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SOLUTION OF THE BOLTZMANN AND RATE EQUATIONS FOR THE EL;ECTRON DISTRIBUTION 

FUNCTION AND STATE POWLATIONS I N  NONEQUILIBRIUM MHD PLASMAS 

J. V .  Dugan, Jr., F. A.  Lyman, and L. U.  Albers 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, U.S.A. 

Many calculat ions of t he  e l e c t r i c a l  conductivity of nonequilibrium 
MHD plasmas have been based on a simple two-temperature theory. This theory 
assumes that ( a )  the electron number densi ty  has the  equilibrium (Saha) 
value corresponding t o  the e lec t ron  temperature 
t ron  energy d i s t r ibu t ion  function 

Te, and ( b )  the  f r e e  elec- 
f ( u )  i s  maxwellian. 

The v a l i d i t y  of assumption ( a )  has been studied by severa l  authors 
who, however, used assumption ( b )  i n  t h e i r  analyses. 
been less thoroughly studied. 
a r e  sens i t i ve  t o  
r ad ia t ive  t rans i t ions ,  it i s  un rea l i s t i c  t o  t r e a t  these two assumptions 
separately.  This paper repor t s  preliminary r e s u l t s  of an invest igat ion 
undertaken t o  es tab l i sh  the  range of v a l i d i t y  of the two-temperature theory 
fo r  MHD plasmas by solving the Boltzmann equation f o r  f ( u )  and the  steady- 
state ra te  equations f o r  t he  bound electronic  s t a t e s .  The problem w a s  
a t tacked i n  the  following three stages. 

Assumption ( b )  has 

f ( u )  and bound s t a t e s  may be out of equilibrium due t o  
Because both exci ta t ion and ionizat ion r a t e s  

F i r s t ,  f ( u )  w a s  calculated from a Boltzmann equation including only 
the  e l e c t r i c  f i e l d  and the e l a s t i c  co l l i s ion  terms. The r e s u l t s  showed 
that f o r  t yp ica l  MHD systems (e.g. ,  A r  + K a t  1 atm) electron-electron 
co l l i s ions  drkve f ( u )  t o  maxwellian. 

Second, the  solut ion of the r a t e  equations fo r  a maxwellian 
using a f ive- leve l  cesium atomic model, demonstrated the importance of 
r ad ia t ive  t r ans i t i ons  i n  determining the  bound-state populations and 
magnitudes of the i n e l a s t i c  co l l i s ion  terms. The model atom consisted of 
four d i sc re t e  s t a t e s ,  ( 6 s ;  6P,P'; 5D,D'; 7s) and a lumped state, which was 
assigned various binding energies and degeneracies. C r i t e r i a  f o r  se- 
l e c t i n g  the l a t t e r  were based on the maximum s tab le  o r b i t  radius t h a t  
would be l i k e l y  f o r  the  plasmas of i n t e re s t .  Both the c l a s s i c a l  Bohr- 

f ( u ) ,  



Thomson and Gryzinski cross sections were used t o  ca lcu la te  the  r a t e  coef- 
f i c i e n t s  and c o l l i s i o n  terms f o r  excitation, deexcitation, ionization, and 
three-body capture. 
experimental data f o r  the 6s 4 6P,P' exci ta t ion.  Known values of radia- 
t i v e  probabi l i t i es  were used f o r  t rans i t ions  between d i sc re t e  s t a t e s .  

