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J. V. Dugan, Jr., P. A, Lyman, and L. U. Albers

Lewis Research Center
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REVISED ABSTRACT

Many calculations of the electrical conductivity of noneguilibrium
MHD plasmas have been based on a simple two-temperature theory. This theory
assumes that (a) the electron number density has the equilibrium (Saha)
value corresponding to the electron temperature T., and (b) the free elec-
tron energy distribution function f(u) is maxwellian.

The validity of assumption (a) has been studied by several authors
who, however, used assumption (b) in their analyses. Assumption (b) has
been less thoroughly studied. Because both excitation and ionization rates
are sensitive to f(u) and bound states may be out of equilibrium due to
radiative transitions, it is unrealistic to treat these two assumptions
separately. This paper reports preliminary results of an investigation
undertaken to establish the range of validity of the two-temperature theory
for MHD plasmas by solving the Boltzmaenn equation for f(u) and the steady-
state rate equations for the bound electronic states. The problem was
attacked in the following three stages.

First, f(u) was calculated from a Boltzmann equation including only
the electric field and the elastic collision terms. The results showed
that for typical MHD systems (e.g., Ar + K at 1 atm) electron-electron
collisions drive f(u) to maxwellian.

Second, the solution of the rate equations for a maxwellian f£(u),
using a five-level cesium atomic model, demonstrated the importance of
radiative transitions in determining the bound-state populations and
magnitudes of the inelastic coellision terms. The model atom consisted of
four discrete states: (6S; 6P,P'; 5D,D'; 7S) and a lumped state, which was
assigned various binding energies and degeneracies. Criteria for se-
lecting the latter were based on the maximum stable orbit radius that
would be likely for the plasmas of interest. Both the classical Bohr-




Thomson and Gryzinski cross sections were used to calculate the rate coef-
ficients and collision terms for excitation, deexcitation, ionization, and
three-body capture. Many calculations were also performed using recent
experimental data for the 6S = 6P,P' excitation. Xnown values of radia-
tive probabilities were used for transitions between discrete states.

Finally, the simultaneous solution of the Boltzmann equation (including
all relevant elastic and inelastic collision terms) and the bound-state rate
equations was attempted by an iterative technique. Plasmas of various
optical thicknesses to resonance radiation were considered. In the extreme
case of a gas transparent to all line radiation, the departure of the state
populations from equilibrium causes a large reduction in the free electron
number density, especially at low values of Te. Because excitation colli-
sions are not balanced by superelastic collisions in this case, they cause
f(u) to depart significantly from maxwellian at high energies. Numerical
difficulty was encountered in the iterative scheme in this case. The
effect of inelastic collisions is much less pronounced for plasmas that
are optically thick to resonance radiation, and it disappears altogether
for a plasma optically thick to all radiation. The distribution function
was calculated for a range of electric fields and gas densities for the
case where resonance radiation is completely trapped, the most realistic
situation for large MHD generators. The dependence of the electrical con-
ductivity on the current density was also calculated, and where possible
compared with experimental results.
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INTRODUCTION

A fundamental problem of gas discharge theory is the prediction of the
free electron number density and velocity distribution function, which
together determine the electrical properties of the gas. 1In the case of
certain low-voltage atmospheric-pressure glow discharges in alkali-seeded
noble gases, which are being studied for nonequilibrium magnetohydro-
dynamic (MHD) power generation, this problem is fortunately somewhat
alleviated. For such discharges, a simple two-temperature conduction
theory due to Kerrebrock [1] has shown reasonable agreement with experi-
ment at sufficiently high current densities (above 104 amps-m'z).
Kerrebrock's theory assumes that (a) the free electron energy distribu-
tion f(u) is maxwellian, with a temperature Te that may considerably
exceed the gas temperature Tg, and (b) the free electron number density
N. 1is given by the Saha equation applied at temperature Te.

There remains, however, the question of the range of validity of the
two-temperature theory. Kerrebrock and Hoffman [2] attributed the lack
of agreement between theory and experiment at low current densities
(below 3x105 amps-m‘z) to the fact that electron-electron collisions
could not preserve a maxwellian velocity distribution in the presence of
elastic electron-atom collisions, due to the low value of Ne. They
supported their hypothesis by estimating average frequencies of energy
transfer through these collisions.

Archambault and Cuenca [3], on the other hand, concluded that the
distribution function would be maxwellian under MHD conditions. This con-
clusion was based on a detailed comparison of the various elastic and in-
elastic collision frequencies in an argon-cesium plasma, unfortunately for
only one set of values of Ng, Te, Tg, and argon and cesium number densi-
ties. The authors of [3] raised doubts concerning the validity of the
Saha equation, however - a position which is contrary to the conclusions




of an earlier study by Ben Daniel and Tamor [4].

