliptical
cavity and an output probe is located at the other focus. Such an arrangement shows
promise as a future coupling scheme in beam plasma devices.

The last problem area is that of electron beam formation. Although certain
beam requirements are less severe (e. g. beam diameters can be larger), other
aspects of beam generation are complicated owing to the presence of a plasma in the
system. The life of the gun cathode will, in general, be reduced if heavy ions are
allowed to bombard the cathode. Drainage holes and trapping electrodes are there-
fore necessary to protect the electron gun.

To date, harmonic generators and amplifiers using a plasma have not been so
successful as other methods of generating millimeter waves. If these devices are to
become competitive with other generation techniques, solutions of the problems
described in the preceding section are necessary. Many of these problems will
probably be eliminated as the overall tube and plasma technologies advance. There-
fore, the competitive position that generators using plasmas may have in the future
is worth considering.

With the assumption that the plasma generation problems can be eliminated,
there still remains the problem of maintaining a gaseous plasma. This may require
voltage supplies, or other supporting equipment, that are heavy and costly. Further-
more, methods of strictly controlling ambient conditions will have to be provided in
applications of a critical nature, because the pressure of a gaseous discharge is
dependent on temperature. Finally, the noise figure of such devices can be expected
to be poor at low power, and at high-power levels distortion will occur if the amplifier
or multiplier is used for short pulse applications.

Perhaps one can justify further effort in beam plasma studies when power hand-
ling capability is considered. Large rf power output has already been demonstrated
from beam plasma amplifiers. It should be noted, however, that plasma harmonic
generators are losing much of the power handling edge that they once had over solid-
state varactors as a result of the large development programs in the solid-state area.
(Present varactor multipliers can handle watts at X-band. Continuing studies of
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plasma interactions for application in millimeter wave generation might be warranted

at this time. * Past studies have already contributed to the understanding of conven-

tional tube operation and could have an impact on future solid-state plasma research.

*Since considerable promise has been shown. But it must be kept in mind that, al-

though feasibility has been shown in many cases, there remain a considerable number

of practical problems that have yet to be overcome.
f-

20



(

REFERENCES

1. Forster, D. C. High Power Sources at Millimeter Wavelengths. Proc.
I.E.E.E. Vol. 54, No. 4, pp. 532-539, April 1966.

2. Kuike, B. and Veronda, C. M. Millimeter-Wave Generation with Electron
Beam Devices. Microwave J. Vol. 10, No. 10, pp. 45-53, September 1967.

*i

3. Uenohara, M..- Uenohara, M. Masutani, T. and Inada, K. A New High-
Power Frequency Multiplier. Proc. I.R.E. Vol. 45, No. 10, pp. 1419-
1420, October 1957.

4. Margenau, H. and Hartman, L. M. Theory of High-Frequency Gas Dis-
charges-II Harmonic Components of the Distribution Function. Phys. Rev.
Vol. 73, No. 4, pp. 309-328, February 1948.

5. Tang, T. W. Harmonic Generation by an Electromagnetic Wave in an
Inhomogeneous Isotropic Plasma. I.E.E.E. Trans. on Antennas and Propaga-
tion. Vol. AP-14, No. 1, pp. 54-62, January 1966.

6. Murphy, B. Harmonic Generation in a Microwave Discharge. Phys. Fluids,
Vol. 8, No. 8, pp. 1534-1540, August 1965.

7. Chen, Kun-Mu: Interaction of a High Intensity EM Field with a Low-Density
Plasma, I. R.E. Trans. on Antennas and Propagation, Vol. AP-10, No. 1,
p. 31, January 1962.

8. Krentz, J. H. and Kino, G. S. Harmonic Generation and Parametric Oscil-
lations in a Plasma. J. Appl. Phys. Vol. 36, No. 8, pp. 2387-2395, August
1965.

9. Baird, J. R. and Coleman, P. D. High-Power Gas Discharge Frequency
Multiplier. Proc. Symp. on Millimeter Waves, New York, N. Y. April,
1959, Polytechnic Press, Brooklyn, N. Y. 1960.

10. Krentz, J. H. Harmonic Generation in Plasmas. Ph. D. Thesis, Stanford
University, 1963; Microwave Laboratory Report No. 1055, Stanford University,
1963.

11. Treial, H. Microwave Harmonic Generation by Electron Density Modulation in
a Plasma. MA Sc. Thesis, Dept. of Elect. Engng. Univ. of Toronto,
Toronto, Canada, January, 1962.

21

I,



12. Swan, C.B. Generation of Microwave Harmonics in an Electrode-less Dis-

charge at Low Pressure. Proc. L R. E. Vol. 49, p. 1941, 1961.