F 
I 

Many calculations were a l s o  performed using recent  

Finally,  the simultaneous solution of the Boltzmann equation ( including 
a l l  re levant  e l a s t i c  and i n e l a s t i c  co l l i s ion  terms) and the  bound-state r a t e  
equations was attempted by an i t e r a t i v e  technique. Plasmas of various 
o p t i c a l  thicknesses t o  resonance radiat ion were considered. In  the extreme 
case of a gas t ransparent  t o  a l l  l i ne  radiat ion,  the departure of the s t a t e  
populations from equilibrium causes a la rge  reduction i n  the f r e e  e lec t ron  
number density, espec ia l ly  a t  low values of Te. Because exc i ta t ion  c o l l i -  
sions a re  not balanced by superelast ic  co l l i s ions  i n  t h i s  case, they cause 
f ( u )  t o  depart s ignif icankly f rom maxwellian a t  high energies. 
d i f f i c u l t y  w a s  encountered i n  the i t e r a t i v e  scheme i n  th i s  case.  The 
e f f e c t  of i ne l a s t i c  co l l i s ions  is much l e s s  pronounced f o r  plasmas that 
a r e  op t i ca l ly  th ick  t o  resonance radiation, and it disappears a l together  
for a plasma op t i ca l ly  thick t o  a l l  radiat ion.  
w a s  calculated f o r  a range of e l ec t r i c  f i e l d s  and gas dens i t ies  f o r  the  
case where resonance rad ia t ion  is completely trapped, the most r e a l i s t i c  
s i t u a t i o n  f o r  la rge  MHD generators.  
duc t iv i ty  on the current  density was a l s o  calculated,  and where possible 
compred with experimental r e s u l t s .  

Numerical 

The d i s t r ibu t ion  function 

The dependence of the e l e c t r i c a l  con- 



SOLUTION OF THE BOLTZMANN AND RATE EQUATIONS FOR THE ELECTRON DISTRIBUTION 

FlTNCTION AND STATE POPULATIONS I N  NONEQUILIBRIUM MHD PLASMAS 

J. V .  Dugan, Jr., F. A .  Lyman, and L. U. Albers 

L e w i s  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, U.S.A. 

INTRODUCTION 

A fundamental problem of gas discharge theory i s  the  predict ion of t he  
f r e e  e lec t ron  number density and veloci ty  d is t r ibu t ion  function, which 
together determine the  e l e c t r i c a l  properties of the gas. In  the  case of 
c e r t a i n  low-voltage atmospheric-pressure glow discharges i n  alkali-seeded 
noble gases, which are being studied f o r  nonequilibrium magnetohydro- 
dynamic (MHD) power generation, t h i s  problem is for tunately somewhat 
a l l ev ia t ed .  For such discharges, a simple two-temperature conduction 
theory due t o  Kerrebrock [l] has shown reasonable agreement with experi- 
ment a t  su f f i c i en t ly  high current  dens i t ies  (above lo4 amps-m-2). 
Kerrebrock's theory assumes t h a t  ( a )  the  f r e e  electron energy d is t r ibu-  
t i o n  f ( u )  i s  maxwellian, with a temperature Te t h a t  may considerably 
exceed the gas temperature 
N e  

Tg, and ( b )  the  f r e e  electron number densi ty  
is  given by the  Saha equation applied a t  temperature Tee 

There remains, however, the question of the  range of v a l i d i t y  of the  
two-temperature theory. 
of agreement between theory and experiment a t  low current  dens i t ies  
(below 3 ~ 1 0 ~  amps-me2 ) t o  the  fact that electron-electron co l l i s ions  
could not  preserve a maxwellian veloci ty  d i s t r ibu t ion  i n  the presence of 
e l a s t i c  electron-atom col l i s ions ,  due t o  the low value of N e .  They 
supported t h e i r  hypothesis by estimating average frequencies of energy 
transfer through these co l l i s ions .  

Kerrebrock and Hoffman [ 2  1 a t t r i bu ted  the  lack 

Archambault and Cuenca [31, on the  other hand, concluded that the 
d i s t r ibu t ion  function would be maxwellian under MHD conditions. This con- 
c lusion w a s  based on a de ta i led  comparison of the various e l a s t i c  and in- 
e l a s t i c  co l l i s ion  frequencies i n  an argon-cesium plasma, unfortunately f o r  
only one set  of values of Ne, Te, Tg, and argon and cesium number densi- 
t ies.  
Saha equation, however - a posi t ion which i s  contrary t o  the  conclusions 

The a u t h r s  of [3] ra i sed  doubts concerning the v a l i d i t y  of the  



of an e a r l i e r  study by Ben Daniel and Tamor [41. 

