AN ANNOTATED BIBLIOGRAPHY
OF COMPUTER-AIDED
CIRCUIT ANALYSIS AND DESIGN

MEISSNER
AN ANNOTATED BIBLIOGRAPHY
OF COMPUTER-AIDED
CIRCUIT ANALYSIS AND DESIGN

Charles W. Meissner, Jr.

Langley Research Center
Langley Station, Hampton, Va.
PREFACE

This document presents an annotated bibliography of computer-aided circuit analysis. Recent interest in the application of computers to the analysis of electronic circuits has encouraged the publication of this material. The emphasis has been placed on programs and their application rather than on related areas. The bibliography has been presented to furnish not only a listing of authors and their works but also an idea of how the area has developed over the past 10 years.
CONTENTS

INTRODUCTION ... 1

ENTRIES FOR YEAR –

1956 ... 2
1957 ... 2
1958 ... 2
1959 ... 4
1960 ... 6
1961 ... 9
1962 ... 15
1963 ... 18
1964 ... 22
1965 ... 27
1966 ... 33

AUTHOR INDEX ... 35

SUBJECT INDEX ... 41
INTRODUCTION

Over the past few years, computer-aided circuit analysis has grown to the point where it has generated a large body of literature in addition to the literature of the large fields of interest such as circuit analysis and computer programming which bear heavily on it. The intent of this bibliography is to cover the literature peculiar to computer-aided circuit analysis and include enough background material to allow the user to trace the thoughts that have been prevalent during the infancy of the subject. The papers are grouped by year and alphabetically by first author within the year to highlight the chronological development without sacrificing convenience of use. Subject and author indexes are included.

Special attention is called to two previous bibliographies (entries 95 and 150) where additional background and foreign-language references will be found.

The present bibliography begins with 1956, because it was about that time that the first serious attempts to use the computer as an aid to the analysis and design of electronic circuits were made, and ends about the middle of 1966.
1956

A study of techniques for using large digital computers in network analysis is included in this paper.

1957

This paper discusses the present and future effects on network theory of large scale digital computers.

Rules of interconnection are presented for combining piecewise linear representations with the manipulation of the matrix equations that define the linear external circuitry.

A method making extensive use of the logical and arithmetic capabilities of a digital computer to predict the transient response of a nonlinear circuit is described and applied to a typical flip-flop. The data inputs required for this program are the values of the linear components, the subroutine description of the nonlinear components, and the nodal connections of all the circuit elements in punched card form.

A program for the digital computer determination of driving-point and transfer functions for passive networks is described. With ILLIAC, networks with up to 30 elements have been analyzed. In the second part of the paper, the essentials of a digital computer library for network synthesis are described.

1958

This article contains simulation of mental processes of the design engineer and programing for design calculations of dc motors.

This paper describes a computer analysis for networks of higher complexity, in which a connection matrix is used.

This paper reviews the advantages of using digital computers for fault calculations.

The result of this investigation was a digital computer program that calculated the self and mutual drops of a system with a high degree of accuracy and at the same time compared favorably with the ac network calculator method cost.

As a replacement for sets of tables this paper presents a program designed for a readily available commercial computer. The designer need only select the filter type, specify the order of the network and the values of element dissipation factor for which designs are required, and the computer yields element values together with the associated flat loss, in decibels.

This paper presents an analytical study of an interarea matrix for power transmission loss formulas and a numerical example.

An approach to the problem of designing reliability into an electronic circuit is the method of synthetic sampling. This method is compared to the commonly used "worst-case" design philosophy. This paper attempts to point up the shortcomings of the worst-case philosophy.

Use is made of IBM 650 and 407 computers for load flow calculations, with solutions printed directly on system charts or in tabular form.

This paper contains an ILLIAC computer study, with programing data.

An IBM 650 computer is used for calculating transistor circuits for the logic of an IBM computer under development.

This paper is concerned with the analysis of series-parallel and bridge-type networks such as those involved in a radar system connected to a central computer.

A numerical graphical design method that can be performed by computers is presented.

1959

This paper is a report on an exploratory investigation with a large digital computer (MISTIC) for analyzing electrical networks.

This paper compares Kron's method of piecewise analysis with the classical mesh and node methods of network analysis.

An IBM 704 program for obtaining the transient response of a circuit is described. The program is designed to handle nonsaturating transistor and diode circuits. A detailed manual of operation is provided along with an example circuit and its response curves. A series of measured responses is compared with a corresponding series of computed responses in order to indicate the accuracy of the computations. (See entry 27 for a companion paper.)

Conventional design techniques cannot readily produce optimum solutions to present-day design problems. The ideal characteristics of a design procedure are reviewed herein and compared with the conventional techniques. A new technique for use with a digital computer is described. A sample design optimization is employed to illustrate the operation of the new technique.

An extension of the switching algebra notation has been developed to facilitate the analysis of sequential switching networks on a digital computer. The computer program described in this paper enables the engineer to study the dynamic performance of a complex switching network by including the actual time delays of the logical elements.

The conventional procedure for designing systems with many physical parameters is discussed and the translation of this procedure into digital computer operations is considered.

This note describes two IBM 704 programs which are useful in engineering design problems. The programs are Monte Carlo Analysis (MCAX), to determine reliability of dc levels in a given circuit, and Monte Carlo Design (MCDX), to optimize a given circuit design by changing circuit parameter values.

A part of this report covers a design procedure using the IBM 650 computer system to obtain the optimum terminal values for a single-stage transistor IF amplifier.

This paper describes the design of a high-temperature aircraft ac electrical system in which an analogue computer was used for the simulation of an alternator with balanced three-phase load and of a closed-loop voltage regulator system with torque limiting. The computer study shows the effects of temperature, load, and regulator and exciter non-linear behavior on system stability and transient performance. Computer setup diagrams are given.

1960

This report is a companion to entry 20 and includes an explanation of the dc initialization computation used in TAP and a description of a related program, PE DCAP, for handling dc network problems, either with or without transistors.

Circuit equations have been solved on a digital computer, and calculated curves of voltage and current waveforms are given for several frequencies up to 600 MHz.

This paper describes a general approach to statistical investigation of properties of complex transistor switching networks. By using measured statistical data of transistor parameters and randomly sampled circuit variables as input, a Monte Carlo analysis of the distribution of propagation delay is carried out on an IBM 709 computer.

A new technique for designing low-voltage transformers on a high-speed digital computer has been developed and programed for the IBM 704 electronic data processing machine. The program produces the manufacturing specifications in a form suitable for reproduction for use by shop personnel in manufacturing the transformer. The technique is described and some of the results obtained from the computer program with the technique are presented.

A systematic method of finding efficient diagnostic procedures is discussed in some detail. This paper summarizes the basic mathematical models and criteria for optimum procedures. Part 1 gives some results which indicate the effect of various maintenance procedures on the overall reliability of an equipment. Part 2 deals with applications of the theoretical work. To illustrate this work a diagnostic procedure for a physical piece of electronic equipment was prepared. In addition, a computer program has been developed to establish a possible logical structure for the automatic calculation of diagnostic procedures. This program also demonstrates the feasibility of machine computation.

