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REVISED ABSTRACT

A Rankine cycle that employs an MHD generator is being considered for
use in space. These systems must be evaluated on the basis of minimum
specific weight, which generally means minimum radiator area to reject the
cycle waste heat. Limitations on materials, maximum available magnetic
field strength, and the MHD power-generation process itself restrict the
range of working fluid temperature and density.

The maximum temperature (set by materials limitations) and the minimum
radiator area criterion can be used to specify the operating temperature
extremes. The operating pressure and density extremes are then determined
by the choice of working fluid from the vapor-pressure curve. Since the
generator can be shown to be less efficient at high Mach nuwmbers and to gen-
erate lower power density at low Mach numbers, a compromise Mach number of
1.0 is selected. The power density also depends on the electrical condue-
tivity of the working fluid that must be of the 1 mho per meter for useful
space application. Since the conductivity increases with electron number
density and decreases with increasing fluid density, it may be necessary to
seed the working fluid to provide adequate electron concentration at the
relatively high densities needed to heat the fluid. These considerations,
coupled with the temperature requirements of the cycle, place restrictions
on the choice of the seeded working fluid.

Within the framework of these restrictions, certain freedom in the
design of the generator system is possible. Nonequilibrium ionization of
the seed gas can be used to enhance the conductivity of the working fluid
at the prescribed conditions. In the case of magnetically induced ioniza-
tion, this effect is limited, however, by the waximum magnetic field
strength that can be attained. Also, the generator cross-sectional area
can be determined to minimize the generator volume consistent with the con-
dition that the inlet and exit pressures are specified. :

Calculations based on these criteria indicate that cesium seeded
lithium is a good choice for the working fluid. If lithium is boiled at




1365° X and superheated to 1645° K for a generator efficiency of 0.75, the
radiator area is minimized at a radiator temperature of 1100° K. For these
conditions in a Faraday segmented generator operating with an entrance Mach
number of 1.0, a load parameter of 0.75, and a magnetic field strength of
15 Tesla, the magnetically induced nonequilibrium ionization can produce an
electrical conductivity about of 0.22 mho per meter. This corresponds to a

generator power density of about 107 watts per cubic meter. The MHD

radiator area for this system is about the same as that for a turboalternator
system for the same temperature limits.
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INTRODUCTION

The space environment places several restrictions on large, long-
lifetime electrical power-generation systems. First, they must be light-
weight; second, they probably will use a nuclear heat source as part of a
closed cycle; and finally, they must reject the waste heat into space. It
is the purpose of this paper to select criteria for the design of
Rankine-MHD systems for space use. The criteria to be considered are (1)
minimum radiator area, (2) generator efficiency, and (3) generator power
density as influenced by generator design parameters and the electrical
conductivity of the working fluid. The system will be subJjected to the
constraint of a maximum temperature compatible with material limitations
and a maximum magnetic field strength that can be obtained with super-
conducting magnets.

A thermodynamic cycle can be made more efficient by operating at a
higher maximum temperature. However, the maximum temperature that can be
obtained is limited by materials properties. For the temperature region
in nuclear reactors with solid-fuel elements, the alkali metal vapors can
be considered as Rankine cycle working fluids because of their low vapor
pressure [1]. For space systems generating electrical power in the mega-
watt range, the radiator required to reject the cycle waste heat will
contribute a significant fraction of the total system weight. Therefore,
the cycle operating conditions should be selected on the basis that this
radiator weight be as small as possible [1]. In the analysis, it will be
assumed that the radiator weight can be minimized by minimizing the radi-
ating area. This may not always be justified [2], but for the relatively
limited range of temperature considered in the analysis, the assumption
appears to be valid.

It will be shown that the efficiency of the generator in the Rankine
cycle (whether it is a turboalternator or MHD generator) is quite impor-
tant in determining the area of the radiator. Because of the importance
of this parameter, the effect of the entrance Mach number, generator load
voltage, and other parameters on the efficiency of MHD generators is




analyzed. To reduce the size and weight of the electromagnet, the channel
area in the axial (or flow) direction is varied to minimize the generator
volume. For the same reason, it is also important to design a generator
with high power density. The power density depends on the entrance Mach
number, the load voltage, the magnetic field strength, and the electrical
conductivity of the working fluid. Reasonable values of the first two
(Mach number and load voltage) can be determined from the generator ana-
lysis. The magnetic field strength is an independent parameter whose value
is restricted to a maximum value, which, for the calculation in this report,
is 20 Tesla. The electrical conductivity is the most critical of the
variables. Even for seeded working fluids, at temperatures compatible with
materials limitations, the conductivity for equilibrium conditions is too
small to be utilized in MHD generators. A means of achieving a higher
nonequilibrium conductivity for the working fluid is therefore needed. In
this report, the method of magnetically induced ionization is considered
[3-6] primarily because it does not require that part of the generator
output be directed toward increasing the ionization.