The present work attempts t o  ascer ta in  the v a l i d i t y  of the  two- 
temperature theory fo r  alkali-seeded argon MHD plasmas by calculat ing 
and Ne se l f -cons is ten t ly  from the Boltzmnn and r a t e  equations. Such a 
seu -cons i s t en t  ca lcu la t ion  i s  necessitated by the f a c t  that 
s t rongly on 
f ( u )  above the exc i ta t ion  and ionization thresholds [ 6 ] .  

f ( u )  

f ( u )  depends 
Ne 151, which i n  turn  is very sens i t ive  t o  the behavior of 

THEORY 

Electron Boltzmann equation 

ul/'f(u)du 
u t o  u + du electron vol ts ;  hence, 

The energy d i s t r ibu t ion  function1 f ( u )  i s  defined such tha t  
is  the  f r ac t ion  of electrons having energies i n  the range from 

f u1l2f(u)du = 1 
0 

For a s teady-state  discharge i n  a uniform, p a r t i a l l y  ionized gas flow- 
ing through crossed e l e c t r i c  and magnetic f i e l d s ,  the appropriate equation 
f o r  f ( u )  is2 [5,7,81 

h=a, i 

m (u){g[z f ( ~ ' ) ~ / ~ f ( u ' ) d u '  + $ u 3 l 2  f O3 f ( u ' ) d u '  
U 3 + z Neu Qee du 3 

(iii) 

+ f ( u )  /" 
0 

Equation ( 2 )  is some imes cal led the gain equation, because when 
mult ipl ied by Ne(2e/me)l 7 2 i ts  terms give the r a t e s  ( i n  m-3-sec-1) 
a t  which electrons a r e  added t o  (or  l o s t  from) the energy range u t o  03. 

The tei'ius are as foiiows : 

( i )  Energy gain from the effect ive e l e c t r i c  f i e l d  3* 

l S t r i c t l y  speaking, ul/'f ( u )  is the  energy d i s t r ibu t ion  function, 

zSymbols a re  defined i n  appendix A. 
but the above terminology w i l l  be used f o r  brevi ty .  
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(ii) Energy loss t o  atoms and ions i n  e l a s t i c  co l l i s ions  

( iii) Energy exchange i n  electron-electron co l l i s ions  

( i v )  Energy gain ( l o s s )  i n  ine las t ic  (including superelast ic)  
co l l i s ions  with atoms and ions 

The ine l a s t i c  gain term I ( f )  i s  the sum of the following expressions 
obtained by integrat ing the ine las t ic  co l l i s ion  terms given i n  [8,91 from 
u t o  03, making simple transformations, and using the microscopic 
r e v e r s i b i l i t y  r e l a t ion  between excitation and deexcitation cross sections 
(Klein-Rosseland r e l a t ion )  and between ionization and three-body capture 
cross sections [91: 

( a )  Excitation and deexcitation by electron impact 

(b) Ionization by electron impact 

+ UP(,' - U" - EL,u ' )  du" 3 

( c ) Three-body ion-electron-electron capture3 

f(ul ' ) f (u1 - ut' - E ~ )  u p ( u l t , u l )  c u'-EL 

+ UP(,' - U" - EL,u') du" 3 j ( 5 )  

3Three-body co l l i s ions  i n  which the t h i r d  body is  an atom or ion w i l l  
not be considered. 