The present work attempts to ascertain the validity of the two-
temperature theory for alkali-seeded argon MHD plasmas by calculating f(u)
and N self-consistently from the Boltzmann and rate equations. Such a
self-consistent calculation is necessitated by the fact that f(u) depends
strongly on Ng [5], which in turn is very sensitive to the behavior of
f(u) above the excitation and ionization thresholds [6].

THECRY

Electron Boltzmann equation

/ The energy distribution functionl f(u) is defined such that
wl/2f(u)du is the fraction of electrons having energies in the range from
u to u + du electron volts; hence,

/-00 ul/zf(u)du =1 (1)
0

For a steady-state discharge in a uniform, partially ionized gas flow-
ing through crossed electric and magnetic fields, the appropriate equation
for f(u) is? [5,7,8]
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h=a,i

(1) (i1)

+ !‘- N, sz { (u' )3/28(u" Yaur + %-uz’/2 _{w flu' )du]

(iii)

p,

+ £(u) fu (u')l/zf(u')du} = I(f) (2)

0
(iv)
Equation (2) is sometimes called the gain equation, because when
multiplied by N.(2e/m.)1/2 its terms give the rates (in m-3-sec-l)
at which electrons are added to (or lost from) the energy range u to o.

The terms are as follows:

(1) Energy gain from the effective electric field B¥

lstrictly speaking, ul/zf(u) is the energy distribution function,
but the above terminology will be used for brevity.

2Symbols are defined in appendix A.




(ii) Energy loss to atoms and ions in elastic collisions
(iii) Energy exchange in electron-electron collisions

(iv) Energy gain (loss) in inelastic (including superelastic)
collisions with atoms and ions

The inelastic gain term I(f) is the sum of the following expressions
obtained by integrating the inelastic collision terms given in [8,9] from
u to , making simple transformations, and using the microscopic
reversibility relation between excitation and deexcitation cross sections
(Klein-Rosseland relation) and between ionization and three-body capture
cross sections [9]:

(a) Excitation and deexcitation by electron impact

AL
&y,
Iex+dex(f) = - Npf(u') - EIE Ngf(u' - AE:L,K)
u

L,
x we¥(u)an  (3)
(b) Ionization by electron impact
« u'-Eg,
Iion(f) =Z Np f u'f(u')au’ f E’]i;,()n(u",u')
T utky u

+ cion(u’ -u" - EL,u'):]du"

00 u'-EL
- f u'f(u')au’ f Gion(u",u‘)du“ (4)

u 0
(¢) Three-body ion-electron-electron ca.;pture5
, 3/2 . _ g
Teap(f) = Aéi(zilmee) NeN3 Z% ‘[ u'du’ ‘é' t £(u")f(u' - u"- Ep)
L

X oion(u",u' Ydu"

00 u‘-EL
_f u'du’ f f(u")f(u' - u" - Ep)|of®(u",u’)
utEy u
+ oion(u' -u" - EL,uf):]du" (5)

S'I'hree-body collisions in which the third body is an atom or ion will
not be considered.




() Radiative capture?

Tp-cap(f) ==Nj Z/ u'f(u')of ~®®P(u' )au’ (6)
Ju

L

When u = 0, the excitation-deexcitation term (3) vanishes because
ex - .
QL*K(u) =0 for u< AEL,K’ while the terms (4), (5), and (6), when

multiplied by Ne(2e/me)l/2, become the total ionization and capture rates.
Also, when the bound and free electrons are in equilibrium, the term (3)
vanishes while (4) and (5) cancel.

Rate equations for bound electrons

The rate of change of the number of bound electrons in level L is
* cap
o= - + A ) + K +-:E: : +
NL NL(Ne;KL _L) Ne ;é; NKKK%L £ IJNKAKéL " NeNiOKL BI) (7)
>

For the steady-state problem treated herein, ﬁL = 0. Equation (7) together
with the normalization condition

0

1\Ii+ZNL=1\Is (8)
L

and the condition of charge neutrality (N = Ny ) serve to determlne N

and Ny, for a specified f(u) and 1n1t1al seed number density N

Electrical conductivity

The electron current density J in the plane perpendicular to 3
is [7]

.,JE:O'J_E*'FO'H‘%X-E'* (9)
where
1/z [~
_1 2e 1 oyl af
0 =3 Nee(me) [ — ngz,,%(u)u( du)du (10)
1/2 [
1 (Ze) Wt ar
g = = N.e[&= —_— 7\(u)u(- —)du (11)
H 3 e me [ l + (DZTZ du

are the perpendicular and Hall conductivities, respectively.
|

4The inverse process to (d), photoionization, is ignored.