RADTATOR AREA

Consider a thermodynamic cycle with efficiency 17 operating in space.
The radiator area required to reject the waste heat can be expressed as

*
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(The symbols are defined in appendix A.) The radiator temperature will be
determined as that value of Téond which minimizes Aﬁad- For this calcu-

lation, it is necessary to determine the cycle efficiency which, in turn,
depends on the generator efficiency.

The appropriate generator efficiency ng 1s that fraction of the isen-
tropic enthalpy change which is converted into electrical energy. To deter-
mine the effect of mng on radiator area, two values of mng will be assumed:
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c ana V. /o. \ine lavter valiue typical of those being considered for

turboalternators for which the generator efficiency is the product of the
turbine efficiency and the alternator efficiency.)

The effect of superheating the vapor on radiator area is also of inter-
est. (It may be that the maximum temperature at which a working fluid can
be superheated is greater than the maximum temperature at which it can be
boiled, because of lower corrosion in the vapor state.) To illustrate this
effect, the usual boiling point of 1365° K (2000° F) is used, with 0° and
280° K superheat.

The radiator area for the Rankine cycle will be compared to the radia-

tor area for a Carnot cycle with maximum temperature Tgég equal to the

working fluid boiling temperature (1365° K). For the Carnot cycle, the
radiator temperature Tco a is 5 4 T%:C the efficiency is 0.25, and the

radiator area A%, ¢ from equation (1) is

P 27 colp(TE0) X




The ratio of radiator areas can be expressed as

* %, O\
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This ratio can be calculated for any Rankine cycle working fluid. For
a turbine in space, potassium is a good choice, and it will be shown later
that for an MHD generator, lithium is a good choice. The resulting area
ratios are shown in Table I.

For potassium, superheating does not change the radiator area, and for
lithium, only a few percent reduction is obtained. Thus, superheating is
not needed to reduce radiator area, but it may have significant beneficial
effects on the working-fluid conductivity. Superheating would tend to
increase electron mobility, because of the reduced density, and to reduce
the concentration of condensed droplets that may reduce the electrical con-
ductivity [7].

GENERATOR ANALYSIS

Assumptions and Equations

Since the purpose of this paper is not a detailed performance analysis,
but rather an illustration of the effect of certain parameters on perform-
ance, the following assumptions will be made: The working fluid is a per-
fect gas with (1) zero viscosity, (2) zero thermal conductivity, (3) con-
stant specific heats, and (4) constant electrical conductivity. Further,
consider this fluid flowing in a generator with variable cross-sectional
area a%*, a constant magnetic field B¥, a constant Faraday electric field
E¥, and with no spatial gradients in the plane of a¥*.

The generator to be studied is a Faraday segmented generator identical
to that studied in reference [3] with the exception that the cross-sectional
area a* 1is not constant. The area variation is necessary in order to
achieve the necessary pressure change for a Rankine cycle. The equations
governing this generator are

apu = 1 ()
puu’ + p' + j(1 - K) =0 (5)
puh' + pucu' + JK(1 - K) =0 (8)
it P
h = = 7
r-1mp (7)
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J_'l_K (8)
where the prime denotes differentiation with respect to X, where
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and X* is the axial coordinate in the generator, and
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All other dependent variables are normalized with respect to their value at
the entrance to the generator.

Generator Pressure Ratio

The generator pressure ratio can be determined from the saturation
curve for the working fluid chosen and the operating temperature extremes.
The working fluid expands through a nozzle from pﬁ to some entrance Mach

number Mept so that the static pressure at the entrance to the generator
can be expressed as

-r/(r-1)
p* = pr 1+ X1 py2 /
ent h 2 ent (11)

At the exit of the generator the total pressure must equal the saturation
pressure of the working fluid p§ at the radiator temperature; that is,

the pressure p¥y and Mach number MX, at the inlet to a diffuser at the
generator exit must satisfy

-1
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Since the generator is going to operate between these specified pressure
limits pﬁ and pﬁ, the independent variable will be changed from X to p.