3 



( d )  Radiative capture4 

When u = 0, the excitation-deexcitation term (3)  vanishes because 
Q g K ( u )  = 0 f o r  u 5 L X ~ ~ , ~ ,  while the terms (4), (5 ) ,  and ( 6 ) ,  when 

multiplied by Ne( 2e/m,)1/2, become the t o t a l  ionization and capture rates. 
Also, when the  bound and f r e e  electrons a r e  i n  equilibrium, the term (3 )  
vanishes while ( 4 )  and (5)  cancel. 

Rate equations f o r  bound electrons 

The r a t e  of change of t he  number of bound electrons i n  l e v e l  L i s  

N = - N L ( N x  + A  ) + N + N N.(K;' + pJ L e L  L ( 7 )  

For t h e  steady-state problem treated herein, NL = 0. 
with t h e  normalization condition 

Equation ( 7 )  together 

N i  + 1 NL = N: 
L 

and the condition of charge neut ra l i ty  (Ne = N i )  serve t o  determine 
and NL f o r  a specif ied f ( u )  and i n i t i a l  seed number density N g .  Ne 

E l e c t r i c a l  conductivity 

is  [ 7 ]  

-+ 
The electron current density 7 i n  the plane perpendicular t o  B 

where 

a r e  the  perpendicular and H a l l  

%e inverse process t o  ( 1  

conductivities, respectively . 
), photoionization, is  ignored. 

~ 
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Electron energy equation 
1 

The electron energy b a l m  e equatioh may be derived from equation ( 2 )  
by multiplying by Nee(2e/me)’P2 and in tegra t ing  from u = 0 t o  03. 

After considerable transformation, the r e s u l t  may be wr i t ten  as 

L h=a, i 

Equation ( 1 2 )  can, of course, a l s o  be derived from elemen%ary considera- 
t ions .  By multiplying equation ( 7 )  by EL and summing over a l l  bound 
l eve l s  L, one can show t h a t  the ine l a s t i c  terms i n  ( 1 2 )  , ( t he  last  three 
on the r i g h t )  a r e  equal t o  the power loss per u n i t  volume through l i n e  and 
continuum radiat ion;  t h a t  is ,  

e m ~ , ~ N ~ A ~ ~  + N  e N . e e r ’ 2  1 1 lw (EL+u)uf(u)<-CaP(u)du c WR = 

L, K<L L ”  

(13) 

For a maxwellian f ( u ) ,  the e l a s t i c  loss  term ( t h e  f irst  on the r i g h t  
Te - T , and equa- of ( 1 2 ) )  is proportional t o  the temperature difference 

t i o n  ( 1 2 )  provides a means of calculat ing Tee If f ( u )  i s  nof maxwellian, 
the temperature can be determined from the r e l a t i o n  

CALCULATIONS AND RESULTS 

Computational procedure 

An i t e r a t i v e  technique w a s  employed t o  solve equations ( 2 )  and ( 7 ) .  
The coef f ic ien ts  of the r a t e  equations ( 7 )  a r e  first calculated f o r  an 
assumed f ( u )  (usua l ly  a maxwellianwith a guessed Te) .  Solution of these 
equations y ie lds  Ne and NL. When these number dens i t ies  and the 
assumed 
electron-electron c o l l i s i o n  term are then calculable .  This reduces the  
equation f o r  the next approximation t o  a f i r s t -o rde r  l i nea r  d i f f e r e n t i a l  
equation i n  The solut ion is  then 
normalized t o  s a t i s f y  equation (1) and an electron temperature calculated 
from equation ( 1 4 ) .  When 
becomes an ident i ty ,  and it is  necessary t o  determine 

f ( u )  a r e  used, the ine l a s t i c  term I ( f )  and the in t eg ra l s  i n  the 

f ( u ) ,  which i s  integrated numerically. 

f ( u )  is  very close t o  maxwellian, equation (14)  
Te by sa t i s fy ing  

5 



t he  energy equation ( 1 2 ) .  
vergence is obtained i n  f ( u ) ,  Te,  and Ne. 