Electron energy equation

/
The electron energy balance equation may be derived from equation (2)
by multiplying by N e(2e/me l 2 and integrating from u =0 to .
After considerable transformation, the result may be written as

1/2 j : ‘ o

- - 2m kT

3B = Nee (1%13) Tn_e' Nn f ungh(u)(f(u) + = -g-f—>du
e h 0

h=a,i

ir0on
§ £y, k(N Krox - Ngkgor) + Z By, (VKE® - MiKEOP)

1l/2
+ ze / Zf u)ot, ®@P(u)au (W) (12)

Equation (12) can, of course, also be derived from elementary considera-
tions. By multiplying equation (7) by E;, and summing over all bound
levels L, one can show that the inelastic terms in (12) (the last three

on the rlght) are equal to the power loss per unit volume through line and
continuum radiation; that is,

WR= e MBy [NpAr.x* NeNje /EZf EL+u)uf(u)or c"’LP(u)du( )

I, K<L
(13)

For a maxwellian f(u), the elastic loss term (the first on the right
of (12)) is proportional to the temperature difference T, - T,, and equa-
tion (12) provides a means of calculating Te. If f£(u) is no% maxwellian,
the temperature can be determined from the relation

kT 0
e & /O‘ u5/22(u)au (14)

CATICULATIONS AND RESULTS

Computational procedure

An iterative technique was employed to solve equations (2) and (7).
The coefficients of the rate equations (7) are first calculated for an
assumed f(u) (usually a maxwellian with a guessed T.). Solution of these
equations yields Ne and Ny,. When these number densities and the
assumed f(u) are used, the inelastic term I(f) and the integrals in the
electron-electron collision term are then calculable. This reduces the
equation for the next approximation to a first-order linear differential
equation in f(u), which is integrated numerically. The solution is then
normalized to satisfy equation (1) and an electron temperature calculated
from equation (14). When f(u) is very close to maxwellian, equation (14)
becomes an identity, and it is necessary to determine T, by satisfying




the energy equation (12). Otherwise, the process is repeated until con-
vergence is obtained in f(u), Te, and Neg.

Results of elastic-collision problem

Initial calculations were concerned with determining f(u) from equa-
tion (2), neglecting the inelastic term I(f). These calculations were
performed for argon seeded with potassium and cesium under the conditions
of Kerrebrock and Hoffman's experiment, to see whether a non-maxwellian
distribution would be obtained at low current densities, as hypothesized
in [2]. TFor these calculations there was no magnetic field, and N, was
assumed to be given by the Saha equation. Elastic cross sections for
argon, potassium, and cesium were teken from [10, 11, 12], respectively.

It was found that f(u) is maxwellian over the entire range of current
densities measured in [2]. The computed electrical conductivity is
plotted as a function of current density in figure 1 along with Kerrebrock
and Hoffman's data. The lowest calculated value of Ng was 3x1018 5, as
noted on the figure, whereas Kerrebrock and Hoffman estimated that
electron-electron collisions could not maintain a maxwellian f£(u) if Ng
were below 3x10L9 m=3, Neither the present theory nor Kerrebrock's theory
shows the dip in conduct1v1ty observed at 10 amp-m~ -z,

Cesium atomic model

For investigation of the effect of inelastic collisions, a five-level
model cesium atom, which contained three discrete excited states, was
chosen. These states (6P, P'; 5D, D'; 7S) were treated as singlets,
neglecting the slight splitting of the 6P and 5D states due to spin-orbit
coupling. All the remaining excited states of cesium were collapsed into
a lumped state whose degeneracy and binding energy were varied to explore
the sensitivity of the calculation to this atomic model. Various criteria
were employed to estimate the maximum stable electronic orbit radius. The
features of the atomic model are summarized in Table I.

Inelastic cross sections for electron-cesium atom collisions

(a) Excitation-deexcitation

Experimental [13,14] and theoretical [15,16] curves for the first
(68 - BP) and total excitation cross sections of cesium are shown in
figure 2. In computations the experlmental [13] curve was used above
2 eV, with a linear segment of slope 71 A2 - ey-1 [14] for
l.42 <u<z2ev.

The conventional Gryzinski cross sections [16] were used for the
remaining optically allowed transitions, and the Gryzinski exchange formula
[17] was used for optically forbidden transitions. The classical Bohr-
Thomson cross sections [9] provided a check on the accuracy of the compu-
tations, since their use enables analytical evaluation of the collision
terms for a maxwellian f(u).