This paper describes the analysis and design of power supply circuits, for solid-state equipment, for example, with an IBM 704 electronic data processing machine.

A digital computer routine resulting in a set of equations that can be solved for the branch currents or branch voltages of a linear, constant-parameter electric network is described. Advantages are obtained from the unique branch numbering system which affords the circuit analyst the opportunity of specifying tree or link branches. Other
existing computer routines are studied, and a comparison is made with the method of this research. Detailed flow charts are presented, and a sample circuit is analyzed.

34. [Remington Rand Univac]: Mathematical Circuit Analysis and Design.

This report describes an attempt to develop a mechanized routine for the design and fault diagnosis of electronic circuits, summarizes the progress to date, and suggests areas for future study. A sample circuit is given; a copy computer printout accompanies the description of each stage of the analysis.

The object of this paper is to show a definite correspondence between the matrices obtained from the mesh and the nodal methods, and from this relation obtain the mesh and nodal inverse matrices by means of the elimination scheme and an efficient method in calculating the mesh transformation matrix.

A study of the transient response of particular distributed parameter networks is described. An exact analysis is presented for checking approximation methods. Theoretical and experimental responses are compared and a computer program is given for evaluation of the theoretical responses.

This paper describes and discusses an IBM 704 program which uses load-flow data of a system and performs fault calculations to assist in the application of protective relays to power systems.

Space/Aeron., vol. 34, no. 1, July 1960, pp. 125-129.

This article describes methods of evaluating the design of ground—space-vehicle radio transmission systems with a digital computer.

This paper describes in detail the application of a general purpose digital computer to the design of miniature pulse transformers and power transformers. For each type of component a flow chart is presented which describes the computation flow. For each of the categories the machine prints out computed electrical and magnetic characteristics in association with coil details and core structure. Sample problems of machine-designed pulse transformers and a power transformer are presented.

1961

This paper presents a procedure for the design of multiple-output logical networks which are minimal according to certain criteria. The technique has been programmed for the IBM 709 and some of the details of the program are presented. The program accepts punched cards listing the in-out relations for the network and then prints a list of Boolean expressions which are minimal according to a selected one of three criteria.

This report describes the mathematics behind and the usage of the PE CANS program. The basic assumption made in PE CANS is that a circuit can be accurately represented by a network of constant and/or nonlinear circuit elements; thus, there is no equivalent circuit for transistors or other devices that is incorporated into the program. The circuit elements can be nonlinear to almost any extent as long as they have a single value for the independent variable.

An analogue computer technique is shown to be a powerful tool for the theoretical investigation of transient radiation effects on electronic circuits.

This article discusses the representation of bus voltage regulation by automatic tap-changing transformers, generator bus voltage control, change of bus tie arrangements, and use of switched capacitors in the realistic digital simulation of system operation in power flow studies.

This report begins with a description of certain fundamental topological properties of linear graphs. The network problem, as a distinct mathematical entity, is then formulated in an abstract manner in order to show its algebraic structure. Next, the electrical network problem is described along with its solution by the classical mesh and node methods. Finally, a theorem stipulating a sufficient condition under which solution to the network problem exists is explained.

This report emphasizes the theoretical importance of the network concept and its practical value in computing solutions to a wide variety of physical problems. The abstract mathematical characteristics of the network problems are delineated in order to establish exact ground rules for setting up network models.

This paper describes a method of designing IF amplifiers using a digital computer. Input data consist of sets of two-port parameters measured over the frequency range of interest, a stability factor ρ, and the desired bandwidth. Several examples are given.

This paper presents a method for designing lossy filters built with elements having unequal dissipation factors using a high-speed digital computer as the main tool. Results
of using the suggested method in designing a lossy Tchebycheff filter of degree 9 are included. Also included are details on programing methods.

A program for the design of an all-pass function, with n natural modes, to correct the phase of a prescribed transfer function is discussed. Adequate results have been obtained with 8 or 10 natural modes. The speed of the program depends on the number of basic iterations of the design process which varies from 1 to 10. On a Ferranti Mercury computer with \(n = 8 \), the basic iteration is 20 seconds.

In order to avoid numerical iteration in the calculation of a typical return-loss coefficient of an LC latter structure, combinatorial analysis methods are used to form equations which defer inclusion of the problem data until an advanced state in the solution. Three different combinatorial procedures are included. The network parameter calculation serves as an example to demonstrate these combinatorial methods and the applicability of digital computers to combinatorial procedures.

This paper presents the mutual relationship between regulator control settings, tap-changer operations, and the characteristics of the output voltage for step-voltage regulators using representative distribution system voltage profiles obtained in the field. A description is given of the procedure employed, which included the use of detailed voltage recordings for distribution feeders as input to analog computer and digital computer simulations of a 32-step regulator and its associated controls.

A step-by-step procedure for formulating circuit synthesis problems in a manner which is amenable to a solution using linear programing is presented. A method of systematizing component value determination using linear programing is explained. The design equations and conditions required to synthesize a diode coupled inverter and a design procedure for achieving an optimum circuit is presented. The Simplex Method is used to determine component values such that power dissipation is minimized.

This paper presents some methods of using a digital computer for solving problems in power system analysis. The methods are similar to those used on network analyzers. Programs have been developed for performing load studies and transient stability studies.

A general method is derived for transient analysis of complicated nonlinear dynamical systems by use of a digital computer. An IBM 704 program is presented for simulation of cryotron networks. This simulator has been used to study switching speeds of cross-latched cryotron flip-flops; five-stage, free-running, ring circuits; and a three-bit, self-timing, self-checking, binary, parallel adder.

This paper describes a systematic-synthesis technique whereby a given delay characteristic is approximated within a given error with a small number of all-pass network sections. The method is a generalization of Darlington's using the Tchebycheff polynomial series. As an application, a three-section delay equalizer for color television was designed with the IBM 650 computer which had better performance than a four-section equalizer now in use.

A method of failure data collection for reliability prediction purposes is outlined which utilizes a computer program so that all required items of information can be automatically fed into the process of data accumulation and the required failure rate information can be obtained from the computer.

This paper describes the network, theory, program details, and application in power system studies of a general method of digital network analysis particularly suited for low-speed computers. The method has been proved using both high- and low-speed computers and the results of sample load-flow and short-circuit studies are discussed. The method is also applicable to transient stability problems.

An account is given of an IBM 704 program for preparing chassis wiring diagrams from a list of the chassis terminals to be connected.

The linear circuit model used to characterize the small signal performance of single-diode parametric amplifiers consists of a single sinusoidally varying capacitance imbedded in a fixed parameter network. An IBM 709 program for precise analysis of this circuit model is presented. Besides computing the response at the normal signal and idler frequencies, the program also computes the amplitudes of the voltages at the various other frequencies generated by the mixing action of the time-variant element.