Otherwise, the process is  repeated u n t i l  con- 

Results of e l a s t i c - co l l i s ion  problem 

I n i t i a l  calculat ions were concerned with determining f ( u )  from equa- 
t i o n  ( Z ) ,  neglecting the i n e l a s t i c  term These calculat ions were 
performed fo r  argon seeded with potassium and cesium under the conditions 
of Kerrebrock and Hoffman's experiment, t o  see whether a non-maxwellian 
d i s t r ibu t ion  would be obtained a t  low current  dens i t ies ,  as hypothesized 
i n  [ 2 ] .  For these calculat ions there w a s  no magnetic f i e l d ,  and Ne was 
assumed t o  be given by the Saha equation. 
argon, potassium, and cesium were taken from [lo, 11, 121, respect ively.  

I( f )  . 

Elas t i c  cross  sect ions f o r  

It w a s  found t h a t  f ( u )  is  maxwellian over the  e n t i r e  range of current 
dens i t i e s  measured i n  [ 2 ]  
p lo t ted  as a function of current  density i n  f igure  1 along with Kerrebrock 
and Hoffman's data. The lowest calculated value of Ne w a s  3X1Ol8 m-3, as 
noted on the f igure,  whereas Kerrebrock and Hoffman estimated t h a t  
e lectron-electron co l l i s ions  could not maintain a maxwellian f (u)  i f  
were below 3XlQE9 m-30 
shows the d ip  i n  conductivity observed a t  lo3 amp-m'2. 

The computed e l e c t r i c a l  conductivity is  

Ne 
Neither the  present theory nor Kerrebrock's theory 

Cesium atomic model 

For invest igat ion of the e f fec t  of i n e l a s t i c  co l l i s ions ,  a f ive - l eve l  
model cesium atom, which contained three d iscre te  excited s t a t e s ,  w a s  
chosen. 
neglecting the s l i g h t  s p l i t t i n g  of the 6P and 5 D  s t a t e s  due t o  spin-orbi t  
coupling. A l l  the  remaining excited s t a t e s  of cesium were collapsed in to  
a lumped s t a t e  whose degeneracy and binding energy were varied t o  explore 
the s e n s i t i v i t y  of the ca lcu la t ion  t o  t h i s  atomic model. 
were employed t o  estimate the maximum s t ab le  e lec t ronic  o r b i t  radius .  
fea tures  of the atomic model a r e  summarized i n  Table I. 

These s t a t e s  (6P, PI; 5D, D'; 7 s )  were t r ea t ed  a s  s ing le t s ,  

Various c r i t e r i a  
The 

I n e l a s t i c  cross sect ions f o r  electron-cesium atom co l l i s ions  

( a )  Excitation-deexcitation 

Experimental [13,14] and theore t ica l  [15,16] curves f o r  the  f i rs t  
6P) and t o t a l  exc i ta t ion  cross sect ions of cesium a r e  shown i n  (6s 

f igure  2.  
2 eV, with a l i n e a r  segment of slope 
1.42 < u < 2 eV. 

I n  computations the experiment$ [13] curve was used above 
7 1  A2 - eV-l [E41 f o r  

- -  
The conventional Gryzinski cross sect ions [16] were used f o r  the 

remaining op t i ca l ly  allowed t rans i t ions ,  and the Gryzinski exchange formula 
[17] w a s  used f o r  op t i ca l ly  forbidden t r ans i t i ons .  The c l a s s i c a l  Bohr- 
Thomson cross sect ions [91 provided a check on the accuracy of the compu- 
t a t ions ,  s ince t h e i r  use enables ana ly t ica l  evaluation of the co l l i s ion  
terms f o r  a maxwellian f ( u )  . 
( b )  Ionization-capture 

$ 

The Gryzinski ionization cross sections [16] were employed f o r  t r a n s i -  

6 
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t i ons  from a l l  bound e lec t ronic  s t a t e s  t o  the  continuum. The m a x i m u m  cross 
sec t ion  predicted f o r  ionizat ion from the ground (6s) s t a t e  is  20 percent 
lower than the best  experimental value [181. 

