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A NOTE ON THE RATE OF IMAGE ROTATION -

by S. M. Smith
NASA - Ames Research Center

The diurnal rotation of the earth causes apparent rotation of an
extended image sbout the line of sight that is quite familiar ‘o
cbservers of the polar skies{1). Actually, in inertial space it 1s the

image that is stabtionary while the cbserver and his coordinate system

rotate beneath 1t. Thus 1t is possible to eliminste the apparent rotation

with the proper counter rotation of the detector plane, a technlgue

rather familisr +to astronomers. However, alrcraft and certain earth oriented

satelllte obgervation platforms can materially increase the rate of image
rotation from that due to just the diurnal rotation. For this reason it

is of interest to present a particular solution of the celestial triangle

for the rate of apparent image rotation. -~

The method of solution is suggested by Smart(a), end is fairly
straightforward. In figure 1, the observer's zenith (Z) end the object of

observation (8) are two apexes of the celestial triangle. Of particular
interest is the parallactic angle (Q), for it is the angle on the Cele;tial
sphere at S between the planes containing the observer's local vertieal

=nd Tthe north direction. As photographic plates or other earth

oriented detectors generally maintain’'a Ffixed relationship to the plane
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. Figure "1. , The Celestial Tria.ngle east of the local meridian
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Angles of the Triamgle: Opposite Sldes:

P o_ 1 = i Seigtele]
&= 360" -¢ ‘ ( 72_ ; = Co-elevation of o%izct

A = Azimuth of object 2~3] = Co-declinmation of duject
= Parallactic angle @"¢) == Co-latitude of obssrver
(e = Local hour angle of object) v




containing local vertical, the rate of change of 'Q " is the rate of
apparent image rotation. It is desirable to solve for dQ/dt

only in terms of the known parameters of latitude (4), declination (8),
Jocal hour-angle (e), latitude rate d®/dt, and the total rate of change
from all causes of local hour-angle, de/dt. Application of the Sine
Formuls. and then the Cosine Formule: to the spherical trisngle PZS

produces equations 1 and 2 respectively.

Cos?
Sin Q = = Zosh Sine (l)
_ Sin® - Sin h Sind
Cos Q = Coss Cos b (2)
Hence, equation 3
Tan Q = Cos® Cos? Sine (3)

Sin® ~ (Sin n Sind)
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Again the Cosire:Formula:: in triangle PZS gives the elevation (h) as
Sin h = Sin¢ Sind + Cos$ Cosd Cose ’ (%)

Elimination of h <from equation 3 gives the desired result in terms of

the time dependent variables ¢ and ¢ only:

Cosgtd Sine k
Tan Q = — Sind Cosd® - Sind Cos® Cose (5)

Taking the total derivative and applying standard trigonometric substi-
tutions results in the final expresslon for the rate of apparent

image rotation:

dq _ _ Cos® Cos? (Cose Sint Cosd - Cosd Sind) de (6)
at (Sin® Cosd - Cos® Sind Cose)2 dat
+
Cos®Q Sine Cosd as
(Sin® Cosd - Cos® Sind Cose)?® dt

Here equations 2 and 4 must be used to evaluate numerically Cos Q for the
general case. It is immediately evident that there is a large singularity
in the solution for ¢ = & when ¢-»0; i.e. at the observer's zenith.

This is correct for it corresponds‘to the case of one apex of a plane right
triangle collapsing through the right angle apex. In this case however,

Qggn/z. for € -small but-not zéro, so:that for.regions near the



singularity the solution 1s still well behaved. There 1s another rormal
singularity for ¢ = 6-)::/2, were the spherical triangle collapses.

It may be illuminating to evaluate equation 6 for the circumstances of
the 1965 eclipse as observed from the NASA CV-990. The inputs for mid-
totality are:
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For ease in application to relatively short straight flight paths,

de/dt and d$/dt can be evaluated as

S.
d . X
a% = (1 + Sin Cj -\%) 15 ______a.r;xjxin (7
and
%%-z Sj Cos Cj (8)

Here 15 arcmin/min is the diurnal rotation rate, Vé is the linear velocity

of the earth's surface at the equator, Sj is the ground speed of the aireraft,

and Cj is the true course followed.
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For SJ =50 kts. and CJ = 789, the solution becomes:

aQ _ arcmin arcmin = arcmin
=+ (15 ) (2.23) (1.55) + 0.73 (175 —3) = 53.3 =7 —

L__—-\f“‘"/{‘f'j LY/L'—YJ

surface rate aircraft geometry d¢
speed dat
factor

Thus the image did appear to rotate 8.6 degrees during the 9.70 minutes of
airborne totality. On a one minute photographic exposure at 10 R,
this would cause a 2.3 ércminute azimuthal blur. This is a significant
distortion as many coronal features have one dimension smaller than 1
arcuminute in subtense.

Conveniently for airborne eclipse observers and others‘who generally
observe near local noon, equation 6 approaches the rather concise

limit given in equation 9 as € approaches zero. Here it 1s assumed that

¢ # 8.
- dQ Cos® de (9)
?Le,o )d,t ~ 8in (¢ -~ B) at .

This also serves as a check of the solution, since for ¢ constant and not
equal to 8, h is approximately constant and equal to n/2 — (¢ - &)

ESEﬁ@t.



This permi’cs simple differentiation of equation 1, which also produces
equation 9. Applying equation 9 to the above cilrcumstances of the
1965 eclipse gives dq/dt = 58 arcmin/min or 10 percent error in this
case.

Because the image is steady in inertial space, a properly oriented:’
inertially stabilized platform can directly compensate for the actual
rlatform rotation. It 1s hoped that these remarks may be of use to
those experimenters contemplating prolonged observations of extended

images from aircraft platforms.

References:
1. J. J. Nassau, Practical Astronomy, p. T, McGraw-Hill, New York 1948
2. W. M. Smart, Textbook on Spherical Astronomy, p. 48, Cambridge

University Press, London 1962