13. Froome, K. D. A New Microwave Harmonic Generator. Nature, Vol. 184,
No. 4689, p. 808, September 1959.

14. Froome, K. D. Millimeter Waves from Mercury Arc Harmonic Generator.

Nature, Vol. 186, No. 4729, p. 959, June 1960.

15. Froome, K. D. Sub-millimeter Waves by Harmonic Generation from Cold

Cathode Arcs. Nature, Vol. 188, No. 4744, pp. 43-44, October 1960.

16. Froome, K. D. Microwave Harmonic Generator Capable of Frequencies

in Excess of 600 Gc/s. Nature, Vol. 193, No. 4821, pp. 1169-1170, March

1962.

17. Lauks, V. Millimeter Wave Harmonic Generation in a Plasma. Research

Report No. 37, Dept. of Elect. Engng. Univ. of Toronto, Toronto, Canada,

November 1965.

18. Yen, J. L. and Lauks, V. Plasma Harmonic Generation at Millimeter

Wavelengths. Electronics Letters, Vol. 2, pp. 20-21, January 1965.

19. Asmussen, J. Experimental Investigation of Microwave Harmonic Generation

in a Plasma, Ph. D. Thesis, Dept. of Elect. Engng. University of Wisconsin,

Madison, Wisconsin, June 1967.

20. Mclntosh, R. E. Secular Effects as Related to the Nonlinear Behavior of

Plasmas. Ph. D. Thesis, Dept. of Elect. Engng. Univ. of Iowa, Iowa City,

la. August 1967.

21. Langmuir, I. Scattering of Electrons in Ionized Gases. Phys. Rev. Vol. 26,

No. 5, pp. 585-613, November 1925.

22. Pierce, J. R. Possible Fluctuations in Electron Streams due to Ions. J.

Appl. Phys. Vol. 19, No. 3, pp. 231-236, March 1948.

23. Haeff, A. V. Space-Charge Wave Amplification Effects. Phys. Rev. Vol.

74, No. 10, pp. 1532-1533, November 1948.

24. Bohm, D. and Gross, E. P. Theory of Plasma Oscillations, Part A-Origin

of Medium-like Behavior. Phys. Rev. Vol. 75, No. 12, pp. 1851-1863, June

1949; Part B-Excitation and Damping of Oscillations. Phys. Rev. Vol. 75,

22



^ No. 12, pp. 1864-1876, June 1949; Part C-Effect of Plasma Boundaries on
Oscillations. Phys. Rev. Vol. 79, No. 6, pp. 992-1001, September 1950.

25. Alien, M. A. and Kino, G. S. Interaction of an Electron Beam with a Fully
Ionized Plasma. Phys. Rev. Letters, Vol. 6, No. 4, pp. 163-165, February
1961.

\ 26. Briggs, R. J. Electron Stream Interactions with Plasmas. M.I. T. Press,

^ Cambridge, Mass. 1964.

27. Poeschel, R. L. A Nonlinear Study of Beam Plasma Amplification. Tech.
.T Report No. 33 (Nonr 220(50), ASTIA No. AD 639057), California Inst. of Tech.

September 1966.

28. Rowe, J. E. Brackett, C. A. Konrad, G. T. and Lugg, A. M. Microwave
Generation by Means of Interaction with Anisotropic Media. Quarterly Progress
Report No. 6 (DA-28-043 AMC 01315 (E), ASTIA No. AD 813572), Electron
Physics Laboratory, Univ. of Michigan, March 1967.

29. Otteni, G. A. Wave Interaction in Nonrelativistic Electron Beam-Plasma
Systems. Scientific Report No. 17 (AF19(628)1699), Case Inst. of Tech.
July 1967.

30. Apel, J. R. Studies of Beam-Plasma Interactions in a Magnetic Field.
Tech. Memo. (NOw 62-0604-c, ASTIA No. AD 644695), Appl. Phys. Lab.
Johns Hopkins Univ. June 1966.

31. Kino, G. S. and Gerchberg, R. Transverse Field Interactions of a Beam
and Plasma. Proc. VIth Int. Conf. on lonization Phenomena in Gases, Paris,
France, July 1963; Serma Publishing Co. Paris, France, Vol. 3, pp. 219-
222, 1963.

32. Alien, M. A. Biechler, C. S. and Chorney, P. Beam-Plasma Amplification
for High Power Density Applications. Proc. of the Vth Int. Congress on Micro-
wave Tubes, Paris, France, September 14-18, 1964; Dunod, Paris, pp. 435-
438, 1964.