Radiative t r ans i t i ons  

( a )  Deexcitation 

The r ad ia t ive  t r ans i t i on  probabi l i t i es  l i s t e d  i n  Table I were taken 
from [19]. 
a l t e r i n g  these values, thus simulating d i f f e ren t  plasma dimensions and 
o p t i c a l  absorption coef f ic ien ts .  

The o p t i c a l  thickness of the  plasma can be varied simply by 

( b )  Radiative capture 

A t  low Ne and Te, r ad ia t ive  capture becomes important. Cross 
sec t ions  f o r  t h i s  process were taken from [ 2 0 ] .  

Solution of r a t e  equations f o r  maxwellian d i s t r ibu t ion  

Figures 3 and 4 show the r e s u l t s  of solving the s teady-state  r a t e  
equations ( 7 )  f o r  a maxwellian In  f igure  3 the  degree of ioniza- 
t i o n  of the  cesium is p lo t ted  as  a function of the i n i t i a l  cesium number 
densi ty  N& f o r  kTe/e = 0.2 eV. The r e s u l t s  a r e  qua l i t a t ive ly  s i m i l a r  
t o  those of [4].  For an op t i ca l ly  th in  plasma, Ne is  determined a t  very 
low N& 
t i o n  from the ground s t a t e .  With increasing Ngs, three-body capture 
becomes important, and i n  the op t i ca l ly  t h i n  case, the curve r i s e s  t o  a 
maximum as ionizat ion from exci ted s t a t e s  becomes s igni f icant ,  thereaf te r  
approaching the  Saha curve. 
rad ia t ion ,  ionizat ion from exci ted s t a t e s  i s  important a t  lower 
because the populations of these s t a t e s  a r e  higher. Figure 3 also demon- 
strates the r e l a t i v e  i n s e n s i t i v i t y  of the r e s u l t s  t o  the degeneracy and 
binding energy of the lumped state. 

f ( u ) .  

by the  balance between r ad ia t ive  capture and c o l l i s i o n a l  ioniza- 

For a plasma op t i ca l ly  th ick  t o  resonance 
N& 

Figure 4 shows t h a t  the Saha equation is  a good approximation when 
Below Te 2 3000° K, regardless of t he  o p t i c a l  thickness of the plasma. 

t h i s  temperature, the op t i ca l  thickness of the plasma t o  resonance radia-  
t i o n  i s  the control l ing f ac to r  i n  determining the magnitude of the in-  
e l a s t i c  term I ( f ) .  When resonance rad ia t ion  completely escapes, the 
lack  of de t a i l ed  balancing of c o l l i s i o n a l  t r ans i t i ons  between the  6s and 6P 
s t a t e s  r e s u l t s  i n  a la rge  (negat ive)  contribution t o  
comparable i n  magnitude t o  the electron-electron co l l i s ion  term,. For a 
plasma op t i ca l ly  th ick  t o  resonance radiat ion,  c o l l i s i o n a l  t r ans i t i ons  
between these s t a t e s  a re  more nearly i n  balance, and 
magnitude smaller and due mainly t o  the 6P + 5D and 5 D  

I ( f ) ,  which is  

I ( f )  is  an order of 
7s t r ans i t i ons .  