An algorithm is developed for setting up the differential equations and initial conditions of electrical networks of arbitrarily connected elements. The algorithm formulates the equations in a set of coordinates such that all matrices to be inverted are nonsingular. The topological description of the circuit is used to select a nonsingular set of coordinates which enables the computation of the transient responses.

Circuit design methods are presented that account for component variations such as those exhibited from transistor to transistor of a single type. An illustrative design is discussed in which the Q and turns ratio of transformers in an IF amplifier are chosen to minimize the spread of a prescribed gain.

"Deuce" programs for computing network responses are described. The networks are assumed to consist of sections arranged in tandem. The sections are simple three- or four-terminal networks which have one of the structures: shunt and series branch (ladder network), bridged-T, or lattice.

This report describes the application of mathematical techniques to the analysis of the steady-state performance of a transistor gate-inverter circuit. The statistical calculation of circuit behavior is discussed and results are presented for the computer analysis of a typical circuit. A detailed mathematical description of the technique for determining the maximum component tolerance is included and the subsequent statistical study indicates the importance of the maximum tolerance determination in circuit design.

This paper has been written to describe a generalized technique of circuit analysis that makes use of the capabilities of high-speed digital computers. This technique, at present, will provide the designer with (1) information on the part-parameter drift stability required to allow his circuit to perform within required limits, (2) graphs of the interdependence of part parameters as related to circuit performance, and (3) data on voltage and power stresses imposed on the parts in the circuit as voltages and parameter values change.

Computer circuit-analysis techniques are discussed which are used to determine projected performances of newly designed electronic circuits considering normal part-parameter variations. The report describes each component-variation circuit-analysis method in detail and how each method is applied to a deficient sample circuit, shows how each method pinpoints circuit deficiencies, and presents problem circuits to be set up for each method. Also flow charts and IBM 7090 programs for each of the methods appear in an appendix.

This paper presents a method of calculation for the frequency transformation of a low-pass filter into a band-pass filter with a minimum number of inductances. The computation formulas and rules, which are described in detail, are suitable for the use of an automatic digital computer. The flow charts of the programing are illustrated in
some detail with a numerical example carried out on a Nippon Electric Automatic Computer Type 2203.

1962

An illustrated discussion is presented of the steps in servomechanism design where the computer can and cannot be used to good advantage.

An experimental program is described for computing the dc and transient response of transistor switching circuits of arbitrary configuration and size (up to 20 transistors) with the IBM 704 computer. A feature of the program which is discussed is its ability to compile all the necessary equations automatically from input data describing the circuit parameters and configuration.

This report covers two investigations. The first describes the statistical and other computational methods including a generalized digital computer program for the performance of a Monte Carlo analysis. The second part is devoted to the study of magnetic core circuits.

A method of designing transistor feedback transmission amplifiers with the aid of a nodal analysis digital computer program is described. A procedure for using this nodal analysis program during the design of automatic control systems is also included. This computer program is referred to as NAPANS for "Nodal Analysis of Passive and Active Networks."

This paper characterizes a circuit design by the probabilities of failure on each specification and the optimum design is defined as the one with the minimum-maximum
failure probability. A Monte Carlo sampling technique is used to estimate the failure probabilities.

This paper is concerned with a digital computer simulation technique for implementing the modeling approach of communications networks, and some examples of its applications are presented. The computer program (for the IBM 709) accepts a wide range of parameters such as traffic level, system topologies, and system operating rules. Outputs are system performance parameters such as blocked call probabilities and user-to-user delays.

Reviews of the following computer programs are given:

(1) Kahng, S. W.: A Program for All-Pass Network Synthesis.

(4) Geffe, P. R.: Six Computer Programs for Modern Filter Design.

The problem of reliable electronic circuit design by statistical methods is described. After a brief account of the history of this problem, the principle is given of one method - Monte Carlo. Two implementations of this method, as digital-computer programs, are given. The first program analyzes the reliability of a given circuit, and the second program picks component values to optimize the circuit behavior with respect to several performance aspects. Examples illustrating the nature of the input and output information are included.

A method is developed for the determination of the probability density function of the output of a nonlinear feedback system whose input is a random voltage of known statistical properties. The method of analysis is based upon the establishment of a
mathematical model of the feedback system in such a way that the output is a Markov process. The results of an IBM 704 study of this system are presented and discussed.

This article describes some of the methods which are available for the determination of the time-domain responses of systems whose transfer functions are known, with particular emphasis on the utilization of a number of "Deuce" programs which have been specially prepared for this purpose.

This document presents a detailed procedure for development of the information which is necessary to perform a reliability analysis on a circuit. Reliability analyses on two sample circuits, a Schmitt Trigger Circuit and a Logic Driver Circuit, are given to supplement and clarify the procedure.

This paper describes two techniques, the Monte Carlo Method and the Moment Method, that have been developed for estimating the reliability of electronic circuits.

An account is given of equipment, namely a network analyzer operating on the transformer-analog principle and a Mercury digital computer, used by the authors in solving electrical power system problems. Various examples of studies undertaken are briefly outlined.

This paper explains the Modified AND EXpanded (MANDEX) worst-case circuit analysis program which utilizes a digital computer to determine the effects of variation in circuit input and part parameters on circuit performance. In the MANDEX method, the computer calculates the first derivative of all the output variables with respect to the
input parameters and, using these derivatives, sets the input parameters to their end-of-life condition so that a worst-case solution for the output variable is obtained. The computer determines whether performance is acceptable at this worst-case condition and prints circuit information accordingly. This procedure is repeated for all output variables. In addition to determining whether a circuit design will meet worst-case criteria, the program provides the designer with information to aid in improving the design.

A computer program has been written for the purpose of designing networks by a successive approximation technique. The program performs two operations alternately: calculating the improvement made possible by a small change in each network design parameter and making larger changes in all parameters to reduce the error in performance. The program is written in FORTRAN-II language for IBM 704 or 7090 electronic data processing system with 16 or 32 K storage.

This article is a review of standard techniques for arriving at a statistical distribution for circuit performance parameters. Fifteen references are cited and their work compared. Generalized flow diagrams are given for computer programs to perform statistical analysis.

This paper classifies and gives a brief description of the digital computer programs that were found to be most useful in filter calculations. Several representative examples are included.

1963

By using a nodal description of the circuit in an English text, free-format input style, ASAP will write the circuit equations, solve them algebraically, write and compile a FORTRAN subroutine, and run the Monte Carlo statistical analysis. A detailed description of each of these steps is presented.
84. Applegate, F. A.: Statistical Circuit Analysis Based on Part Test Data. Electro-

 Circuit synthesis is only as good as the component-part data used. Because of
 this dependence, considerable effort must be expended in designing an accurate and effi-
 cient component-part test program. The results of the program can then be used in the
 statistical worst-case analysis of the circuit in which the parts are to be used.