To accomplish this, the system of equations (egs. (4) to (8)) can be com-
bined into

u' + apf +alu-XK) =0 (13)

= T T (aup)!' + wu' + aK(u - K) = 0 (14)

The derivative with respect to X can be eliminated, and equations (13)
and (14) can be combined as follows:

K(gE + ;) =T 4 aup + u du (15)

dp Yy -1 dp
Equation (15) can be solved for u and a as functions of p, and these

variables can be related to the length by using either equation (13) or (14).
It is possible to integrate equation (15) in terms of a new variable A,

where
Pex
A(Pex) = :2L +f a dp (16)
™ent Dent




The integrated form of equation (14) is

1 z .
K(u - 1) + KA - — =le upA' - % +u21 (17)
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Equation (17) can be used to solve for u in terms of A and Pexs» Where
now the prime denotes differentiation with respect to Pex

u = (Kl +VE - A'Dey) (18)
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(the sign of the square root in chosen to satisfy entrance conditions) and

2
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Specification of Generator Area Variation

The specification of the area variation can now be made. Since it is
necessary to provide the magnetic field strength over the generator volume,
it is desirable to keep this volume as small as possible. Therefore, the
variation in the area will be such that the generator volume V is mini-
mized. The volume is defined as

y* 1 J/PI# 1./~6
V= —ag— == a dx¥* = = a dx (21)
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Equation (13) can be used to write a as

u' + ap’
u- K
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so that V becomes
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This integral is minimized when the Buler equation

) A?
- —= _}=0 23
dp [é u - K.] Eﬁ'(u.- X (23)
is satisfied [8]. When the differentiation is performed, this equation may

be rewritten as

a4 u(arp)@ \
P \VE(u - K)*

= 0 (24)




with initial conditions

1
A(Pent) = 2

ent

and (25)
A'(pent) = 1.0

The solution of equation (24) can be used to describe the generator
performance in terms of three parameters: Mach number, load parameter, and
ratio of specific heats. This solution can then be used to calculate the

Mach number M = 4/u/(ypA") and the total pressure ratio p?/pﬁ = pl/ph from

equations (11) and (12). These variables can be related to the interacting
length & by integrating equation (13). The solutions to equation (24)
have been by numerical integration for 7y = 5/5 (since monatomic vapors are
of interest for the closed-cycle space operation), K = 1/4, 1/2, 3/4 and
Ment = 1/2, 1, and 2.0. Shown in Figure 1 is one of the solutions (for

K = 3/4 and Mgpt = 1.0) that is typical of all the solutions. Also shown
is the area variation for a constant velocity solution to egquations (13)
and (14) (a*/a%pt)ye1 for the same entrance conditions. At a pressure

ratio p?/pﬁ of 0.1, the area ratio from equation (24) is about 40 percent

of the area ratio for the constant velocity generator. Because of the
steep increase in area (for either generator), it is apparent from Figure 1
that pressure ratios less than 0.1 would be difficult to achieve.

Generator Efficiency

In an idealized MHD generator, the electrical-energy output is equal to
the actual change in total enthalpy of the working fluid. The appropriate
generator efficiency is therefore the ratio of this actual enthalpy change
to the isentropic change between the same total pressure limits [4]. (Note
that this ratioc isg egquivalent to the turbine efficiency alcne in a #@

alternator.) This efficiency g is given byl )

. Neonv _ Neonv (26)
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where Noopy 1s the fraction of power in the working fluid that is converted
to electrical power and can be written (from egs. (8), (13), and (18)) as

%
f KuzntB*j*a* dx* K(l + é -u- A)
0 B Ment
Neonv = 1 ; = ] 1
p¥  u¥dg¥ l——om 4+ = -+ =
ent ent (v - l)Mgnt 2 (v - l)Mgnt 2

(27)

ll\Tote the Ng is the same as ng in reference [3] with the necessary
modification to account for the area variation.




The values for u and A are determined from the solution to equation (24).
The generator efficiency ng @nd Neopy are also shown in Figure 1 for

Ment = 1.0 and K = 3/4.

Because of the strong effect of efficiency on radiator area, it will
be assumed that if the Rankine-MHD system is to be of interest, the ideal-
ized generator efficiency must be at least equal to well-established turbo-
alternator efficiencies. On this basis, g will arbitrarily be taken to
be 0.75 or greater. This requirement imposes restrictions on Mepnt and K.
The effect of Mept and K on the efficiency of an MHD generator operating

with a total pressure ratio PZ/Ph = 0.1 is illustrated in Table IIT.

To achieve a value of g = 0.75, it is apparent that K must be about
5/4 and Ment about 1.0 (or less). An additional restriction on the en-

trance Mach number results from the need for high generator power density
(power generated divided by the generator volume).