Dis t r ibu t ion  function and e l e c t r i c a l  conductivity - i n e l a s t i c  case 

Preliminary r e s u l t s  obtained by i t e r a t i v e  solut ion of equations ( 2 )  
and ( 7 )  a r e  shown i n  f igures  5 and 6 f o r  an atmospheric-pressure argon- 
cesium plasma op t i ca l ly  th ick  t o  resonance radiat ion,  the most r e a l i s t i c  
case f o r  an MHD generator [211 .  These calculat ions were performed f o r  a 
seed f r a c t i o n  (NgS/NAr) of 0.0015, gas temperature of 1500° K, and no 
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magnetic f i e l d ,  as i n  the experiments of [21. 
curve of f igure  5 displays the same general  features  as the experimental 
argon-potassium r e s u l t s .  O f  par t icular  i n t e r e s t  i s  the f a c t  that the 
theore t ica l  curve drops of f  more rapidly with decreasing current than i n  
the  e l a s t i c  case. The reason i s  tha t  the states a r e  out of equilibrium a t  
low currents and electron temperatures, and there i s  an appreciable in -  
e l a s t i c  energy loss from the electrons, as wel l  as a s izable  reduction of 
Ne below the Saha value. A t  the higher values of j ,  the two-temperature 
theory is a good approximation, as shown by the  d is t r ibu t ion  function p l o t  
of f igure 6 where the calculated f ( u )  a t  Te = 3000' K is  indistinguish- 
able  from a maxwellian. A t  2000' K, however, f ( u )  departs from maxwellian 
above the f i rs t  excikation potential .  Since convergence d i f f i c u l t i e s  were 
encountered f o r  Te < 2300' K, the  r e s u l t s  i n  t h i s  range a r e  uncertain, 
and t h e i r  questionable nature i s  indicated by the dashed portion of the 
theore t ica l  curve i n  figure 5. I n  the opt ica l ly  t h i n  case, convergence 
d i f f i c u l t i e s  were experienced a t  even higher values of 

The conductivity - current 

Te. 

Conclusions 

( a )  E l a s t i c  co l l i s ions  cannot alone account f o r  anomalies i n  the  
e l e c t r i c a l  conductivity observed a t  low current densi t ies .  

( b )  The Saha equation is  a good approximation when e i t h e r  the cesium 
number density i s  above l O z 4  m-3 or the electron temperature above 3000° K, 
regardless of the o p t i c a l  thickness of the plasma. A t  lower densi t ies  o r  
temperatures, the o p t i c a l  thickness t o  resonance radiat ion controls the 
electron number density and the magnitude of the i n e l a s t i c  c o l l i s i o n  terms. 
Fortunately, the electron number density proves t o  be r e l a t i v e l y  insensi-  
t i v e  t o  the assumptions made concerning the lumped s t a t e .  

( c )  Preliminary r e s u l t s  of a self-consistent calculat ion of the elec- 
t ron  number density and dis t r ibut ion function show trends t h a t  agree w i t h  
avai lable  experimental data, but more work is  required t o  obtain r e l i a b l e  
r e s u l t s  a t  low electron temperatures, where i n e l a s t i c  e f f e c t s  dominate. 
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APPENDIX A - SYMBOLS~ 
kK probabi l i ty  (sec'l) of 

spontaneous radiat ive 
t r a n s i t i o n  L+K 

--f xz B magnetic f i e l d  

3 e l e c t r i c  f i e l d  

2" 

EL 

k 

m 

N 

E Z + "u x 5, effect ive 
e l e c t r i c  f i e l d  

binding energy of l e v e l  L, 
eV 

e e lectron charge 

f ( u )  energy d is t r ibu t ion  func- 
Q e j ( U )  m 

t i o n  ( c f .  footnote 1) 

g degeneracy 

h Planck constant QbK( u 1 

I ( f )  i n e l a s t i c  gain 

3 current density 

x QbK(u)du, r a t e  coef- T 
f i c i e n t  ( m 3  - sec-1) --f 

U f o r  collision-induced 
t r a n s i t i o n  b K  

U 

X a y P ( u f  ,u)du'du, effec- 

f i c i e n t  ( m 3  - sec-1) f o r  
capture in to  l e v e l  L 

t i v e  two-body rate coef- WR 

JJ 

X & p ( u ) d u ,  r a t e  coef- 

f i c i e n t  f o r  ionization 
from l e v e l  L 

E 1 KIrK + 
K 

Boltzmann constant 

p a r t i c l e  mass 

number density 

cross section f o r  momentum 
t r ans fe r  between elec - 
t rons and species j 
( j  = a , e , i )  