 The SYCATE program uses a mathematical model of a circuit in conjunction with a
 digital computer to predict the values that will occur at circuit test points when one or
 more of the circuit parts or input sources have failed. When a circuit subsequently fails,
 examination of the circuit test-point values and comparison with the output information
 of the computer program will then yield an indication of the most probable cause or
 causes of the circuit failure.

 Design Aids Symposium, Pub. No. 558-A-14, Autonetics, Sept. 1963,

 A digital computer program has been written to solve temperatures inside inte-
 grated circuits. It uses the technique of dividing the integrated circuit into small cubes
 and tracing the heat flow from cube to cube. Pictorial output and problem optimization
 are features of the program.

87. Casady, L. C.; and Breen, H. T.: Transistor and Diode State Finding Routine. Pro-

 This paper presents a subroutine for a circuit analysis program to determine if a
 transistor is in the active, cutoff, or saturated regions and whether diodes are reversed
 or forward biased.

88. Duby, T. E.: Linear Circuit Analysis Using the SPADE Program. Proceedings of
 Second Design Aids Symposium, Pub. No. 558-A-14, Autonetics, Sept. 1963,

 S-Plane and Determinant Expansion (SPADE) is a FORTRAN program which will
 solve up to a 20 by 20 matrix with polynomial elements describing a linear circuit for
 any or all the unknowns in terms of the Laplace operator. It will then run a frequency
 response, iterate specific component values, and plot the results on CRT graphs.

The network approach is used as a unifying basis for formulating and solving a wide variety of problems on the digital computer. There is complete duality in the formulation network equations between the nodal and loop frames of reference; thus, the computer may choose the most advantageous frame of reference within the same program.

SCAP-1 is intended to aid the machine-control-design engineer in verifying the functional logic of electrical and hydraulic machine control circuitry. Usage is limited to on-off circuits, and the determination of numerical values of outputs is beyond the scope of the program.

This paper presents the fundamental consideration for the accuracy problem in the field of filter design and a new calculation method for network design by a digital computer which permits a reduction in the accumulations of numerical errors. Design formulas and numerical examples are given.

IBM 7090 computer programs are described to calculate tap-weights on tapped delay lines and least-squares approximations for filter functions.

This paper traces the development of the application of statistical techniques from their first simple fundamentals to the sophisticated procedures which are being investigated for near future application.

The Transient Response Using Matrizant Procedures (TRUMP) program calculates the transient response of linear and nonlinear electronic circuits. Topological circuit description and element values are required inputs. Voltage, current, and power as functions of time are outputs.

This bibliography contains 63 references listed alphabetically by author. Indexes are included for corporate author, personal author, and subject.

This paper presents some concepts of language and structure that are necessary in the design of a general problem solver. A servomechanism design problem illustrates their application.

A definition of the matrizant operator and its relation to the operational calculus are presented. Applications of this operator to linear networks are given with emphasis on digital computer solutions.

The paper describes the theory used for a computer program package being developed at the Bell Telephone Laboratories. The program will handle low-, high-, and band-pass filters with prescribed attenuation peak positions. Provisions are made for either equal ripple, or maximally flat-type pass-band behavior, for arbitrary (including extreme) termination ratio and predistortion of dissipation, if required. Additional subroutines provide the elliptic solution or the required number and positions of attenuation peaks for prescribed arbitrary suppression requirements. A modified program provides
low- and band-pass filters with maximally flat or equal-ripple type delay in their pass band and monotonic or equal-minima type loss in their suppression band.

1964

The objective of the work covered in this report is to exploit the digital computer as a tool for designers of electrical circuits. Work has been started under the headings of computer-aided circuit analysis, synthesis of logic circuits, and threshold logic. The status of each of these efforts is presented.

This paper describes a mathematical approach, utilizing a computer, for predicting the behavior of an active linear circuit after it has been integrated. The computer analysis technique described herein is based upon the nodal equations of a complete amplifier. It provides a unified approach to linear circuit analysis in place of the conventional approach requiring three separate equivalent circuits (one each for low, midband, and high frequencies). Further, this technique is applicable to any system which can be described by a set of linear simultaneous complex equations.

This paper shows how a transformed variable obtained by a well-known bilinear transformation of the frequency (variable) can be used at all stages of the synthesis process.

The technique formulated uses circuit equations. All circuit equations used in the diagnosis are generated numerically by the computer from the specification of the circuit schematic in coded form and from the nominal values of all circuit components. Three diagnostic techniques are included. They involve the numerical network admittances which are automatically generated from the coded schematic.

This paper describes a method which weights the probable component variation from its nominal value into one of three groups; the group assignment depends on how seriously the component variation affects overall performance. This technique, identified as the quantized probability design method, is compared with the absolute worst case, the Taylor worst case, and the uniform probability methods.

The theory of continuously equivalent networks is extended to the state equations and to include a scaling option. The theory is then applied to the classical problem of the design of low- and band-pass filters with loss in inductors only. The alinement problem in active filters is also approached from an equivalence viewpoint.

This paper contains a listing and description of computer programs for circuit analysis and design. See also entry 153.

This report is the result of an extensive study of the many methods of simulating system transfer functions and complete control systems on a general-purpose, large-scale digital computer. Two special simulation techniques (DEPI and DYSAC) are also discussed. In these methods, the digital computer essentially simulates an analog computer, at least in the sense of the programming procedure.

Reviews of the following computer programs are given:

A computer for performing frequency analysis of linear electrical networks with up to 40 nodes is described. The network is described to the program by a list of the types of elements, their node connections, and their values. The frequency functions to be calculated are defined by choosing from a prepared set of equations and listing the variables to be used in these equations.

This paper describes a method of circuit design which guarantees minimum circuit power dissipation while, at the same time, assuring circuit function. The design is expressed in a so-called "min-max" formulation. A test, called the "ρ-test," is devised to check the design specifications for physical realizability. An expression relating the circuit power dissipation to the circuit parameters is obtained. This expression combined with the min-max formulation constitutes a linear programming problem which is subsequently solved with a digital computer.

PREDICT is an automated digital computer program for determining transient circuit response which will accept a topological description of a large circuit, evolve and solve the necessary circuit equations, and produce the time history of specified voltages and currents. Transistors, diodes, and capacitors in transient radiation environments must be represented by equivalent circuits composed of combinations of R, L, C, and current and voltage sources.

TREAT is a system of six programs for the automatic processing of data on the effects of transient and steady-state radiation on transistor, diode, and capacitor parameters. The program treats actual and typical device information, evaluates permanent damage to devices, and processes dosimetry information. From actual or typical radiation environment and device data, the theoretical response of certain important device parameters during irradiation can be computed. This output of TREAT can be used directly as an input to PREDICT.

NET-1 is a digital computer program which simulates the dc steady-state and the transient behavior of a large class of electrical circuits which may contain passive and active components. It features a very simple input language.

The approach presented permits the base and collector characteristics of any individual transistor of a given type to be derived from the nominal characteristics of that type by use of a set of matching factors and terms that modify the nominal characteristics to suit that individual.