Power Density

The generator power density is
1%

* % s % S
1 Ku B*j
™= = Kuf ¢ B¥j*a* dx* = —ﬂ%ﬂ / ja dx (28)
0 o)

which can be rewritten by using equation (8) and (13) as

MgntK(l +—— - u - A)
T* = g¥B*2y R px ™Ment
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> ent

(29)

The effect of Mgpt and K on the power density is given by the factor

I where
2 1 ‘
MentK<é + 5 -u - é)
_ Ment _ Mconv .
= Y - 1.2 S Tr - Doy (30)
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and 8V is defined in equation (21).

As shown in Table III, II increases with increasing entrance Mach
number, and for each Mach number there is a relative maximum for K = 1/2
(the load resistance is equal to the generator resistance). In order to
achieve reasonable power densities it is therefore advisable to select as
large a Mach number as possible consistent with maintaining a reasonable
efficiency, and to select a load parameter between 1/2 (for maximum power
density) and 1.0 (for maximum efficiency). For purposes of illustration,
the Mach number will be selected as 1.0 and the load parameter 5/4, with
the realization that these values may not necessarily be the most appro-
priate if other criteria are used to make the evaluation.



ELECTRICAL CONDUCTIVITY

Equilibrium Conductivity

For electrical power in the megawatt range it is reasonable to require
the generator power density to be about 10 megawatts per cubic meter. As
shown in equation (29) the power density depends on the electrical conduc-
tivity of the working fluid. The conductivity depends on the electron num-
ber density and the electron mobility (which, in turn, is inversely propor-
tional to the working-fluid density). The working fluid can be seeded with
an easily ionized vapor (usually cesium) in order to increase the electron
number density at the gas temperature. However, for the alkali metal vapors,
the mobility of the electrons is too low to yield sufficient conductivity
below 2000° K. Since the electron-neutral collision cross sections for all
the alkali metals are approximately the same, it is apparent that the elec-
tron mobility in the less dense vapors will be the highest. From this point
of view, lithium is the most attractive of the alkali metals because it has,
by far, the lowest vapor pressure. However, even for lithium boiling at
13659 K, superheated to 1920° K, seeded with 0.0l fraction of cesium at
densities corresponding to Megpt = 1.0, the electrical conductivity is only
0.0l mho per meter. Therefore, even with a seeded working fluid with a low
density, the temperatures required for equilibrium conductivity are too high
to be compatible with materials.

Nonequilibrium Conductivity

It is apparent that some means of increasing the conductivity of the
working fluid above its equilibrium value is necessary. The usual methods
are to provide some means by which the electron number density (and the
electron temperature) can be increased. Of the several methods that are
available, two have been considered for working fluids appropriate for
Rankine cycles. In reference [9] the method considered is photoionization,
and it is shown that cesium seeded lithium can be made sufficiently conduct-
ing to attain reasonable power density. However, this method has the dis-
advantage that part of the generator output must be used to provide the
ionization. Consequently, only magnetically induced ionization (Refs. [3]
and [4]) is considered herein. Furthermore, only cesium-seeded lithium is
considered for the working fluid. (In Ref. [S] it is condluded that cesium-
seeded potassium can be utilized. However, for potassium as the working
fluid, the magnetic field strength required for sufficient electrical power
density is much greater than 20 Tesla for the conditions cited previocusly.
In Ref. [6], zinc is analyzed, but the conductivity of saturated zinc vapor
is less than saturated lithium vapor at the same electron temperature and
number density.)

Magnetically Induced Ionization

As a result of magnetically induced ionization, the electron temperature
at the entrance to a Faraday segmented generator can be calculated by
(Ref. [4])

l+Y(l-K)2M2 ( Pe G
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and the electron concentration determined from the Saha equation at this
electron temperature. The electron mobility can be determined when the
working fluid and its density are specified. The parameters in this equa-
tion have been specified except for the "loss factor" ®ijpe1 and the Hall

parameter term. The loss factor will be assumed to be 1.0 (as in Refs. [3]
and [5], and the Hall parameter term will be evaluated at the magnetic field
strength that maximizes the power density. (This maximization occurs because
of ion slip, as described in refs. [3] and [4] In Table IV, the magnetic
field strength that maximizes the power density for Mgpt = 1.0 and K = 3/4
is shown for lithium vapor boiling at 1365° K with 0.01 fraction of cesium
seed. It is apparent that the magnetic field strength required for maximum
power density decreases as the maximum temperature attainable is increased.
The proper design point would depend upon the relative difficulty in attain-
ing a large magnetic field strength as opposed to a high-temperature reactor.
At 1645° K, the power density is greater than 10 megawatts per cubic meter
and could be considered adequate. However, for purposes of illustration,
the cycle with a maximum temperature of 1920° K is selected and shown in
Figure 2 for the following conditions:

% = 3 50 % = O
% = = .