(b) Ionization-capture

The Gryzinski ionization cross sections [16] were employed for transi-




tions from all bound electronic states to the continuum. The maximum cross
section predicted for ionization from the ground (6S) state is 20 percent
lower than the best experimental value [18].

Radiative transitions

(a) Deexcitation

The radiative transition probabilities listed in Table I were taken
from [19]. The optical thickness of the plasma can be varied simply by
altering these values, thus simulating different plasma dimensions and
optical absorption coefficients.
(b) Radiative capture

At low Ng and Tg, radiative capture becomes important. Cross

sections for this process were taken from [20].

Solution of rate equations for maxwellian distribution

Figures 3 and 4 show the results of solving the steady-state rate
equations (7) for a maxwellian f(u). In figure 3 the degree of ioniza-
tion of the cesium is plotted as a function of the initial cesium number
density Ngs for kTe/e = 0.2 eV. The results are gualitatively similar
to those of [4]. For an optically thin plasma, N 1s determined at very
low Ngs by the balance between radiative capture and collisional ioniza-
tion from the ground state. With increasing Ngs, three-body capture
becomes important, and in the optically thin case, the curve rises to a
maximum as ionization from excited states becomes significant, thereafter
approaching the Saha curve. TFor a plasma optically thick to resonance
radiation, ionization from excited states is important at lower Ngs
because the populations of these states are higher. Figure 3 also demon-
strates the relative insensitivity of the results to the degeneracy and
binding energy of the lumped state.

Figure 4 shows that the Saha equation is a good approximation when
Te 2 3000° K, regardless of the optical thickness of the plasma. Below
this temperature, the optical thickness of the plasma to resonance radia-
tion is the controlling factor in determining the magnitude of the in-
elastic term I(f). When resonance radiation completely escapes, the
lack of detailed balancing of collisional transitions between the 6S and 6P
states results in a large (negative) contribution to I(f), which is
comparable in magnitude to the electron-electron collision term. TFor a
plasma optically thick to resonance radiation, collisional transitions
between these states are more nearly in balance, and I(f) is an order of
magnitude smaller and due mainly to the 6P - 5D and SD - 7S transitions.

Distribution function and electrical conductivity - inelastic case

Preliminary results obtained by iterative solution of equations (2)
and (7) are shown in figures 5 and 6 for an atmospheric-pressure argon-
cesium plasma optically thick to resonance radiation, the most realistic
case for an MHD generator [21]. These calculations were performed for a
seed fraction (Ngs/NAr) of 0.0015, gas temperature of 1500° K, and no



magnetic field, as in the experiments of [2]. The conductivity - current
curve of figure 5 displays the same general features as the experimental
argon-potassium results. Of particular interest is the fact that the
theoretical curve drops off more rapidly with decreasing current than in
the elastic case. The reason is that the states are out of equilibrium at
low currents and electron temperatures, and there is an appreciable in-
elastic energy loss from the electrons, as well as a sizable reduction of
N. below the Saha value. At the higher values of j, the two-temperature
theory is a good approximation, as shown by the distribution function plot
of figure 6 where the calculated f(u) at Te = 3000° K is indistinguish-
able from a maxwellian. At 2000° K, however, f(u) departs from maxwellian
above the first excitation potential. Since convergence difficulties were
encountered for Tg < 2300° K, the results in this range are uncertain,
and their gquestionable nature is indicated by the dashed portion of the
theoretical curve in figure 5. In the optically thin case, convergence
difficulties were experienced at even higher values of Te.

Conclusions

(a) Elastic collisions cannot alone account for anomalies in the
electrical conductivity observed at low current densities.

(b) The Saha equation is a good approximation when either the cesium
number density is above 1024 m-3 or the electron temperature above 3000° K,
regardless of the optical thickness of the plasma. At lower densities or
temperatures, the optical thickness to resonance radiation controls the
electron number density and the magnitude of the inelastic collision terms.
Fortunately, the electron number density proves to be relatively insensi-
tive to the assumptions made concerning the lumped state.