A large portion of the work described in this report covers the application of the improved parabolic model to numerical analysis of magnetic circuit problems. All of the computations have been performed on a digital computer, using ALGOL-60. This report includes detailed descriptions of the methods of making computations and the computer programs for solving magnetic-circuit problems.

A method of circuit analysis is developed in which only Kirchoff’s current law is assumed satisfied. Kirchoff’s voltage law may be violated and equations are derived for the basic charge distribution and node voltage of a branch. To obtain sufficiently simple numerical formulas, a circuit with a tree-type topology is assumed. Transistors, diodes, and transmission lines are considered and a program is written to demonstrate the method.

This paper describes an iterative method for performing the partial fraction expansion of a rational function. The scheme is especially designed for computer use.

This report describes a machine which has been developed as a research tool for the investigation of man-machine communication techniques. This machine has been designated MAGIC (Machine for Automatic Graphics Interface to a Computer). This machine combines large-diameter cathode-ray displays with a specially designed programmable digital computer. It is designed as a remote display station and is intended to be connected to a large ADP system via communication lines.

The section of interest lists some computer routines for circuit analysis and synthesis procedures. They include such techniques as continued fraction expansion and rational function evaluation.

This paper presents the results of an attempt to automate part of a formalized method of system design. To illustrate, a register transfer language is used to give a description of an adder considered as part of a digital system. This description is then translated into a set of Boolean equations.

This paper describes several methods of designing switching circuits and optimizing these designs with a digital computer as a design tool. A method of examining the on-off equation plot of an inverter switching circuit is discussed, and a technique for minimizing output load current and the fan-out factor for an inverter circuit is also presented.

The role of the digital computer in the design and analysis of electronic circuits is discussed with special attention given to the steady-state and transient nuclear environment. Examples are presented which illustrate the usage capability and limitations of
several existing analysis programs. The current direction of research and programming efforts in the area of automatic circuit analysis programs is also considered.

1965

This paper relates to a research program in electronic-circuit design through use of on-line time-shared computers. Several developments pertaining to computer programs designated as CIRCAL are described.

The IBM 1620 Electronic Circuit Analysis Program (known as ECAP) is an integrated system of programs which can be used by the electrical engineer in the design and analysis of electronic circuits. The system of programs can produce dc, ac, and/or transient analyses of electrical networks from a description of the connections of the network (the circuit topology), a list of corresponding circuit element values, a selection of the type of analysis desired, a description of the circuit excitation, and a list of the output desired.

An algorithm is proposed for the computer synthesis of linear networks of arbitrary configuration. In the process, positive elements may be "grown" across nodes as required, or may be forced to desired values. Examples in the areas of passive and active filter design are given, and limitations of the procedure are discussed.

A method is presented for the on-line simulation of electrical networks. The network is described to the computer either by typing elements and nodes to which they connect or by composing the network with a light pen on a cathode ray tube.

The system described in this paper gives solutions to the general problem by use of an on-line process (using Project MAC at M.I.T.) in which the machine accomplishes those computational tasks which can be algorithmically specified and the user provides those decisions which he is better qualified to make.

This paper describes a general-purpose computer program which may be used to calculate the performance of a wide variety of two-port networks. The program is written in Elliott 803 Autocode and can analyze a large feedback amplifier in a few minutes.

This report presents the methods and results of a study to develop a computer algorithm for automatically selecting test point locations in an electronic circuit for generating test measurements, and for designing a corresponding test procedure.

Reviews of the following computer programs are given:

(3) Domb, U.; and Shen, M. N.: IBM Dasher Synthesis Program.

This article is primarily a description of the IBM 1620 Electronic Circuit Analysis Program (ECAP). Some extensions of the program are included. See entry 135.
the Block Diagram Compiler: BLODIB. Proceedings Third Annual Allerton
Conference on Circuit and System Theory, M. E. Van Valkenburg, ed., Univ. of

Digital computer simulation of communication systems is accomplished by means
of the system oriented programing language called BLODIB (Block Diagram Compiler, B).
The use of BLODIB is demonstrated by its application in the simulation of a voice-coding
system.

131. Hoppe, Roger K.: Maximization of System Reliability Using a Digital Computer and
(Available from DDC as AD 611 566.)

The purpose of this paper is to devise a systematic method of searching for the
optimal Lagrange multiplier through the use of a digital computer in a direct tie with an
on-line oscilloscope.

132. Katzenelson, Jacob; and Seitelman, Leon H.: An Iterative Method for Solution of
Nonlinear Resistor Networks. Proceedings Third Annual Allerton Conference on
Circuit and System Theory, M. E. Van Valkenburg, ed., Univ. of Illinois, 1965,
pp. 647-658.

A direct iteration method for solving networks composed of independent sources
and nonlinear resistors is developed. The computer program which was written to
implement this method is discussed in the second part of this article.

133. Korn, Granino A.; Conant, Brian K.; Whigham, Robert H.; and Mitchell,
Baker Adams, Jr.: Hybrid Computer Monte-Carlo Techniques. EES Rept. No. 9
(NASA Res. Grant NsG-646), Univ. of Arizona, [1965].

Hybrid analog-digital computer systems suitable for high-speed Monte Carlo
studies are introduced and methods for reducing the computing time – such as,
sequential estimation and a number of variance reducing techniques – are suggested.

134. Lee, Samuel Chien-hsun: Network Synthesis To Minimize Multiparameter
Univ. of Illinois, Aug. 1965. (Available from DDC as AD 619 726.)

The concept of sensitivity group is introduced in giving a new definition of multi-
parameter sensitivity. This new definition makes it possible to compare two RLC net-
works of different topology which have the same network functions with respect to
multiparameter sensitivity. Numerical examples computed on CDC 1604 and IBM 7094
are given to illustrate the method.

In this paper, a different recursive formula for the solution of sets of linear differential equations with constant coefficients is derived together with the error expression. It requires even less calculation than previous methods under similar conditions.

This report describes the computational techniques formulated to extend the methods of automatically isolating faults in electronic circuitry to the level of micro-module. All equations are computer generated. Three diagnostic techniques are implemented.

This paper presents the basis of a comprehensive computer analysis program using the A-matrix for general active networks. The advantages of this approach include the capability of obtaining several network functions simultaneously, of working in either the time or frequency domain, and of adjusting parameters without recalculation of the entire network.

Operation of the prototype system was tested by the analysis and layout of a new type of microelectronic IF amplifier. The circuit was then manufactured in a single fabrication run, and exhibited excellent performance. Included herein are the results of related investigations in circuit synthesis, automatic mask production, and statistical system simulation.

A speculative discussion is given in this article which distinguishes types of networks occurring commonly in electrical communications equipment. Classical methods of analysis are reviewed and their limitations are stressed. Approximate procedures
and perturbation methods are suggested. Methods are reviewed for inclusion of stray components, parasitic dissipation, accidental modes of oscillations, and so forth. Bibliographical data of recently published material is included.