t o t a l  cross sect ion f o r  
collision-induced t ran-  
s i t i o n  L+K 

t o t a l  cross section f o r  
ionization from l e v e l  L 

temperature 

gas veloci ty  

e lectron energy ( m  v 2 /2e),  
e eV 

electron speed 

rad ia t ive  power lo s s  per 
u n i t  volume 

5Mks u n i t s  a r e  used f o r  a l l  quant i t ies  
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€0 

A 

rate coef f ic ien t  
( m3-sec-l) f o r  rad i -  
a t i v e  capture i n t o  
l e v e l  L 

permi t t iv i ty  of vacuum 

= 12n( cokTe)3/2e-3N,1/2, 
r a t i o  of Debye radius 
t o  impact parameter 
for  900 sca t t e r ing  
r 1 

path f o r  e l a s t i c a l l y  
sca t te red  electron 

U e l e c t r i c a l  conductivity 

Upp( u '  , u )  probabi l i ty  (m4-sec) f o r  
capture of u ' -  
e lectron i n t o  l e v e l  L, 
w i t h  u-electron gain- 
ing excess energy 
U '  + EL 

u p (  u",u' ) d i f f e r e n t i a l  cross sec- 
t i on  (m2-ev-1) for 
producing a u" 
secondary electron by 
impact of a u '  p r i -  
mary electron 

= A(u)/v, co l l i s ion  time 

= eB/me, e lectron cyclo- 
t ron  frequency 

Subscripts and superscr ipts :  

A r  argon 

a atom 

cs cesium 

cap capture 

dex deexc i t a t  ion 

e e lectron 

ex exci ta t ion 

g gas 

H H a l l  

h heavy p a r t i c l e  (atom 
or ion) 

i ion 

ion ionizat ion 

K potassium 

atomic l e v e l  indices  K, L 

r-cap rad ia t ive  capture 

S seed 

0 i n i t i a l  number densi ty  

1 perpendicular 
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Sta t e  

6s  

6P,P’ 

5D, D ’ 

7 s  

Lumped 

TABU I. - PARAMETERS OF CESIUM ATOMIC MODEL 

~- 

Level 
L 

3.89 

2.47 

2.09 

1.59 

Varieda 

Degeneracy, 
gL 

2 

6 

10 

2 

Varied” 

~~ 

Radiative t r ans i t i on  - probabi l i ty ,  
AK+: 

K = 2  

107 sec-1 

K = 4  K = 5  

0. 306c 

.564 

.378 

.849 

---- 
aE5 = 0.4, 0.6, 0.8 eV. 

bg5 = 50, 100, 150. 

‘For plasmas op t i ca l ly  thick t o  resonance radiat ion,  these are equated 

dForbidden t r ans i t i on  (AZ # 21). 
t o  zero. 
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Figure 1. - Comparison of present theory wi th theoretical and experimental results 
of Kerrebrock and Hoffman [ Z ] .  Gas temperature, 150" K; seed fraction, Nf/NAr, 
0.0015. 
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Figure 3. - Degree of ionization of cesium as function of in i t ia l  seed num-  
ber density. kT$e, 0.2 eV. 
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Figure 4. - Degree of ionization of cesium as function of electron tem- 
perature. Atmospheric pressure; gas temperature, ls00" K; seed 
fraction, 0.0015 ( N A ~  - 4. 89x1d4 m-3, NEs - 7.34x1d1 m-3). 
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Figure 6. - Normalized distribution function. Argon seeded with 
cesium; atmospheric pressure; gas temperature, 1500" K; seed 
fraction, 0.0015, optically th ick  to resonance radiation. 
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