33. Boyd, G. D. Field, L. M. and Gould, R. W. Excitation of Plasma Oscill-
ations and Growing Plasma Waves. Phys. Rev. Vol. 109, No. 4, pp. 1393-
1394, February 1958.

34. Chorney, P. and Madore, R. J. Millimeter Wave Component Development
(Beam Plasma Amplifier). Final Report (AF30(602)-2948, ASTIA No. AD
609011), Microwave Associates, Inc. April 1965.

23



35. Biechler, C. S. Chorney, P. Maddix, H. S. and Madore, R. J. Generation

of Plasmas for Beam-Plasma Amplifiers. Proc. of the Vth Int. Congress on

Microwave Tubes, Paris, France, September 14-18, 1964; Dunod, Paris,

pp. 441-444, 1964.

36. Crawford, F. W. Investigation of Fast Wave Beam-Plasma Interactions.

Quarterly Kept. No. 3 (DA-28-043 AMC-02041(E), ASTIA No. AD 808347),
Inst. for Plasma Research, Stanford Univ. January 1967.

*

37. Ferrari, R. L. An Electron Beam-Plasma Amplifier at Microwave Frequen-
cies. J. Electronics and Control, Vol. 17, pp. 49-65, July 1964.

38. Gruber, S. Investigation of High-Power Beam Plasma Interactions. 4th

Quarterly Report (DA-28-043-AMC-01821(E), ASTIA No. AD 812770), Sperry
Rand Research Center, March 1967.

39. Getty, W. D. Frequency Multiplication in High-Energy Electron Beams.

Semi-annual Progress Report No. 1 (NASA Grant NGR 23-005-183), Electron

Physics Laboratory, Dept. of Elect. Engng. Univ. of Michigan, Ann Arbor,

Michigan, May 1967.

40. Agdur, B. Oscillations in Long Electron Beams, Ericsson Tech. Vol. 16,

p. 45, 1960.

41. Ma, C. H. and Johnson, C. C. Microwave Device and Physical Electronics

Laboratory Consolidated Quarterly Report, Part Ill-Plasma Studies. (NSF
Grant GK 29, ASTIA No. AD 801384), Dept. of Elect. Engng. Univ. of Utah,

June 1966.

42. Weiner, M. True, R. M. and Edwards, E. V. Investigation of Plasma

Generators for Microwave Devices. Tech. Report ECOM-2704, ASTIA No.

AD 636956, Electron Tubes Division, Electronic Components Laboratory,

June 1966.

43. Chorney, P. Recent Advances in Beam-Plasma Amplifiers. 1966 I. E. E.E.

Convention Record, Part 5, I. E. E. E. Int. Conv. New York, N. Y. March

21-25, pp. 5-16, 1966.

24



44. Rowe, J. E. Brackett, C.A. and Konrad, G. T. Microwave Generation
by Means of Interaction with Anisotropic Media. Quarterly Progress Report
No. 1 (DA-28-043 AMC-01315 (E), ASTIA No. AD 626196), Electron Phys.
Lab. Univ. of Michigan, October 1965.

Electronics Research Center
National Aeronautics and Space Administration
Cambridge, Massachusetts, October 1967
129-02-03-01-25

NASA-Langley, 1968 25 C-27 25

i



"1’
National Aeronautics and Space Administration FIRST CLASS MAIL NAT^A^N^C^

WASHINGTON, D. C. SPACE ADMINISTRATION

OFFICIAL BUSINESS

10U 001 50 51 3DS 68059 00903

AI R FORCF WEAPONS LABORATORY/AFWL/
KIRTLAND A R FORCE BASE NEW MEX ICO 87 1 1

A IT MI SS MADE L NE F CANOVA, CHI EF T ECH.M

L BR AR Y / W L L /

" ""deliverable (Section 158
POSTMASTER,

p^^ Manual) Do Not Return .
"The aeronautical and space activities of the United States shall be ’";

conducted so as to contribute to the expansion of human knowl-

edge of phenomena in the atmosphere and space. The Administration

shall provide for the widest practicable and appropriate dissemination

of information concerning its activities and the results thereof."
-NATIONAL AERONAUTICS AND SPACE ACT OP 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered

important, complete, and a lasting contribution to existing .knowledge,

TECHNICAL NOTES: Information less broad in scope but nevertheless of

importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu-

don because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated
under a NASA contract or grant and considered an important contribution to

existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA
activities. Publications include conference proceedings, monographs, data

compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech-

nology used by NASA that may be of particular interest in commercial and other

non-aerospace applications. Publications include Tech Briefs, Technology
Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Wmhington, D.C. 20546