This paper describes an iterative approximation process for the synthesis of low-pass and band-pass filters. The process is very fast and its programed version fits into a 40 000-position computer memory. A brief analysis of the optimality and convergence of the procedure is included. The actual computer programs are described and some examples given.

The process of iterative design of large linear networks with multiple adjustable parameters is examined. An experimental on-line computing system is described. Use of the system for iterative design is illustrated. A program using the hybrid matrix technique for circuit analysis is discussed. Examples demonstrating the greater efficiency of the new analysis technique are given.

This paper demonstrates the feasibility of using amplitude and break-point frequency changes to locate faults at the component level for linear circuits. A computer program has been written to obtain a dictionary of symptoms and their correlations with faulty components.

The digital computer program described in this document has been developed for the time-domain analysis of control systems and electric or electronic networks. The program employs a special method of numerical integration which is capable of economically generating a solution for a system having a wide range of time constants or natural frequencies.

The Transient Analysis Generator (TAG) produces a FORTRAN (II 7094) program which will perform a linear or nonlinear analysis of an electrical network. The analysis done is either transient or dc. There are no restrictions on the interconnections of the elements that do not also exist in the physical world. Special devices such as transistors, diodes, and real transformers must be represented by equivalent circuits (models). The user is free to replace special devices with the model of his choice.

A computer fed with measured component data calculates all external properties of the amplifier and Bode's return ratios for the active elements to permit examination of stability. An amplifier constructed to check the method is described and discussed.

This report contains information about the Computer Oriented Design of Electronic Devices (CODED) Circuit Analysis programs: procedures for their use, applications, capabilities, limitations, and examples. Two of the CODED programs discussed in this report are for ac analysis and two for dc analysis.

This paper proposes a solution to the problem of designing a filter of given structure, incorporating nonideal elements, to meet or exceed given insertion loss specifications subject to element value bounds. The overall method is especially amenable to computer implementation. The techniques presented have been applied to the computer design of cascade crystal-realizable lattice filters. Some results are presented.

The description of a partially implemented automatic design system in which the definition of the functional processes of the electronics system is translated by a
computer program into a set of logic equations is presented. Boolean minimization, timing considerations, and component-selection techniques are discussed.

The paper describes and illustrates a method of analyzing linear electrical networks which can be viewed as a set of interconnected four-terminal networks. The paper also outlines a program which has been written for the method.

This bibliography lists pertinent literature on computer-aided techniques and programs directly connected with circuit analysis and design. The entries are arranged alphabetically by author, and a subject index and a chronological index are appended.

This paper describes the LOCS System with a description of LOCS inputs and outputs as well as an outline of the procedure one must follow to use LOCS. The method of using LOCS is illustrated by an example of the complete simulation of a simple conventional binary data processing machine. Also, a summary of current status is given.

1966

A new method is described for steady state ac analysis of RLC networks on a digital computer. This method provides a more efficient way of computing frequency response than the usual method of solving linear equations at each new frequency. The new method also leads to simple formulas for the response functions of the network as partial fraction expansions and for their sensitivities with respect to frequency and/or component variations.

This paper presents a description of 25 computer programs for circuit analysis and design. See also entry 105.

This article gives a brief survey of various methods for network analysis by digital computer. Topics discussed include methods and programs for ladder networks, mesh and nodal analysis, network topology, electronic circuit analysis, state-variable analysis, n-port hybrid matrix analysis, and nonlinear circuit analysis. Also given is a brief discussion concerning algorithms for inverse Laplace transformation and methods for obtaining magnitude, phase, and delay responses in the frequency domain.

In this paper, a method of evaluating transient responses of linear time-invariant systems using the state space approach is described. Given the Laplace transform of the response function as a ratio of two polynomials in the complex frequency of proper form, the corresponding linear state space equation is formulated. A recursive formula for the transient response is derived from the exact solution of the state space equation. Numerical solutions can be obtained for any desired interval of the response time.

A mapping from block diagrams of digital circuits to list structures is described, together with a list processing program written for the Control Data 3600 which uses this mapping to automatically carry out circuit analysis.
AUTHOR INDEX

<table>
<thead>
<tr>
<th>Author</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, Charles V.</td>
<td>18</td>
</tr>
<tr>
<td>Anonymous</td>
<td>83, 99, 122, 121</td>
</tr>
<tr>
<td>Applegate, F. A.</td>
<td>84</td>
</tr>
<tr>
<td>Atwood, A. G.</td>
<td>100</td>
</tr>
<tr>
<td>Azgapetian, Victor</td>
<td>66</td>
</tr>
<tr>
<td>Baldwin, C. J., Jr.</td>
<td>8</td>
</tr>
<tr>
<td>Bartee, T. C.</td>
<td>40</td>
</tr>
<tr>
<td>Bashkow, T. R.</td>
<td>2</td>
</tr>
<tr>
<td>Bassett, H. G.</td>
<td>126</td>
</tr>
<tr>
<td>Bean, C. A.</td>
<td>58</td>
</tr>
<tr>
<td>Beaudette, J. H.</td>
<td>41</td>
</tr>
<tr>
<td>Bell, J. E.</td>
<td>42</td>
</tr>
<tr>
<td>Bickley, H. D.</td>
<td>43</td>
</tr>
<tr>
<td>Bingham, J. A. C.</td>
<td>101</td>
</tr>
<tr>
<td>Bird, B. M.</td>
<td>6</td>
</tr>
<tr>
<td>Brandt, D. R.</td>
<td>43</td>
</tr>
<tr>
<td>Branin, Franklin H., Jr.</td>
<td>19, 27, 44, 45, 67, 152</td>
</tr>
<tr>
<td>Breen, H. T.</td>
<td>85, 87</td>
</tr>
<tr>
<td>Brigida, G. R.</td>
<td>127</td>
</tr>
<tr>
<td>Brooks, Nancy G.</td>
<td>20</td>
</tr>
<tr>
<td>Brown, Albert</td>
<td>68</td>
</tr>
<tr>
<td>Brown, R. Roderick</td>
<td>21</td>
</tr>
<tr>
<td>Brule, John D.</td>
<td>31</td>
</tr>
<tr>
<td>Buchsbaum, L.</td>
<td>102, 136</td>
</tr>
<tr>
<td>Burns, R. C.</td>
<td>103</td>
</tr>
<tr>
<td>Byerly, R. T.</td>
<td>7, 8</td>
</tr>
<tr>
<td>Cage, J. B.</td>
<td>43</td>
</tr>
<tr>
<td>Calahan, D. A.</td>
<td>104, 123</td>
</tr>
<tr>
<td>Carter, E. V.</td>
<td>86</td>
</tr>
<tr>
<td>Carter, G. K.</td>
<td>37</td>
</tr>
<tr>
<td>Casady, L. C.</td>
<td>87</td>
</tr>
<tr>
<td>Chang, Y. N.</td>
<td>22</td>
</tr>
<tr>
<td>Clark, Omer P.</td>
<td>69</td>
</tr>
<tr>
<td>Clunies-Ross, C.</td>
<td>70</td>
</tr>
</tbody>
</table>