For the conditions, the cycle efficiency n is 0.167, and the radiator area
ratio A;ad/Aﬁ;g = 1.25. This radiator area ratio is lower than that for a
a

potassium vapor turboalternator cycle with generator efficiency of O.75
(Table I), primarily because of the effectiveness of superheat for the MHD
case,

CONCLUSIONS

From this analysis of the Rankine-MHD cycle for space applications,
several conclusions can be drawn:

1. Lithium is the best of the alkalili metals as a working fiuid for
Rankine-MHD systems primarily because of its low vapor pressure and rela-
tively large electron mobility.

2. Even though it may not be advantageous to superheat the working
fluid for turboalternators (potassium), it is beneficial to superheat a
typical MHD working fluid (lithium) for two reasons: the radiator area
is smaller, and the generator power density is better.

3. It is possible to expand to lower pressures for the same area

variation with a generator designed for minimum volume than with the constant
velocity generator.

4. For efficient generator operation at low pressure ratio, the
entrance Mach number should be low, whereas for large power density, the
Mach number should be high.

5. The electrical conductivity of the working fluid must be enhanced
by nonequilibrium means. The method of magnetic field ionization requires
a large magnetic field strength if the ionization is to be accomplished
with reasonable generator efficiency.




6. A Rankine-MHD system can be competitive with a Rankine-turbine

system if the magnets (which must be superconducting in order to be light
weight) have field strengths of the order of 10 to 20 Tesla.
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APPENDIX - SYMBOL LIST

A cross-sectional-area
parameter defined in
equation (17)

Arad radiator area

a channel cross sectional ares

B maghetic field strength

E Faraday field in generator

f function defined in equa-
tion (19)

h enthalpy

3 current density

K load parameter defined
in equation (10)

Ky load parameter defined in
equation (20)

L generator length

M Mach number

N fraction of stream power
converted to electrical
energy

P pressure

R universal gas constant

T temperature

Te electron temperature

u velocity

v MHD generator volume

W work done per unit mass
of working fluid

W working fluid flow rate

X interacting length defined
in equation (9)

Be,Bi electron and ion Hall

parameters

'S ratio of specific heats

o] interaction parameter defined
in equation (9)

Oine1 Inelastic interaction param-
egter

€ radiator emissivity

1 efficiency

v molecular weight

I generator power density

p fluid density

o electrical conductivity

Oap Stefan-Boltzmann constant

Superscripts:

C Carnot cycle

* dimensional quéntities

Subscripts:

boil Toiling

cond condensing

conv  conversion

ent entrance

ex exit

g generator

h high

1 low

max maximum

rad radiator

vel constant velocity



TABLE I. - RADIATOR AREA RATIO (EQ. (2)) FOR

RANKINE CYCLES BOILING AT 1365° K

(a) Potassium

(b) Lithium

Degree ng Degree g
of of
superheat | 0. 6 0.75 superheat | 0.6 0.75
0 14 1.99}1.54 0 2.0211.61
280 1.991 1.54 280 1.961 1.56

TABLE II. - GENERATOR

EFFICIENCIES FOR v

AND pl/ph =0

5/3

’._l

K Ment

1/z2 |1.0

1/4 }o0.338 | 0.281

0.184

1/2 | .610| .550

. 393

3/a| .829 | .774

.624

TABLE III. - T FOR v = 5/3

AND pz/ph = 0.1

K *ent

i/z2 1.0 }2.0
1/4 } 0.0411 | 0.133 | 0. 309
1/2| .052 169 | . 393
/4| .037 .122 | . 249
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TABLE IV. - MAGNETIC FIELD STRENGTH AND

CONDUCTIVITY FOR MAXIMUM POWER DENSITY FOR

CESIUM-SEEDED LITHIUM VAPOR BOILING AT

1365° K IN FARADAY SEGMENTED GENERATOR

WITH Mept = 1.0 AND K = 0.75

Tgax’ %k B*, Tesla | o*, mho/M 1, W/cu m
1365 18.0 0. 03 3.11x106
1645 15.9 .22 2.02x107
1920 12.9 1.01 7.98%x107
2200 11.3 3.37 2. 61x108
2480 10.0 8.55 5.27x108
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Figure 2. - Temperature-entropy diagram for lithium with MHD generator shown.