(¢) Preliminary results of a self-consistent calculation of the elec-
tron number density and distribution function show trends that agree with
available experimental data, but more work is reguired to obtain reliable
results at low electron temperatures, where inelastic effects dominate.
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APPENDIX A - SYMBOLS®

Ak probability (sec™l) of Kion
spontaneous radiative
transition IrK

e
A=)
' K<L
B magnetic field Mi
B electric field
- - - - k
E* =E + U X B, effective
electric fleld n
Eq, binding energy of level L, N
eV
= - QR (u
2By ¢ B - By o (u)
e electron charge
m(u)
f(u) energy distribution func- er u
tion (ef. footnote 1)
g degeneracy
h Planck constant QLeK(u)
I(f) inelastic gain
J current density .
Qlon(u)
L
Kk = (2e/u)M2 [ ue()
0
X QLaK(u)du, rate coef- T
ficient (m3 - sec~1) 3
for collision-induced
transition LK u
ca (ve] {oe]
Kr D = (Ze/me)Nef f uf(u)u'fla')
0 70 v
X cﬁap(u',u)du'du, effec-
VR

tive two-body rate coef-
ficient (m® - sec-1) for
capture into level L

OMks units are used for all quantities

10

(Ze/me)l/z ./-°° uf(u)
By,
(u)du, rate coef-

ion
xQL

ficient for ionization
from level L

_ ion
ZZKIr-rK+KL
K

Boltzmann constant
particle mass

number density

47, (u)

4ﬁ(e/4ﬂ€0)2u'21n A

cross section for momentum
transfer between elec-
trons and species
(J = a)e:i)

total cross section for
collision-induced tran-

sition IrK
u-Ey,
= f Olon(uf',u)dulv,
0 L '

total cross section for
ionization from level L

temperature
gas velocity

electron energy (mevz/Ze),
eV

electron speed

radiative power loss per
unit volume



Au)

c]ciap(u' ,U.)

oion(un’u| )

rate_coefficient
(mS-sec-1) for radi-.
ative capture into
level L

permittivity of vacuum

ratio of Debye radius
to impact parameter
for 90° scattering

il

h=a,l
path for elastically
scattered electron

electrical conductivity

probability (m*-sec) for

capture of u'-

electron into level L,
with u-electron gain-

ing excess energy
'
u EL

differential cross sec-
tion (mZ-ev-1) for
producing a u"
secondary electron by
impact of a u' pri-
mary electron

= Nu)/v, collision time

tron frequency

lZﬂ(eokTe)S/ze'sN;l/z,

eB/me, electron cyclo-

m -1
; Nthh(u) , free

11

Subscripts and superscripts:

Ar

a

Cs

cap

dex

ex

argon

atom

cesium
capture
deexcitation
electron
excitation
gas

Hall

heavy particle (atom
or ion)

ion

ionization

potassium

atomic level indices
radiative capture

seed

initial number density

perpendicular




TABLE I. - PARAMETERS OF CESIUM ATOMIC MODEL

State Level | Binding | Degeneracy, | Radiative transition probability,
L energy, g1, Ay 10 107 sec-1

E1,»

eV K=1|lK=2|K=3|K=4{K=25
6S 1 3.89 2 | ----- 6.10¢ | ----@| ----d | 0.306C
6P,P 2 2.47 6 ] | - 0.178 | 1.76 .564
5D, D' 3 2.09 (o JRNN (PSR RPN | ----41} .378
75 4 1.59 P-ZNN [ENNUPION RUUVIIGUS, IUQUVIN, | .849
Tumped 5 Varied® Variedb -------------------- ————

85 = 0.4, 0.6, 0.8 eV,

bg5 50, 100, 150.

CFor plasmas optically thick to resonance radiation, these are equated
to zero.

dporbidden transition (A £ +1).




E-3415

o

Excitation cross section. Q®(u), A2

Electrical conductivity, ¢, mhos/m

120

100

8

(=3
[=4

-3
o

20

108

102__—
- Experimental data of Kerrebrock and
/ Hoffman for ArdL K {[2), run XIA,
10— X Tg = 1510" K, NgINa, = 0.0015)
= —-— Theory of [Z] including only elastic
— collision losses
L i —— Present theory for Ar + K, elastic
— 1N, = 3x1018 ;3 coilisions only; Saha N,
| (L 0= m —--— Present theory for Ar + Cs, elastic
! collisions only; Saha Ng
Wl bl el el
102 108 10 , 0 106
Current density, j, amps/m
Figure 1. - Comparison of present theory with theoretical and experimental resuits
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Figure 2, - Excitation cross sections for cesium.
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Figure 3. - Degree of ionization of cesium as function of initial seed num-
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Figure 4, - Degree of ionization of cesium as function of electron tem-
perature. Atmospheric pressure; gas temperature, 1500° K; seed

fraction, 0.0015 (N, = 4.89x10% m3, NQ = 7. 34x102L m'3),
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Figure 5. - Electrical conductivity as function of current density. Atmospheric pres-
sure; gas temperature, 1500° K; seed fraction, 0.0015.
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Figure 6. - Normalized distribution function. Argon seeded with
cesium; atmospheric pressure; gas temperature, 1500° K; seed
fraction, 0.0015; optically thick to resonance radiation.