35
<table>
<thead>
<tr>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen, G. H.</td>
</tr>
<tr>
<td>Conant, Brian K.</td>
</tr>
<tr>
<td>Cornwell, Fred L.</td>
</tr>
<tr>
<td>Crosby, D. R.</td>
</tr>
<tr>
<td>Davies, M. W. Humphrey</td>
</tr>
<tr>
<td>Dennis, J. B.</td>
</tr>
<tr>
<td>Dertouzos, Michael L.</td>
</tr>
<tr>
<td>Desoer, Charles A.</td>
</tr>
<tr>
<td>Domenico, R. J.</td>
</tr>
<tr>
<td>Drew, L. C.</td>
</tr>
<tr>
<td>Duby, T. E.</td>
</tr>
<tr>
<td>Duffy, J. J.</td>
</tr>
<tr>
<td>Dujack, R. L.</td>
</tr>
<tr>
<td>Dunnet, Wallace J.</td>
</tr>
<tr>
<td>Dunning, M.</td>
</tr>
<tr>
<td>El-Abiad, A. H.</td>
</tr>
<tr>
<td>Epstein, D. I.</td>
</tr>
<tr>
<td>Falk, Howard</td>
</tr>
<tr>
<td>Fall, J. V.</td>
</tr>
<tr>
<td>Fairbrother, L. R.</td>
</tr>
<tr>
<td>Ferguson, R. W.</td>
</tr>
<tr>
<td>Fielder, Daniel C.</td>
</tr>
<tr>
<td>Fisch, S. M.</td>
</tr>
<tr>
<td>Franks, David A.</td>
</tr>
<tr>
<td>Frola, F. R.</td>
</tr>
<tr>
<td>Fryer, W. D.</td>
</tr>
<tr>
<td>Fujimoto, K.</td>
</tr>
<tr>
<td>Gangel, M. W.</td>
</tr>
<tr>
<td>Geffe, Philip R.</td>
</tr>
<tr>
<td>George, O. M.</td>
</tr>
<tr>
<td>Glimn, A. F.</td>
</tr>
<tr>
<td>Goldberg, M. J.</td>
</tr>
<tr>
<td>Golden, Roger M.</td>
</tr>
<tr>
<td>Goldstick, G. H.</td>
</tr>
<tr>
<td>Green, Lewis F.</td>
</tr>
<tr>
<td>25, 46</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>111</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>124, 125</td>
</tr>
<tr>
<td>2, 47</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>88</td>
</tr>
<tr>
<td>63, 79</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>89</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>105, 153</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>126</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>127</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>109</td>
</tr>
<tr>
<td>106</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>10, 72, 107, 128</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>129</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>
Green, W. W. .. 50
Grossberg, Phyllis J. 108
Gupta, P. P. .. 52
Hannom, T. J. B. 102, 136
Haynes, Munro K. 53
Hellerman, L. ... 12, 24, 73
Hellerstein, Simon 54
Henry, H. E. .. 74
Hesterman, V. W. 113
Ho, Yu-Chi .. 29
Hofer, Florian N. 111
Honkanen, P. A. .. 41
Hoppe, Roger K. 131
Hosking, K. H. ... 75
Huber, E. Allen .. 108
Hurless, H. D. .. 13
Husson, S. S. .. 70
IBM Corp. ... 83, 110, 122
Iedokoro, Tokuju 91
Jelinek, H. J. .. 76, 109
Jervis, E. R. .. 55
John, M. N. .. 56
Johnson, Richard A. 31
Joyal, H. J. .. 32
Katzenelson, Jacob 132
Kaupp, H. R. .. 28
Kavanagh, B. M. J. 75
Keenan, T. A. ... 25
Kennedy, N. H. .. 119
Kimme, E. G. ... 92
King, C. W. .. 7, 8
Kirby, D. B. ... 57
Kirchmayer, L. K. 11
Kletsky, Earl J. ... 31
Klion, Jerome ... 93
<table>
<thead>
<tr>
<th>Entry</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen, M.</td>
<td>1</td>
</tr>
<tr>
<td>Korn, Granino A.</td>
<td>133</td>
</tr>
<tr>
<td>Kuo, F. F.</td>
<td>92, 154</td>
</tr>
<tr>
<td>Lasdon, L. S.</td>
<td>147</td>
</tr>
<tr>
<td>Lasher, G. J.</td>
<td>4</td>
</tr>
<tr>
<td>Lawson, A. D.</td>
<td>103</td>
</tr>
<tr>
<td>Lechler, A. P.</td>
<td>77</td>
</tr>
<tr>
<td>Lee, Samuel Chien-hsum</td>
<td>134</td>
</tr>
<tr>
<td>Leon, B. J.</td>
<td>58</td>
</tr>
<tr>
<td>Liou, M. L.</td>
<td>135, 155</td>
</tr>
<tr>
<td>Lock, Kenneth</td>
<td>59</td>
</tr>
<tr>
<td>Long, Harvey S.</td>
<td>20</td>
</tr>
<tr>
<td>Long, R. W.</td>
<td>7, 8, 9</td>
</tr>
<tr>
<td>Macario, R. C. V.</td>
<td>149</td>
</tr>
<tr>
<td>McBride, Thomas K.</td>
<td>142</td>
</tr>
<tr>
<td>MacDonald, E. H.</td>
<td>37</td>
</tr>
<tr>
<td>Mackie, D. G.</td>
<td>51</td>
</tr>
<tr>
<td>Maenpaa, John H.</td>
<td>142</td>
</tr>
<tr>
<td>Mah, L.</td>
<td>102, 136</td>
</tr>
<tr>
<td>Malmberg, Allan F.</td>
<td>111</td>
</tr>
<tr>
<td>Mann, William S.</td>
<td>138</td>
</tr>
<tr>
<td>Mark, Donald G.</td>
<td>77, 112</td>
</tr>
<tr>
<td>Massachusetts Inst. Technol.</td>
<td>99, 121</td>
</tr>
<tr>
<td>Mayeda, W.</td>
<td>5, 14</td>
</tr>
<tr>
<td>Merritt, Philip E.</td>
<td>60</td>
</tr>
<tr>
<td>Meyer, Charles Shelly</td>
<td>33</td>
</tr>
<tr>
<td>Miles, R. S.</td>
<td>94</td>
</tr>
<tr>
<td>Mitchell, Baker Adams, Jr.</td>
<td>133</td>
</tr>
<tr>
<td>Mitra, Sanjit K.</td>
<td>47</td>
</tr>
<tr>
<td>Morgan, J. C.</td>
<td>4</td>
</tr>
<tr>
<td>Morris, E. F.</td>
<td>15</td>
</tr>
<tr>
<td>Moskowitz, Fred</td>
<td>16</td>
</tr>
<tr>
<td>Mullock, Philip J.</td>
<td>68</td>
</tr>
<tr>
<td>Nease, R. F.</td>
<td>23</td>
</tr>
<tr>
<td>Newey, D. A.</td>
<td>78</td>
</tr>
<tr>
<td>Name</td>
<td>Entry</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Nitzan, D.</td>
<td>113</td>
</tr>
<tr>
<td>Nuspl, Stephen John</td>
<td>114</td>
</tr>
<tr>
<td>Pacello, E. A.</td>
<td>61</td>
</tr>
<tr>
<td>Parton, K. C.</td>
<td>78</td>
</tr>
<tr>
<td>Pierce, Charlie M.</td>
<td>95</td>
</tr>
<tr>
<td>Platnick, D.</td>
<td>25, 46</td>
</tr>
<tr>
<td>Pottle, Christopher</td>
<td>115, 137</td>
</tr>
<tr>
<td>Preston, Frank S.</td>
<td>138</td>
</tr>
<tr>
<td>Racite, M. P.</td>
<td>12</td>
</tr>
<tr>
<td>Reed, Myril B.</td>
<td>18</td>
</tr>
<tr>
<td>Remington Rand Univac</td>
<td>34, 62</td>
</tr>
<tr>
<td>Rindt, L. J.</td>
<td>9</td>
</tr>
<tr>
<td>Rippy, Don E.</td>
<td>116</td>
</tr>
<tr>
<td>Rodriguez, Jorge E.</td>
<td>96</td>
</tr>
<tr>
<td>Rosenthal, C. W.</td>
<td>57</td>
</tr>
<tr>
<td>Ross, Douglas T.</td>
<td>96</td>
</tr>
<tr>
<td>Sadler, M.</td>
<td>75</td>
</tr>
<tr>
<td>Santos, Paul J., Jr.</td>
<td>125</td>
</tr>
<tr>
<td>Sato, N.</td>
<td>35</td>
</tr>
<tr>
<td>Saunders, R. M.</td>
<td>23</td>
</tr>
<tr>
<td>Scheffler, H. S.</td>
<td>63, 64, 77, 79</td>
</tr>
<tr>
<td>Scheibe, Paul</td>
<td>117</td>
</tr>
<tr>
<td>Schorr, Herbert</td>
<td>118</td>
</tr>
<tr>
<td>Schultheiss, P. M.</td>
<td>74</td>
</tr>
<tr>
<td>Schultz, W. C.</td>
<td>106</td>
</tr>
<tr>
<td>Seitelman, Leon H.</td>
<td>132</td>
</tr>
<tr>
<td>Semmelman, C. L.</td>
<td>80</td>
</tr>
<tr>
<td>Shalla, Leon</td>
<td>156</td>
</tr>
<tr>
<td>Silvernale, L. P.</td>
<td>119</td>
</tr>
<tr>
<td>Skiles, J. J.</td>
<td>11, 43</td>
</tr>
<tr>
<td>Skwirzynski, J. K.</td>
<td>139</td>
</tr>
<tr>
<td>Smith, B. R.</td>
<td>140</td>
</tr>
<tr>
<td>So, H. C.</td>
<td>141</td>
</tr>
<tr>
<td>Sollecito, W. E.</td>
<td>26</td>
</tr>
<tr>
<td>Spitalny, Arnold</td>
<td>138</td>
</tr>
</tbody>
</table>

39
Spradlin, B. C. ... 79
Stahl, Walter J. ... 142
Starner, Duane ... 36
Stember, L. H., Jr. ... 63
Stempin, C. W. ... 97
Stineman, R. W. ... 143
Strom, Russel ... 81
Swann, D. A. ... 26
Szentirmai, G. ... 98
Taylor, G. E. ... 37
Temes, G. C. ... 82, 140
Terry, F. R. ... 64
Therrien, Charles W. ... 124
Thomas, W. J. ... 144
Thomson, D. ... 145
Tsuchiya, Tohoru ... 91
Turpin, Larry M. ... 146
Van Valkenburg, M. E. ... 5, 14
Walker, K. R. ... 42
Wallace, J. H. ... 17
Waren, A. D. ... 147
Watanabe, Hitoshi ... 65, 91
Webb, H. W. ... 76, 85
Weindling, M. N. ... 148
Wells, A. T. ... 119
Whigham, Robert H. ... 133
White, D. R. J. ... 38
Wilcox, B. A. M. ... 149
Wildfeuer, David ... 39
Wirth, J. L. ... 120
Wohr, T. E. ... 15
Wong, S. Y. ... 1
Yamamoto, K. ... 65
Yang, Tsute ... 150
Zucker, M. S. ... 151

40
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Category</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>1, 22, 24, 38, 71, 73, 76, 89, 130, 143</td>
</tr>
<tr>
<td>Electric networks</td>
<td>5, 7, 8, 9, 14, 15, 16, 18, 29, 33, 41, 49, 56, 63, 64, 69, 75, 76, 79, 85, 90, 100, 102, 103, 119, 126, 127, 129, 132, 142, 145, 154</td>
</tr>
<tr>
<td>Transient</td>
<td>20, 36, 42, 53, 67, 110, 111, 114</td>
</tr>
<tr>
<td>dc</td>
<td></td>
</tr>
<tr>
<td>ac</td>
<td>27, 83</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95, 150</td>
</tr>
<tr>
<td>Computer programs</td>
<td>20, 24, 27, 41, 57, 61, 72, 76, 83, 85, 86, 87, 88, 94, 105, 107, 108, 110, 111, 116, 121, 122, 124, 128, 130, 144, 146, 151, 153</td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>6, 21, 23, 24, 30, 40, 66, 118, 125</td>
</tr>
<tr>
<td>Electric networks</td>
<td>5, 10, 17, 25, 26, 32, 34, 39, 46, 47, 48, 51, 73, 80, 99, 104, 109, 123, 141, 147, 148</td>
</tr>
<tr>
<td>Synthesis</td>
<td>54, 65, 82, 92, 98, 140</td>
</tr>
<tr>
<td>Filter</td>
<td>10, 80, 82, 91, 92, 98, 140, 147</td>
</tr>
<tr>
<td>Integrated circuits</td>
<td>86, 100, 136, 138</td>
</tr>
<tr>
<td>Logic networks</td>
<td>17, 22, 40, 90, 118, 125, 151</td>
</tr>
<tr>
<td>Power system</td>
<td>6, 8, 9, 11, 13, 37, 43, 50, 52, 78</td>
</tr>
<tr>
<td>Reliability</td>
<td>12, 31, 55, 76, 131</td>
</tr>
<tr>
<td>Simulation</td>
<td>3, 4, 106, 130, 149</td>
</tr>
<tr>
<td>Statistical method</td>
<td>12, 24, 29, 60, 70, 73, 74, 83, 84, 93</td>
</tr>
<tr>
<td>Tutorial and Introductory</td>
<td>1, 2, 5, 18, 21, 38, 81, 96, 120, 139, 141, 154</td>
</tr>
<tr>
<td>Worst case</td>
<td>63, 79, 103, 119</td>
</tr>
</tbody>
</table>

NASA-Langley, 1968 —— L-5555 41